2016年春人教版七年级数学下册学练优教案5.2.2.2平行线判定方法的综合运用.doc
人教版七年级下册5.2.2平行线的判定教学设计
人教版七年级下册5.2.2平行线的判定教学设计一、引言平行线是几何学中一个重要的概念,对于初中数学的学习来说,平行线的判定是重点和难点。
本次课堂教学以人教版七年级下册5.2.2平行线的判定为主题,旨在通过设计科学合理的教学活动和方法,帮助学生扎实掌握平行线的概念及判定方法,提高学生的数学思维能力和解决问题的能力。
二、教学目标1.知识目标:掌握平行线的定义和判定方法。
2.能力目标:培养学生独立思考和解决问题的能力。
3.情感目标:激发学生的数学兴趣,增强其数学学习信心。
三、教学内容1.平行线的定义及判定方法。
2.平行线性质的探究。
四、教学过程1.导入(5分钟)通过一个问题引入平行线的概念,例如“同一平面内,两条不相交的直线叫做什么呢?”让学生思考并回答。
2.讲授(30分钟)通过教师讲解,PPT等形式介绍平行线的定义及判定方法,并提供例题,让学生知道如何判定两条直线是否平行。
3.探究(20分钟)学生在小组内进行讨论,探究平行线的性质,例如:两条平行线的夹角是多少度?一条直线与与其平行的另一条直线所夹的角等于几个直角等等。
4.练习(20分钟)提供一定数量的练习题,让学生熟练掌握平行线的判定方法。
5.巩固(15分钟)对学生进行合理的归纳总结,让学生掌握平行线的主要内容。
6.拓展(10分钟)为学生提供其他相关的知识点,例如:两条直线的位置关系,面积的计算等等。
五、课堂评价通过教师观察学生的课堂表现和练习情况,以及分组合作的表现等方式进行评价,并给出反馈,提供建议以便学生进行下一步的学习。
六、教学反思本节课设计形式较为活跃,教师通过让学生在小组内讨论,提高了学生的参与度。
同时,对于知识点的讲解是否能够清晰明了,引导学生如何判定平行线是否正确,以及如何做练习题,都是值得反思和改进的地方。
人教版七年级(下)数学教案:5.2.2平行线判定
举例:
-通过动态演示或实际操作,让学生观察并理解当两条直线被第三条直线(横截线)所截时,同位角、内错角、同旁内角的变化规律。
-引导学生运用直尺和量角器在纸上画出符合平行线判定条件的图形,以加深对判定方法的理解。
成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的基本概念、判定方法以及在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
此外,我发现学生们在应用判定方法解决问题时,有时会混淆不同的判定条件。这说明我对这些难点内容的解释可能还不够清晰。为了帮助学生们更好地掌握这些知识点,我计划设计一些更具针对性的练习题,通过反复练习和讲解,让学生们能够熟练运用这些判定方法。
最后,课堂总结环节,虽然学生们普遍表示理解了今天的内容,但我认为还需要通过课后作业和小测验来检验他们的实际掌握情况。这样,我可以及时了解学生的学习进度,为他们提供个性化的辅导。
1.培养学生的逻辑推理能力:通过平行线的判定方法,让学生理解几何图形之间的关系,培养学生严谨的逻辑推理能力,使学生能够运用所学知识解决实际问题。
2.培养学生的空间观念:通过观察、操作、分析几何图形,让学生形成对平行线及其性质的空间观念,提高学生对几何图形的认识和理解。
3.培养学生的数学抽象能力:使学生能够从具体的实例中抽象出平行线的判定方法,并运用这些方法对几何问题进行概括和分析,提高学生的数学抽象能力。
5.2.2平行线的判定 教案 七年级数学下学期人教版
5.2.2平行线的判定教案七年级数学下学期人教版一、教材分析(一)教材地位与作用本课是七年级学过的“同位角”,“内错角”,“同旁内角和”“平行线”的继续,是后面研究平移以及三角形、四边形(特别是平行四边形)的相关学习的基础.起到了承上启下的作用。
从本节课起,培养和发展学生合情推理能力,同时也开始从有条理的口头表述逐渐过渡到书写自己的理由.因此本节课的学习对发展学生的合情推理能力和逻辑推理能力是非常重要的几何推理等内容的基础,也是空间与图形的重要组成部分。
(二)教学目标1、经历探索直线平行的条件的过程,掌握平行线的判定方法。
2、体会“由未知向已知”转化的数学思想是认识客观事物的基本方法。
经历观察、操作、想象、推理、交流等活动,并能积极、主动地进行自主探索或与同伴交流。
3、通过问题引入和解决,培养学生逻辑推理能力。
(三)教学重、难点根据新课标的要求及七年级学生的认知基础,确定本节课的教学重点:经历观察、操作、交流、猜想、推理等活动,探索得到直线平行的条件.。
难点:会进行文字语言,图形语言,符号语言之间的互译,理解“转化”的思想.二、学情分析从认知结构的角度,七年级的学生已经具备一定的生活经验和数学活动经验,并且对基本几何图形有一定的认识,学生已经学了平行线的定义、平行公理及其推论,具备了探究直线平行的条件的基础,但在逻辑思维和合作交流的意识方面发展不够均衡。
三、教法与学法分析根据本节课的内容特点和学生的已有的认知基础,我采用合作探究式的教学方法和动手实践、自主探索、合作交流的学习方法。
以多媒体为教学平台,以学生感兴趣的问题情境引入学习课题,给学生创设自主探索、合作交流、独立获取知识的时间和空间,让学生经历观察、操作、交流等活动,通过归纳、类比、概括出平行线的判定方法,让他们经历知识形成过程,体验从合情推理到演绎推理的思维过程。
提高学生主动获取知识的能力,逐步养成合作交流的习惯,形成勇于探索的意识,增强学生数学学习的兴趣和自信心。
人教版数学七年级下册5.2.2《平行线的判定》教学设计2
人教版数学七年级下册5.2.2《平行线的判定》教学设计2一. 教材分析人教版数学七年级下册5.2.2《平行线的判定》是学生在学习了直线、射线、线段以及相互之间的关系的基础上,进一步研究平行线的性质和判定。
本节课主要让学生掌握平行线的判定方法,培养学生的观察能力、操作能力和推理能力。
教材通过丰富的图片和实例,引发学生的兴趣,引导学生探究平行线的判定方法,从而提高学生的数学素养。
二. 学情分析学生在之前的学习中已经掌握了直线、射线、线段的基本概念,对图形的认识有一定的基础。
但是,对于平行线的判定方法,学生可能还比较陌生,需要通过实例和操作来加深理解。
此外,学生可能对图形的直观判断较为容易,但对于严谨的数学推理可能还有一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,通过适当的引导和启发,帮助学生理解和掌握平行线的判定方法。
三. 教学目标1.知识与技能:使学生掌握平行线的判定方法,能够运用平行线的性质和判定方法解决实际问题。
2.过程与方法:通过观察、操作、推理等方法,培养学生的观察能力、操作能力和推理能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识,使学生感受到数学在生活中的运用。
四. 教学重难点1.重点:平行线的判定方法。
2.难点:对平行线判定方法的灵活运用。
五. 教学方法1.情境教学法:通过丰富的图片和实例,引发学生的兴趣,引导学生探究平行线的判定方法。
2.启发式教学法:在教学过程中,教师适时提出问题,引导学生思考和探究,激发学生的学习兴趣。
3.合作学习法:学生进行小组讨论和操作,培养学生的合作意识和团队精神。
4.实践操作法:让学生亲自动手操作,加深对平行线判定方法的理解。
六. 教学准备1.教学课件:制作精美的课件,展示平行线的判定方法。
2.教学素材:准备一些图片和实例,用于引导学生探究平行线的判定方法。
3.学生活动材料:准备一些操作材料,让学生进行实践操作。
4.板书设计:设计合理的板书,突出平行线的判定方法。
人教版七年级数学下册 教学设计5.2.2 第2课时《平行线的判定》
人教版七年级数学下册教学设计5.2.2 第2课时《平行线的判定》一. 教材分析《平行线的判定》是人教版七年级数学下册的教学内容,这部分内容是在学生学习了直线、射线、线段以及相互之间的位置关系的基础上进行的。
通过这部分的学习,学生能够理解平行线的定义,并掌握平行线的判定方法。
本节课的教学内容主要包括平行线的判定定理以及如何运用这些定理来判断两条直线是否平行。
二. 学情分析学生在进入七年级之前,已经对直线、射线、线段有了初步的了解,并且能够进行简单的相互之间的位置关系的判断。
但是对于平行线的定义以及判定方法可能还比较陌生,需要通过本节课的学习来掌握。
此外,学生可能对于一些几何图形的直观理解还不够深入,因此在教学过程中需要通过实物演示、图形展示等方式来帮助学生理解。
三. 教学目标1.知识与技能目标:使学生理解平行线的定义,掌握平行线的判定方法,并能够运用这些方法来判断两条直线是否平行。
2.过程与方法目标:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.教学重点:平行线的定义,平行线的判定方法。
2.教学难点:平行线的判定方法的运用,对于一些特殊情况的判断。
五. 教学方法1.情境教学法:通过实物演示、图形展示等方式,引导学生观察、操作,激发学生的学习兴趣。
2.问题驱动法:通过提出问题,引导学生思考,培养学生的逻辑思维能力。
3.合作学习法:学生进行小组讨论,培养学生的团队合作意识。
六. 教学准备1.准备相关的图形、实物等教学资源。
2.设计好针对学生可能出现的问题的教学方案。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如教室里的两扇窗户、操场上的跑道等,引导学生观察并思考:这些实例中是否存在平行线?如何判断两条直线是否平行?2.呈现(10分钟)呈现平行线的定义和判定方法,引导学生理解并掌握。
【学练优】七年级数学下册 5.2.2 平行线的判定(第1课时)教案 (新版)新人教版
平行线的判定第1课时平行线的判定1.掌握两直线平行的判定方法;(重点)2.了解两直线平行的判定方法的证明过程;3.灵活运用两直线平行的判定方法证明直线平行.(难点)一、情境导入怎样用一个三角板和一把直尺画平行线呢?动手画一画.二、合作探究探究点一:应用同位角相等,判断两直线平行如图,∠1=∠2=55°,∠3等于多少度?直线AB,CD平行吗?说明理由.解析:利用对顶角相等得到∠3=∠2,再由已知∠1=∠2,等量代换得到同位角相等,利用“同位角相等,两直线平行”即可得到AB与CD平行.解:∠3=55°,AB∥CD.理由如下:∵∠3=∠2,∠1=∠2=55°,∴∠1=∠3=55°,∴AB∥CD(同位角相等,两直线平行).方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同位角(“F”型)相等,从而可以应用“同位角相等,两直线平行”.变式训练:见《学练优》本课时练习“课堂达标训练”第2题探究点二:应用内错角相等,判断两直线平行如图,已知BC平分∠ACD,且∠1=∠2,AB与CD平行吗?为什么?解析:根据BC平分∠ACD,∠1=∠2,可得∠2=∠BCD,然后利用“内错角相等,两直线平行”即可得到AB∥CD.解:AB∥CD.理由如下:∵BC平分∠ACD,∴∠1=∠BCD.∵∠1=∠2,∴∠2=∠BCD,∴AB ∥CD(内错角相等,两直线平行).方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到内错角(“Z”型)相等,从而可以应用“内错角相等,两直线平行”.变式训练:见《学练优》本课时练习“课堂达标训练”第6题探究点三:应用同旁内角互补,判断两直线平行如图,∠1=25°,∠B=65°,AB⊥AC.AD与BC有怎样的位置关系?为什么?解析:先根据∠1=25°,∠B=65°,AB⊥AC得出∠B与∠BAD的关系,进而得出结论.解:AD∥BC.理由如下:∵∠1=25°,∠B=65°,AB⊥AC,∴∠BAD=90°+25°=115°.∵∠BAD+∠B=115°+65°=180°,∴AD∥BC.方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同旁内角(“U”型)相等,从而可以应用“同旁内角互补,两直线平行”.变式训练:见《学练优》本课时练习“课后巩固提升”第8题探究点四:平行线的判定方法的运用【类型一】利用平行线判定方法的推理格式判断如图,下列说法错误的是( )A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥cD.若∠3+∠4=180°,则a∥c解析:根据平行线的判定方法进行推理论证.A选项中,若a∥b,b∥c,则a∥c,利用了平行公理,正确;B选项中,若∠1=∠2,则a∥c,利用了“内错角相等,两直线平行”,正确;C选项中,∠3=∠2,不能判断b∥c,错误;D选项中,若∠3+∠4=180°,则a∥c,利用了“同旁内角互补,两直线平行”,正确.故选C.方法总结:解决此类问题的关键是识别截线和被截线,找准同位角、内错角和同旁内角,从而判断出哪两条直线是平行的.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型二】根据平行线的判定方法,添加合适的条件如图所示,要想判断AB是否与CD平行,我们可以测量哪些角?请你写出三种方案,并说明理由.解析:判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此答题.解:(1)可以测量∠EAB与∠D,如果∠EAB=∠D,那么根据“同位角相等,两直线平行”,得出AB与CD平行;(2)可以测量∠BAC与∠C,如果∠BAC=∠C,那么根据“内错角相等,两直线平行”,得出AB与CD平行;(3)可以测量∠BAD与∠D,如果∠BAD+∠D=180°,那么根据“同旁内角互补,两直线平行”,得出AB与CD平行.方法总结:解决此类问题的关键是找准同位角、内错角和同旁内角.变式训练:见《学练优》本课时练习“课后巩固提升”第5题 三、板书设计 平行线的判定⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫同位角相等内错角相等同旁内角互补两直线平行平行线的判定是平行线内容的进一步拓展,是进一步学习平行线的有力工具,为学习平行线的性质、三角形、四边形等知识打下基础,在整个初中几何中占有非常重要的地位.学生虽然已经学了平行线的定义、平行公理,具备了探究直线平行的基础,但学生在文字语言、符号语言和图形语言之间的转换能力比较薄弱,在逻辑思维和合作交流的意识方面发展不够均衡,还需逐渐提高。
(人教版)七年级下册数学配套教案:5.2.2 第1课时 《平行线的判定》
(人教版)七年级下册数学配套教案:5.2.2 第1课时《平行线的判定》一. 教材分析《平行线的判定》是人教版七年级下册数学教材第五章第二节的一部分,主要内容有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
这部分内容是学生学习直线、射线、线段的知识之后,进一步研究直线平行的性质。
通过这部分的学习,学生可以更深入地理解直线的性质,为后续学习直线与平面图形的关系打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了直线、射线、线段的基本概念,能够识别和画出各种线。
但是,对于直线平行的判定,学生可能还比较陌生,需要通过实例和推理来理解。
此外,学生可能对平行线的概念有一定的了解,但是对于如何判定两条直线是否平行,可能还缺乏清晰的认识。
三. 教学目标1.知识与技能目标:使学生掌握同位角相等、内错角相等、同旁内角互补这三个判定直线平行的方法,能够运用这些方法判断两条直线是否平行。
2.过程与方法目标:通过观察、推理、交流等过程,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探究的精神。
四. 教学重难点1.教学重点:使学生掌握同位角相等、内错角相等、同旁内角互补这三个判定直线平行的方法。
2.教学难点:如何引导学生理解并证明同位角相等、内错角相等、同旁内角互补这三个判定方法。
五. 教学方法采用问题驱动法、合作学习法和引导发现法进行教学。
通过提出问题,引导学生观察、思考、推理,从而发现直线平行的判定方法;通过合作学习,让学生在小组内交流、讨论,共同完成学习任务;通过引导发现,让学生在探索过程中自主地获取知识。
六. 教学准备教师准备PPT、黑板、直线和平行线的模型等教学工具;学生准备笔记本、尺子、三角板等学习工具。
七. 教学过程导入(5分钟)教师通过PPT展示一些生活中的直线和平行线图片,如铁轨、尺子等,引导学生观察并说出直线和平行线的特点。
人教版数学七年级下册5.2.2《直线平行判定》(第1课时)教学设计
人教版数学七年级下册5.2.2《直线平行判定》(第1课时)教学设计一. 教材分析《直线平行判定》是人教版数学七年级下册第五章第二节的内容,本节课的主要目的是让学生掌握同位角相等、内错角相等、同旁内角互补三种判定方法,并能灵活运用这些方法判断两直线是否平行。
这一内容是学生进一步学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了角的度量、平行线的性质等基础知识,具备了一定的观察、操作和推理能力。
但部分学生对于三种判定方法的内在联系和应用可能还有一定的困难,需要老师在教学中进行引导和巩固。
三. 教学目标1.理解同位角相等、内错角相等、同旁内角互补三种判定方法,并掌握其应用。
2.培养学生的空间想象能力和逻辑思维能力。
3.学会运用判定方法解决实际问题,提高学生的解决问题的能力。
四. 教学重难点1.重点:掌握同位角相等、内错角相等、同旁内角互补三种判定方法。
2.难点:理解三种判定方法之间的内在联系,并灵活运用解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究和发现问题的解决方法。
2.运用多媒体辅助教学,直观展示直线和平行线的性质,帮助学生建立空间观念。
3.采用合作学习法,让学生在小组讨论和交流中,共同解决问题,提高学生的合作能力。
4.注重实践操作,让学生动手画图、推理,增强学生的实践能力。
六. 教学准备1.多媒体教学设备。
2.直线和平行线的模型或图片。
3.练习题和测试题。
4.黑板和粉笔。
七. 教学过程1.导入(5分钟)利用多媒体展示直线和平行线的图片,引导学生回顾直线和平行线的性质,为新课的学习做好铺垫。
2.呈现(10分钟)老师分别展示同位角相等、内错角相等、同旁内角互补三种判定方法,让学生观察和思考,引导学生发现判定两直线平行的方法。
3.操练(10分钟)学生分组讨论,每组选择一种判定方法,通过画图和推理,验证判定方法的正确性。
人教版七年级下数学教案:5.2.2 平行线的判定
平行线的判定教学设计教学目标:知识与技能:掌握判定两条直线平行的方法,能运用判定方法对两直线的位置关系进行判定。
过程与方法:在学习直线位置关系的判定过程中,感受逻辑推理,逐步学习证明的方法。
情感、态度与价值观:在学习过程中,通过师生的互动交流,促使学生在学习活动中培养良好的情感和合作交流,主动参与的意识。
教学重点:探索并掌握平行线的判定方法。
教学难点:探索平行线的判定方法。
教学过程:一、创设情境,引入新课教师操作展示:我们以前已学过用直尺和三角尺画平行线。
(见教材图5.2-5)教师利用三角板进行操作,学生观察教师操作的过程,然后教师提出问题:在这一过程中三角板起什么作用?关注学生能否从角的角度去讨论平行线的画法。
通过教师的操作,使学生对平行线的画法有一个直观的认识,通过观察和讨论,使学生逐步从感性认识上升到理性认识,发展学生的思维。
EP.二、探究直线平行的方法一 C H 1 D1、教师引导学生将上面的操作抽象成如图的图形, A G 2 BF进一步对学生进行引导,画AB平行于CD,实际上就是画∠1等于∠2,而这两个角是什么关系,(学生回答)由此说明了什么?总结:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
2、应用新知问题:你能说出木工用右图中的角尺画平行线的道理吗?(见教材图5.2-7)三、探究直线平行的其他方法两条直线被第三条直线所截,形成的角中,有同位角,内错角和同旁内角,同位角相等,两直线平行,那么,利用内错角、同旁内角的关系,能否判定两直线平行?1、如右图,如果∠2=∠3,能得出a∥b吗?答:a∥b。
理由如下:c 13 4 a2b∵∠2=∠3(已知),而∠1=∠3(对顶角相等),∴∠1=∠2(等量代换),∴a∥b(同位角相等,两直线平行)。
2、如右图,如果∠2+∠4=180°,能得出a∥b吗?(学生试着做)总结:判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
人教版数学七年级下册学案5.2.2 第2课时 平行线判定方法的综合运用学案
cP b a4321cb a 21第2课时 平行线判定方法的综合运用【学习目标】1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。
2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。
【学习重点】在观察实验的基础上进行公理的概括与定理的推导 【学习难点】定理形成过程中的逻辑推理及其书面表达。
【学具准备】三角板 【自主学习】1、预习疑难: 。
2、填空:经过直线外一点,_____ ___与这条直线平行. 【合作探究】(一)平行线判定方法1: 1、观察思考:过点P 画直线CD ∥AB 的过程,三角尺起了什么作用?2、判定方法1应用格式: 1=∠2(已知)∴AB ∥CD (同位角相等,两直线平行)应用:木工师傅使用角尺画平行线,有什么道理? (二)平行线判定方法2、3:1、思考:教材判定方法应用格式:2=∠3(已知)∴a ∥b (内错角相等,两直线平行)2、将上题中条件改变为∠2+∠4=180°,能得到a ∥b 吗?(试写出推理过程)判定方法应用格式:∵∠2+∠4=180°(已知)∴a ∥b (同旁内角互补,两直线平行) 【反馈提高】(一)例 教材15页 (二)练一练:教材15页练习1、2、3 (三)总结直线平行的条件(1) (2)方法1:若a ∥b ,b ∥c ,则a ∥c 。
即两条直线都与第三条直线平行,这两条直线也互相平行。
方法2:如图1,若∠1=∠3,则a ∥c 。
即 。
方法3:如图1,若 。
D C B A方法4:如图1,若 。
方法5:如图2,若a ⊥b ,a ⊥c,则b ∥c 。
即在同一平面内,垂直于同一条直线的两条直线互相平行。
【达标测评】 (一)选择题:1.如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD34DCBA21FE D CBA 876543219654321DCB A(1) (2) (3) (4) 2.如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 3.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行4.(2000.江苏)如图5,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠-5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④ (二)填空题:1.如图3,如果∠3=∠7,或____ __,那么______,理由是_____ _____;如果∠5=∠3,或___ ____,那么________, 理由是____ __________;如果∠2+ ∠5= ______ 或者______,那么a ∥b,理由是___ _____.2.如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD. 3.在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______.4.如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.ED C B A8765c ba 3412(2)由∠CBE=∠C 可以判断______∥______,根据是_________.六、【拓展延伸】1、已知直线a 、b 被直线c 所截,且∠1+∠2=180°, 试判断直线a 、b 的位置关系,并说明理由.2、如图,已知DGN AEM ∠=∠,21∠=∠,试问EF 是否平行GH ,并说明理由。
【人教版】七年级数学下册:5.2.2 第2课时 平行线判定方法的综合运用教案
第2课时平行线判定方法的综合运用1.灵活选用平行线的判定方法进行证明;(重点)2.掌握平行线的判定在实际生活中的应用.(难点)一、情境导入如图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?要解决这个问题,就要弄清楚平行的判定.二、合作探究探究点一:平行线判定方法的综合运用【类型一】灵活选用判定方法判定平行如图,有以下四个条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B =∠5,其中能判定AB∥CD的条件有()A.1个B.2个C.3个D.4个解析:根据平行线的判定定理即可求得答案.①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD.∴能得到AB∥CD 的条件是①③④.故选C.方法总结:要判定两直线是否平行,首先要将题目给出的角转化为这两条直线被第三条直线所截得的同位角、内错角或同旁内角,再看这些角是否满足平行线的判定方法.【类型二】平行线的判定定理结合平行公理的推论进行证明如图,直线AB、CD、EF被直线GH所截,∠1=70°,∠2=110°,∠2+∠3=180°.求证:(1)EF∥AB;(2)CD∥AB(补全横线及括号的内容).证明:(1)∵∠2+∠3=180°,∠2=110°(已知),∴∠3=70°().又∵∠1=70°(已知),∴∠1=∠3(),∴EF∥AB().(2)∵∠2+∠3=180°,∴______∥______().又∵EF∥AB(已证),∴______∥______().解析:(1)先将∠2=110°代入∠2+∠3=180°,求出∠3=70°,根据等量代换得到∠1=∠3,再由“内错角相等,两直线平行”即可得到EF∥AB;(2)先由“同旁内角互补,两直线平行”得出CD∥EF,再根据“两条直线都和第三条直线平行,那么这两条直线平行”即可得到CD∥AB.答案分别为:(1)等量代换;等量代换;内错角相等,两直线平行;(2)CD;EF;同旁内角互补,两直线平行;CD;AB;平行于同一条直线的两直线平行.方法总结:判定两条直线平行的方法除了利用平行线的判定定理外,有时需要结合运用“平行于同一条直线的两条直线平行”.【类型三】添加辅助线证明平行如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.解析:通过观察图可以猜想AB与CD互相平行.过点F向左作FQ,使∠MFQ=∠2=50°,则可得∠NFQ=40°,再运用两次平行线的判定定理可得出结果.解:过点F向左作FQ,使∠MFQ=∠2=50°,则∠NFQ=∠MFN-∠MFQ=90°-50°=40°,AB∥FQ.又因为∠1=140°,所以∠1+∠NFQ=180°,所以CD∥FQ,所以AB∥CD.方法总结:在解决与平行线相关问题时,有时需作出适当的辅助线.探究点二:平行线判定的实际应用一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上行驶,那么两次拐弯的角度可能为()A.第一次右拐60°,第二次右拐120°B.第一次右拐60°,第二次右拐60°C.第一次右拐60°,第二次左拐120°D.第一次右拐60°,第二次左拐60°解析:汽车两次拐弯后,行驶的路线与原路线一定不在同一直线上,但方向相同,说明前后路线应该是平行的.如图,如果第一次向右拐,那么第二次应左拐,两次拐的方向是相反且角度相等的,两次拐的角度是同位角,所以前后路线平行且行驶方向不变.故选D.方法总结:利用数学知识解决实际问题,关键是将实际问题正确地转化为数学问题,即画出示意图或列式表示,然后再解决数学问题,最后回归实际.三、板书设计平行线的判定方法:1.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;2.平行于同一条直线的两直线平行.在教学设计中,突出学生是学习的主体,把问题尽量抛给学生解决,有意识地对学生渗透“转化”思想,并将数学学习与生活实际联系起来.本节课对七年级的学生而言,本是一个艰难的起步,应时时提醒学生应注意的地方,证明要严谨,步步有依据,并且依据只能是有关概念的定义、所规定的公理及已知证明的定理,防止学生不假思索地把以前学过的结论用来作为证明的依据。
人教版数学七年级下册-5.2.2 第2课时 平行线判定方法的综合运用 导学案
人教版数学七年级下册-打印版
平行线判定方法的综合运用
学习目标:
1.进一步掌握平行线的判定方法,并会运用平行线的判定解决问题.
2.掌握垂直于同一条直线的两条直线互相平行.
重点:平行线的判定方法.
难点:熟练运用平行线的判定方法解决问题.
教学过程
一、知识链接
什么叫平行线?平行线的判定方法有哪些?
二、新知预习
1.在铺设铁轨时,两条直轨必须是互相平行的,如何才能保证两条铁轨平行呢?
2.要点归纳:垂直于同一条直线的两条直线_________________.
三、自学自测
1.如图,若∠1=∠2,则b_______ c.
第1题图第2题图
2.如图,若∠1=∠2,则_____//______ ;若∠_____ =∠_____,则AB//DC.
四、我的疑惑
___________________________________________________________________________________________ ___________________________________________________________。
初中数学人教新版七年级下册(新):5.2.2《平行线的判定》教案(2)
初中数学人教新版七年级下册实用资料平行线的判定一、教学目标知识目标:熟练掌握平行线的判定方法,并会运用.能力目标:1、通过模型演示,即“运动—变化”的数学思想方法的运用,培养学生的“观察—分析”和“归纳—总结”的能力.2、遇到一个新问题时,能把它转化为已知的(或已解决的)问题.二、重点:平行线的判定方法及运用三、难点:用数学语言表达简单的说理过程四、教学过程:(一)创设情境,引入课题通过让学生观察两组图片,让学生体会到研究图形时,不能仅靠直觉.那么怎样判定两直线平行呢?(设疑)从而引出课题(二)合作交流,探究新知1、以模型演示,引导学生观察,、猜想,从而让学生感知同位角相等两直线平行2、由平行线的画法,让学生充分观察,在教师的启发式提问下,分析、思考、总结出结论. 判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简单说成:同位角相等,两直线平行.练习(1)3、合作交流:若图中,直线AB 与CD 被直线EF 所截,若∠3=∠4,则AB 与CD 平行吗?若图中,直线AB 与CD 被直线EF 所截,若∠2+∠4=180°,则AB 与CD 平行吗?由此得到:判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 练习(2)总结平行线的判定方法寻找直线平行的B同位角相等条件内错角相等同旁内角互补(三)例题讲解课本P36例1、巩固新知,规范学生步骤.2、引出平行线的传递性:如果两条直线都与第三条直线平行,那么这两条直线平行(四)实际应用,解决问题木工师傅用直尺画出工件边缘的两条垂线,这两条垂线平行吗?为什么?(五)课堂达标(六)方法总结,畅谈收获①平行线的判定方法1:同位角相等,两直线平行②平行线的判定方法2:内错角相等,两直线平行③平行线的判定方法3;同旁内角互补,两直线平行如果两条直线都与第三条直线平行,那么这两条直线平行(七)布置作业课本习题1、2、3小题。
人教版数学七年级下册5.2.2 平行线的判定(教案与反思)
5.2.2 平行线的判定原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!师者,所以传道,授业,解惑也。
韩愈【知识与技能】1.平行线的三个判定定理的理解.2.平行线的三个判定定理的简单运用.【过程与方法】经历实验过程得到判定方法1,再结合前面已学的知识推导出判定方法2和判定方法3.【情感态度】经历推导过程,初步形成严密的逻辑思维习惯.【教学重点】平行线的三个判定定理的理解与简单运用.【教学难点】推理的基本格式及方法.一、情境导入,初步认识问题1 用实际操作或多媒体课件演示画平行线的过程,想一想,在这个过程中,∠1与∠2的大小关系怎样,∠1与∠2是什么关系的角?问题1 问题2问题2如图,如果,∠2=∠3,能否得到a∥b;如果∠2+∠4=180°,能否得到a∥b?【教学说明】对问题1,可由教师亲自操作,也可事先制好课件进行放映,不难得到判定方法1.对问题2,可由已知条件,结合前面学过的知识,利用“同位角相等,两条直线平行”得到a∥b,从而得到判定方法2和判定方法3.二、思考探究,获取新知思考遇到一个新的问题时,常常怎样去解决呢?【归纳结论】1.平行线的判定:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单的说,就是同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等.那么这两条直线平行,简单地说,就是内错角相等,两直线平行.判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简单地说,就是同旁内角互补,两直线平行.2.遇到一个新问题时,常常把它转化为已知的(或已解决的)问题去解决.三、运用新知,深化理解1.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?2.如图,根据下列条件,可推得哪两条直线平行,并说明根据.(1)∠ABD=∠CDB;(2)∠CBA+∠BAD=180°;(3)∠CAD=ACB.3.如图,写出所有能推得直线AB∥CD的条件.【教学说明】问题1、2可以让同学们抢答来完成.问题3可让学生充分讨论,一般来说,要找到几个条件不难,但要找出所有的条件却并非易事,本题在考查学生的逆向思维能力.【答案】略.四、师生互动,课堂小结平行线的判定方法:1.平行于同一条直线的两条直线互相平行.2.同位角相等,两直线平行.3.内错角相等,两直线平行.4.同旁内角互补,两直线平行.5.同一平面内,垂直于同一条直线的两条直线互相平行.1.布置作业:从教材“习题5.2”中选取.2.完成练习册中本课时的练习.本节课通过“问题情境—合作探究—建立模型—求解—应用”的基本过程,使学生体会到了数学知识之间的内在联系;通过对问题的探究,获得了一些研究问的方法和经验;发展了思维能力,加深了对相关知识的理解,通过获得成功的体验和克服困难的经历,增强了学生学习数学应用数学的自信心.【素材积累】先讲一个我个人的经历。
(人教版)七年级下册数学配套教学设计:5.2.2 第2课时《平行线判定方法的综合运用》
(人教版)七年级下册数学配套教学设计:5.2.2 第2课时《平行线判定方法的综合运用》一. 教材分析《平行线判定方法的综合运用》这一节的内容,主要让学生掌握平行线的判定方法,并能运用这些方法解决实际问题。
教材通过引入实例,引导学生运用所学知识进行观察、分析、推理,从而得出平行线的判定方法。
同时,教材还设计了丰富的练习题,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析学生在学习这一节内容前,已经学习了平行线的概念、性质和画法,对平行线有了初步的认识。
但部分学生对平行线的判定方法理解不深,运用不够灵活。
因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行引导和讲解,帮助学生理解和掌握平行线的判定方法。
三. 教学目标1.知识与技能目标:让学生掌握平行线的判定方法,并能运用这些方法解决实际问题。
2.过程与方法目标:通过观察、分析、推理等方法,培养学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:平行线的判定方法。
2.难点:如何运用平行线的判定方法解决实际问题。
五. 教学方法1.情境教学法:通过引入实例,让学生在实际问题中感受和理解平行线的判定方法。
2.问题驱动法:引导学生提出问题,进行观察、分析、推理,从而得出结论。
3.练习法:设计丰富的练习题,让学生在实践中巩固所学知识。
六. 教学准备1.准备相关实例和图片,用于导入和讲解。
2.准备练习题,用于巩固和拓展。
3.准备黑板和粉笔,用于板书。
七. 教学过程1.导入(5分钟)教师出示实例,引导学生观察并提问:这些图形中有哪些是平行线?你是如何判断的?2.呈现(10分钟)教师讲解平行线的判定方法,引导学生通过观察、分析、推理,得出结论。
3.操练(10分钟)教师出示练习题,让学生独立完成,检验学生对平行线判定方法的掌握程度。
4.巩固(10分钟)教师引导学生进行小组讨论,分享彼此的心得体会,巩固所学知识。
初中数学人教新版七年级下册(新):5.2.2《平行线的判定》教案(3)
初中数学人教新版七年级下册实用资料平行线的判定学习目标:1、进一步应用平行线的判定条件解决实际问题;能灵活地选用平行的判定方法进行说理.2、经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和表达能力.3、进一步体会数学的应用价值,培养自主探索知识和合作交流能力.学习重难点:重点:熟练运用平行线的判定方法进行相关的简单推理证明.难点:熟练运用平行线的判定方法进行相关的简单推理证明.学习方法:自主学习,合作解疑.学习过程:一、示标导学:如图,有一块木板,如何判断它的上下边缘是否平行?把你的尝试在图中画出来,并给予相应的说明.二、自学解疑(一):自主质疑请同学们围绕着以下问题,回顾所学内容平行线的判定方法有哪些?你能进行适当的分类吗?(二):互助释疑1、如图:添加一个条件,使AB∥CD,理由是什么?2、如图,有一座山,想从山中开凿一条隧道直通甲、乙两地;在甲地侧得乙为北偏东41º方向,如果甲、乙两地同时开工,那么从乙地出发应按北偏西度施工.AB CD3、一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()(A)第一次向右拐50º,第二次向左拐130º(B)第一次向左拐30º,第二次向右拐30º(C)第一次向右拐50º,第二次向右拐130º(D)第一次向左拐50º,第二次向左拐130º三、探究提升例1:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?如图,已知B⊥AC⊥A求证:B∥Ca bc。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时平行线判定方法的综合运用
1.灵活选用平行线的判定方法进行证明;(重点)
2.掌握平行线的判定在实际生活中的应用.(难点)
一、情境导入
如图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?要解决这个问题,就要弄清楚平行的判定.
二、合作探究
探究点一:平行线判定方法的综合运用
【类型一】灵活选用判定方法判定平行
如图,有以下四个条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B =∠5,其中能判定AB∥CD的条件有()
A.1个B.2个C.3个D.4个
解析:根据平行线的判定定理即可求得答案.①∵∠B+∠BCD=180°,∴AB∥CD;
②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD.∴能得到AB∥CD的条件是①③④.故选C.
方法总结:要判定两直线是否平行,首先要将题目给出的角转化为这两条直线被第三条直线所截得的同位角、内错角或同旁内角,再看这些角是否满足平行线的判定方法.变式训练:见《学练优》本课时练习“课堂达标训练”第2题
【类型二】平行线的判定定理结合平行公理的推论进行证明
如图,直线AB、CD、EF被直线GH所截,∠1=70°,∠2=110°,∠2+∠3=
180°.求证:(1)EF∥AB;(2)CD∥AB(补全横线及括号的内容).
证明:(1)∵∠2+∠3=180°,∠2=110°(已知),
∴∠3=70°().
又∵∠1=70°(已知),
∴∠1=∠3 (),
∴EF∥AB().
(2)∵∠2+∠3=180°,
∴______∥______().
又∵EF∥AB(已证),
∴______∥______().
解析:(1)先将∠2=110°代入∠2+∠3=180°,求出∠3=70°,根据等量代换得到∠1=∠3,再由“内错角相等,两直线平行”即可得到EF∥AB;(2)先由“同旁内角互补,两直线平行”得出CD∥EF,再根据“两条直线都和第三条直线平行,那么这两条直线平行”即可得到CD∥AB.答案分别为:(1)等量代换;等量代换;内错角相等,两直线平行;(2)CD;EF;同旁内角互补,两直线平行;CD;AB;平行于同一条直线的两直线平行.方法总结:判定两条直线平行的方法除了利用平行线的判定定理外,有时需要结合运用“平行于同一条直线的两条直线平行”.
【类型三】添加辅助线证明平行
如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.
解析:通过观察图可以猜想AB与CD互相平行.过点F向左作FQ,使∠MFQ=∠2
=50°,则可得∠NFQ=40°,再运用两次平行线的判定定理可得出结果.解:过点F向左作FQ,使∠MFQ=∠2=50°,则∠NFQ=∠MFN-∠MFQ=90°-50°=40°,AB∥FQ.又因为∠1=140°,所以∠1+∠NFQ=180°,所以CD∥FQ,所以AB∥CD.
方法总结:在解决与平行线相关问题时,有时需作出适当的辅助线.
变式训练:见《学练优》本课时练习“课后巩固提升”第9题
探究点二:平行线判定的实际应用
一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上行驶,那么两次拐弯的
角度可能为()
A.第一次右拐60°,第二次右拐120°
B.第一次右拐60°,第二次右拐60°
C.第一次右拐60°,第二次左拐120°
D.第一次右拐60°,第二次左拐60°
解析:汽车两次拐弯后,行驶的路线与原路线一定不在同一直线上,但方向相同,说明前后路线应该是平行的.如图,如果第一次向右拐,那么第二次应左拐,两次拐的方向是相反且角度相等的,两次拐的角度是同位角,所以前后路线平行且行驶方向不变.故选D.
方法总结:利用数学知识解决实际问题,关键是将实际问题正确地转化为数学问题,即画出示意图或列式表示,然后再解决数学问题,最后回归实际.
变式训练:见《学练优》本课时练习“课后巩固提升”第4题
三、板书设计
平行线的判定方法:
1.同位角相等,两直线平行;
内错角相等,两直线平行;
同旁内角互补,两直线平行;
2.平行于同一条直线的两直线平行.
在教学设计中,突出学生是学习的主体,把问题尽量抛给学生解决,有意识地对学生渗
透“转化”思想,并将数学学习与生活实际联系起来.本节课对七年级的学生而言,本是一个艰难的起步,应时时提醒学生应注意的地方,证明要严谨,步步有依据,并且依据只能是有关概念的定义、所规定的公理及已知证明的定理,防止学生不假思索地把以前学过的结论用来作为证明的依据。