八年级数学(上)第三阶段考试数学11至14章试题-[1]

合集下载

八年级数学(上、11-12章)试题

八年级数学(上、11-12章)试题

八年级数学(上、11-12章)试题一、选择题1、如下图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE ()(A)BC=EF (B)∠A=∠D (C)AC∥DF (D)AC=DF2、已知,如上图,AC=BC,AD=BD,下列结论,不正确的是()(A)CO=DO (B)AO=BO (C)AB⊥BD (D)△ACO≌△BCO3、在△ABC内部取一点P使得点P到△ABC的三边距离相等,则点P应是△ABC的哪三条线交点()(A)高(B)角平分线(C)中线(D)垂直平分线4、△ABC≌△DEF,AB=2,BC=4 若△DEF的周长为偶数,则DF的取值为()(A)3(B) 4(C)5(D)3或4或55、下列条件能判定△ABC≌△DEF的一组是()(A)∠A=∠D,∠C=∠F, AC=DF (B)AB=DE, BC=EF,∠A=∠D(C)∠A=∠D,∠B=∠E,∠C=∠F (D)AB=DE,△ABC的周长等于△DEF的周长6、下列图形中,不是轴对称图形的是 ( )A.等边三角形 B.等腰直角三角形 C.四边形 D.线段7、如下图,轴对称图形有()A.3 个 B.4个 C.5个 D.6个8、下列图形中,不是轴对称图形的是()A.有两条边相等的三角形 B.有一个角为450的直角三角形C.有一个角为600的等腰三角形D.一个内角为400,一个内角为1100的三角形9、当你看到镜子中的你在用右手往左梳理你的头发时,实际上你是()A.右手往左梳 B.右手往右梳 C.左手往左梳 D.左手往右梳10、下列条件中不能作出惟一直角三角形的是()A. 已知两个锐角B. 已知一条直角边和一个锐角C. 已知两条直角边D. 已知一条直角边和斜边二、填空题11、已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.第 11题第 12题第 13题12、如图,△ABC≌△ADE,则,AB= ,∠E=∠.若∠BAE=120°,∠BAD=40°,则∠BAC= .13、如图,在ΔAOC与ΔBOC中,若AO=OB,∠1=∠2,加上条件则有ΔAOC≌ΔBOC。

人教版八年级上册数学 第十一章测试题含答案

人教版八年级上册数学 第十一章测试题含答案

人教版八年级上册数学第十一章测试题11.1练习题1.下面四个图形中,线段BD是△ABC的高的是()2.如图,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC于点E,CF⊥AD于点H并交AB于点F,下列判断:①AD是△ABE的角平分线;②BE是△ABD的AD边上的中线;③CH是△ACG,△ACH,△ACD的高;④ AH是△ACF的角平分线和高;⑤CG是△ACD的中线.其中正确的有()A.1个B.2个C.3个D.4个3.如图①为一张△ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图②所示.若△ABC的面积为80,△DBC 的面积为50,则BP与PC的长度比为()A.3∶2B.5∶3C.8∶5D.13∶84.AD是△ABC的中线,如果△ABD比△ACD的周长多6 cm,那么AB 与AC的差为.5.如图,AD是△ABC的中线,CE是△ACD的中线,S△ACE=4 cm2,则S△ABC= .6.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BFB.∠ACE=1∠ACB2C.AE=BED.CD⊥BE7.下列说法错误的是()A.三角形的角平分线能把三角形分成面积相等的两部分B.三角形的三条中线、角平分线都相交于一点C.直角三角形的三条高交于三角形的一个顶点D.钝角三角形的三条高所在直线的交点在三角形的外部8.下面四个图形中,作△ABC的边AB上的高,正确的是()9.如图,AE⊥BC于点E,则图中以AE为高的三角形共有()A.15个B.14个C.10个D.5个第9题图10.四边形ABCD的对角线AC和BD相交于点E,如果△CDE的面积为3,△BCE的面积为4,△AED的面积为6,那么△ABE的面积为()A.7 B.8 C.9 D.10第10题图11.如图,点D,E分别是线段BC,AD的中点,S△ABC=40 cm2,BC=10 cm,则△BDE中BD边上的高为()A.4 cmB.5 cmC.7 cmD.8 cm12.桥梁拉杆,电视塔底座,都是三角形结构,这是利用三角形的性.13.在Rt△ABC中,∠ACB=90°,AC=3 cm,BC=4 cm,CD是AB边的中线,则AC边上的高为cm,△BCD的面积为cm2.第13题图14.如图,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△ABC=6 cm2,则S△BEF的值为 1.5cm2.第14题图15.已知AD是△ABC的高,∠ABC=30°,∠CAD=50°,则∠BAC的度数为.16.如图,D是△ABC中BC上的一点,DE∥AC交AB于点E,DF∥AB 交AC于点F,且∠ADE=∠ADF,AD是△ABC的角平分线吗?说明理由.17.在△ABC 中,AB=AC ,中线BD 将这个三角形的周长分为12 cm 和15 cm 两个部分,求这个三角形的三边长.18.阅读与理解:三角形的中线的性质:三角形的中线等分三角形的面积, 即:如图①,AD 是△ABC 中BC 边上的中线, 则S △ABD =S △ACD =12S △ABC .理由:∵BD=CD ,∴S △ABD =12BD ×AH=12CD ×AH=S △ACD =12S △ABC ,即:等底同高的三角形面积相等. 操作与探索:在图②至图④中,△ABC 的面积为a.(1)如图②,延长△ABC的边BC到点D,使CD=BC,连接DA,若△ACD 的面积为S1,则S1= (用含a的代数式表示);(2)如图③,延长△ABC的边BC到点D,延长边CA 到点E,使CD=BC,AE=CA,连接DE,若△DEC的面积为S2,则S2= (用含a的代数式表示),并写出理由;(3)在图③的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图④),若阴影部分的面积为S3,则S3= (用含a的代数式表示).拓展与应用:如图⑤,已知四边形ABCD的面积是a,E,F,G,H分别是AB,BC,CD,AD的中点,求图中阴影部分的面积.答案:1. D2. C3. A4. 6cm5. 16cm26. C7. A8. C9. A10. B11. A12. 稳定13. 4 314. 1.515. 10°或110°16. 解:AD是△ABC的角平分线. 理由:∵DE∥AC,DF∥AB,∴∠ADE=∠DAF ,∠ADF=∠EAD. 又∵∠ADE=∠ADF , ∴∠DAF=∠EAD.又∵∠DAF+∠EAD=∠BAC , ∴AD 是△ABC 的角平分线.17. 解:设AB=AC=x cm ,BC=y cm.列出方程组,得 {x +12x =12,12x +y =15或 {x +12x =15,12x +y =12.解得 {x =8,y =11或 {x =10,y =7.经验算均符合.所以这个三角形的三边长为8 cm ,8 cm ,11 cm 或10 cm ,10 cm ,7 cm. 18. 解:(1)a (2)2a理由:如答图①,连接AD ,∵S △ABC =S △ACD =S △AED =a ,∴S △DCE =2a.答图①(3)6a拓展与应用:如答图②,连接AO ,BO ,CO ,DO ,∵S △AOE =S △BOE =12S △AOB ,S △BOF =S △COF =12S △COB ,S △COG =S △DOG =12S △COD ,S △DOH =S △AOH =12S △AOD ,∴阴影部分面积=12S 四边形ABCD =12a.答图②11.2练习题1.如图,AD 是△ABC 的外角∠EAC 的平分线,AD ∥BC ,∠B=32°,则∠C 的度数是( )A.64°B.32°C.30°D.40°2.如图,在△ABC中,直线DE分别交AB,AC于点D,E,DE∥BC,∠1=105°,∠B=65°,则∠A的度数是()A.30°B.40°C.50°D.60°3.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= .4.如图,已知∠B=16°,∠C=24°,∠BOC=128°,求∠A的度数.解:如答图,延长CO交AB于点D,∵∠BDO=∠BOC-∠B=128°-16°=112°,∴∠A=∠BDO-∠C=112°-24°=88°.5.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB为.6.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°7.如图,AD是△ABC的角平分线,若∠ADB=115°,∠C=65°,求∠B的度数.8.下列图中,∠1不是△ABC的外角的是()A.③④B.①②C.②③④D.①③④9.如图,下列说法中错误的是()A.∠1不是△ABC的外角B.∠ACD是△ABC的外角C.∠ACD=∠A+∠BD.∠B=∠110.如图,∠ABD,∠ACD的平分线交于点P,若∠A=55°,∠D=15°,则∠P的度数为()A.15°B.20°C.25°D.30°11.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°12.如图,∠BCD=150°,则∠A+∠B+∠D的度数为()A.110°B.120°C.130°D.150°第12题图13.将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°第13题图14.将一副三角板如图叠放,则图中∠α的度数为.第14题图15.如图,∠A+∠B+∠C+∠D+∠E的度数是.第15题图16.如图,△ABC中,BI,CI分别平分∠ABC,∠ACB,且∠BIC=140°,BM,CM分别平分△ABC的外角∠DBC,∠BCE,则∠BMC= .17.如图,已知D为△ABC的边BC延长线上一点,DF⊥AB于点F交AC于点E,∠A=35°,∠D=42°,求∠ACD的度数.18.一个零件的形状如图所示,按规定∠A应为90°,∠B,∠C应分别是30°和20°,李叔叔量得∠BDC=142°,就判定这个零件不合格,你能说出其中的道理吗?19.如图,在△ABC中,AD是高,∠DAC=10°,AE是△BAC外角的平分线,BF平分∠ABC交AE于点F,若∠ABC=46°,求∠AFB的度数.20.如图,已知BD是∠ABC的平分线,CD是△ABC的外角∠ACE的平分线,CD与BD交于点D.(1)若∠A=50°,则∠D= .(2)若∠A=80°,则∠D= .(3)若∠A=130°,则∠D= .(4)若∠D=36°,则∠A= .(5)综上所述,你会得到什么结论?证明你的结论的准确性.答案:1.B2.B3. 120°4.答图解:如答图,延长CO交AB于点D,∵∠BDO=∠BOC-∠B=128°-16°=112°,∴∠A=∠BDO-∠C=112°-24°=88°.5. 10°6. B7.解:∵∠CAD=∠ADB-∠C=115°-65°=50°,又AD是△ABC的角平分线,∴∠CAB=2∠CAD=100°,∴∠B=180°-∠CAB-∠C=180°-100°-65°=15°.8. A9.D10.B11.C12.D13.C14. 15°15. 180°16. 40°17. 解:∵DF⊥AB,∠D=42°,∴∠B=90°-∠D=90°-42°=48°.∴∠ACD=∠B+∠A=48°+35°=83°.18.解:如答图,连接AD并延长,∵∠1=∠B+∠BAD,∠2=∠C+∠CAD,又∠B=30°,∠C=20°,∴∠BDC=∠1+∠2=∠B+∠BAD+∠DAC+∠C=∠B+∠BAC+∠C. ∴∠BAC=∠BDC-∠B-∠C=142°-30°-20°=92°≠90°,∴这个零件不合格.19.解:∵AD是高,∴∠ADB=90°,∴∠BAD=90°-∠ABC=44°.又∠DAC=10°,∴∠BAC=54°,∴∠MAC=126°.∵AE是△BAC外角的平分线,∴∠MAE=1∠MAC=63°.2∠ABC=23°,∵BF平分∠ABC,∴∠ABF=12∴∠AFB=∠MAE-∠ABF=40°.20.(1) 25°(2)40°(3)65°(4)72°∠A.(5)解:∠D=12证明:∵BD是∠ABC的平分线,CD是∠ACE的平分线,∴∠ACE=2∠2,∠ABC=2∠1.∵∠ACE=∠ABC+∠A,∴2∠2=2∠1+∠A.而∠2=∠1+∠D,∴2∠2=2∠1+2∠D,∴∠A=2∠D,∠A.即∠D=12人教版八年级数学上册课时练第十一章三角形 11.3 多边形及其内角和一、单选题1.若一个多边形的内角和与外角和之和是1800°,则此多边形是()边形.A.八B.十C.十二D.十四2.如果一个多边形的每一个外角都等于45°,则这个多边形的边数为()A.3 B.4 C.5 D.83.一个正多边形的边长为2,每个内角为135°,则这个多边形的周长是( ) A .8B .12C .16D .184.如图①,一张四边形纸片,, ,若将其按照图②所示方式折叠后,确好,,则的度数为( )A .B .C .D .5.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是 A .8B .9C .10D .126.如图,直线AB ∥CD ,点F 在直线AB 上,点N 在直线CD 上,∠EFA =25°,∠FGH =90°,∠HMN =25°,∠CNP =30°,则∠GHM =( )A .45°B .50°C .55°D .60°7.图1是二环三角形,S =∠A 1+∠A 2+…+∠A 6=360,图2是二环四边形,S =∠A 1+∠A 2+…+∠A =720,图3是二环五边形,S =∠A 1+∠A 2+…+∠A =1080…聪明的同学,请你直接写出二环十边形,S =_____________度( )110B ︒∠=150D ︒∠=//MA BC '// NA DC 'C∠45︒50︒55︒60︒()810A .1440B .1800C .2880D .36008.如图,一个凸六边形的六个内角都是120°,六条边的长分别为a ,b ,c ,d ,e ,f ,则下列等式中成立的是( )A .a+b+c=d+e+fB .a+c+e=b+d+fC .a+b=d+eD .a+c=b+d 9.如图,已知∠A=n °,若P 1点是∠ABC 和外角∠ACE 的角平分线的交点,P 2点是∠P 1BC 和外角∠P 1CE 的角平分线的交点,P 3点是∠P 2BC 和外角∠P 2CE 的交点…依此类推,则∠P n =( )A .B .C .D .10.一条长为17.2cm 、宽为2.5cm 的长方形纸条,用如图的方法打一个结,然后轻轻拉紧、压平,就可以得到如图所示的正五边形ABCDE .若CN +DP =CD ,四边形ACDE 的面积是( )cm 2.A .B .10C .8.6D .643343二、填空题11.已知一个多边形的所有内角与它的一个外角之和是2400°,那么这个多边形的边数是____,这个外角的度数是____.12.用边长相等的正三角形和正六边形地砖拼地板,在每个顶点周围有a块正三角形和b块正六边形的地砖(ab≠0),则a-b的值为________.13.一个多边形的所有内角与这个多边形其中一个外角的和等于2020°,则这个多边形的边数是_________.14.根据如图所示的已知角的度数,求出其中∠α的度数为______.15.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=40°,∠2=50°,那么∠ 3的度数等于______________.三、解答题16.如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A 1D 1C =30°,求∠A 1EC 的度数.(3)若将图1中的线段AD 沿MN 向左平移到A 1D 1如图3所示位置,其他条件与(2)相同,求此时∠A 1EC 的度数.17.如图1,线段AB 、CD 相交于点O ,连结AD 、CB ,我们把这个图形称为“8字型”根据三角形内角和容易得到:∠A +∠D =∠C +∠B .(1)用“8字型”如图2,∠A +∠B +∠C +∠D +∠E +∠F =___________; (2)造“8字型”如图3,∠A +∠B +∠C +∠D +∠E +∠F +∠G =_____________; (3)发现“8字型”如图4,BE 、CD 相交于点A ,CF 为∠BCD 的平分 线,EF 为∠BED 的平分线. ①图中共有________个“8字型”; ②若∠B :∠D :∠F =4:6:x ,求x 的值.18.如图1,已知直线,且和之间的距离为,小明同学制作了一个直角三角形硬纸板,其中,,.小明利用这块三角板进行了如下的操作探究://EF GH EF GH 1ACB 90ACB ∠=︒60BAC ∠=︒1AC =(1)如图1,若点在直线上,且.求的度数;(2)若点在直线上,点在和之间(不含、上),边、与直线分别交于点和点.①如图2,、的平分线交于点.在绕着点旋转的过程中,的度数是否变化?若不变,求出的度数;若变化,请说明理由;②如图3,在绕着点旋转的过程中,设,,求的取值范19.如图1,在四边形中,,点在边上,平分,且.(1)求证:;(2)如图2,已知交边于点,交边的延长线于点,且平分. 若,试比较与的大小,并说明理由.20.如图,四边形ABCD ,BE 、DF 分别平分四边形的外角∠MBC 和∠NDC ,若∠BAD=α,∠BCD=βC EF 20ACE ∠=︒1∠A EF C EF GH EF GH BC AB GHD K AKD ∠CDK ∠O ABC ∆A O ∠O ∠ABC ∆A EAK n ∠=︒()4310CDK m n ∠=--︒m ABCD A C ∠=∠E AB DE ADC ∠ADE DEA ∠=∠AD BC ∕∕DF BC ⊥BC G AB F DB EDF ∠45BDC ∠<︒F ∠EDF ∠(1)如图,若α+β=120°,求∠MBC+∠NDC的度数;(2)如图,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(3)如图,若α=β,判断BE、DF的位置关系,并说明理由.21.提出问题:(1)如图,我们将图(1)所示的凹四边形称为“镖形”.在“镖形”图中,∠AOC与∠A、∠C、∠P的数量关系为_______.(2)如图(2),已知AP平分∠BAD,CP平分∠BCD,∠B =28°,∠D=48°.求∠P的度数.由(1)结论得:∠AOC =∠PAO +∠PCO+∠P所以2∠AOC=2∠PAO +2∠PCO+2∠P即2∠AOC =∠BAO +∠DCO+2∠P 因为∠AOC =∠BAO +∠B,∠AOC =∠DCO +∠D所以2∠AOC=∠BAO +∠DCO+∠B +∠D所以∠P=_______.解决问题:(3)如图(3),直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是_______;(4)如图(4),直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,猜想∠P 与∠B 、∠D 的数量关系是_______.22.,,且,,求和的度数.23.在四边形中,平分交于点,点在线段上运动.(1)如图1,已知.①若平分,则______;②若,试说明;(2)如图2,已知,试说明平分.【参考答案】1.B 2.D 3.C 4.B 5.A 6.D 7.C 8.C 9.B 10.C 11.15 60°12.0或3AF CD ∥AB DE ∥120A ∠=︒80B ∠=︒D ∠C∠ABCD CE BCD ∠AD E F CE 90A D ︒∠=∠=BF ABC ∠BFC ∠=90BFC ︒∠=12DEC ABC ∠=∠A D BFC ∠=∠=∠BF ABC∠13.1314.50度15.12°16.(1)∠AEC =130°;(2)∠A 1EC =130°;(3)∠A 1EC =40°.17.(1)360°;(2)540;(3)①6;②x =5.18.(1);(2)①不变,;②.19.(1)略;(2),理由略.20.(1)120°; (2)β﹣α=60° 理由略;(3)平行,理由略.21.(1)∠AOC=∠A+∠P+∠C ;(2)38°;(3)∠P=90°+(∠B+∠D );(4)∠P=180°-(∠B+∠D ).22.,的度数分别为,.23.(1)①90°;②略;(2)略.170∠=︒75︒70115m <<F EDF ∠<1212CDE ∠C ∠120︒160︒。

八年级上册数学第十四章测试题

八年级上册数学第十四章测试题

八年级上册数学第十四章测试题八年级上册数学第十四章测试题(一)姓名:____________ 班级:____________ 分数:____________一、选择题(每个3分,共24分)1.下列多项式中,可以提取公因式的是()A。

x2-y2 B。

x2+xC。

x2-y D。

x2+2xy+y22.化简x3·(-x)3的结果是()A。

-x6 B。

x6 C。

x5 D。

-x53.下列两个多项式相乘,不能用平方差公式的是()A。

(-2a+3b)(2a+3b) B。

(-2a+3b)(-2a-3b)C。

(2a+3b)(-2a-3b) D。

(-2a-3b)(2a-3b)4.下列运算正确的是()A。

(a+b)2=a2+b2+2ab B。

(a-b)2=a2-b2C。

(x+3)(x+2)=x2+6 D。

(m+n)(-m+n)=-m2+n25.若x2+mxy+y2是完全平方式,则m=()A。

2 B。

1 C。

±2 D。

±16.下列四个多项式是完全平方式的是()A。

1 B。

2a+ab+b2 C。

4 D。

2x2+5xy+2y27.已知a、b是ΔABC的两边,且a+b=2ab,则ΔABC的形状是()A。

等腰三角形 B。

等边三角形 C。

锐角三角形 D。

不确定8.(-3)+3·(-3)m-1的值是()A。

1 B。

-1 C。

0 D。

(-3)m+1二、填空题(每个题3分,共24分)9.计算:(-a2)5+(-a5)2=;(-y2)3+y6=.10.分解因式:x2-2xy+y2=,x2-y2=.11.计算:-22×(-2)2=;-=.12.若23x-1=1,则3x-1=,x=.13.若am=2,an=3,则am+n=;若9x=3x+3,则x=.14.x2-4x+=(x-)^2 -精品-15.已知(x+y)2=9,(x-y)2=5,则xy的值为.16.计算:(1/5)2007·=.三、计算题(每个4分,共16分)17.(6a2+3a)÷3a18.(2x+y)(2x-y)19.-2(x+y)2四、分解因式(每题4分,共16分)20.3(y-z)2-(2y+z)(2y-z)21.x4+x2y222.a2-25b223.x2+2x+1五、解答下列问题25.首先化简表达式:(a+b)(a-2b)-(a+2b)(a-b) = a^2 - 2ab - 2ab + 4b^2 - a^2 + ab + 2ab - 2b^2 = -3ab + 2b^2.代入a=2,b=-1得到-2作为答案。

人教版八年级数学上册 第11--12章综合检测试题

人教版八年级数学上册 第11--12章综合检测试题

2018—2019学年人教版八年级数学上册第11--12章综合检测与简答一.选择题(共10小题)1.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为()A.2cm B.3cm C.4cm D.5cm2.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.三角形具有稳定性B.直角三角形的两个锐角互余C.三角形三个内角的和等于180°D.两点之间,线段最短3.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm4.如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D的度数是()A.24°B.59°C.60°D.69°5.一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.76.下列条件中,能判定两个直角三角形全等的是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等7.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC8.如图,在Rt△ABC中,∠A=90°,BD是△ABC的角平分线,若AC=10,CD=6,则点D到BC的距离是()A.10 B.8 C.6 D.49.下列结论错误的是()A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等10.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A.SSS B.SAS C.ASA D.AAS二.填空题(共8小题)11.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B的度数为.12.如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)13.如图,Rt△ABC中,∠BAC=90°,AB=AC,分别过点B、C作过点A的直线的垂线BD、CE,垂足分别为D、E,若BD=3,CE=2,则DE=.14.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.15.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是.16.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=.18.如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1=.∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2009BC的平分线与∠A2009CD的平分线交于点A2010,得∠A2010,则∠A2010=.三.解答题(共6小题)19.如图,在△ABC中,∠B>∠C,AD是BC边上的高,AE平分∠BAC.(1)若∠B=50°,∠C=30°,则∠DAE=.(2)若∠B=60°,∠C=20°,则∠DAE=.(3)由(1)(2)猜想∠DAE与∠B,∠C之间的关系为,请说明理由.20.如图,四边形ABCD中,∠BAD=100°,∠BCD=70°,点M,N分别在AB,BC 上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,求∠B的度数.21.(1)完成下面的填空:已知:如图,△ABC中,∠ACB=90°,CD⊥AB于点D,AF平分∠CAB交CD于E,交BC于F,求证:∠CEF=∠CFE证明:∵∠ACB=90°(已知),∴∠CAF+∠=90°().∵CD⊥AB(已知),∴∠FAB+∠=90°()∵AF平分∠CAB(),∴∠CAF=∠FAB()∴∠=∠(),∵∠CEF=∠(),∴∠CEF=∠CFE()(2)请用不同于(1)的方法给予证明.22.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.23.(1)如图1,△ABC中,∠BAC=90°,AB=AC,AE是过A点的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.(2)若直线AE绕点A旋转到图2的位置时(BD<CE),其余条件不变,问BD 与DE、CE的关系如何?请予以证明.24.如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B 到地面的距离BD=3m.小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A′处时,有A'B⊥AB.(1)求A′到BD的距离;(2)求A′到地面的距离.2018—2019学年人教版八年级数学上册第11--12章综合检测简答一.选择题(共10小题)1.B.2.A.3.B.4.B.5.C.6.D.7.C.8.D.9.B.10.A.二.填空题(共8小题)11.70°.12.∠ABD=∠CBD或AD=CD.(只需写一个,不添加辅助线)13.5.14.55°.15.30.16.4.17.50°.18...三.解答题(共6小题)19.如图,在△ABC中,∠B>∠C,AD是BC边上的高,AE平分∠BAC.(1)若∠B=50°,∠C=30°,则∠DAE=10°.(2)若∠B=60°,∠C=20°,则∠DAE=20°.(3)由(1)(2)猜想∠DAE与∠B,∠C之间的关系为∠DAE=12(∠B﹣∠C),请说明理由.【学会思考】首先根据三角形的内角和定理求出∠BAC的度数,又由于AE平分∠BAC,根据角平分线的定义可得出∠BAE的度数;由AD是BC边上的高,可知∠ADB=90°,由直角三角形两锐角互余,可求出∠BAD的度数;最后根据∠DAE=∠BAE﹣∠BAD,即可得出结果.【解】:由图知,∠DAE=∠BAE﹣∠BAD=12∠BAC﹣∠BAD=12(180°﹣∠B﹣∠C)﹣(90°﹣∠B)=90°﹣12∠B﹣12∠C﹣90°+∠B=12(∠B﹣∠C)所以当∠B=50°,∠C=30°时,∠DAE=10°;故答案为:10°.(2)当∠B=60°,∠C=20°时,∠DAE=20°;故答案为:20°;(3)∠DAE=12(∠B﹣∠C).∠DAE=∠BAE﹣∠BAD=12∠BAC﹣∠BAD=12(180°﹣∠B﹣∠C)﹣(90°﹣∠B)=90°﹣12∠B﹣12∠C﹣90°+∠B=12(∠B﹣∠C),故答案为:∠DAE=12(∠B﹣∠C).20.如图,四边形ABCD中,∠BAD=100°,∠BCD=70°,点M,N分别在AB,BC 上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,求∠B的度数.【学会思考】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解】:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=12∠BMF=12×100°=50°,∠BNM=12∠BNF=12×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.21.(1)完成下面的填空:已知:如图,△ABC中,∠ACB=90°,CD⊥AB于点D,AF平分∠CAB交CD于E,交BC于F,求证:∠CEF=∠CFE证明:∵∠ACB=90°(已知),∴∠CAF+∠CFA=90°(直角三角形的两个锐角互余).∵CD⊥AB(已知),∴∠FAB+∠AED=90°(直角三角形的两个锐角互余)∵AF平分∠CAB(已知),∴∠CAF=∠FAB(角平分线定义)∴∠CFA=∠AED(等角的余角相等),∵∠CEF=∠AED(对顶角相等),∴∠CEF=∠CFE(等量代换)(2)请用不同于(1)的方法给予证明.【学会思考】(1)根据给定证明过程,标注理论依据即可得出结论;(2)由直角三角形的两个锐角互补可得出∠CAB+∠B=90°、∠CAB+∠ACD=90°,由等角的余角相等可得出∠ACD=∠B,根据角平分线的定义结合三角形外角的性质可证出∠CEF=∠CFE.【证明】:(1)∵∠ACB=90°(已知),∴∠CAF+∠CFA=90°(直角三角形的两个锐角互余).∵CD⊥AB(已知),∴∠FAB+∠AED=90°(直角三角形的两个锐角互余)∵AF平分∠CAB(已知),∴∠CAF=∠FAB(角平分线定义)∴∠CFA=∠AED(等角的余角相等),∵∠CEF=∠AED(对顶角相等),∴∠CEF=∠CFE(等量代换).答案为:CFA;直角三角形的两个锐角互余;AED;直角三角形的两个锐角互余;已知;角平分线定义;CFA;AED;等角的余角相等;AED;对顶角相等;等量代换.(2)∵∠ACB=90°,∴∠CAB+∠B=90°.∵CD⊥AB,∴∠CAB+∠ACD=90°,∴∠ACD=∠B.∵AF平分∠CAB,∴∠CAF=∠FAB.∵∠CEF=∠CAF+∠ACD,∠CFE=∠FAB+∠B,∴∠CEF=∠CFE.22.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【学会思考】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【证明】:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC和△DEF中,∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°∴∠F=∠ACB=37°23.(1)如图1,△ABC中,∠BAC=90°,AB=AC,AE是过A点的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.(2)若直线AE绕点A旋转到图2的位置时(BD<CE),其余条件不变,问BD 与DE、CE的关系如何?请予以证明.【学会思考】根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为AE=AD+DE,所以BD=DE+CE;根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为AD+AE=BD+CE,所以BD=DE﹣CE.【证明】:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE;(2)BD=DE﹣CE;∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE,∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE﹣CE.24.如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B 到地面的距离BD=3m.小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A′处时,有A'B⊥AB.(1)求A′到BD的距离;(2)求A′到地面的距离.【学会思考】(1)作A'F⊥BD,垂足为F,根据全等三角形的判定和性质解答即可;(2)根据全等三角形的性质解答即可.【解】:(1)如图2,作A'F⊥BD,垂足为F.∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;图2又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BFA'中,∴△ACB≌△BFA'(AAS);∴A'F=BC∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.8;∴BC=BD﹣CD=3﹣1.8=1.2,∴A'F=1.2,即A'到BD的距离是1.2m.(2)由(1)知:△ACB≌△BFA'∴BF=AC=2m,作A'H⊥DE,垂足为H.∵A'F∥DE,∴A'H=FD,∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距离是1m.。

人教版八年级数学上册 第11章 三角形 章末复习测试题(一)

人教版八年级数学上册 第11章 三角形 章末复习测试题(一)

第11章三角形章末复习测试题(一)一.选择题1.在如图中,正确画出AC边上高的是()A.B.C.D.2.多边形的边数每增加一条,它的内角和增加()A.120°B.180°C.270°D.360°3.如图,∠A=70°,∠2=130°,则∠1=()A.130°B.120°C.140°D.110°4.如图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,BE、CF相交于D,则∠CDE的度数是()A.110°B.70°C.80°D.75°5.如图,△ABC中,∠C=80°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.260°C.180°D.140°6.△ABC的三边长是a、b、c,且a>b>c,若b=8,c=3,则a的取值范围是()A.3<a<8 B.5<a<11 C.8<a<11 D.6<a<10 7.点P是△ABC内任意一点,则∠BPC与∠A的大小关系是()A.∠BPC<∠A B.∠BPC>∠A C.∠BPC=∠A D.无法确定8.如图,AE,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAE 的度数为()A.40°B.20°C.18°D.38°9.如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()米.A.20 B.10 C.15 D.510.如图,在△ABC中,∠B=48°,三角形的外角∠DAC和∠ACF的平分线交于点E,∠AEC等于()A.56°B.66°C.76°D.无法确定11.如图所示,∠1+∠2+∠3+∠4等于()A.180°B.360°C.240°D.540°12.如图,∠MAN=100°,点B、C是射线AM、AN上的动点,∠ACB的平分线和∠MBC的平分线所在直线相交于点D,则∠BDC的大小()A.40°B.50°C.80°D.随点B、C的移动而变化二.填空题13.若一个三角形的三个内角比为2:3:5,则此三角形为角三角形.14.如图,把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架利用了三角形的性.15.如图,在△ABC中,∠A=40°,有一块直角三角板DEF的两条直角边DE、DF分别经过点B、C,若直角顶点D在三角形外部,则∠ABD+∠ACD的度数是度.16.在△ABC中,AB=14,AC=12,AD为中线,则△ABD与△ACD的周长之差为.17.如图所示,已知四边形ABCD,∠a、∠β分别是∠BAD、∠BCD的邻补角,且∠B+∠ADC=140°,则∠a+∠β=.18.如图,在△ABC中,∠A=64°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;∠A2BC和∠A2CD的平分线交于点A3,则∠A3=.三.解答题19.如图,已知△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,若∠ADE=80°,∠EAC=20°,求∠B的度数.20.已知△ABC,(1)如图1,若D点是△ABC内任一点、求证:∠D=∠A+∠ABD+∠ACD.(2)若D点是△ABC外一点,位置如图2所示.猜想∠D、∠A、∠ABD、∠ACD有怎样的关系?请直接写出所满足的关系式.(不需要证明)(3)若D点是△ABC外一点,位置如图3所示、猜想∠D、∠A、∠ABD、∠ACD之间有怎样的关系,并证明你的结论.21.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.22.如图,已知△ABC中,∠B<∠C,AD平分∠BAC,E是线段AD(除去端点A、D)上一动点,EF⊥BC于点F.(1)若∠B=40°,∠DEF=10°,求∠C的度数.(2)当E在AD上移动时,∠B、∠C、∠DEF之间存在怎样的等量关系?请写出这个等量关系:并说明理由.23.如图,在△ABC中,内角平分线BP和外角平分线CP相交于点P,根据下列条件求∠P的度数.(1)若∠ABC=50°,∠ACB=80°,则∠P=,若∠ABC+∠ACB=110°,则∠P=;(2)若∠BAC=90°,则∠P=;(3)从以上的计算中,你能发现∠P与∠BAC的关系是;(4)证明第(3)题中你所猜想的结论.参考答案一.选择题1.解:画出AC边上高就是过B作AC的垂线,故选:C.2.解:n边形的内角和可以表示成(n﹣2)•180°,可以得到增加一条边时,边数变为n+1,则内角和是(n﹣1)•180°,因而内角和增加:(n﹣1)•180°﹣(n﹣2)•180°=180°.故选:B.3.解:如图,∵∠2=130°,∵∠3=180°﹣∠2=180°﹣130°=50°,∴∠1=∠A+∠3=70°+50°=120°.故选:B.4.解:∵BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,∴∠CBE=∠ABC=40°,∠FCB=∠ACB=30°,∴∠CDE=∠CBE+∠FCB=70°.故选:B.5.解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=80°+180°=260°.故选:B.6.解:∵a>b>c,b=8,c=3,∴根据三角形的三边关系,得8<a<11.故选:C.7.解:连接BP并延长交AC于D,连接CP,∠BPC>∠BDC,∠BDC>∠A,因而∠BPC>∠A.故∠BPC与∠A的大小关系是∠BPC>∠A.故选:B.8.解:∵△ABC中已知∠B=36°,∠C=76,∴∠BAC=68°.∴∠BAD=∠DAC=34°,∴∠ADC=∠B+∠BAD=70°,∴∠DAE=20°.故选:B.9.解:根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴AB的值在5和25之间,A、B间的距离不可能是5米.故选:D.10.解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF,∵∠DAC=∠B+∠2,∠ACF=∠B+∠1∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2),∵∠B=48°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=114°∴∠AEC=180°﹣(∠DAC+∠ACF)=66°.故选:B.11.解:∵∠1+∠2+∠5=360°,∠3+∠6+∠4=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=720°,又∵∠5+∠6=180°,∴∠1+∠2+∠3+∠4=720°﹣180°=540°.故选:D.12.解:∵CD平分∠ACB,BE平分∠MBC,∴∠ACB=2∠DCB,∠MBC=2∠CBE,∵∠MBC=2∠CBE=∠A+∠ACB,∠CBE=∠D+∠DCB,∴2∠CBE=∠D+∠DCB,∴∠MBC=2∠D+∠ACB,∴2∠D+∠ACB=∠A+∠ACB,∴∠A=2∠D,∵∠A=100°,∴∠D=50°.故选:B.二.填空题(共6小题)13.解:∵∠A+∠B+∠C=180°,∠B:∠C:∠A=2:3:5,∴∠A=×180°=90°,∴△ABC是直角三角形,故答案为:直.14.解:三角形的支架很牢固,这是利用了三角形的稳定性,故答案为:稳定.15.解:在△ABC中,∠A+∠ABC+∠ACB=180°,∠A=40°∴∠ABC+∠ACB=180°﹣40°=140°在△BCD中,∠D+∠BCD+∠CBD=180°∴∠BCD+∠CBD=180°﹣∠D在△DEF中,∠D+∠E+∠F=180°∴∠E+∠F=180°﹣∠D∴∠CBD+∠BCD=∠E+∠F=90°∴∠ABD+∠ACD=∠ABC+∠CBD+∠ACB+∠BCD=140°+90°=230°.故答案为:230.16.解:∵AD为中线,∴BD=DC,∴(AB+BD+AD)﹣(AC+AD+CD)=AB+BD+AD﹣AC﹣AD﹣CD=AB﹣AC=2,故答案为:2.17.解:∵∠B+∠D+∠DAB+∠BCD=360°,∠B+∠ADC=140°,∴∠DAB+∠BCD=360°﹣140°=220°,∵∠a+∠β+∠DAB+∠BCD=360°,∴∠a+∠β=360°﹣220°=140°.故答案为:140°.18.解:∵A1B平分∠ABC,A1C平分∠ACD,∴∠A1BC=∠ABC,∠A1CA=∠ACD,∵∠A1CD=∠A1+∠A1BC,即∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD﹣∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD﹣∠ABC,∴∠A1=∠A,∴∠A1=×64°=32°,∵∠A1=∠A,∠A2=∠A1=∠A,∴∠A3=∠A2=∠A=×64°=8°.故答案为:8°.三.解答题(共5小题)19.解:∵AE⊥BC,∠EAC=20°,∴∠C=70°,∴∠BAC+∠B=110°.∵∠ADE=∠B+∠BAD=(∠BAC+∠B)+∠B,∴∠B=50°.20.解:(1)证明:延长BD交AC于点E.∵∠BDC是△CDE的外角,∴∠BDC=∠2+∠CED,∵∠CED是△ABE的外角,∴∠CED=∠A+∠1.∴∠BDC=∠A+∠1+∠2.即∠D=∠A+∠ABD+∠ACD.(2)∵∠D+∠A+∠ABD+∠ACD=∠A+∠ABC+∠ACB+∠D+∠DBC+∠DCB,即∠D+∠A+∠ABD+∠ACD=180°+180°=360°,∠A+∠ABC+∠ACB=180°,∠D+∠DBC+∠DCB=180°,∴∠D+∠A+∠ABD+∠ACD=360°.(3)证明:令BD、AC交于点E,∵∠AED是△ABE的外角,∴∠AED=∠1+∠A,∵∠AED是△CDE的外角,∴∠AED=∠D+∠2.∴∠A+∠1=∠D+∠2即∠D+∠ACD=∠A+∠ABD.21.证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.22.解:(1)∵EF⊥BC,∠DEF=10°,∴∠EDF=80°,∵∠B=40°∴∠BAD=∠EDF﹣∠B=80°﹣40°=40,∵AD平分∠BAC,∴∠BAC=80°,∴∠C=180°﹣40°﹣80°=60°;(2)∵EF⊥BC,∴∠EDF=90°﹣∠DEF,∵∠EDF=∠B+∠BAD,∴∠BAD=90°﹣∠DEF﹣∠B,∵AD平分∠BAC,∴∠BAC=2∠BAD=180°﹣2∠DEF﹣2∠B,∴∠B+180°﹣2∠DEF﹣2∠B+∠C=180°,∴∠C﹣∠B=2∠DEF.23.(1)解:∵∠ACB=80°,∴∠ACD=180°﹣80°=100°,∵BP、CP分别为∠ABC、∠ACD的平分线,∴∠PBC=∠ABC=×50°=25°,∠PCD=∠ACD=×100°=50°,在△PCD中,∠PBC+∠P=∠PCD,即25°+∠P=50°,解得∠P=25°;∵∠ABC+∠ACB=110°,∴∠A=180°﹣110°=70°,∵BP、CP分别为∠ABC、∠ACD的平分线,∴∠PBC=∠ABC,∠PCD=∠ACD,根据三角形的外角性质,∠ACD=∠A+∠ABC,∠PCD=∠PBC+∠P,∴∠A+∠ABC=2(∠PBC+∠P)=2∠PBC+2∠P,∴∠A=2∠P,∠P=∠A=×70°=35°;(2)解:∵BP、CP分别为∠ABC、∠ACD的平分线,∴∠PBC=∠ABC,∠PCD=∠ACD,根据三角形的外角性质,∠ACD=∠A+∠ABC,∠PCD=∠PBC+∠P,∴∠BAC+∠ABC=2(∠PBC+∠P)=2∠PBC+2∠P,∴∠BAC=2∠P,∠P=∠BAC,∵∠BAC=90°,∴∠P=45°;(3)由计算可知,∠P=∠A;(4)证明:∵BP、CP分别为∠ABC、∠ACD的平分线,∴∠PBC=∠ABC,∠PCD=∠ACD,根据三角形的外角性质,∠ACD=∠A+∠ABC,∠PCD=∠PBC+∠P,∴∠BAC+∠ABC=2(∠PBC+∠P)=2∠PBC+2∠P,∴∠BAC=2∠P,∠P=∠BAC.故答案为:(1)25°,35°;(2)45°;(3)∠P=∠A.。

八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)

八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)

第十一章《三角形》章节测试卷一.选择题(共12小题,满分48分,每小题4分)1.已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.正三角形2.下面四个图形中,线段BD是△ABC的高的是( )A.B.C.D.3.要使如图所示的五边形木架不变形,至少要再钉上几根木条( )A.1根B.2根C.3根D.4根4.能把一个任意三角形分成面积相等的两部分是( )A.以上都可以B.高C.中线D.角平分线5.长度分别为3,8,x的三条线段能组成一个三角形,x的值可以是( )A.4B.5C.6D.116.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=20°,则∠DAC=( )A.90°B.20°C.45°D.70°7.如图所示,∠1=∠2=150°,则∠3=( )A.30°B.150°C.120°D.60°8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A.1B.2C.3D.49.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10B.11C.12D.1310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数.符合条件的三角形有( )A.1个B.2个C.3个D.4个12.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=( )A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°-(∠A+∠D)D.12∠A+12∠D二.填空题(共4小题,满分16分,每小题4分)13.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=20°,则∠1= °.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A= .15.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠AFD的度数为 .16.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2= .三.解答题(共8小题,满分86分)17.已知一个多边形的内角和是外角和的三倍,则这个多边形是几边形?18.如图,∠ABC=∠FEC=∠ADC=90°.(1)在△ABC中,BC边上的高是 ;(2)在△AEC中,AE边上的高是 ;(3)若AB=2.4cm,CD=2cm,AE=3cm,求△AEC的面积及CE的长.19.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数;(2)∠AEF的度数.20.已知一等腰三角形的两边长x,y满足方程组{3x−y=55x+2y=23求此等腰三角形的周长.21.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.22.如图1所示,将一副三角板的直角顶点重合在点O处.(1)∠AOD ∠BOC;(填“>”“<”“=”)(2)若将三角尺按图2的位置摆放,∠AOC和∠BOD在数量上有何关系?说明理由;(3)在图2中,已知∠BOC与∠AOC的度数比为m:n,当a6m b11与a n+1b2n﹣11是同类项时,求∠BOD的度数.23.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .24.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.答案一.选择题1.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.【解答】解:三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:C.5.【解答】解:8﹣3<x<8+3,5<x<11,只有选项C符合题意.故选:C.6.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,∵AD是△ABC的高,∴∠ADB=∠BAD+∠B=90°,∴∠DAC=∠B=20°,故选:B.7.【解答】解:∵∠1=∠2=150°,∴∠ABC=∠BAC=180°﹣150°=30°,∴∠3=∠ABC+∠BAC=60°.故选:D.8.【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2021﹣2018=3,故选:C.9.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.10.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.11.【解答】解:方程组{x+2y=104x+3y=20的解为:{x=2 y=4,∵△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B.12.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=12(∠ABC+∠BCD)=12×[360°−(∠A+∠D)],∴∠BEC=180°﹣(∠EBC+∠ECB)=180°−12×[360°−(∠A+∠D)]=12(∠A+∠D),故选:D.二.填空题13.【解答】解:∵∠A=60°,∠C=50°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣60°﹣50°=70°,∴∠1=∠ABC﹣∠D=50°﹣20°=50°.故答案为:50.14.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.15.【解答】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°﹣∠CAD﹣∠C=110°,∴∠AFD=110°﹣40°=70°,故答案为:70°.16.【解答】解:∵D,E,F分别是△ABC的边AB,BC,AC上的中点,∴AD=DB,AF=CF,∴△BDG的面积=△ADG的面积,△CFG的面积=△AGF的面积,∴设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=四边形ADGF的面积,∵△ABC的面积为6,AG:GE=2:1,∴四边形ADGF的面积=23×12×6=2,∴S1+S2=2,故答案为:2三.解答题17.解:设这个多边形为n边形,n边形的内角和为:(n﹣2)×180°,n边形的外角和为:360°,根据题意得:(n﹣2)×180°=3×360°,解得:n=8,答:这个多边形是八边形.18.解:(1)在△ABC中,BC边上的高是线段AB;故答案为线段AB;(2)在△AEC中,AE边上的高是线段CD;故答案为线段CD;(3)∵S△AEC=12×AE×CD=12×CE×AB,∴CE=AE⋅CDAB= 2.5(cm).19.解:(1)∵DF⊥AB,∴∠B=90°﹣∠D=48°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=83°;(2)∵DF⊥AB,∴∠AFD=90°,∴∠AEF=90°﹣∠A=55°.20.解:解方程组组{3x−y=55x+2y=23得{x=3 y=4,所以,等腰三角形的两边长为3,4.若腰长为3,底边长为4,由3+3=6>4知,三角形的周长为10.若腰长为4,底边长为3,则三角形的周长为11.所以,这个等腰三角形的周长为10或11.21.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.22.解:(1)∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,即∠AOD=∠BOC.故答案为:=;(2)∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.故∠AOC和∠BOD在数量上的关系为:∠AOC+∠BOD=180°;(3)∵a6m b11与a n+1b2n﹣11是同类项,∴{6m=n+111=2n−11,解得{m=2n=11,∵∠BOC与∠AOC的度数比为m:n,11﹣2=9,∴∠BOC=90°×2=20°,11−2∴∠BOD=90°﹣20°=70°.故∠BOD的度数是70°.23.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.24.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∠BAC=40°,∴∠CAD=∠BAD=12∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC =180°﹣∠B ﹣∠C ,∵AD 是∠BAC 的角平分线,∴∠CAD =∠BAD =12∠BAC ,∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣90°+∠C =12∠C −12∠B ,即∠DAE =12∠C −12∠B ; (3)不变,理由:连接BC 交AD 于F ,过点A 作AM ⊥BC 于M ,过点D 作DN ⊥BC 于N ,∵AE 是∠BAC 的角平分线,AM 是高,∴∠EAM =12(∠ACB ﹣∠ABC ),同理,∠ADN =12(∠BCD ﹣∠CBD ),∵∠AFM =∠DFN ,∠AMF =∠DNF =90°,∴∠MAD =∠ADN ,∴∠DAE =∠EAM+∠MAD =∠EAM+∠ADN =12(∠ACB ﹣∠ABC )+12(∠BCD ﹣∠CBD )=12(∠ACD ﹣∠ABD ).。

八年级数学上册第11章三角形测试题及答案

八年级数学上册第11章三角形测试题及答案

图1 图 2一、填空题(每题3分;共30分)1.如果三角形的一个角等于其它两个角的差;则这个三角形是______三角形.2.已知ABC ∆中;AD BC ⊥于D ;AE 为A ∠的平分线;且35B ︒∠=;65C ︒∠=;则DAE ∠的度数为___ __ . 3.ABC ∆中如果132A B C ∠=∠=∠;则A ∠= . 4.已知;如图1;130ACD ∠=;A B ∠=∠;那么A ∠的度数是 .5.如图2所示;图中有 个三角形; 个直角三角形.6.四边形ABCD 中;若+=+A B C D ∠∠∠∠;2C D ∠=∠;则C ∠= .7.某足球场需铺设草皮;现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮;请你帮助工人师傅选择两种草皮来铺设足球场;可供选择的两种组合是 .8.若一个n 边形的边数增加一倍;则内角和将增加 度.9.如图3;BC ED ⊥于O ;27A ∠=;20D ∠=;则B ∠= ;ACB ∠= .10.如图4;由平面上五个点A B C D E 、、、、连结而成;则++++A B C D E ∠∠∠∠∠= .二、选择题(每题3分;共24分)11.如果一个三角形的三个外角之比为2:3:4;则与之对应的三个内角度数之比为( ). A .4:3:2 B .5:3:1 C .3:2:4 D .12.三角形中至少有一个内角大于或等于( ).A .45°B .55°C .60°D .65°13.如图5;下列说法中错误的是( ).A .1∠不是ABC ∆的外角B .1+2B ∠∠∠<C .ACD ∠是ABC ∆的外角 D .+ACD A B ∠∠∠>14.如图6;C 在AB 的延长线上;CE AF ⊥于E ;交FB 4020F C ︒︒∠=∠=,;则于D ;若图5 图6 图7 B DA ACFBA ∠的度数为( ).A .50°B .60°C .70°D .80°15.三条线段5,3,a b c ==的值为整数;由a b c 、、为边可组成三角形( ). A .5个 B .3个 C .1个 D .无数个16.多边形每一个内角都等于150°;则从此多边形一个顶点发出的对角线有( ). A .7条 B .8条 C .9条 D .10条17.如图7;ABC ∆中;D 为BC 上的一点;且ABD ACD S S =;则AD 为( ). A .高 B .中线C .角平分线D .不能确定18.现有长度分别为2468cm cm cm cm 、、、的木棒;从中任取三根;能组成三角形的个数为( ).A . 1B . 2C . 3D . 4三、解答题(共46分)22.如图;四边形ABCD 中;90A C O∠=∠=;BE 平分ABC ∠;DF 平分ADC ∠;试问BE 与DF 平行吗?为什么?第十一章《三角形》参考答案41、解:(1)如果腰长为4cm;则底边长为16-4-4=8cm.三边长为4cm;4cm;8cm;不符合三角形三边关系定理.这样的三边不能围成三角形。

人教版数学八年级上册第11、12章检测题

人教版数学八年级上册第11、12章检测题

人教版数学八年级上册月考试题一.选择题(本题共10题,每小题4分,总共40分)1.一个多边形内角和是1080º,则这个多边形的对角线条数为 ( ) A.26 B. 24 C.22 D.20 2.下列图形中有稳定性的是( )A .正方形B .长方形C .直角三角形D .平行四边形3.如图,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对 B .2对 C .3对 D .4对4.如图,AC=CE ,∠ACE=90°,AB ⊥BD ,ED ⊥BD ,AB=6cm ,DE=2cm ,则BD 等于( ) A .6cm B .8cm C .10cm D .4cm5.如图:△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边与点E ,连接AD ,若AE=4cm ,则△ABD 的周长是( ) A .22cmB .20cmC .18cmD .15cm6.如图,在△ABC 中,已知点D 、E 、F 分别是BC 、AD 、CE 的中点,且S △ABC =4,S △BEF =( )A .2B .1C .D .7、如果一个三角形的两边长分别为2和4,则第三边长可能是( ) A .2B .4C . 6D .88、已知:在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=32,且BD :DC=9:7,则点D 到AB 边的距离为( )A.18B.16C.14D.129、如图,Rt △ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则∠A′DB=( )A .40°B .30°C .20°D .10°10.在△ABC 与△A ′B ′C ′中,已知∠A=∠A ′,AC=A ′C ′,若添加下列条件,则△ABC 与△A ′B ′C ′全等,下列添加条件错误的是( )A . AB=A ′B ′ B .∠C=∠C ′ C .∠B=∠B ′D . BC=B ′C ′二.填空题(本题共6题,每小题4分,总共24分) 11.每个内角都为144°的多边形为 边形12.一个多边形的每一个外角都等于36°,则该多边形的内角和等于 度.13.如图:在△ABC 和△FED 中,AD=FC ,AB=FE ,当添加条件 时,就可得到△ABC ≌△FED .(只需填写一个即可)14. 用一条长16厘米的细绳围成一个等腰三角形,其中一边长为6厘米,则另外两边的长分别为 .15.如图,⊿A BC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF = 。

人教版八年级上册数学试题:第11、12、13章综合题

人教版八年级上册数学试题:第11、12、13章综合题

第11、12、13章综合题一、选择题1.如图,下列图案是我国几家银行的标志,其中是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个2..如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( )A.线段CD 的中点B.OA 与OB 的中垂线的交点C.OA 与CD 的中垂线的交点D.CD 与∠AOB 的平分线的交点 3.下列图形:①角;②两相交直线;③圆;④正方形.其中轴对称图形有( )(A)4个 (B)3个 (C)2个 (D)1个4.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识 画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( ) A.SSS B.SAS C.AAS D.ASA5.如图,DE 是△ABC 中AC 边的垂直平分线,若BC=8cm ,AB=10cm ,则△ABD 的周长为( ) A .16cm B .28cm C .26cm D .18cm6.如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF = ( ) A.150° B.40° C.80° D.90°二、填空题 7.已知,如图,AD =AC ,BD =BC ,O 为AB 上一点,那么,图中共有 对全等三角形.8.如图,△ABC ≌△ADE ,则,AB = ,∠E =∠ .9、如果点P (4,-5)和点Q (a,b)关于y 轴对称,则a+b=_________.10.如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可). 11、如图,ΔABC 中AB=AC ,AB 的垂直平分线交AC 于点D.若∠A=40°,则 ∠DBC=_________;DCBA第11题ODCBAA DB C E F ODCBACBAED第7题图 第8题DOCBA第10题AB D E第5题若AC+BC=10cm ,则ΔDBC 的周长为__________㎝;12.已知Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD ∶CD =9∶7,则D 到AB 边的距离为___. 三、解答题:13、如图,两个班的学生分别在M 、N 两处参加植树劳动,现要在道路AB 、AC 的交叉区域内设一个茶水供应点P ,使P 到两条道路的距离相等,且使PM=PN ,请你找出这个点P ,保留作图痕迹.14、已知:如图,点D 、E 在BC 上,且BD=CE ,AD=AE ,∠ADE=∠AED 求证:AB=AC .15、已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .16、已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .ACBDEF A BCDE·N·M13题图17、如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面cm,AB=20cm,AC=8cm,求DE的长.A积是282EFB C。

2023-2024学年人教版八年级数学上册第11章三角形 单元同步达标测试题(含答案)

2023-2024学年人教版八年级数学上册第11章三角形 单元同步达标测试题(含答案)

2023年秋人教版八年级数学上册《第11章三角形》同步达标测试题一、单选题(满分40分)1.下列长度的三条线段能组成三角形的是()A.4cm,5cm,9cm B.5cm,5cm,11cmC.8cm,9cm,15cm D.7cm,12cm,20cm2.正十二边形的外角和为( )A.30°B.150°C.360°D.1800°3.如图,在△ABC中,BC边上的高为()A.线段AD B.线段BF C.线段BE D.线段CG4.如图,有一个与水平地面成20°角的斜坡,现要在斜坡上竖起一根与水平地面垂直的电线杆,电线杆与斜坡所夹的角∠1的度数为()A.50°B.60°C.70°D.80°5.用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠的铺成一片,就是平面图形的镶嵌.只用下面一种图形能够进行平面镶嵌的是()A.正三角形B.正五边形C.正八边形D.正十二边形6.如图,在△ABC中,D是BC中点,E是AD中点,连结BE、CE,若△ABC的面积为20,则△BCE的面积为()A.5B.10C.15D.187.将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND的大小为()A.100°B.105°C.110°D.115°8.如图,∠B=20°,∠C=60°,AD平分∠BAC,AE⊥BC,则∠DAE度数是()A.30°B.25°C.20°D.15°10.一个多边形的内角和是外角和的14.如图,在△ABC中,D为AC边的中点,积为4,则△BFC的面积为.15.如图,在△ABC中,∠ABC∠A的度数为____________.16.图①是一盏可折叠台灯,图为固定支撑杆,∠A是∠B的两倍,灯体旋转到CD′位置(图②中虚线所示∠BCD−∠DCD′=120°,则∠DCD三、解答题(满分40分)17.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?18.如图,在ΔABC中,AD是高,∠DAC=10°,AE是ΔABC外角∠MAC的平分线,交BC 的延长线于点E,BF平分∠ABC交AE于点F,若∠ABC=46°,求∠AFB和∠E的度数.19.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移5格,再向下平移1格.请在图中画出平移后的△A′B′C′;(2)利用网格在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为__________;(4)在图中能使S△ABC=S△PBC的格点P的个数有__________个(点P异于A).20.如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∥EC;(2)若CE⊥AE于点E,∠F=50°,求∠ADF的度数.21.如图,已知△ABC中,点D、E分别在边AB、AC上,点F在BE上.(1)若∠ADE=∠ABC,(2)若D、E、F分别是△ABC的面积.(1)如图1,这是一个五角星,则(2)如图2,将五角星截去一个角后多出一个角,求参考答案∵电线杆与水平地面垂直,∴∠2=90°,∴∠1=∠3=180°−20°−90°故答案为:三角形具有稳定性.10.解:由题意,得:(n−2)180°=2×360°,解得:n=6;∴这个多边形的边数为6;故答案为:611.解:∵a+b>c,b−a<c,c+b>a,∴a+b−c>0,b−a−c<0,c−a+b>0,∴|a+b−c|+|b−a−c|+|c−a+b|=a+b−c+a+c−b+c−a+b=a+b+c故答案为:a+b+c.12.解:由折叠的性质得∠ADE=∠ADC=110°,∵∠ADB=180°−∠ADC=70°,∴∠BDE=110°−∠ADB=110°−70°=40°,∵DE∥AB,∴∠B=∠BDE=40°.故答案为:40.13.解:∵AB∥CD,∠B+∠D=70°,∴∠B=∠HGD,∵∠EHF是△HGD的一个外角,∴∠EHF=∠HGD+∠D,∴∠EHF=∠B+∠D=70°,∵∠1+∠2+∠EHF=180°,∴∠1+∠2=180°−∠EHF=110°.∵CD∥OE,∴OA⊥CD,∵AO⊥OE,D′G⊥AB,∴∠AGC=∠AFC=90°,在四边形AFCG中,∠AGC+∠GCF+∠AFC(4)如图,利用等高模型,在图中能使S△ABC=S△PBC的格点P在直线m,n上(除点A 外),总共有21个;故答案为21.20.(1)证明:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥CE;(2)解:∵CE⊥AE,∴∠CEF=90°,由(1)知AD∥CE,∴∠DAF=∠CEF=90°,在△AFD中,∠F=50°∴∠ADF=180°−90°−50°=40°.21.(1)证明:∵∠ADE=∠ABC,∴DE∥BC,∴∠AED=C,∵∠EDF=∠C,∴∠EDF=∠AED,∴DF∥AC;(2)解:∵点F是BE中点,∴S△DEF=S△DBF,设S△DEF=S△DBF=x,∵D是AB中点,∴S△ADE=S△BDE=2x,∵E是AC中点,∴S△ABE=S△CBE=4x,S△CEF=2x,=3x∴S四边形DECF∵S=9,四边形DECF∴3x=9,x=3,∴S△ABC=2S△ABE=8x=24.22. 解:(1)如图,由三角形的外角性质,得∠A+∠C=∠1,∠B+∠D=∠2,∵∠2+∠1+∠E=180°∴∠A+∠B+∠C+∠D+∠E=180°,故答案为:180°;(2)如图,延长CA与DG相较于点H,∠CAG和∠AGD是△HAG的两个外角,则∠CAG=∠H+∠AGH,∠AGD=∠H+∠HAG,∴∠CAG+∠AGD=∠H+∠HGA+∠H+∠HAG=∠H+180°,∴∠GAC+∠B+∠C+∠D+∠E+∠AGD=180°+180°=360°,故∠A+∠B+∠C+∠D+∠E+∠G的度数为360°.(3)由(2)知,每截去图1中的一个角,剩余角的度数会增加180°,图1中,∠A+∠B+∠C+∠D+∠E=180°,在题图3中,去掉五个角后,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠J =180°+5×180°=1080°.。

2021--2022学年华东师大版八年级数学上册第第11--12章复习题附答案

2021--2022学年华东师大版八年级数学上册第第11--12章复习题附答案

第11章一、选择题:(每题3分,共30分) 1. -2020的相反数是( )A. 2020B. -2020C.12020 D. -120202. (2020江苏盐城市)实数a ,b 在数轴上表示的位置如图所示,则( )2题图A. a >0B. a >bC. a <bD. a <b3.实数的立方根是( ) A.-1B.0C.1D.±14. (2020黑龙江绥化市)3的结果正确的是( )A.C. 5. (2020福建省)如图,数轴上两点M ,N 所对应的实数分别为m ,n ,则m-n 的结果可能是( )5题图A. -1B. 1C. 2D. 36.下面各等式正确的是( )3=± B.7=- 0.3- D.0.000 1-7. )A .5B .6C .7D .88. 一个数的平方是 4,则这个数的立方是( )A .8B .8 或-8C .-8D .4 或-4 9. (2020湖北恩施州)在实数范围内定义运算“☆”:a ☆b =a +b -1,例如:2☆3=2+3-1,如果2☆x =1,则x 的值是( ).A. -1B. 1C. 0D. 2 10.一个自然数的算术平方根是a ,那么比这个自然数大且与它相邻的一个自然数的算术平方根是( )A.21a +C.1a +二、填空题:(每题3分,共30分)11. (2020四川遂宁市)下列各数3.1415926 1.212212221…,17,2﹣π,﹣2020中,无理数的个数有 个.12.(2020浙江宁波市)实数8的立方根是 .13.写出一个比2大比3小的无理数(用含根号的式子表示) .14π,-4,0这四个数中,最大的数是________.15.4+3的整数部分是5,小数部分是________.16.某个数的平方根分别是2a -1和2-a ,则这个数为________.17. =0.5981 5.98 1 0.1289 , 则 x = , y = .18. 规定用符号[m ]表示一个实数m 的整数部分,例如:⎥⎦⎤⎢⎣⎡32=0,[3.14]=3.按此规定8⎡⎣的值为______________.19. 对于任意两个不相等的实数a ,b ,定义一种新运算“※”,规则如下:a ※b =b a ba -+,如3※2=2323-+=5,则12※4的值为________________. 20.请你认真观察、分析下列计算过程:(1)∵112=121,∴121=11; (2)∵1112=12 321,∴12 321=111;(3)∵1 1112=1 234 321,∴ 1 234 321=1 111;…由此可得:12 345 678 987 654 321=______________________.三、解答下列各题:(共60分) 21.计算:(每题5分,共15分)①计算:|-2|(-1)×(-3); ;34.22.解方程:(每题5分,共10分)①(x+2)2-9=0;②(x+3)3+27=0.23.(5分)物体从某一高度自由落下,物体下落的高度h与下落的时间t•之间的关系可用公式h=12gt2表示,其中g=10米/秒2,若物体下落的高度是180米,•那么下落的时间是多少秒?24.(6分)已知3既是x-1的算术平方根,又是x-2y+1的立方根,求4x+3y 的平方根和立方根.25.(8分)已知x,y为实数,且y19,求xy的立方根.26.(8分)某小区为了促进全民健身活动的开展,决定在一块面积约为1000 m2的正方形空地上建一个篮球场.已知篮球场的面积为420 m2,其中长是宽的2815倍,篮球场的四周必须留出1 m宽的空地.请你通过计算说明能否按要求在这块空地上建一个篮球场?27.(8分)||||b c a c b c-++++.27题图第11章数的开方达标性测试题答案1.B.2.C.解析:由图可得a <0<b , b <a , 故选C .3.C.解析:∵21()=1,而1的立方根等于1,∴21()的立方根是1.4.D.3 =3-2D .5.C.解析:根据数轴可得0<m <1,-2<n <-1,则1<m-n <3, 故选C.6.C.7.B. 解析:∵36<37<496<7,∵37与36最接最接近的是6.故选B .8.B.解析:∵一个数的平方是 4,∴这个数是2或-2,那么2或-2的立方是8或-8. 应选B.9.C.解析:由题意知:2☆x =2+x -1=1+x ,又2☆x =1,∴1+x =1,∴x =0.故选C . 10.B.11. 3. 解析:根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,在上面所列的实数中,无理数有1.212212221…,2﹣π3个,故答案为:3. 12.2..解析:∵4<5<9,∴232大比3小的无. 14.π解析:∵45,∴小数部分是4 1. 16.9. 解析:由题意得2a -1+2-a =0,解得a =-1, ∴这个数为(2a -1)2=(-3)2=9.17. 214, 0.00214.18.3.点拨:∵9<13<16,∴343,∴8 4. 19.21. 20.111 111 111.21.①原式=2-2+3=3. ②0;③解:∵3<<4,∴1<-2<213<<28312=<912=34,∴<34.22. ①解:由(x +2)2-9=0得,(x +2)2=9; ∴ x +2=3或x +2=-3;∴x 1=-1, x 2=-5. ② 解:由(x +3)3+27=0得,(x +3)3=-27; ∴ x +3=-3,∴ x =-6 23.6.24.解:根据题意得x -1=9且x -2y +1=27,解得x =10,y =-8.∴4x +3y =16,其平方根为±4,立方根为25.解:∵y 为实数,1-3x ≥0, x ≤13, ∴ 3x -1≥0, ∴ x ≥13.∴ x =13,∴y =+-19=-19,∴====-13.26. 解:设篮球场的宽为x m,那么长为2815x m. 根据题意,得2815x ·x =420, 所以x 2=225. 因为x 为正数, 所以x =15,又因为2815x 所以能按要求在这块空地上建一个篮球场.27.解:由数轴得:a <0,b <0,c >0, ∴a +b <0,b –c <0,a +c <0,b +c <0 ∴原式=a -a b ++b c -+a c ++b c +=-a -〔-(a +b )〕+〔-(b-c )〕+〔-(a +c )〕+〔-(b+c )〕 =-a +a +b -b +c -a -c-b-c =–a-b-c. 第12章1.(知识点1)下列运算正确的是( ) A .3x +4y =7xy B .(﹣a )3•a 2=a 5 C .(x 3y )5=x 8y 5 D .m 10÷m 7=m 32.(知识点2,3)下列各式计算正确的是( )A.(x-y)(y-x)=x2-y2B.2x(x-2y)=2x2-4xyC.(-a+b)(a+b)=a2+b2D.(2x+3)2=4x2+93. (2020•江苏徐州)下列计算正确的是()A.a2+2a2=3a4B.a6÷a3=a2C.(a-b)2=a2-b2D.(ab)2=a2b24.(2020•湖南常德)下列计算正确的是()A.a2+b2=(a+b)2 B.a2+a4=a6 C.a10÷a5=a2D.a2•a3=a5 5.(2020•河北)若k为正整数,则=()A.k2k B.k2k+1C.2k k D.k2+k6.(重点2)当x=3、y=1时,代数式(2x+y)(2x-y)+y2的值是.7.(重点2)若a2+b2=12,ab=2,则(a+b)2= .8.(重点2)已知x+y=2,x2-y2=6,则x-y= .9.(重点1)运转速度是7.9×103米/秒,2×102秒卫星运行所走过的路程是.10.(重点2)a>b>0,那么在边长为a+b的正方形内,挖去一个边长为a-b的正方形,剩余部分的面积为.11.(重点1) 计算:2x5(-x2)-(-x2)3(-7x).12.(重点2) 计算:(x+2)2-2(x+2)(x-2)+(x-2)2.13.先化简,再求值:(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m是方程x2+x-2=0的一个根强化提高14.(重点2) 计算:(3x-2y+1)(3x+2y-1).第12章复习课(第1课时)1.D.解析:A.3x、4y不是同类项,不能合并,此选项错误;B.(﹣a)3•a2=﹣a5,此选项错误;C.(x3y)5=x15y5,此选项错误;D.m10÷m7=m3,此选项正确;故选D.2.B.3. D. 解析:a2+2a2=3a2,因此选项A不符合题意;a6÷a3=a6-3=a3,因此选项B不符合题意;(a-b)2=a2-2ab+b2,因此选项C不符合题意;(ab)2=a2b2,因此选项D符合题意;故选:D.4.B. 解析:A. a2·a2=a4,故A选项错误;B. (-a2)3=-a6,正确;C. 3a2-6a2=-3a2,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.5. A. 解析:=(k•k)k=(k2)k=k2k,故选:A.6.36.7.16.8.3.9.1.58×106米. 10.4ab. 11. -9x7. 12.16.13. 解:原式=4m2﹣1﹣(m2﹣2m+1)+8m3÷(﹣8m)=4m2﹣1﹣m2+2m﹣1﹣m2=2m2+2m﹣2=2(m2+m﹣1).∵m是方程x2+x﹣2=0的根,∴m2+m﹣2=0,即m2+m=2,则原式=2×(2﹣1)=2.14. 9x2-4y2+4y-1.知识点1:整式的除法法则. 知识点2:因式分解的定义及因式分解法.重点1:综合运用单项式的除法和多项式除以单项式的除法,进行整式除法运算. 重点2:灵活运用提取公因式和公式法进行因式分解.难点:单项式的除法运算.基础巩固1.(知识点1)下列运算正确的是( )A.a3+a4=a7B.a2·a5=a10C.(ab2)2=ab4D.a9÷a2=a72.(知识点2)若x2+mx-15=(x+3)(x+n),则n的值为( )A.-5B.5C.-2D.23.(知识点2)若多项式x2+mx+16可以分解因式,则整数m可取的值共有( )A.1个B.2个C.3个D.无限多个4. (知识点2)若9x2+mxy+16xy2是一个完全平方式,那么m的值是()A.±12B.-12C.±24D.-245.(重点1)计算: (-2x)10÷(2x)8=_____________.6.(重点2)分解因式:(1) xy3-x3y= ;(2) a2-1-b2-2b= ;(3) 2a3﹣8a=;(4) a4-3a3b+2a2b2= .7.(重点2)矩形面积是15a3b2cm2时,它的长为3a2b2cm,则它的宽是.8.(知识点1)若除式为a2+1,商式为a2-1,余式为2a,则被除式为.9. (重点2)已知一个长方形的长宽分别为a,b,如果它的周长为10,面积为5,则代数式a2b+ab2的值为______________10.(重点2) 因式分解:(1) -4a2b3+16ab2-12a b;(2) 4m2n2-(m2+n2)2.11.(重点1) 计算:(1) [(x+1)(x+2)–2]÷x. (2)[(x-3y)(x+3y)+(3y-x)2]÷(-2x).12.(重点1)化简求值.[(2x+y)2-y(y+4x)-8xy]÷2x,其中x=2,y=-2.强化提高13.(重点2)说明817-279-913能被15整除.1. D.2. A.3. B.4. C.5.4x2 .6. (1) xy(y+x)(y-x);(2) (a+b+1)(a-b-1);(3) 2a(a+2)(a﹣2);(4)a2(a-b)(a-2b).7.5a cm. 8.a4+2a-1.9. 25. 解析:由题意知,2(a+b)=10,ab=5,∴a+b=5, ∴a2b+ab2=ab(a+b)=25.10. (1) -4ab(ab2-4b+3). (2) -(m+n)2(m-n)2.11.(1) x+3. (2) -x+3y.12.解:原式=(4x2+4xy+y2-y2-4xy-8xy)÷2x=(4x2-8xy)÷2x=2x-4y.当x=2,y=-2时,原式=2×2-4×(-2)=12. 13.解:817-279-913=(34)7-(33)9-(32)13 =328-327-326=326(32-3-1)=326×5=325×3×5=325×15,故817-279-913能被15整除。

人教版八年级数学上册第11章、第12章测试题及答案(各一套)

人教版八年级数学上册第11章、第12章测试题及答案(各一套)

人教版八年级数学上册第11章测试题(三角形)(时间:120分分值:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案前的英文字母填在题后括号内)1.(3分)三角形三条边大小之间存在一定的关系,以下列各组线段为边,能组成三角形的是()A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cmC.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm2.(3分)以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()A.1个B.2个C.3个D.4个3.(3分)下列说法错误的是()A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线4.(3分)给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有()A.1个B.2个C.3个D.4个5.(3分)如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()对.A.4 B.5 C.6 D.76.(3分)如图,一面小红旗,其中∠A=60°,∠B=30°,则∠BCA=90°.求解的直接依据是()A.三角形内角和定理B.三角形外角和定理C.多边形内角和公式D.多边形外角和公式7.(3分)如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A.3个B.4个C.5个D.6个8.(3分)如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是()A.∠A和∠B互为补角B.∠B和∠ADE互为补角C.∠A和∠ADE互为余角D.∠AED和∠DEB互为余角9.(3分)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值。

人教版 八年级数学 上册第11--13章检测题含答案)

人教版 八年级数学 上册第11--13章检测题含答案)

人教版八年级数学上册第十一章检测题11.1 与三角形有关的线段一、选择题(本大题共12道小题)1. 三角形按边分类可分为()A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形2. 人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.两直线平行,内错角相等D.三角形具有稳定性3. 已知在△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A. 11B. 5C. 2D. 14. 课堂上,老师把教学用的两块三角尺叠放在一起,得到如图所示的图形,其中三角形的个数为()A.2B.3C.5D.65. 已知等腰三角形的腰和底的长分别是一元二次方程x2-6x+8=0的根,则该三角形的周长为()A. 8B. 10C. 8或10D. 126. 如图,已知AD是△ABC的中线,且△ABD的周长比△ACD的周长大3 cm,则AB与AC的差为()A.2 cm B.3 cm C.4 cm D.6 cm7. 如图,已知P为直线l外一点,点A,B,C,D在直线l上,且PA>PB>PC >PD,则下列说法正确的是()A.线段PD的长是点P到直线l的距离B.线段PC可能是△PAB的高C.线段PD可能是△PBC的高D.线段PB可能是△PAC的高8. 下列关于三角形的分类,有如图K-1-4所示的甲、乙两种分法,则()A.甲、乙两种分法均正确B.甲分法正确,乙分法错误C.甲分法错误,乙分法正确D.甲、乙两种分法均错误9. 如图,六根木条钉成一个六边形框架ABCDEF,要使框架稳固且不活动,至少还需要添加木条()A.1根B.2根C.3根D.4根10. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种11. 将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是直角三角形B.都是钝角三角形C.都是锐角三角形D.是一个直角三角形和一个钝角三角形12. 某木材市场上木棒规格与对应单价如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m单价(元/根) 10 15 20 25 30 35小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场去购买一根木棒,则小明的爷爷至少带的钱数应为()A.10元B.15元C.20元D.25元二、填空题(本大题共6道小题)13. 如图,自行车的主框架采用了三角形结构,这样设计的依据是________________.14. 如图,AE是△ABC的中线,已知EC=8,DE=3,则BD=________.15. 已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是.16. 如图,在△ABC中,AD⊥BC于点D,点E在CD上,则图中以AD为高的三角形有______个.17. 已知三角形的三边长分别为3,8,x,若x为偶数,则x=____________.18. 如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为________.三、解答题(本大题共3道小题)19. 如图,用钉子把木棒AB,BC和CD分别在端点B,C处连接起来,AB,CD 可以转动,用橡皮筋把AD连接起来,橡皮筋始终绷直,设橡皮筋AD的长是x cm.(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出x的取值范围吗?20. 数学活动课上,老师让同学们用长度分别是20 cm,90 cm,100 cm的三根木棒搭一个三角形的木架,小明不小心把100 cm的木棒折去了35 cm,他发现:用折断后剩下的木棒与另两根木棒怎么也搭不成三角形.(1)你知道为什么吗?(2)100 cm长的木棒至少折去多长后剩余的部分就不能与另两根木棒搭成三角形?21. 观察探究观察并探求下列各问题.(1)如图①,在△ABC中,P为边BC上一点,则BP+PC________AB+AC(填“>”“<”或“=”);(2)将(1)中的点P移到△ABC内,如图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由;(3)将(2)中的点P变为两个点P1,P2,如图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.人教版八年级数学11.1 与三角形有关的线段课时训练-答案一、选择题(本大题共12道小题)1. 【答案】D2. 【答案】D3. 【答案】B4. 【答案】C5. 【答案】B【解析】解一元二次方程x2-6x+8=0,得x1=2,x2=4.当三角形三边为2,2,4时,∵2+2=4,∴不符合三边关系,应舍去;当三角形三边为2,4,4时,∵2+4>4,符合三边关系,∴三角形的周长为10,故选B.6. 【答案】B[解析] ∵AD是△ABC的中线,∴BD=CD.∴△ABD与△ACD的周长之差=(AB+AD+BD)-(AC+AD+CD)=AB-AC. ∵△ABD的周长比△ACD的周长大3 cm,∴AB与AC的差为3 cm.7. 【答案】C[解析] 由于PA>PB>PC>PD,因此PD可能是钝角三角形PBC 中BC边上的高.8. 【答案】C9. 【答案】C[解析] 添加3根木条以后成为如右所示图形,其由若干三角形组成,具有稳定性.10. 【答案】C11. 【答案】C[解析] 如图①,沿虚线剪开即可得到两个直角三角形.如图②,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图③,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.12. 【答案】C[解析] 由三角形三边大小关系可得第三根木棒的长度应该大于2 m 且小于8 m,所以满足要求的木棒有3 m,4 m,5 m,6 m,其中买3 m木棒用钱最少,为20元.二、填空题(本大题共6道小题)13. 【答案】三角形具有稳定性14. 【答案】5[解析] ∵AE是△ABC的中线,EC=8,∴BE=EC=8.∵DE=3,∴BD=BE-DE=8-3=5.15. 【答案】15[解析] 若腰长为3,3+3=6,∴3,3,6不能组成三角形;若腰长为6,3+6=9>6,∴3,6,6能组成三角形,该三角形的周长为3+6+6=15.16. 【答案】617. 【答案】6或8或10[解析] 由三角形三边关系可知5<x<11.因为x为偶数,所以x的值为6或8或10.18. 【答案】13【解析】由折叠的性质可得:CD=AD,∴△BCD的周长=BC +CD+BD=BC+AD+BD=BC+BA=6+7=13.三、解答题(本大题共3道小题)19. 【答案】解:(1)x的最大值是5+3+11=19,最小值是11-3-5=3.(2)由(1)得x的取值范围为3<x<19.20. 【答案】解:(1)把100 cm的木棒折去了35 cm后还剩余65 cm.∵20+65<90,∴20 cm,65 cm,90 cm长的三根木棒不能构成三角形.(2)设折去x cm后剩余的部分不能与另两根木棒搭成三角形.根据题意,得20+(100-x)≤90,解得x≤30,∴100 cm长的木棒至少折去30 cm后剩余的部分就不能与另两根木棒搭成三角形.21. 【答案】解:(1)<(2)△BPC的周长<△ABC的周长.理由:如图①,延长BP交AC于点M.在△ABM中,BP+PM<AB+AM.在△PMC中,PC<PM+MC.两式相加,得BP+PC<AB+AC,∴△BPC的周长<△ABC的周长.(3)四边形BP1P2C的周长<△ABC的周长.理由:如图②,分别延长BP1,CP2交于点M.由(2)知,BM+CM<AB+AC.又∵P1P2<P1M+P2M,∴BP1+P1P2+P2C<BM+CM<AB+AC.∴四边形BP1P2C的周长<△ABC的周长.11.2三角形-与三角形有关的角一、选择题1.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形2.如图所示,BD平分∠ABC,DE∥BC,且∠D=30°,则∠AED的度数为()。

八年级上册数学十一章测试题

八年级上册数学十一章测试题

八年级上册数学十一章测试题一、选择题(每题3分,共30分)A. 1cm,2cm,4cmB. 8cm,6cm,4cmC. 12cm,5cm,6cmD. 2cm,3cm,6cm解析:根据三角形三边关系“任意两边之和大于第三边,任意两边之差小于第三边”。

A选项:1 + 2<4,不能组成三角形;B选项:4 + 6>8,8 6<4,8 4<6,6 4<8,可以组成三角形;C选项:5+6<12,不能组成三角形;D选项:2 + 3<6,不能组成三角形。

答案:B。

2. 一个三角形的三个内角的度数之比为2:3:4,则这个三角形是()A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等边三角形解析:设三个内角分别为2x,3x,4x,根据三角形内角和为180°,则2x+3x + 4x=180°,9x = 180°,x = 20°。

所以三个角分别为40°,60°,80°,都是锐角,所以这个三角形是锐角三角形。

答案:C。

3. 三角形的一个外角等于与它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则这个三角形各角的度数是()A. 45°,45°,90°B. 30°,60°,90°C. 25°,25°,130°D. 36°,72°,72°解析:设这个外角为x度,则相邻内角为(180 x)度。

由题意得x = 4(180 x),x = 720 4x,5x=720,x = 144°。

则相邻内角为36°,这个外角等于与它不相邻的一个内角的2倍,所以这个内角为72°,另一个内角为180° 36°72° = 72°。

答案:D。

4. 已知等腰三角形的两边长分别为3和6,则它的周长为()A. 13B. 15C. 14D. 13或15解析:当3为腰长时,3+3 = 6,不能构成三角形;当6为腰长时,周长为6+6 + 3=15。

人教版2024-2025学年八年级数学上册第一月考(第十一、十二章)试题(原卷版)

人教版2024-2025学年八年级数学上册第一月考(第十一、十二章)试题(原卷版)

八年级上册数学人教版第一月考(第十一、十二章)一、选择题(本大题共12 个小题,每小题3分,共36分)1. 用三角板作△ABC 的边BC 上的高,下列三角板的摆放位置正确的是( )A. B.C. D.2. 下列四个选项中,不是全等图形的是( )A. B. C. D.3. 如图,小明做了一个长方形框架,发现很容易变形,请你帮他选择一个最好的加固方案( )A. B. C. D. 4. 如图,在ABC 中,点O 是其重心,连接AO CO ,并延长,分别交BC AB ,于D ,E 两点,则下列说法一定正确的是( )A. BAD CAD ∠=∠B. AE CD =C. OA OC =D. BD CD =5. 已知数轴上点A ,B ,C ,D 对应的数字分别为1−,1,x ,7,点C 在线段BD 上且不与端点重合,若线段AB BC CD ,,能围成三角形,则x 可能是( )A. 2B. 3C. 4D. 56. 下列可使两个直角三角形全等的条件是( )A. 一条边对应相等B. 两条直角边对应相等 C 一个锐角对应相等 D. 两个锐角对应相等7. 小明同学只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是BOA ∠的角平分线.”他这样做的依据是( )A. 在角的内部,到角的两边距离相等的点在角的平分线上B. 角平分线上的点到这个角两边的距离相等C. 三角形的三条高交于一点D. 三角形三边的垂直平分线交于一点8. 如图,若两个三角形全等,图中字母表示三角形边长,则1∠的度数为( )A. 40°B. 50°C. 60°D. 70°9. 在下列条件中:①∠A +∠B =∠C ,②∠A :∠B :∠C =1:2:3,③∠A =2∠B =3∠C ,④12A B C ∠=∠=∠中,能确定△ABC 是直角三角形的条件有().A. 1个B. 2个C. 3个D. 4个10. 如图是嘉淇测量水池AAAA 宽度的方案,下列说法不正确的是( )①先确定直线AAAA ,过点B 作BF AB ⊥;②在BF 上取C ,D 两点,使得△;③过点D 作DE BF ⊥;④作射线口,交DDDD 于点M ;⑤测量☆的长度,即AAAA 的长A △代表BC CD =B. □代表ACC. ☆代表DMD. 该方案的依据是SAS11. 若一个正n 边形的内角和为720,则它的每个外角度数是( )A. 36°B. 45°C. 72°D. 60°12. 如图,在△ABC 中,∠ABC =50°,∠ACB =100°,点M 是射线AB 上一个动点,过点M 作MN //BC 交射线AC 于点N ,连结BN .若△BMN 中有两个角相等,则∠MNB 的度数不可能是( )A. 25°B. 30°C. 50°D. 65°二、填空题(本大题共4个小题,每小题3 分,共12分)13. 将一副直角三角尺如图放置,则1∠大小为______度..的的14. 如图,若P 是BAC ∠的平分线AD 上一点,PE ⊥AC 于点E ,且PE =3,AE =4,点F 在边AB 上运动,当运动到某一位置时,FAP 的面积恰好是EAP 面积的12,则此时AF 的长是_______________.15. 如图,在△ACD 中,∠CAD =90°,AC =6,AD =8,AB ∥CD ,E 是CD 上一点,BE 交AD 于点F ,当AB +CE =CD 时,则图中阴影部分的面积为 _____.16. 如图,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,….依此类推,第2025个图中共有三角形________个.三、解答题(本大题共8个小题,共72分)17. 已知:如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB ⊥BE ,垂足为B ,DE ⊥BE ,垂足为E ,且AB=DE ,BF=CE .求证:△ABC ≌△DEF .18. 如图所示方格纸中,每个小正方形的边长均为1,点A ,点B ,点C 在小正方形的顶点上.(1)画出ABC 中边BC 上的高AD :(2)画出ABC 中边AC 上的中线BE ;(3)求ABE 的面积.19. 如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,M ,N 分别是垂足,求证:PM PN =.20. 在一个正多边形中,一个内角是与它相邻一个外角的3倍.(1)求这个多边形的边数;(2)求这个多边形的每一个外角的度数.21. 如图,点D 、E 、F 、G 在△ABC 的边上,且BF DE ∥,∠1+∠2=180°.(1)求证:GF BC ∥;(2)若BF 平分∠ABC ,∠2=138°,求∠AGF 的度数.22. 按要求完成下列各小题.的(1)在ABC 中,=8AB ,=2BC ,AC 的长为偶数,求ABC 的周长;(2)已知ABC 的三边长分别为3,5,a ,化简1822a a a +−−−−.23. 看图回答问题(1)如图1,在凹四边形ABCD 中:①当520403A B C ∠=∠=°∠=°°,,时,BDC ∠=______: ②当A B n C x m ∠=∠=°∠°°=,,时,BDC ∠=______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级第三阶段考试
数学试题
一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的
四个选项中,只有一项是符合题目要求的)
1、下列各式成立的是()
A.a-b+c=a-(b+c) B.a+b-c=a-(b-c)
C.a-b-c=a-(b+c) D.a-b+c-d=(a+c)-(b-d)
2、直线y=kx+2过点(-1,0),则k的值是()
A.2 B.-2 C.-1 D.1
3、和三角形三个顶点的距离相等的点是()
A.三条角平分线的交点 B.三边中线的交点
C.三边上高所在直线的交点 D.三边的垂直平分线的交点
4、一个三角形任意一边上的高都是这边上的中线,•则对这个三角形的形状最准确的判断是()
A.等腰三角形 B.直角三角形
C.正三角形 D.等腰直角三角形
5、图1所示的扇形图是对某班学生知道父母生日情况的调查,A•表示只知道父亲生日,B表示只知道母亲生日,C表示知道父母两人的生日,D表示都不知道.•若该班有40名学生,则知道母亲生日的人数有()
A.25% B.10 C.22 D.
12
(1) (2) (3)
6、下列式子一定成立的是()
A.x2+x3=x5; B.(-a)2²(-a3)=-a5 C.a0=1 D.(-m3)2=m5 7、如图2,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与EF交于F,若BF=AC,那么∠ABC等于()
A.45° B.48° C.50° D.60°
8、已知x2+kxy+64y2是一个完全式,则k的值是()
A.8 B.±8 C.16 D.±16
9、如图3,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC•的周长为9cm,则△ABC的周长是()
A.10cm B.12cm C.15cm D.17cm
10、已知(x+a )(x+b )=x 2-13x+36,则a+b 的值分别是( ) A .13 B .-13 C .36 D .-36
二、填空题(本大题共5个小题;每小题3分,共15分.把答案写在题中横
线上)
11、点P 关于x 轴对称的点是(3,-4),则点P 关于y 轴对称的点的坐标是_______. 12、已知a 2+b 2=13,ab=6,则a+b 的值是________.
13、直线y=ax+2和直线y=bx-3交于x 轴同一点,则a 与b 的比值是________. 14、如图为杨辉三角表,它可以帮助我们按规律写出(a+b )n (其中n 为正整数)•展开式的系数,请仔细观察表中规律,填出(a+b )4的展开式中所缺的系数. (a+b )1=a+b ;
(a+b )2=a 2+2ab+b 2;
(a+b )3=a 3+3a 2b+3ab 2+b 3;
(a+b )4=a 4+_____a 3b+_____a 2b 2+______ab 3+b 4
15、已知△ABC ≌△DEF ,若∠A=60°,∠F=90°,DE=6cm

则AC=________. 三、解答题(本大题共10个小题;共80分) 试试基本功 16、(本小题满分7分)
先化简,再求值:2x(3x 2-4x +1)-3x 2(2x -3),其中x =-3.
17、(本小题满分7分)
如图,AD 是△ABC 的中线,CE ⊥AD 于E ,BF ⊥AD 交AD•的延长线于F ,求证:CE=BF 。

E
C
B
A F
D
归纳与猜想
18、(本小题满分7分)
下列是三种化合物的结构式及分子式,
结构式
分子式
(1)请按其规律,写出后一种化合物的分子式... . (2)每一种化合物的分子式中H 的个数m 是否是C 的个数n 的函数?如果使写出关系式。

19、(本小题满分8分)
如图,在△ABC 中,∠ACB=90°,CE ⊥AB 于点E ,AD=AC ,AF 平分∠CAB•交CE 于点F ,DF 的延长线交AC 于点G ,求证:(1)DF ∥BC ;(2)
FG=FE.
判断与决策 20、(本小题满分8分)
某批发商欲将一批海产品由A 地运往B 地,•汽车货运公司和铁路货运公司均
C 3H 8C 2H 6CH 4H
H H H
H H
H
H
H
H
H H
H H
C C C C C H
H H
H
C
开办了海产品运输业务.已知运输路程为120千米,•汽车和火车的速度分别为60
注:“元/吨²千米”表示每吨货物每千米的运费;“元/•吨小时”表示每吨货物每小时的冷藏费.
(1)设该批发商待运的海产品有x (吨),汽车货运公司和铁路货运公司所要收取的费用分别为y 1(元)和y 2(元),试求出y 1和y 2和与x 的函数关系式;
(2)若该批发商待运的海产品不少于30吨,为节省运费,他应该选择哪个货运公司承担运输业务?
21、(本小题满分8分)
为了保护学生的视力,课桌的高度)ycm 与椅子的高度xcm(不含靠背)都是按y 是x 的一次函数关系配套设计的,下表列出了两套课桌椅的高度:
(1)请确定)y
与x 的函数关系式(不要求写出x 的取值范围); (2)现有一把高42.0cm 的椅子和一张高78.2cm 的课桌,它们是否配套?请通过计算说明理由。

操作与探究 22、(本小题满分8分)
已知图7中A 、B 分别表示正方形网格上的两个轴对称图形(阴影部分),其面积分别记为S 1、S 2(网格中最小的正方形的面积为一个单位面积),请你观察并回
答问题.
(1)填空:S 1:S 2的值是__________.
(2)请你在图C 中的网格上画一个面积为8个平方单位的轴对称图形.
实验与推理 23、(本小题满分8分)
如图,在△ABC 中,点D在AB 上,点E在BC上,BD =BE 。

(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明。

你添加的条件是:___________
B
C
A
D
F
(2)根据你添加的条件,再写出图中的一对全等三角形:____________(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)
综合与应用 24、(本小题满分12分)
如图,直线OC 、BC 的函数关系式分别是y 1=x 和y 2=-2x+6,动点P (x ,0)在OB 上运动(0<x<3),过点P 作直线m 与x 轴垂直. (1)求点C 的坐标,并回答当x 取何值时y 1>y 2?
(2)设△COB 中位于直线m 左侧部分的面积为s ,求出s 与x 之间函数关系式.
(3)当x为何值时,直线m平分△COB的面积?
25、(本小题满分12分)
如图,A、B两点分别位于一个池塘的两侧,池塘西边有一座假山D,在DB的中点C处有一个雕塑,张倩从点A出发,沿直线AC一直向前经过点C走到点E,并使CE=CA,然后她测量点E到假山D的距离,则DE的长度就是A、B两点之间的距离.
(1)你能说明张倩这样做的根据吗?
(2)如果张倩恰好未带测量工具,但是知道A和假山、•雕塑分别相距200•
米、•120米,你能帮助她确定AB的长度范围吗?
(3)在第(2)问的启发下,你能“已知三角形的一边和另一边上的中线,求第三边的范围吗?”请你解决下列问题:在△ABC中,AD是BC边的中线,•AD=•3cm,AB=5cm,求AC的取值范围.
E C
B
A
D。

相关文档
最新文档