最新高三教案-2018届高三理科第一轮复习讲义第75课时统计 精品
2018学年度高三理科数学第一轮复习计划1 精品
2018-2018学年度高三理科数学第一轮复习计划一、目的为了能做到有计划、有步骤、有效率地完成高三数学学科教学复习工作,正确把握整个复习工作的节奏,明确不同阶段的复习任务及其目标,做到针对性强,使得各方面工作的具体要求落实到位,特制定此计划,并作出具体要求。
二、计划1、第一轮复习顺序:(1)集合与简易逻辑→不等式→函数→导数(含积分)→三角函数→向量(2)复数→数列(含数学归纳法、推理与证明)→立体几何→解析几何。
(3)排列与组合→概率与统计→算法与框图。
2、第一轮复习目标:全面掌握好概念、公式、定理、公理、推论等基础知识,切实落实好课本中典型的例题和课后典型的练习题,落实好每次课的作业,使学生能较熟练地运用基础知识解决简单的数学问题。
同时搞好每个单元的跟踪检测,注重课本习题的改造,单元存在的问题在月考中去强化、落实。
7、参考复习时间表:三、具体要求1.复习总体要求:科学安排,狠抓落实。
要求第一轮复习立足于基础知识和基本方法,起点不能太高,复习要有层次感,选题以容易题和中档题为主,尽可能照顾绝大多数学生。
这样才能创造良好的学习氛围,确保基础和方法扎实,同时尽可能缩短第一轮复习时间,给后面的拔高和思维的反复训练提供足够的时间。
2、多互相听课,吸取他人优点,扬长避短,提高复习效率,在可能的情况下尽快统一一种可行的、科学的复习模式。
3、加强对每次单元测试和月考试卷考前的审题、考后的总结和评估,加强对资料和信息整理的互通,特别要加强针对性训练,突出效果。
4、作业要求:务必落实好测试的做和评,搞好课后巩固这一重要环节,力求在这方面有所突破和提高。
5、考试要求:坚持考前审题和考后小结与评估,注重对反馈信息的整理(如知识和方法掌握不好的),大题各种方法探索及整理,每次考试主要采用自主命题、确定一人负责,全组共同讨论的方式命制试题。
6、努力抓好各班总分靠前而数学成绩偏弱的这一部分学生,通过重视、关注、关心、个别辅导,提高他们的学数学的积极性,确保升学率和平均分的提高。
高考数学一轮复习 讲义统计教案
第十一讲 复习统计一、本讲进度《统计》复习 二、本讲主要内容1、本章内容是初中《统计初步》与高中《概率》内容的深入和扩展,对数理统计中要研究的两个基本问题;如何从总体中抽取样本以及如何通过对所抽取的样本进行计算和分析,从而对总体的相应情况作出推断,作了初步的介绍。
几个基本名词:在统计中,考察对象的全体称为总体,总体中的每一个对象称为个体。
若记总体中N 个个体取值分别为x 1,x 2,…,x N ,则称)x x x (N1N 21+++=μ 为总体平均数(μ为N 个个体的算术平均数)若记])x ()x ()x [(N12N 22212μ-+μ-+μ-=σ ,则称σ2为总体方差,σ称为总体标准差。
初中《统计初步》的主要内容⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧→⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧平均数样本平均数去估计总体样本容量等样本个体总体样本去估计总体频率分布从整体分布上描述标准差方差描述其被动大小中位数众数平均数描述集中趋势从特征数上描述描述一组数据的方法,,, 2、抽样方法的分类:按照抽取样本时总体中的每个个体被抽取的概率是否相等⎩⎨⎧不等概率抽样等概率抽样本章只研究等概率抽样 等概率抽样⎩⎨⎧不放回抽样放回抽样常用的三种抽样方法的比较:3、用样本的频率分布估计总体分布,分两种情况:(1)当总体中的个数体取不同数值很少时,其频率分布表由所取样本的不同数值及其相应的频率来表示,其几何表示就是相应的条形图。
例如射击的环数,掷单粒骰子时出现的点数等;(2)当总体中的个体取不同值较多甚至无限时,此时需要对样本数据进行整理,其频率分布表列出的是在各个不同区间内取值的频率,相应的直方图是用图形面积的大小来表示在各个区间内取值的频率。
画第二种情况频率分布图的步骤是: ①计算最大值与最小值的差; ②决定组距与组数;③决定分点,通常使分点比数据多一位小数,并且把第一小组的起点稍微减小一点; ④列出频率分布表; ⑤画出频率分布直方图频率分布将随着样本容量的增大而更加接近总体分布,当样本容量无限增大且分组的组距无限缩小时,频率分布直方图就会演变成一条光滑曲线——反映总体分布的概率密度曲线。
最新高三教案-2018届高考数学一轮资料---(圆锥曲线4个课时全部) 精品
圆锥曲线与方程2.掌握双曲线的定义、标准方程、简单的几何性质.3.掌握抛物线的定义、标准方程、简单的几何性质.圆锥曲线是高中数学的一个重要内容,它的基本特点是数形兼备,兼容并包,可与代数、三角、几何知识相沟通,历来是高考的重点内容。
纵观近几年高考试题中对圆锥曲线的考查,基本上是两个客观题,一个主观题,分值21分~24分,占15%左右,并且主要体现出以下几个特点:1.圆锥曲线的基本问题,主要考查以下内容:①圆锥曲线的两种定义、标准方程及a、b、c、e、p五个参数的求解.②圆锥曲线的几何性质的应用.2、求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:直译法、定义法、相关点法、参数法.3.有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现.4.求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势.第1课时椭圆1.椭圆的两种定义(1) 平面内与两定点F 1,F 2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 .2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+by ax ,其中( > >0,且=2a )(2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+b x a y ,其中a ,b 满足: .3.椭圆的几何性质(对12222=+by ax ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,122PF a PF -== .(6) 椭圆的参数方程为 .4.焦点三角形应注意以下关系:(1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)例1. 求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上一点P 到两焦点距离之和等于10;(2)两个焦点的坐标分别是(0,-2)、(0,2),并且椭圆经过点)25,23(-; (3)长轴长是短轴长的3倍,并且椭圆经过点A (-3)解:192522=+y x (2)161022=+x y (3)22221,128364843x y x y +=+=变式训练1:根据下列条件求椭圆的标准方程(1) 和椭圆1202422=+y x 共准线,且离心率为21.(2) 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为534和532,过P 作长轴的垂线恰好过椭圆的一个焦点解:(1) 设椭圆方程)0,0(12222>>=+b a by ax ,则其准线为12±=x .∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=+==22222112c b a a c c a 解得⎪⎩⎪⎨⎧==336b a ∴所求椭圆方程为1273622=+y x.(2) 52221=+=PF PF a ,5=∴a .由5322=a b ,得3102=b .∴所求椭圆方程为1103522=+y x 或1103522=+x y .例2. 已知点P(3, 4)是椭圆2222b y a x +=1 (a >b >0) 上的一点,F 1、F 2是它的两焦点,若PF 1⊥PF 2,求:(1) 椭圆的方程;(2) △PF 1F 2的面积.解:(1)法一:令F 1(-C ,0),F 2(C ,0)∵ PF 1⊥PF 2,∴ 21P F P F k k ⋅=-1即13434-=-⋅+cc ,解得c =5∴ 椭圆的方程为1252222=-+a y a x∵ 点P (3,4)在椭圆上,∴125922=-+a b a 解得a 2=45或a 2=5 又a >c ,∴ a 2=5舍去.故所求椭圆的方程为1204522=+y x .法二:利用△PF 1F 2是直角三角形,求得c =5(以下同方法一)(2)由焦半径公式:| PF 1 |=a +ex =35+535×3=45| PF 2 |=a -ex =35-535×3=25∴ 21F P F S ∆=21| PF 1 |·| PF 2 |=21×45×25=20变式训练2:已知P (x 0,y 0)是椭圆12222=+by a x (a >b >0)上的任意一点,F 1、F 2是焦点,求证:以PF 2为直径的圆必和以椭圆长轴为直径的圆相内切.证明 设以PF 2为直径的圆心为A ,半径为r .∵F 1、F 2为焦点,所以由椭圆定义知|PF 1|+|PF 2|=2a ,|PF 2|=2r∴|PF 1|+2r =2a ,即|PF 1|=2(a -r )连结OA ,由三角形中位线定理,知|OA |=.)(221||211r a r a PF -=-⨯=故以PF 2为直径的圆必和以长轴为直径的圆相内切.评注 运用椭圆的定义结合三角形中位线定理,使题目得证。
最新高三教案-2018届高考数学一轮资料---(计数原理5个课时全部) 精品
排列、组合、二项式定理1.掌握分类计数原理与分步计数原理、并能用它分析和解决一些简单的应用问题.2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.3.理解组合的意义,掌握组合数计算公式和组合数性质,并能用它们解决一些简单的应用问题.问题和解决问题的能力及分类讨论思想.它是高中数学中从内容到方法都比较独特的一个组成部分,是进一步学习概率论的基础知识.由于这部分内容概念性强,抽象性强,思维方法新颖,同时解题过程中极易犯“重复”或“遗漏”的错误,而且结果数目较大,无法一一检验,因此学生要学好本节有一定的难度.解决该问题的关键是学习时要注意加深对概念的理解,掌握知识的内在联系和区别,严谨而周密地去思考分析问题.二项式定理是进一步学习概率论和数理统计的基础知识,高考重点考查展开式及通项,难度与课本内容相当.另外利用二项式定理及二项式系数的性质解决一些较简单而有趣的小题,在高考中也时有出现.第1课时 两个计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中1m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事共有N = 种不同的方法.2.分步计数原理(也称乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做n 步有m n 种不同的方法,那么完成这件事共有N = 种不同的方法.3.解题方法:枚举法、插空法、隔板法.例1. 高三(1)、(2)、(3)班分别有学生48,50,52人(1) 从中选1人当学生代表的方法有多少种?(2) 从每班选1人组成演讲队的方法有多少种?(3) 从这150名学生中选4人参加学代会有多少种方法?(4) 从这150名学生中选4人参加数理化四个课外活动小组,共有多少种方法?解:(1)48+50+52=150种 (2)48×50×52=124800种 (3)4150C (4)4150A 变式训练1:在直角坐标x -o -y 平面上,平行直线x=n ,(n=0,1,2,3,4,5),y=n ,(n=0,1,2,3,4,5),组成的图形中,矩形共有( )A 、25个B 、36个C 、100个D 、225个解:在垂直于x 轴的6条直线中任意取2条,在垂直于y 轴的6条直线中任意取2条,这样的4 条直线相交便得到一个矩形,所以根据分步记数原理知道:得到的矩形共有22515152626=⨯=⋅C C 个, 故选D 。
高三数学 第75课时 统计教案
课题:统计教学目标:1.会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本; 2.会用样本频率分布去估计总体分布;3.了解正态分布的意义及主要性质;4.了解线性回归的方法和简单应用. 教学重点:(一) 主要知识及主要方法:1.简单随机抽样:设一个总体的个体数为N .如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样. 总结:⑴一般地,用简单随机抽样从含有N 个个体的总体中抽取一个容量为n 的样本时,每次抽取一个个体时任一个体被抽到的概率为1N ;在整个抽样过程中各个个体被抽到的概率为n N ;2.简单随机抽样的实施方法:⑴抽签法:先将总体中的所有个体(共有N 个)编号(号码可从1到N ),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n 次,就得到一个容量为n 的样本适用范围:总体的个体数不多时 优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.⑵随机数表法:1.制定随机数表;2.给总体中各个个体编号;3.按照一定的规则确定所要抽取的样本的号码随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码3.简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样,简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.4.系统抽样:当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按预先定出的规则,从每一部分抽取一个个体,得到需要的样本,这种抽样叫做系统抽样5.系统抽样的步骤:①采用随机的方式将总体中的个体编号为简便起见,有时可直接采用个体所带有的号码,如考生的准考证号、街道上各户的门牌号,等等②即确定分段间隔:为将整个的编号分段(即分成几个部分),要确定分段的间隔k 当Nn(N 为总体中的个体的个数,n 为样本容量)是整数时,k N n=;当N n 不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数N '能被n 整除,这时k N n'=.③在第一段用简单随机抽样确定起始的个体编号l④按照事先确定的规则抽取样本(通常是将l 加上间隔k ,得到第2个编号l k +,第3个编号2l k +,这样继续下去,直到获取整个样本)说明:①系统抽样适用于总体中的个体数较多的情况,它与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;②与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的.③总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除在进行系统抽样6.分层抽样: 当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,所分成的部分叫做层7.不放回抽样和放回抽样:在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.随机抽样、系统抽样、分层抽样都是..不放回抽样9.频率分布:用样本估计总体,是研究统计问题的基本思想方法,样本中所有数据(或数据组)的频数和样本容量的比,就是该数据的频率.所有数据(或数据组)的频率的分布变化规律叫做样本的频率分布.可以用样本频率表、样本频率分布条形图或频率分布直方图来表示.10.总体分布:从总体中抽取一个个体,就是一次随机试验,从总体中抽取一个容量为n 的样本,就是进行了n 次试验,试验连同所出现的结果叫随机事件,所有这些事件的概率分布规律称为总体分布.11.总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.①()f x ≥0 (x R ∈);②由曲线()y f x =与x 轴围成面积为1.它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(),a b 内取值的概率等于该区间上总体密度曲线与x 轴、直线x a =、x b =所围成曲边梯形的面积.13.解决总体分布估计问题的一般程序如下:()1先确定分组的组数(最大数据与最小数据之差除以组距得组数);()2分别计算各组的频数及频率(频率=总数频数);()3画出频率分布直方图,并作出相应的估计.14.条形图是用其高度表示取各值的频率;直方图是用图形面积的大小表示在各区间内取值的频率;累积频率分布图是一条折线,利用任意两端值的累积频率之差表示样本数据在这两点值之间的频率. 15.正态分布密度函数:22()2(),(,)x f x x μσ--=∈-∞+∞,(0σ>) 其中π是圆周率;e 是自然对数的底;x 是随机变量的取值;μ为正态分布的均值;σ是正态分布的标准差.正态分布一般记为),(2σμN 。
高中数学最新-2018届高考理科数学第一轮复习教案1 精品
第一节集合1.集合的含义与表示(1)了解集合的含义、元素与集合的“属于”关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合间的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表示集合的关系及运算.知识点一集合的基本概念1.集合中元素的三个特性:确定性、互异性、无序性.2.元素与集合的关系:属于或不属于,表示符号分别为∈和∉.3.集合的三种表示方法:列举法、描述法、Venn 图法. 易误提醒 在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.[自测练习]1.已知a ∈R ,若{-1,0,1}=⎩⎨⎧⎭⎬⎫1a ,a 2,0,则a =________.解析:1a ≠0,a ≠0,a 2≠-1,只有a 2=1. 当a =1时,1a =1,不满足互异性,∴a =-1. 答案:-1知识点二 集合间的基本关系必记结论 若集合A 中有n 个元素,则其子集个数为2n ,真子集个数为2n -1,非空真子集的个数为2n -2.易误提醒 易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身.[自测练习]2.已知集合A ={x |x =a +(a 2-1)i}(a ∈R ,i 是虚数单位),若A⊆R,则a=()A.1 B.-1 C.±1 D.0解析:A⊆R,∴a2-1=0,a=±1.答案:C3.已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,xy∈A},则集合B的所有真子集的个数为()A.512 B.256C.255 D.254解析:由题意知当x=1时,y可取1,2,3,4;当x=2时,y可取1,2;当x=3时,y可取1;当x=4时,y可取1.综上,B中所含元素共有8个,所以其真子集有28-1=255个.选C.答案:C知识点三集合的基本运算及性质易误提醒运用数轴图示法易忽视端点是实心还是空心.必记结论 ∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[自测练习]4.(2015·广州一模)已知全集U ={1,2,3,4,5},集合M ={3,4,5},N ={1,2,5},则集合{1,2}可以表示( )A .M ∩NB .(∁U M )∩NC .M ∩(∁U N )D .(∁U M )∩(∁U N )解析:M ∩N ={5},A 错误;∁U M ={1,2},(∁U M )∩N ={1,2},B 正确;∁U N ={3,4},M ∩(∁U N )={3,4},C 错误;(∁U M )∩(∁U N )=∅,D 错误.故选B.答案:B5.(2015·长春二模)已知集合P ={x |x ≥0},Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +1x -2≥0,则P ∩(∁R Q )=( )A .(-∞,2)B .(-∞,-1]C .(-1,0)D .[0,2]解析:由题意可知Q ={x |x ≤-1或x >2},则∁R Q ={x |-1<x ≤2},所以P ∩(∁R Q )={x |0≤x ≤2}.故选D.答案:D考点一 集合的基本概念|1.已知集合S ={x |3x +a =0},如果1∈S ,那么a 的值为( ) A .-3B .-1解析:∵1∈S,∴3+a=0,a=-3.答案:A2.设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中的元素个数为()A.4 B.5C.6 D.7解析:∵a∈A,b∈A,x=a+b,∴x=2,3,4,5,6,8,∴B中有6个元素,故选C.答案:C3.(2015·贵阳期末)已知全集U={a1,a2,a3,a4},集合A是集合U的恰有两个元素的子集,且满足下列三个条件:①若a1∈A,则a2∈A;②若a3∉A,则a2∉A;③若a3∈A,则a4∉A.则集合A=________.(用列举法表示)解析:若a1∈A,则a2∈A,则由若a3∉A,则a2∉A可知,a3∈A,假设不成立;若a4∈A,则a3∉A,则a2∉A,则a1∉A,假设不成立,故集合A={a2,a3}.答案:{a2,a3}判断一个元素是某个集合元素的三种方法:列举法、特征元素法、数形结合法.考点二集合间的基本关系及应用|(1)已知全集A={x∈N|x2+2x-3≤0},B={y|y⊆A},则集合B中元素的个数为()C.4 D.5[解析]依题意得,A={x∈N|(x+3)(x-1)≤0}={x∈N|-3≤x≤1}={0,1},共有22=4个子集,因此集合B中元素的个数为4,选C.[答案] C(2)已知集合M={x|-1<x<2},N={x|x<a},若M⊆N,则实数a 的取值范围是()A.(2,+∞) B.[2,+∞)C.(-∞,-1) D.(-∞,-1][解析]依题意,由M⊆N得a≥2,即所求的实数a的取值范围是[2,+∞),选B.[答案] B1.判断两集合的关系常有两种方法(1)化简集合,从表达式中寻找两集合间的关系.(2)用列举法表示各集合,从元素中寻找关系.2.已知两集合间的关系求参数时的两个关键点(1)将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.(2)合理利用数轴、Venn图帮助分析.1.(2015·辽宁五校联考)设集合P={x|x>1},Q={x|x2-x>0},则下列结论正确的是()A.P⊆Q B.Q⊆PC.P=Q D.P∪Q=R解析:由集合Q={x|x2-x>0},知Q={x|x<0或x>1},所以选A.答案:A考点三集合的基本运算|(1)(2015·高考全国卷Ⅱ)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=()A.{-1,0}B.{0,1}C.{-1,0,1} D.{0,1,2}[解析]由于B={x|-2<x<1},所以A∩B={-1,0}.故选A.[答案] A(2)(2015·郑州期末)已知函数f(x)=2-x-1,集合A为函数f(x)的定义域,集合B为函数f(x)的值域,则如图所示的阴影部分表示的集合为________.[解析]本题考查函数的定义域、值域以及集合的表示.要使函数f(x)=2-x-1有意义,则2-x-1≥0,解得x≤0,所以A=(-∞,0].又函数f(x)=2-x-1的值域B=[0,+∞).阴影部分用集合表示为∁A∪B(A∩B)=(-∞,0)∪(0,+∞).[答案](-∞,0)∪(0,+∞)集合运算问题的四种常见类型及解题策略(1)离散型数集或抽象集合间的运算.常借助V enn图求解.(2)连续型数集的运算.常借助数轴求解.(3)已知集合的运算结果求集合.借助数轴或V enn图求解.(4)根据集合运算求参数.先把符号语言译成文字语言,然后适时应用数形结合求解.2.(2015·高考陕西卷)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]解析:∵M={x|x2=x}={0,1},N={x|lg x≤0}={x|0<x≤1},∴M∪N={x|0≤x≤1},故选A.答案:A考点四集合的创新问题|设集合A={1,2,3},B={2,3,4,5},定义A⊙B={(x,y)|x∈A∩B,y∈A∪B},则A⊙B中元素的个数是()A.7 B.10C.25D.52[解析]A∩B={2,3},A∪B={1,2,3,4,5},由列举法可知A⊙B ={(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5)},共有10个元素,故选B.[答案] B解决集合创新问题的三个策略(1)遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质.(2)按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.(3)对于选择题,可以结合选项通过验证,用排除、对比、特值等方法求解.3.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q=() A.{x|0<x<1} B.{x|0<x≤1}C.{x|1≤x<2} D.{x|2≤x<3}解析:由log2x<1,得0<x<2,所以P={x|0<x<2};由|x-2|<1,得1<x<3,所以Q={x|1<x<3}.由题意,得P-Q={x|0<x≤1}.答案:B1.遗忘空集致误【典例】设全集是实数集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.若(∁R A)∩B=B,则实数a的取值范围是________.[解析] ∵A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 12≤x ≤3,∴∁R A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <12或x >3,当(∁R A )∩B =B时,B ⊆∁R A 即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ; ②当B ≠∅,即a <0时, B ={x |--a <x <-a }, 要使B ⊆∁R A ,需-a ≤12, 解得-14≤a <0.综上可得,实数a 的取值范围是a ≥-14. [答案] a ≥-14[易误点评] 由∁R A ∩B =B 知B ⊆∁R A ,即A ∩B =∅,又集合B 中元素属性满足x 2+a <0,当a ≥0时B =∅易忽视导致漏解.[防范措施] (1)根据集合间的关系求参数是高考的一个重点内容.解答此类问题的关键是抓住集合间的关系以及集合元素的特征.(2)已知集合B ,若已知A ⊆B 或A ∩B =∅,则考生很容易忽视A =∅而造成漏解.在解题过程中应根据集合A 分三种情况进行讨论.[跟踪练习] 已知U =R ,集合A ={x |x 2-x -2=0},B ={x |mx +1=0},B ∩(∁U A )=∅,则m =________.解析:A ={-1,2},B =∅时,m =0;B ={-1}时,m =1;B ={2}时,m =-12.答案:0,1,-12A 组 考点能力演练1.集合U ={0,1,2,3,4},A ={1,2},B ={x ∈Z |x 2-5x +4<0},则∁U (A ∪B )=( )A .{0,1,3,4}B .{1,2,3}C .{0,4}D .{0}解析:因为集合B ={x ∈Z |x 2-5x +4<0}={2,3},所以A ∪B ={1,2,3},又全集U ={0,1,2,3,4},所以∁U (A ∪B )={0,4}.所以选C.答案:C2.已知集合A ={0,1,2,3,4},B ={x |x =n ,n ∈A },则A ∩B 的真子集个数为( )A .5B .6C .7D .8解析:由题意,得B ={0,1,2,3,2},所以A ∩B ={0,1,2},所以A ∩B 的真子集个数为23-1=7,故选C.答案:C3.(2015·太原一模)已知全集U =R ,集合M ={x |(x -1)(x +3)<0},N ={x ||x |≤1},则阴影部分表示的集合是( )A .[-1,1)B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1)解析:由题意可知,M ={}x | -3<x <1,N ={}x | -1≤x ≤1,∴阴影部分表示的集合为M ∩(∁U N )={}x | -3<x <-1.答案:D4.集合A ={x |x -2<0},B ={x |x <a },若A ∩B =A ,则实数a 的取值范围是()A.(-∞,-2] B.[-2,+∞)C.(-∞,2] D.[2,+∞)解析:由题意,得A={x|x<2}.又因为A∩B=A,所以a≥2,故选D.答案:D5.(2015·山西质检)集合A,B满足A∪B={1,2},则不同的有序集合对(A,B)共有()A.4个B.7个C.8个D.9个解析:由题意可按集合A中的元素个数分类.易知集合{1,2}的子集有4个:∅,{1},{2},{1,2}.若A=∅,则B={1,2};若A={1},则B={2}或B={1,2};若A={2},则B={1}或B={1,2};若A={1,2};则B=∅或B={1}或B={2}或B={1,2}.综上所述,不同的有序集合对(A,B)共有9个,故选D.答案:D6.(2015·广州模拟)设集合A={(x,y)|2x+y=6},B={(x,y)|3x +2y=4},满足C⊆(A∩B)的集合C的个数为________.解析:依题意得,A∩B={(8,-10)},因此满足C⊆(A∩B)的集合C的个数是2.答案:27.设集合S n={1,2,3,…,n},若X⊆S n,把X的所有元素的乘积称为X的容量(若X中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集,则S4的所有奇子集的容量之和为________.解析:∵S 4={1,2,3,4},∴X =∅,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}.其中是奇子集的为X ={1},{3},{1,3},其容量分别为1,3,3,所以S 4的所有奇子集的容量之和为7.答案:78.已知集合P ={-1,m },Q =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1<x <34,若P ∩Q ≠∅,则整数m =________.解析:由{-1,m }∩⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1<x <34≠∅,可得-1<m <34,由此可得整数m =0.答案:09.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.(1)若A ∩B =[0,3],求实数m 的值;(2)若A ⊆∁R B ,求实数m 的取值范围.解:由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3.∴m =2. (2)∁R B ={x |x <m -2或x >m +2},∴A ⊆∁R B ,∴m -2>3或m +2<-1,即m >5或m <-3.因此实数m 的取值范围是{m |m >5或m <-3}.10.设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}.(1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3},N ={x |x 2+x -6=0}={-3,2},∴∁I M ={x |x ∈R 且x ≠-3},∴(∁I M )∩N ={2}.(2)由(1)知A =(∁I M )∩N ={2},∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={2},当B =∅时,a -1>5-a ,∴a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2,解得a =3, 综上所述,实数a 的取值范围为{a |a ≥3}.B 组 高考题型专练1.(2014·高考课标全国卷Ⅰ)已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)解析:由不等式x 2-2x -3≥0解得x ≥3或x ≤-1,因此集合A ={x |x ≤-1或x ≥3},又集合B ={x |-2≤x <2},所以A ∩B ={x |-2≤x ≤-1},故选A.答案:A2.(2014·高考课标全国卷Ⅱ)设集合M ={0,1,2},N ={x |x 2-3x +2≤0},则M ∩N =( )A .{1}B .{2}C .{0,1}D .{1,2}解析:由已知得N={x|1≤x≤2},∵M={0,1,2},∴M∩N={1,2},故选D.答案:D3.(2015·高考全国卷Ⅰ)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4C.3 D.2解析:集合A={x|x=3n+2,n∈N},当n=0时,3n+2=2,当n=1时,3n+2=5,当n=2时,3n+2=8,当n=3时,3n+2=11,当n=4时,3n+2=14,∵B={6,8,10,12,14},∴A∩B中元素的个数为2,选D.答案:D4.(2015·高考福建卷)若集合A={i,i2,i3,i4}(i是虚数单位),B={1,-1},则A∩B等于()A.{-1} B.{1}C.{1,-1} D.∅解析:因为A={i,-1,-i,1},B={1,-1},所以A∩B={1,-1},故选C.答案:C5.(2015·高考浙江卷)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1) B.(0,2]C.(1,2) D.[1,2]解析:∁R P={x|0<x<2},故(∁R P)∩Q={x|1<x<2}.答案:C6.(2015·高考重庆卷)已知集合A={1,2,3},B={2,3},则() A.A=B B.A∩B=∅C.A B D.B A解析:由真子集的概念知B A,故选D.答案:D。
2018届高三理科数学一轮复习学案 统计
第一节统计突破点(一)随机抽样1.简单随机抽样(1)定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法.2.系统抽样在抽样时,将总体分成均衡的几个部分,然后按照事先确定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样方法叫做系统抽样(也称为机械抽样).3.分层抽样在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.4.三种抽样方法的比较简单随机抽样1.抽签法的步骤第一步,将总体中的N个个体编号;第二步,将这N个号码写在形状、大小相同的号签上;第三步,将号签放在同一不透明的箱中,并搅拌均匀;第四步,从箱中每次抽取1个号签,连续抽取k次;第五步,将总体中与抽取的号签的编号一致的k个个体取出.2.随机数法的步骤第一步,将个体编号;第二步,在随机数表中任选一个数开始;第三步,从选定的数开始,按照一定抽样规则在随机数表中选取数字,取足满足要求的数字就得到样本的号码.[例1] (1)以下抽样方法是简单随机抽样的是( )A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B .某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C .某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D .用抽签方法从10件产品中选取3件进行质量检验(2)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )C .02D .01[解析] (1)选项A 、B 不是简单随机抽样,因为抽取的个体间的间隔是固定的;选项C 不是简单随机抽样,因为总体的个体有明显的层次;选项D 是简单随机抽样.(2)由题意知前5个个体的编号为08,02,14,07,01. [答案] (1)D (2)D系统抽样系统抽样的步骤(1)先将总体的N 个个体编号;(2)确定分段间隔k (k ∈N *),对编号进行分段.当N n (n 是样本容量)是整数时,取k =Nn ;(3)在第1段用简单随机抽样确定第1个个体编号l (l ≤k );(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.[例2] (1)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12(2)中央电视台为了解观众对《中国好歌曲》的意见,准备从502名现场观众中抽取10%进行座谈,现用系统抽样的方法完成这一抽样,则在进行分组时,需剔除________个个体,抽样间隔为________.[解析] (1)由系统抽样定义可知,所分组距为84042=20,每组抽取一人,因为包含整数个组,所以抽取个体在区间[481,720]的数目为(720-480)÷20=12.(2)把502名观众平均分成50组,由于502除以50的商是10,余数是2,所以每组有10名观众,还剩2名观众,采用系统抽样的方法抽样时,应先用简单随机抽样的方法从502名观众中抽取2名观众,这2名观众不参加座谈;再将剩下的500名观众编号为1,2,3,…,500,并均匀分成50段,每段含50050=10个个体.所以需剔除2个个体,抽样间隔为10.[答案] (1)B (2)2 10 [易错提醒]用系统抽样法抽取样本,当Nn 不为整数时,取k =⎣⎡⎦⎤N n ,即先从总体中用简单随机抽样的方法剔除(N -nk )个个体,且剔除多余的个体不影响抽样的公平性.分层抽样进行分层抽样的相关计算时,常利用以下关系式巧解: (1)样本容量n 总体的个数N =该层抽取的个体数该层的个体数; (2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.[例3] (1)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )类别 人数 老年教师 900 中年教师 1 800 青年教师 1 600 合计4 300A .90B .100C .180D .300 (2)(2016·东北三校联考)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n =( )C .45D .126(3)某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人).篮球组 书画组 乐器组 高一 45 30 a 高二151020学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________.[解析] (1)设该样本中的老年教师人数为x ,由题意及分层抽样的特点得x 900=3201 600,故x =180.(2)依题意得33+5+7×n =18,解得n =90,即样本容量为90.(3)由题意知1245+15=3045+15+30+10+a +20,解得a =30.[答案] (1)C (2)B (3)30 [方法技巧]分层抽样的解题策略(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同. (3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样. (4)抽样比=样本容量总体容量=各层样本数量各层个体数量.1.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法①1,2,3,…,100; ②001,002,…,100; ③00,01,02,…,99; ④01,02,03,…,100. 其中正确的序号是( ) A .②③④ B .③④ C .②③D .①②解析:选C根据随机数法编号可知,①④编号位数不统一.2.为了调查老师对微课堂的了解程度,某市拟采用分层抽样的方法从A,B,C三所中学抽取60名教师进行调查,已知A,B,C三所学校中分别有180,270,90名教师,则从C 学校中应抽取的人数为()A.10 B.12C.18 D.24解析:选A根据分层抽样的特征,从C学校中应抽取的人数为90180+270+90×60=10.3.某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号学生在样本中,那么样本中还有一个学生的学号是() A.10 B.11C.12 D.16解析:选D从被抽中的3名学生的学号中可以看出学号间距为13,所以样本中还有一个学生的学号是16,故选D.4.某市有A、B、C三所学校,共有高三文科学生1 500人,且A、B、C三所学校的高三文科学生人数成等差数列,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B校学生中抽取________人.解析:设A、B、C三所学校高三文科学生人数分别为x,y,z,由题知x,y,z成等差数列,所以x+z=2y,又x+y+z=1 500,所以y=500,用分层抽样方法抽取B校学生人数为1201 500×500=40.答案:405.为了了解本班学生对网络游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…,60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.解析:由最小的两个编号为03,09可知,抽取时的分段间隔是6.即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.答案:57突破点(二)用样本估计总体1.频率分布直方图和茎叶图(1)作频率分布直方图的步骤①求极差(即一组数据中最大值与最小值的差);②决定组距与组数;③将数据分组;④列频率分布表;⑤画频率分布直方图.(2)频率分布折线图和总体密度曲线①频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.②总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.(3)茎叶图的优点茎叶图的优点是可以保留原始数据,而且可以随时记录,这对数据的记录和表示都能带来方便.2.样本的数字特征 (1)众数、中位数、平均数①标准差:样本数据到平均数的一种平均距离,一般用s 表示,s = 1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. ②方差:标准差的平方s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x i (i =1,2,3,…,n )是样本数据,n 是样本容量,x 是样本平均数.③方差与标准差相比,都是衡量样本数据离散程度的统计量,但方差因为对标准差进行了平方运算,夸大了样本的偏差程度.(3)平均数、方差公式的推广若数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则数据mx 1+a ,mx 2+a ,…,mx n +a 的平均数为m x +a ,方差为m 2s 2.频率分布直方图[例1] (1)(2016·山东高考)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .120D .140(2)某地政府调查了工薪阶层1 000人的月工资收入,并根据调查结果画出如图所示的频率分布直方图,为了了解工薪阶层对月工资收入的满意程度,要用分层抽样的方法从调查的1 000人中抽出100人做电话询访,则(30,35](百元)月工资收入段应抽出________人.[解析] (1)由频率分布直方图知200名学生每周的自习时间不少于22.5小时的频率为1-(0.02+0.10)×2.5=0.7,则这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140,故选D.(2)月工资收入落在(30,35](百元)内的频率为1-(0.02+0.04+0.05+0.05+0.01)×5=1-0.85=0.15,所以(30,35](百元)月工资收入段应抽出100×0.15=15(人).[答案] (1)D (2)15 [方法技巧]1.绘制频率分布直方图时需注意的两点(1)制作好频率分布表后,可以利用各组的频率之和是否为1来检验该表是否正确; (2)频率分布直方图的纵坐标是频率组距,而不是频率.2.与频率分布直方图计算有关的两个关系式(1)频率组距×组距=频率; (2)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数.茎叶图1.茎叶图的绘制需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一; (2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据.2.茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.[例2] 某良种培育基地正在培育一小麦新品种A ,将其与原有的一个优良品种B 进行对照试验,两种小麦各种植了25亩,所得亩产数据(单位:千克)如下.品种A :357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,445,451,454品种B :363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430(1)作出数据的茎叶图;(2)通过观察茎叶图,对品种A 与B 的亩产量及其稳定性进行比较,写出统计结论. [解] (1)画出茎叶图如图所示:(2)通过观察茎叶图可以看出:①品种A 的亩产平均数(或均值)比品种B 高;②品种A 的亩产标准差(或方差)比品种B 大,故品种A 的亩产稳定性较差.[方法技巧]茎叶图问题的求解策略(1)由于茎叶图完全反映了所有的原始数据,解决由茎叶图给出的统计图表问题时,要充分对这个图表提供的样本数据进行相关的计算或者是对某些问题作出判断.(2)茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图数据求出样本数据的数字特征,进一步估计总体情况.样本的数字特征1.用样本估计总体时,样本的平均数、标准差只是总体的平均数、标准差的近似.实际应用中,需先计算数据的平均数,分析平均水平,再计算方差(标准差),分析稳定情况.2.若给出图形,一方面可以由图形得到相应的样本数据,计算平均数、方差(标准差);另一方面,可以从图形直观分析样本数据的分布情况,大致判断平均数的范围,并利用数据的波动性比较方差(标准差)的大小.考法(一)与频率分布直方图交汇命题[例3](2016·北京高考)某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图.(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.[解](1)由用水量的频率分布直方图,知该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3]内的频率依次为0.1,0.15,0.2,0.25,0.15.所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3.(2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表如下:组号12345678分组[2,4](4,6](6,8](8,10](10,12](12,17](17,22](22,27] 频率0.10.150.20.250.150.050.050.054×0.1+6×0.15+8×0.2+10×0.25+12×0.15+17×0.05+22×0.05+27×0.05=10.5(元).[方法技巧]频率分布直方图与众数、中位数、平均数的关系(1)最高的小长方形底边中点的横坐标为众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.考法(二) 与茎叶图交汇命题[例4] (1)如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,乙组数据的平均数为17.4,则x ,y 的值分别为( )甲组 乙组 9 0 9 9 y 6 1 6 6 x 629 A.7,8 B .5,7 (2)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:8 7 7 941x91则7个剩余分数的方差为________. [解析] (1)甲组数据的中位数为17, 故y =7,乙组数据的平均数为3×10+20+(9+6+6+x +9)5=17.4,解得x =7.(2)由图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x =91×7,解得x =4.s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.[答案] (1)D (2)367[易错提醒]在使用茎叶图时,一定要观察所有的样本数据,弄清楚这个图中数字的特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.考法(三) 与优化决策问题交汇[例5] 甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲 乙 丙 丁 平均环数x 8.3 8.8 8.8 8.7 方差s 23.53.62.25.4( ) A .甲 B .乙 C .丙D .丁[解析] 由题目表格中数据可知,丙平均环数最高,且方差最小,说明成绩好,且技术稳定,选C.[答案] C [方法技巧]利用样本的数字特征解决优化决策问题的依据(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.(2)用样本估计总体就是利用样本的数字特征来描述总体的数字特征.1.在样本的频率分布直方图中,共有7个小长方形,若中间一个小长方形的面积等于其他6个小长方形的面积的和的14,且样本容量为80,则中间一组的频数为( )A .0.25B .0.5C .20D .16解析:选D 设中间一组的频数为x ,依题意有x 80=14⎝⎛⎭⎫1-x 80,解得x =16. 2.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.131415⎪⎪⎪⎪0 0 3 4 5 6 6 8 8 8 91 1 12 2 23 34 45 5 56 67 80 1 2 2 3 3 3若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )A .3B .4C .5D .6解析:选B 35÷7=5,因此可将编号为1~35的35个数据分成7组,每组有5个数据,在区间[139,151]上共有20个数据,分在20÷5=4个小组中,每组取1人,共取4人.3.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则图中x 的值等于( )A .0.12B .0.012C .0.18D .0.018解析:选D 依题意,0.054×10+10×x +0.01×10+0.006×10×3=1,解得 x =0.018. 4.如图是某学校举行的运动会上七位评委为某体操项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )7 9 8 4 4 6 4 793A .84,4.84B .84,1.6C .85,1.6D .85,4 解析:选C 依题意,所剩数据的平均数是80+15×(4×3+6+7)=85,所剩数据的方差是15×[3×(84-85)2+(86-85)2+(87-85)2]=1.6.5.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):.解析:x -甲=x -乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s 2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s 2甲,故甲更稳定. 答案:甲6. (2016·四川高考)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨),一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1,解得a=0.30.(2)由(1)知100位居民每人的月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85,所以2.5≤x<3.由0.30×(x-2.5)=0.85-0.73,解得x=2.9.所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.7.某车间20名工人年龄数据如下表:(1)求这20(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.解:(1)由题可知,这20名工人年龄的众数是30,极差是40-19=21. (2)这20名工人年龄的茎叶图如图所示:(3)这20名工人年龄的平均数为x =120(19+3×28+3×29+5×30+4×31+3×32+40)=30,∴这20名工人年龄的方差为s 2=120∑20 i =1 (x i -x )2=112+6×22+7×12+5×02+10220=25220=12.6.全国卷5年真题1.(2016·全国丙卷)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A .各月的平均最低气温都在0 ℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20 ℃的月份有5个解析:选D 由图形可得各月的平均最低气温都在0 ℃以上,A 正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B 正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C 正确;故D 错误.2.(2013·新课标全国卷Ⅰ)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样解析:选C 由于该地区的中小学生人数比较多,不能采用简单随机抽样,排除选项A ;由于小学、初中、高中三个学段的学生视力差异性比较大,可采取按照学段进行分层抽样,而男女生视力情况差异性不大,不能按照性别进行分层抽样,排除B和D.故选C.3.(2014·新课标全国卷Ⅰ)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?解:(1)如图所示:(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.4.(2014·新课标全国卷Ⅱ)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.解:(1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.5.(2013·新课标全国卷Ⅰ)为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.90.80.9 2.4 1.2 2.6 1.3 1.41.60.5 1.80.6 2.1 1.1 2.5 1.2 2.70.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?A药解:(1)设A 药观测数据的平均数为x -,B 药观测数据的平均数为y -.由观测结果可得 x -=120×(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y -=120×(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x ->y -,因此可看出A 药的疗效更好. (2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎2,3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A 药的疗效更好.[课时达标检测][练基础小题——强化运算能力]1.某学校为了了解某年高考数学的考试成绩,在高考后对该校1 200名考生进行抽样调查,其中有400名文科考生,600名理科考生,200名艺术和体育类考生,从中抽取120名考生作为样本,记这项调查为①;从10名家长中随机抽取3名参加座谈会,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法解析:选B 在①中,文科考生、理科考生、艺术和体育类考生会存在差异,采用分层抽样法较好;在②中,抽取的样本个数较少,宜采用简单随机抽样法.2.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n 人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n =( )A .660B .720C .780D .800解析:选B 由已知条件,抽样比为13780=160,。
最新-2018届高三数学一轮复习 18-1统计、统计案例课件 北师大版 精品
(2)随机数表中共随机出现0,1,2,…,9十个数字,也 就是说,在表中的每个位置上出现各个数字的机会都是相 等的.在使用随机数表时,如遇到三位数或四位数时,可 从选择的随机数表中的某行某列的数字计起,每三个或每 四个作为一个单位,自左向右选取,有超过总体号码或出 现重复号码的数字舍去.
[例2] 某工厂有1 003名工人,从中抽取10人参加体 检,试用系统抽样进行具体实施.
[分析] 总体中的每个个体,都必须等可能地入样, 为了实现“等距”入样,且又等概率,因此,应先剔除, 再“分段”,后定起始位.
[解析] 第一步,将在岗的工人624人,用随机方式 编号(如按出生年月日顺序),000,001,002,…,623.第二 步,由题意知,应抽取62人的样本,因为 不是整数, 所以应从总体中剔除4人(剔除方法用随机数表法,随机定 一起始数,向右取三位数.如起始数为课本附表1中第8行, 第19列数,则为1.向右取三位数为199,即编号199被剔除, 若三位数恰大于623或是已被剔除之数,则重新定起始数, 反复下去,直到剔除4人为止),将余下的620人,按编号 顺序补齐000,001,002,…619分成62个段,每段10人,在 第一段000,001,002,…,009这十个编号中,随机定一起 始号i0,则编号i0,i0+10,i0+20,…,i0+61×10为所抽 取的样本.
[分析] 简单随机抽样方法有抽签法和随机数表法, 因为样本的容量为10,因此,两种方法均可以.
[解析] 方法一 首先,把机器都编上号码 001,002,003,…,112,如用抽签法,则把112个形状、大 小相同的号签放在同一个箱子里,进行均匀搅拌,抽签时, 每次从中抽出1个号签,连续抽取10次,就得到一个容量 为10的样本.
074,100,094,052,080,003,105,107,083,092. 第四步,对应原来编号
高三数学第一轮复习的教学计划(5篇)
高三数学第一轮复习的教学计划(5篇)高三数学第一轮复习的教学规划1一、背景分析近几年来的高考数学试题逐步做到科学化、标准化,坚持了稳中求改、稳中创新的原则。
考试题不但坚持了考察全面、比例适当,布局合理的特点,也突出表达了变学问立意为力量立意这一举措。
更加注意考察学生进入高校学习所需的根本数学素养,这些变化应引起我们在教学中的关注和重视。
二、指导思想在全面推行素养教育的背景下,努力提高课堂复习效率是高三数学复习的重要任务。
通过复习,让学生在数学学习过程中,更好地学会从事社会生产和进一步学习所必需的数学根底学问,从而培育学生思维力量,激发学生学习数学的兴趣,使学生树立学好数学的信念。
教师要在教学过程中不断了解新的教学信息,更新教育观念,探求新的教学模式,加强教改力度,精确把握课程标准和考试说明的各项根本要求,立足根本学问、根本技能、根本思想和根本方法教学,针对学生实际,指导学法,着力培育学生的创新力量和运用数学的意识和力量。
三、目标要求第一轮复习要结合高考考点,紧扣教材,以加强双基教学为主线,以提高学生力量为目标,加强学生对学问的理解、联系、应用,同时结合高考题型强化训练,提高学生的解题力量。
为此,我们确立了一轮复习的总体目标:通过梳理考点,培育学生分析问题、解决问题的力量;使学生养成思索严谨、分析条理、解答正确、书写标准的良好习惯,为二轮复习乃至高考奠定坚实的根底。
详细要求如下:1、第一轮复习必需面对全体学生,降低复习起点,在夯实双基的前提下,注意培育学生的力量,包括:空间想象、抽象概括、推理论证、运算求解、数据处理等根本力量。
提高学生对实际问题的阅读理解、思索推断力量;以及数学地提出、分析和解决问题(包括简洁的实际问题)的力量,数学表达和沟通的力量,进展独立猎取数学学问的力量。
复习教学要充分考虑到本班学生的实际水平,坚决反对脱离学生实际的任意拔高和只抓几个“优等生”放弃大局部“中等生”的不良做法,不做或少做无效劳动,加大分层教学和个别指导的力度,狠抓复习的针对性、实效性,提高复习效果。
2018学年度高三理科数学第一轮复习计划3 精品
2018-2018学年度高三理科数学第一轮复习计划一.背景分析近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。
考试题不但坚持了考查全面,比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。
更加注重考查考生进入高校学习所需的基本素养,这些问题应引起我们在教学中的关注和重视。
2018年,数学试卷充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注意考查进入高校继续学习的潜能。
在前三年命题工作的基础上做到了总体保持稳定,深化能力立意,积极改革创新,兼顾了数学基础、思想方法、思维、应用和潜能等多方面的考查,融入课程改革的理念,拓宽题材,选材多样化,宽角度、多视点地考查数学素养,多层次地考查思想能力,充分体现出新课改的特色:1 试题题型平稳突出对主干知识的考查重视对新增内容的考查2 充分考虑理科考生的思维水平与不同的学习要求,体现出良好的层次性3 重视对数学思想方法的考查4 深化能力立意,考查考生的学习潜能5 重视基础,以教材为本6 重视应用题设计,考查考生数学应用意识二.教学指导原则1.高度重视基础知识,基本技能和基本方法的复习。
“基础知识,基本技能和基本方法”是高考复习的重点。
在复习课中要认真落实双基,并注意蕴涵在基础知识中的能力因素,注意基本问题中的能力培养. 特别是要学会把基础知识放在新情景中去分析,应用。
2. 高中的“重点知识”复习中要保持较大的比重和必要的深度。
原来的重点内容函数、不等式、数列、立体几何,平面三角及解析几何中的综合问题等。
在教学中,要避免重复及简单的操练。
新增的内容:向量、概率等内容在复习时也应引起我们的足够重视。
总之高三的数学复习课要以培养逻辑思维能力为核心,加强运算能力为主体进行复习。
3. 重视“通性、通法”的落实。
要把复习的重点放在教材中典型例题、习题上;放在体现通性、通法的例题、习题上;放在各部分知识网络之间的内在联系上抓好课堂教学质量,定出实施方法和评价方案。
2019-2020年高三数学 第75课时 统计教案
2019-2020年高三数学第75课时统计教案教学目标:会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本;会用样本频率分布去估计总体分布;了解正态分布的意义及主要性质;了解线性回归的方法和简单应用.教学重点:(一)主要知识及主要方法:简单随机抽样:设一个总体的个体数为.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.总结:⑴一般地,用简单随机抽样从含有个个体的总体中抽取一个容量为的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为;简单随机抽样的实施方法:⑴抽签法:先将总体中的所有个体(共有个)编号(号码可从到),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取次,就得到一个容量为的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.⑵随机数表法:制定随机数表;给总体中各个个体编号;按照一定的规则确定所要抽取的样本的号码随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样,简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.系统抽样:当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按预先定出的规则,从每一部分抽取一个个体,得到需要的样本,这种抽样叫做系统抽样系统抽样的步骤:①采用随机的方式将总体中的个体编号为简便起见,有时可直接采用个体所带有的号码,如考生的准考证号、街道上各户的门牌号,等等②即确定分段间隔:为将整个的编号分段(即分成几个部分),要确定分段的间隔当(为总体中的个体的个数,为样本容量)是整数时,;当不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数能被整除,这时.③在第一段用简单随机抽样确定起始的个体编号④按照事先确定的规则抽取样本(通常是将加上间隔,得到第个编号,第个编号,这样继续下去,直到获取整个样本)说明:①系统抽样适用于总体中的个体数较多的情况,它与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;②与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的.③总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除在进行系统抽样分层抽样: 当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,所分成的部分叫做层不放回抽样和放回抽样:在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.随机抽样、系统抽样、分层抽样都是..不放回抽样频率分布:用样本估计总体,是研究统计问题的基本思想方法,样本中所有数据(或数据组)的频数和样本容量的比,就是该数据的频率.所有数据(或数据组)的频率的分布变化规律叫做样本的频率分布.可以用样本频率表、样本频率分布条形图或频率分布直方图来表示.总体分布:从总体中抽取一个个体,就是一次随机试验,从总体中抽取一个容量为的样本,就是进行了次试验,试验连同所出现的结果叫随机事件,所有这些事件的概率分布规律称为总体分布.总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.①≥ ();②由曲线与轴围成面积为.解决总体分布估计问题的一般程序如下:先确定分组的组数(最大数据与最小数据之差除以组距得组数);分别计算各组的频数及频率(频率);画出频率分布直方图,并作出相应的估计.条形图是用其高度表示取各值的频率;直方图是用图形面积的大小表示在各区间内取值它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间内取值的概率等于该区间上总体密度曲线与轴、直线、所围成曲边梯形的面积.的频率;累积频率分布图是一条折线,利用任意两端值的累积频率之差表示样本数据在这两点值之间的频率.正态分布密度函数:22()2(),(,)xf x xμσ--=∈-∞+∞,()其中是圆周率;是自然对数的底;是随机变量的取值;为正态分布的均值;是正态分布的标准差.正态分布一般记为。
高三数学第一轮复习教案第75课时—导数的概念及运算
高三数学第一轮复习讲义(74) 2005.1.10导数的概念及运算一.复习目标:理解导数的概念和导数的几何意义,会求简单的函数的导数和曲线在一点处的切线方程.二.知识要点:1.导数的概念:0()f x '= ; ()f x '= .2.求导数的步骤是 . 3.导数的几何意义是 .三.课前预习:1.函数22(21)y x =+的导数是 ( C )()A 32164x x + ()B 348x x + ()C 3168x x + ()D 3164x x + 2.已知函数)(,31)(x f x x f 则处的导数为在=的解析式可 ( A )()A )1(3)1()(2-+-=x x x f ()B )1(2)(-=x x f()C 2)1(2)(-=x x f ()D 1)(-=x x f3.曲线24y x x =-上两点(4,0),(2,4)A B ,若曲线上一点P 处的切线恰好平行于弦AB ,则点P 的坐标为 ( B )()A (1,3)()B (3,3) ()C (6,12)- ()D (2,4) 4.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数()f x '的图象是( A )5.已知曲线()y f x =在2x =-处的切线的倾斜角为34π,则(2)f '-=1-,[(2)]f '-=0. 6.曲线2122y x =-与3124y x =-在交点处的切线的夹角是4π.四.例题分析:例1.(1)设函数2()(31)(23)f x x x x =+++,求(),(1)f x f ''-; (2)设函数32()25f x x x x =-++,若()0f x '=o ,求x o 的值.(3)设函数()(2)nf x x a =-,求()f x '.解:(1)32()61153f x x x x =+++,∴2()18225f x x x '=++ (2)∵32()25f x x x x =-++,∴2()341f x x x '=-+由()0f x '=o 得:203410x x -+=,解得:01x =或013x =(3)0(22)(2)()lim n nx x a x x a f x x ∆→-+∆--'=∆112210lim[(2)24(2)2()]n n n nn n n n x C x a C x x a C x ---∆→=-⋅+∆-++∆L 12(2)n n x a -=-例2.物体在地球上作自由落体运动时,下落距离212S gt =其中t 为经历的时间,29.8/g m s =,若 0(1)(1)limt S t S V t∆→+∆-=∆9.8/m s =,则下列说法正确的是( C )(A )0~1s 时间段内的速率为9.8/m s(B )在1~1+△ts 时间段内的速率为9.8/m s (C )在1s 末的速率为9.8/m s(D )若△t >0,则9.8/m s 是1~1+△ts 时段的速率;若△t <0,则9.8/m s 是1+△ts ~1时段的速率.小结:本例旨在强化对导数意义的理解,0lim →∆t tS t S ∆-∆+)1()1(中的△t 可正可负例3.(1)曲线C :32y ax bx cx d =+++在(0,1)点处的切线为1:1l y x =+ 在(3,4)点处的切线为2:210l y x =-+,求曲线C 的方程; (2)求曲线3:2S y x x =-的过点(1,1)A 的切线方程.解:(1)已知两点均在曲线C 上. ∴⎩⎨⎧=+++=439271d c b a d∵232y ax bx c '=++ /(0)f c = /(3)276f a b c =++∴12762c a b c =⎧⎨++=-⎩, 可求出11,1,,13d c a b ===-=∴曲线C :32113y x x x =-+++(2)设切点为3000(,2)P x x x -,则斜率200()23k f x x '==-,过切点的切线方程为:3200002(23)()y x x x x x -+=--,∵过点(1,1)A ,∴32000012(23)(1)x x x x -+=--解得:01x =或012x =-,当01x =时,切点为(1,1),切线方程为:20x y +-= 当012x =-时,切点为17(,)28--,切线方程为:5410x y --=例4.设函数1()1,0f x x x=->(1)证明:当0a b <<且()()f a f b =时,1ab >;(2)点00(,)P x y (0<x 0<1)在曲线()y f x =上,求曲线上在点P 处的切线与x 轴,y 轴正向所围成的三角形面积的表达式.(用0x 表示)解:(1)∵()()f a f b =,∴11|1||1|a b -=-,两边平方得:22121211a a b b+-=+- 即:111111()()2()a b aa b -+=-,∵0a b <<,∴110a b -≠,∴112,2a b ab a b +=+=2ab a b ⇒=+>∴1ab >(2)当01x <<时,11()11f x x x=-=-,00201()(01)f x x x '=-<<曲线()y f x =在点P 处的切线方程为:00201()y y x x x -=--,即:02002x x y x x -=-+∴切线与与x 轴,y 轴正向的交点为200002(2,0),(0,)x x x x -- ∴所求三角形的面积为22000000211()(2)(2)22x A x x x x x -=-⋅=- 例5.求函数42y x x =+- 图象上的点到直线4y x =-的距离的最小值及相应点的坐标.解:首先由⎩⎨⎧-=-+=424x y x x y 得420x += 知,两曲线无交点.341y x '=+,要与已知直线平行,须3411x +=,0x =故切点:(0 , -2). d ==2.五.课后作业: 班级 学号 姓名1.曲线3231y x x =-+在点(1,1)-处的切线方程为( )()A 34y x =- ()B 32y x =-+ ()C 43y x =-+ ()D 45y x =-2.已知质点运动的方程为24105s t t =++,则该质点在4t =时的瞬时速度为 ( ) ()A 60 ()B 120 ()C 80 ()D 503.设点P 是曲线335y x =-+上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是 ( )()A 2[0,]3π ()B 2[0,][,)23πππU ()C 2(,]23ππ ()D 2[,]33ππ4.若0()2f x '=,则00()()lim 2k f x k f x k→∞--=5.设函数()f x 的导数为()f x ',且2()2(1)f x x xf '=+,则(2)f '= 6.已知曲线3:2S y x x =- (1)求曲线S 在点(1,1)A 处的切线方程;(2)求过点(2,0)B 并与曲线S 相切的直线方程.7.设曲线S :3266y x x x =---,S 在哪一点处的切线斜率最小?设此点为00(,)P x y 求证:曲线S 关于P 点中心对称.8.已知函数22(),()f x x ax b g x x cx d =++=++. 若(21)4()f x g x +=,且()()f x g x ''=,(5)30f =,求(4)g .9..曲线(1)(2)y x x x =+-上有一点P ,它的坐标均为整数,且过P 点的切线斜率为正数,求此点坐标及相应的切线方程.10.已知函数32y x ax bx c ==++的图像过点(1,2)P .过P 点的切线与图象仅P 点一个公共点,又知切线斜率的最小值为2,求()f x 的解析式.。
2018版高考数学一轮复习课件:重点强化课5 统计与统计案例
上一页
返回首页
下一页
第二十一页,编辑于星期六:二十二点 三十分。
高三一轮总复习
重点 3 统计的应用
(2016·全国卷Ⅰ)某公司计划购买 1 台机器,该种机器使用三年后即被 淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个 200 元.在机器使用期间,如果备件不足再购买,则每个 500 元.现需决策在购买 机器时应同时购买几个易损零件,为此搜集并 整理了 100 台这种机器在三年使用期内更换的 易损零件数,得下面柱状图:
B [当 0≤x≤3 时,1≤x+1≤4, 所以,0≤log2(x+1)≤2. 当-1≤x<0 时,0<-x≤1⇒1<2-x≤2, 所以,0<2-x-1≤1. 因此输出值 y 的取值范围为[0,2].]
上一页
返回首页
下一页
第八页,编辑于星期六:二十二点 三十分。
高三一轮总复习
[规律方法] 1.完善程序框图:结合初始条件和输出结果,分析控制循环的变 量应满足的条件或累加、累乘的变量的表达式.
(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为 x 1, x 2,估计 x 1 - x 2 的值.
上一页
返回首页
下一页
第十九页,编辑于星期六:二十二点 三十分。
高三一轮总复习
[解] (1)设甲校高三年级学生总人数为 n. 由题意知3n0=0.05,解得 n=600.2 分 样本中甲校高三年级学生数学成绩不及格人数为 5,据此估计甲校高三年级这 次联考数学成绩的及格率为 1-350×100%≈83%.5 分
上一页
返回首页
下一页
第二十页,编辑于星期六:二十二点 三十分。
高三一轮总复习
高三数学理科复习教案:统计案例复习教学案
【摘要】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。
因此小编在此为您编辑了此文:高三数学理科复习教案:统计案例复习教学案希望能为您的提供到帮助。
本文题目:高三数学理科复习教案:统计案例复习教学案高考导航考试要求重难点击命题展望1.理解随机抽样的必要性和重要性,会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法.2.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、茎叶图,理解它们各自的特点,理解样本数据标准差的意义和作用,会计算数据标准差,能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想,会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.会作两个有关联变量的散点图,会利用散点图认识变量间的相关关系,了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程,了解回归的基本思想、方法及其简单应用.4.了解独立性检验(只要求22列联表)的基本思想、方法及其简单应用. 本章重点:1.三种抽样方法的区别、联系及操作步骤.2.样本频率分布直方图和茎叶图.3.用样本估计总体的思想.本章难点:回归直线方程与独立性检验. 统计多数以选择题和填空题形式考查,大题只在个别省的考题中出现过.难度属于基础题和中档题.考点往往集中体现在抽样方法、频率分布图表这两个方面.另外,应注意统计题反映出来的综合性与应用性,如与数列、概率等的综合,用统计方法提供决策、制定方案等,以此考查学生搜集处理信息及分析解决问题的能力.知识网络13.1 抽样方法与用样本估计总体典例精析题型一抽样方法【例1】某校有教师200人,男学生1 200人,女学生1 000人,用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知女学生抽取的人数为80人,则n的值为 .【解析】根据分层抽样的意义,n200+1 200+1 000=801 000,解得n=192.【点拨】现实中正确的分层抽样一般有三个步骤:首先,辨明突出的统计特征和分类.其次,确定每个分层在总体上的比例.利用这个比例,可计算出样本中每组(层)应抽取的人数.最后,必须从每层中抽取独立简单随机样本.【变式训练1】从某厂生产的802辆轿车中随机抽取80辆测试某项性能.请合理选择抽样方法进行抽样,并写出抽样过程.【解析】第一步,将802辆轿车用随机方式编号.第二步,从总体中剔除2辆(剔除方法可用随机数表法),将剩余的800辆轿车重新编号(分别为001,002,003,,800),并分成80段.第三步,在第一段001,002,,010这十个编号中用简单随机抽样抽出一个(如005)作为起始号码.第四步,将编号为005,015,025,,795的个体抽出,组成样本.题型二频率分布直方图【例2】(2 010湖南)如图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(1)求直方图中x的值;(2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望.【解析】(1)依题意及频率分布直方图知0 .02+0.1+x+0.37+0.39=1,解得x=0.12.(2)由题意知X~B(3,0.1),因此P(X=0)=C030.93=0.729,P(X=1)=C130.10.92=0.243,P(X=2)=C230.120.9 =0.027,P(X=3)=C330.13=0.001,故随机变量X的分布列为X 0 1 2 3P 0.729 0.243 0.027 0. 001X 的数学期望为E(X)=30.1=0.3.(或E(X)=10.243+20.027+30.001=0.3)【点拨】从频率分布直方图读取数据时,要特别重视组距,纵坐标是频率除以组距,故长方形的面积之和为1.【变式训练2】如图是容量为100的样本的频率分布直方图,试根据数据填空:(1)样本数据落在[10,14)内的频数为 ;(2)样本数据落在[6,10)内的频率为 ;(3)总体落在[2,6)内的频率为 .【解析】(1)样本落在[10,14)内的频数为0.094100=36.(2)样本落在[6,10)内的频率为0.084=0.32.(3)样本落在[2,6)内的频率为0.024=0.08,所以总体落在[2,6)内的频率约为0.08.题型三平均数、方差的计算【例3】甲、乙两人在相同条件下各射靶10次,每次命中环数如下:甲 4 7 10 9 5 6 8 6 8 8乙 7 8 6 8 6 7 8 7 5 9试问谁10次射靶的情况较稳定?【解析】本题要计算两样本的方差,当样本平均数不是整数,且样本数据不大时,可用简化公式计算方差.=110(4+7++8)=7.1,=110(7+8++9)=7.1,s2甲=110(42+72++82-107.12)=3.09,s2乙=110(72+82++92-107.12)=1.29,因为s2甲s2乙,所以乙10次射靶比甲10次射靶情况稳定.【点拨】平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小,标准差、方差越大,数据的离散程度就越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.【变式训练3】(2010北京市东城区)在一次数学统考后,某班随机抽取10名同学的成绩进行样本分析,获得成绩数据的茎叶图如右图.(1)计算此样本的平均成绩及方差;(2)现从此样本中随机抽出2名学生的成绩,设抽出分数为90分以上的人数为X,求随机变量X的分布列和均值.【解析】(1)样本的平均成绩=80;方差为s2=110[(92-80)2+(98-80)2+(98-80)2+(85-80)2+(85-80)2+(74-80)2+(74-80)2+(74-80)2 +(60-80)2+(60-80)2]=175.(2)由题意,随机变量X=0,1,2.P(X=0)=C27C210=715,P(X=1)=C13C17C210=715,P(X=2)=115.随机变量X的分布列为X 0 1 2PE(X)=0715+1715+2115=35.总结提高1.统计的基本思想是用样本估计总体.这就要求样本具有很好的代表性,而样本良好客观的代表性,则完全依赖抽样方法.2.三种抽样方法中简单随机抽样是最基本的抽样方法,是其他两种方法的基础,它们的共同点都是等概率抽样.适用范围不同,要根据总体的具体情况选用不同的方法.3.对于总体分布,总是用样本的频率分布对它进行估计.4.用样本估计总体,一般分成以下几个步骤:先求样本数据中的最大值和最小值(称为极值),再确定合适的组数和组距,确定分点(每个分点只属于一组,故一般采用半开半闭区间),然后列出频率分布表(准确,查数据容易),画频率分布直方图.13.2 两变量间的相关性、回归分析和独立性检验典例精析题型一求回归直线方程【例1】下表是关于某设备的使用年限(年)和所需要的维修费用(万元)的几组统计数据:x 2 3 4 5 6y 2.2 3.8 5.5 6.5 7.0(1)若y对x呈线性相关关系,求出y关于x的线性回归方程y= x+ ;(2)估计使用年限为10年时,维修费用为多少?【解析】(1)因为 xiyi=112.3, x2i=4+9+16+25+36=90,且 =4,=5,n=5,所以 =112.3-54590-516=12.310=1.23, =5-1.234=0.08,所以回归直线方程为y=1.23x+0.08.(2)当x=10时,y=1.2310+0.08=12.38,所以估计当使用10年时,维修费用约为12.38万元.【点拨】当x与y呈线性相关关系时,可直接求出回归直线方程,再利用回归直线方程进行计算和预测.【变式训练1】某工厂经过技术改造后,生产某种产品的产量(吨)与相应的生产能耗(吨标准煤)有如下几组样本数据.x 3 4 5 6y 2.5 3 4 4.5据相关性检验,y与x具有线性相关关系,通过线性回归分析,求得回归直线的斜率为0.7,那么y关于x 的回归直线方程是.【解析】先求得 =4.5, =3.5,由 =0.7x+a过点( , ),则a=0.35,所以回归直线方程是 =0.7x+0.35.题型二独立性检验【例2】研究小麦种子经灭菌与否跟发生黑穗病的关系,经试验观察,得到数据如下表所示:种子灭菌种子未灭菌合计黑穗病 26 184 210无黑穗病 50 200 250合计 76 384 460试按照原试验目的作统计分析推断.【解析】由列联表得:a=26,b=1 84,c=50,d=200,a+b=210,c+d=250,a+c=76,b+d=384,n=460.所以K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=460(26200-18450)2210250763844.804,由于K24.8043.841,所以有95%的把握认为种子灭菌与否与小麦发生黑穗病是有关系的.【变式训练2】(2010东北三省三校模拟)某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成22的列联表,根据列联表的数据,可以有 %的把握认为该学校15至16周岁的男生的身高和体重之间有关系.超重不超重合计偏高 4 1 5不偏高 3 12 15合计 7 13 20附:独立性检验临界值表P(K2k0) 0.025 0.010 0.005 0.001k0 5.024 6.635 7.879 10.828(独立性检验随机变量K2值的计算公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d))【解析】由表可得a+b=5,c+d=1 5,a+c=7,b+d=13,ad=48,bc=3,n=20,运用独立性检验随机变量K2值的计算公式得K2=20(48-3)2515713=540915.934,由于K25.9345.024,所以有97.5%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.总结提高1.在研究两个变量之间是否存在某种关系时,必须从散点图入手.2.样本的随机性导致由线性回归方程所作出的预报也具有随机性.。
高考数学一轮复习讲义统计
统计一.【课标要求】1.统计案例通过典型案例,学习下列一些常见的统计方法,并能初步应用这些方法解决一些实际问题。
(1)通过对典型案例(如"肺癌与吸烟有关吗"等)的探究,了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用;(2)通过对典型案例(如"质量控制"、"新药是否有效"等)的探究,了解实际推断原理和假设检验的基本思想、方法及初步应用;(3)通过对典型案例(如"昆虫分类"等)的探究,了解聚类分析的基本思想、方法及初步应用;(4)通过对典型案例(如"人的体重与身高的关系"等)的探究,进一步了解回归的基本思想、方法及初步应用2.随机变量的分布列(1)在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性;(2)通过实例(如彩票抽奖),理解超几何分布及其导出过程,并能进行简单的应用;(3)在具体情境中,了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题;(4)通过实例,理解取有限值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题;(5)通过实际问题,借助直观(如实际问题的直方图),认识正态分布曲线的特点及曲线所表示的意义二.【命题走向】统计案例本部分内容主要包括回归分析的基本思想及其初步应用和独立性检验的基本思想和初步应用,是教材新增内容,估计高考中比重不会过大预测2010年的高考主要有以下几种情况:(1)知识点将会考察回归分析的基本思想方法,用独立性检验判断A与B间的关系,及2×2列联表;(2)考查的形式主要以选择、填空题为主,但不会涉及很多;随机变量的分布列本部分内容主要包括随机变量的概念及其分布列,离散性随机变量的均值和方差,正态分布,从近几年的高考观察,这部分内容有加强命题的趋势预测2010年的高考对本部分内容的考查有以下情况:(1)考查的重点将以随机变量及其分布列的概念和基本计算为主,题型以选择、填空为主,有时也以解答题形式出现;(2)预计2010年高考还是实际情景为主,建立合适的分布列,通过均值和方差解释实际问题;三.【要点精讲】统计案例 1.相关系数相关系数是因果统计学家皮尔逊提出的,对于变量y 与x 的一组观测值,把=叫做变量y 与x 之间的样本相关系数,简称相关系数,用它来衡量两个变量之间的线性相关程度相关系数的性质:||r ≤1,且||r 越接近1,相关程度越大;且||r 越接近0,相关程度越小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:统计教学目标:1.会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本; 2.会用样本频率分布去估计总体分布;3.了解正态分布的意义及主要性质;4.了解线性回归的方法和简单应用.教学重点:(一) 主要知识及主要方法:1.简单随机抽样:设一个总体的个体数为N .如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样. 总结:⑴一般地,用简单随机抽样从含有N 个个体的总体中抽取一个容量为n 的样本时,每次抽取一个个体时任一个体被抽到的概率为1N ;在整个抽样过程中各个个体被抽到的概率为n N ;2.简单随机抽样的实施方法:⑴抽签法:先将总体中的所有个体(共有N 个)编号(号码可从1到N ),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n 次,就得到一个容量为n 的样本 适用范围:总体的个体数不多时 优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.⑵随机数表法:1.制定随机数表;2.给总体中各个个体编号;3.按照一定的规则确定所要抽取的样本的号码随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码3.简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样,简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.4.系统抽样:当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按预先定出的规则,从每一部分抽取一个个体,得到需要的样本,这种抽样叫做系统抽样5.系统抽样的步骤:①采用随机的方式将总体中的个体编号码,如考生的准考证号、街道上各户的门牌号,等等②即确定分段间隔:为将整个的编号分段(即分成几个部分),要确定分段的间隔k 当Nn(N 为总体中的个体的个数,n 为样本容量)是整数时,k N n =;当N n不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数N '能被n 整除,这时k N n'=.③在第一段用简单随机抽样确定起始的个体编号l④按照事先确定的规则抽取样本(通常是将l 加上间隔k ,得到第2个编号l k +,第3个编号2l k +,这样继续下去,直到获取整个样本)说明:①系统抽样适用于总体中的个体数较多的情况,它与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;②与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的.③总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除在进行系统抽样6.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,所分成的部分叫做层7.不放回抽样和放回抽样:在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.随机抽样、系统抽样、分层抽样都是..不放回抽样常用的抽样方法及它们之间的联系和区别:9.频率分布:用样本估计总体,是研究统计问题的基本思想方法,样本中所有数据(或数据组)的频数和样本容量的比,就是该数据的频率.所有数据(或数据组)的频率的分布变化规律叫做样本的频率分布.可以用样本频率表、样本频率分布条形图或频率分布直方图来表示.10.总体分布:从总体中抽取一个个体,就是一次随机试验,从总体中抽取一个容量为n 的样本,就是进行了n次试验,试验连同所出现的结果叫随机事件,所有这些事件的概率分布规律称为总体分布.11.总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(),a b内取值的概率等于该区间上总体密度曲线与x轴、直线x a=、x b=所围成曲边梯形的面积.12.总体分布密度密度曲线函数()y f x =的两条基本性质:①()f x ≥0 (x R ∈);②由曲线()y f x =与x 轴围成面积为1.13.解决总体分布估计问题的一般程序如下:()1先确定分组的组数(最大数据与最小数据之差除以组距得组数);()2分别计算各组的频数及频率(频率=总数频数);()3画出频率分布直方图,并作出相应的估计.14.条形图是用其高度表示取各值的频率;直方图是用图形面积的大小表示在各区间内取值的频率;累积频率分布图是一条折线,利用任意两端值的累积频率之差表示样本数据在这两点值之间的频率. 15.正态分布密度函数:22()2(),(,)x f x x μσ--=∈-∞+∞,(0σ>)其中π是圆周率;e 是自然对数的底;x 是随机变量的取值;μ为正态分布的均值;σ是正态分布的标准差.正态分布一般记为),(2σμN 。
即若()2,N ξμσ ,则E ξμ=,2D ξσ=16.正态分布),(2σμN 是由均值μ和标准差σ唯一决定的分布通过固定其中一个值,讨论均值与标准差对于正态曲线的影响 ,亦见课本32P 图14-17.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称.从形态上看,正态分布是一条单峰、对称呈钟形的曲线 . 18.正态曲线的性质:()1曲线在x 轴的上方,与x 轴不相交()2曲线关于直线x μ=对称 ()3当x μ=时,曲线位于最高点()4当x μ<时,曲线上升(增函数);当x μ>时,曲线下降(减函数).并且 当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近()5μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中 ()6正态曲线下的总面积等于1.即()2221x dx μσ-+∞-∞=⎰19.标准正态曲线:当0μ=、1σ=时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x ex f -=π,(x-∞<<+∞),其相应的曲线称为标准正态曲线标准正态总体()0,1N 在正态总体的研究中占有重要的地位 问题均可转化成标准正态分布的概率问题20.标准正态分布表及标准正态总体在任一区间()12,x x 的概率问题:标准正态总体)1,0(N 在正态总体的研究中有非常重要的地位,为此专门制作了“标准正态分布表”.在这个表中,对应于0x 的值)(0x Φ是指总体取值小于0x 的概率,即)()(00x x P x <=Φ,)0(0≥x .对于标准正态总体()0,1N ,)(0x Φ是总体取值小于0x 的概率,即()00()x P x x Φ=<其中00>x ,图中阴影部分的面积表示为概率0()P x x < 只要有标准正态分布表即可查表解决.从图中不难发现:当00<x 时,)(1)(00x x -Φ-=Φ;而当00=x 时,(0)0.5Φ=,利用标准正态分布表,可以求出标准正态总体在任意区间),(21x x 内取值的概率,即直线1x x =,2x x =与正态曲线、x 轴所围成的曲边梯形的面积 故:()1()00()x P x x Φ=<;()21221()()()P x x x x x <<=Φ-Φ;()3若00<x ,则)(1)(00x x -Φ-=Φ任一的正态总体()2,N μσ均可化成标准正态总体()0,1N 来进行研究, 对任一的正态总体()2,N μσ来说,取值小于x 的概率()x F x μσ-⎛⎫=Φ⎪⎝⎭对于正态总体),(2σμN 取值的概率:在区间(),μσμσ-+、()2,2μσμσ-+、()3,3μσμσ-+内取值的概率分别为68.3%、95.4%、99.7因此我们时常只在区间()3,3μσμσ-+内研究正态总体分布情况,而忽略其中很小的一部分21.小概率事件的含义发生概率一般不超过5%的事件,即事件在一次试验中几乎不可能发生假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能在一次试验中发生的原理对试验结果进行分析 假设检验方法的操作程序,即“三步曲”()1提出统计假设,具体问题里的统计假设服从正态分布()2,N μσ()2是确定一次试验中的a 值是否落入范围()3,3μσμσ-+;()3是作出推断:若a ∈()3,3μσμσ-+,接受统计假设;若a ∉()3,3μσμσ-+,由于这是小概率事件,就拒绝统计假设,说明生产过程中出现了异常情况22.相关关系的概念当自变量一定时,因变量的取值带有一定的随机性的两个变量之间的关系称为相关关系相关关系是非随机变量与随机变量之间的关系,函数关系是两个非随机变量之间的关系,是一种因果关系,而相关关系不一定是因果关系,所以相关关系与函数关系不同,其变量具有随机性,因此相关关系是一种非确定性关系 (有因果关系,也有伴随关系).因此,相关关系与函数关系的异同点如下:相同点:均是指两个变量的关系.不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系.23.回归分析: 对具有相关关系的两个变量进行统计分析的方法叫做回归分析通俗地讲,回归分析是寻找相关关系中非确定性关系的某种确定性.24.散点图:表示具有相关关系的两个变量的一组数据的图形叫做散点图.散点图形象地反映了各对数据的密切程度 粗略地看,散点分布具有一定的规律. 25.回归直线设所求的直线方程为ˆ,ybx a =+,其中a 、b 是待定系数. 则ˆ,(1,2,,)i i ybx a i n =+= .于是得到各个偏差 ˆ(),(1,2,,)i i i i y yy bx a i n -=-+= . 显见,偏差i i y y ^-的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和.2222211)()()(a bx y a bx y a bx y Q n n --++--+--= 表示n 个点与相应直线在整体上的接近程度. 记 ∑=--=n i i i a bx y Q 12)( (说明∑=ni 1的意义).上述式子展开后,是一个关于a 、b 的二次多项式,应用配方法,可求出使Q 为最小值时的a 、b 的值.即1122211()()()n ni i i i i i n n i i i i x x y y x y nxy b x x x nx a y bx====⎧---⎪⎪==⎨--⎪⎪=-⎩∑∑∑∑, ∑==n i i x n x 11,∑==ni i y n y 11 相应的直线叫做回归直线,对两个变量所进行的上述统计分析叫做回归分析. 特别指出:1.对回归直线方程只要求会运用它进行具体计算a 、b ,求出回归直线方程即可.不要求掌握回归直线方程的推导过程.2.求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实标意义.否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性.3.求回归直线方程,关键在于正确地求出系数a 、b ,由于求a 、b 的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误.4.回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充.因此,学过回归直线方程以后,应增强学生应用回归直线方程解决相关实际问题的意识. 26.相关系数:相关系数是因果统计学家皮尔逊提出的,对于变量y 与x 的一组观测值,把∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((=∑∑∑===---n i n i i i ni ii y n y x n x yx n yx 1122221))((叫做变量y 与x 之间的样本相关系数,简称相关系数,用它来衡量两个变量之间的线性相关程度.27.相关系数的性质: r ≤1,且r 越接近1,相关程度越大;且r 越接近0,相关程度越小.28.显著性水平:显著性水平是统计假设检验中的一个概念,它是公认的小概率事件的概率值 它必须在每一次统计检验之前确定29.显著性检验:(相关系数检验的步骤):由显著性水平和自由度查表得出临界值,显著性水平一般取0.01和0.05,自由度为2n -,其中n 是数据的个数 的临界值表”查出与显著性水平0.05或0.01及自由度2n -(n 为观测值组数)相应的相关数临界值0.05r 或0.01r ;例如7n =时,0.050.754r =,0.010.874r = 求得的相关系数r 和临界值0.05r 比较,若r >0.05r ,上面y 与x 是线性相关的,当0.05r r <或0.01r ,认为线性关系不显著结论:讨论若干变量是否线性相关,必须先进行相关性检验,在确认线性相关后,再求回归直线;通过两个变量是否线性相关的估计,实际上就是把非确定性问题转化成确定性问题来研究;(二)典例分析:问题1.()1(07全国Ⅱ文)一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为()2(07浙江文)某校有学生2000人,其中高三学生500人,为了解学生的身体素质情况,彩用按年级分层抽样的方法,从该校学生中抽取一个200人的样本,则样本中高三学生的人数为()3(04湖南)某公司甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成这两项调查宜采用的抽样方法依次为.A 分层抽样法,系统抽样法 .B 分层抽样法,简单随机抽样法.C 系统抽样法,分层抽样法 .D 简单随机抽样法,分层抽样法 ()4(08届高三湖北省六校)设下表是某班学生在一次数学考试中数学成绩的分布表那么分数在100,110中和分数不满110分的频率和累积频率分别是.A 0.18,0.47 .B 0.47,0.18 .C 0.18,1 .D 0.38,0.18()5(07湖北文)为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如右图所示.根据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为 .A 300 .B 360 .C 420 .D 450()6(07湖南)设随机变量ξ服从标准正态分布(01)N ,,已知( 1.96)0.025Φ-=, 则(|| 1.96)P ξ<= .A 0.02.B 0.050.C 0.950.D 0.975()7(07安徽)以()x Φ表示标准正态总体在区间()x -∞,内取值的概率,若随机变量ξ服从正态分布2()N μσ,,则概率()P ξμσ-<等于.A ()()μσμσΦ+-Φ- .B (1)(1)Φ-Φ- .C 1μσ-⎛⎫Φ ⎪⎝⎭.D 2()μσΦ+问题2.已知从某批材料中任取一件时,取得的材料的强度ξ服从()2200,18N .54.5 56.5 58.5 60.5 62.5 64.5 66.5 68.5 70.5 72.5 74.5 76.5(kg )()1计算取得的这件材料的强度不低于180的概率;()2如果所用的材料要求以99%的概率保证强度不低于150,问这些材料是否符合这个要求.问题3.(07湖北)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:()1在答题卡上完成频率分布表,并在给定的坐标系中Array画出频率分布直方图;()2估计纤度落在[1.381.50),中的概率及纤度小于1.40的概率是多少?()3统计方法中,同一组数据常用该组区间的中点值,的中点值是1.32)作为代表.据(例如区间[1.301.34)此,估计纤度的期望.料:若由资料可知y与x间呈线性相关关系.试求:()1线性回归方程;()2估计使用年限为10年时,维修费用是多少?(三)课后作业:1.对于线性相关系数叙述正确的是.A ()0,r ∈+∞,r 越大,相关程度越大,反之,相关程度越小;.B (),r ∈-∞+∞,r 越大,相关程度越大,反之,相关程度越小;.C r ≤1,且r 越接近1,相关程度越大,r 越接近0,相关程度越小; .D 以上说法均不对.2.设有一个回归方程2 1.5y x =-,则变量x 增加一个单位时 .A y 平均增加1.5个单位; .B y 平均增加2个单位; .C y 平均减少1.5个单位; .D y 平均减少2个单位;3.利用简单随机抽样的方法,从n 个个体(13n >)中抽取13个个体,依次抽取.若第二次抽取后,余下的每个个体被抽取的概率为136,则在整个抽取过程中,每个个体被抽取的概率为 .A 136 .B 1336.C 1396 .D 13398(四)走向高考:4.(06四川)甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生.A 30人,30人,30人 .B 30人,45人,15人 .C 20人,30人,10人 .D 30人,50人,10人5.(04天津) 某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为5:3:2,现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n =6.(07陕西文)某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测。