江西省丰城中学2017-2018学年下学期高一期末考试试卷数学
江西省2017-2018学年高一下学期期末考试数学试题+答案
2017-2018学年度下学期期末考试高一数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知,则下列不等式成立的是( )A. B. C. D.2. 有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是( )A. 至少有1件次品与至多有1件正品B. 恰有1件次品与恰有2件正品C. 至少有1件次品与至少有1件正品D. 至少有1件次品与都是正品3. 为了大力弘扬中华优秀传统文化,某校购进了《三国演义》、《水浒传》、《红楼梦》和《西游记》若干套,如果每班每学期可以随机领取两套不同的书籍,那么该校高一(1)班本学期领到《三国演义》和《水浒传》的概率为( )A. B. C. D.4. 央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏,下面的茎叶图是两位选手在个人追逐赛中的比赛得分,则下列说法正确的是( )A. 甲的平均数大于乙的平均数B. 甲的中位数大于乙的中位数C. 甲的方差大于乙的方差D. 甲的平均数等于乙的中位数5. 阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为( )A. 7B. 9C. 10D. 116. 已知等差数列的前项和为.若,则一定有( )A. B. C. D.7. 已知等比数列的各项均为正数,公比,设,,则,,,的大小关系是( )A. B. C. D.8. 在中,若,,则一定是( )A. 锐角三角形B. 正三角形C. 等腰直角三角形D. 非等腰直角三角形9. 已知函数 (,且)的的图象恒过定点,若点在一次函数的图象上,其中,,则的最小值为( )A. 1B.C. 2D. 410. 设表示不超过的最大整数,则关于的不等式的解集是( )A. [-2,5]B. (-3,6)C. [-2,6)D. [-1,6)11. 已知函数满足,那么对于,使得在上恒成立的概率为()A. B. C. D.12. 定义在上的函数,若对任意给定的等比数列,仍是等比数列,则称为“保等比数列”.现有定义在上的如下函数:①②③④,则其中是“保等比数列函数”的的序号为()A. ①③B. ③④C. ①②D. ②④第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知与之间的一组数据为则与的回归直线方程必过定点__________.14. 如图所示,在边长为1正方形中,随机撒豆子,其中有1000粒豆子落在正方形中,180粒落到阴影部分,据此估计阴影部分的面积为__________.15. 设是等比数列的前项和,若满足,则__________.16. 在中,为边上一点,,,.若,则,则__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 一个盒子中装有5张编号依次为1、2、3、4、5的卡片,这5 张卡片除号码外完全相同.现进行有放回的连续抽取2 次,每次任意地取出一张卡片.(1)求出所有可能结果数,并列出所有可能结果;(2)求事件“取出卡片号码之和不小于7 或小于5”的概率.18. 某中学从高三男生中随机抽取100名学生,将他们的身高数据进行整理,得到下侧的频率分布表(Ⅰ)求出频率分布表中①和②位置上相应的数据;(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5 组中用分层抽样的方法抽取6 名学生进行体能测试,求第3,4,5 组每组各应抽取多少名学生进行测试;(Ⅲ)在(Ⅱ)的前提下,学校决定在6 名学生中随机抽取2 名学生进行引体向上测试,求第4 组中至少有一名学生被抽中的概率.19. 已知公差不为0的等差数列满足,且,,成等比数列.(1)求数列的通项公式;(2)记数列的前项和为,并求使得成立的最小正整数.20. 在锐角中,.(1)求角.(2)若,且取得最大值时,求的面积.21. 某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为16 元/千克(即16 百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为(单位:百元).(1)求利润函数的函数关系式,并写出定义域;(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?22. 已知函数的定义域为,且对任意的正实数,都有成立. ,且当时,.各项均为正数的数列满足,其中是数列的前项和.(1)求数列的通项公式;(2)若是数列的前项和,求.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知,则下列不等式成立的是( )A. B. C. D.【答案】D【解析】试题分析:由可设,代入选项验证可知成立考点:不等式性质2. 有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是( )A. 至少有1件次品与至多有1件正品B. 恰有1件次品与恰有2件正品C. 至少有1件次品与至少有1件正品D. 至少有1件次品与都是正品【答案】B【解析】有5件产品,其中3件正品,2件次品,从中任取2件,在A中,至少有1件次品与至多有1件正品能同时发生,不是互斥事件,故A错误;在B中,恰有1件次品与恰有2件正品不能同时发生,但能同时不发生,是互斥而不对立的两个事件,故B正确;在C中,至少有1件次品与至少有1件正品能同时发生,不是互斥事件,故C错误;在D中,至少有1件次品与都是正品是对立事件,故D错误。
2017-2018年高一下学期期末考试数学试题及答案
,-
1 7
,1 9
,������
的
一
个
通
项
公
式an
=
A.(-1)n 2n1+1
B.(-1)n+12n1-1
C.(-1)n 2n1-3
4.已知向量a,b 满足|a|=1,a⊥(2a+b),则a������b=
D.(-1)n+12n1+3
A.2
B.0
C.-2
D.-4
5.在等差数列{an}中,a1+2a3+a5=12,则3a4-a6 的值为
算 步 骤 .)
19.(本 小 题 满 分 13 分 )
已 知 向 量a= (3,-1),b= (1 2 ,23).
(Ⅰ)求‹a,b›;
(Ⅱ)求(a+b)������b 的值;
(Ⅲ )求|2a+3b|的 值 .
20.(本 小 题 满 分 13 分 )
在△ABC 中,角 A,B,C 的对边分别为a,b,c,且满足2caos-Bb=cocsC.
2 分 ,有 选 错 的 得 0 分 .)
1.在平行四边形 ABCD 中,A→B+D→A-C→B等于
A.B→C
B.D→C
C.B→A
D.A→C
2.设 0<a<b<1,c∈R,则 下 列 不 等 式 成 立 的 是
A.a3>b3
B.a1 <b1
C.ac>bc
D.(a-b)c2≤0
3.数
列
1,-
1 3
,1 5
(Ⅰ)求角 C 的值;
(Ⅱ)若
sin(θ+C)=
4(π 56
<θ<23π),求
cosθ
的值
.
高 一 数 学 试 题 第 3 页 (共 4 页 )
2017-2018学年下学期高一期末考试试卷 数学
2017-2018学年下学期高一期末考试试卷数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,只有一个选项正确,请把答案....写在答题卷上.......1.设集合{1,2,3}A =,集合{2,2}B =-,则A B = ()A .∅B .{2}C .{2,2}-D .{2,1,2,3}-2.=0750cos ()A.32B .12C .32-D .12-3.已知函数lg ,0()12,0x x f x x x >⎧=⎨+≤⎩,则((2))f f -=()A .3-B .0C .1D .1-4.设单位向量22(,sin )3α=a ,则cos 2α的值为()A .79B .12-C .79-D .325.设(0,)2πα∈,(0,)2πβ∈,且1tan 7α=,1tan 3β=,则2αβ+=()A .6πB .4πC .3πD .2π6.设m n 、是两条不同的直线,αβ、是两个不同的平面,下列命题中正确的命题是()A .,,m m n αβαβ⊥⊂⊥⇒⊥nB .,,m n m n αβαββ⊥=⊥⇒⊥IC .,,//m n m nαβαβ⊥⊥⇒⊥D .//,,//m n m nαβαβ⊥⇒⊥7.已知||2a = ,(2)a b a -⊥ ,则b 在a方向上的投影为()A .4-B .2-C .2D .48.设00sin14cos14a =+,00sin16cos16b =+,62c =,则,,a b c 的大小关系是()A .a b c<<B .a c b<<C .b c a <<D .b a c<<9.已知正实数n m ,满足222=+++n m n m ,则mn 的最大值为()A .236-B .2C .246-D .310.对于非零向量c b a ,,,下列命题正确的是()A .若),(02121R b a ∈=+λλλλ,则021==λλB .若b a //,则a 在b 上的投影为||a C .若b a ⊥,则⋅a 2)(b a b ⋅=D .若c b c a ⋅=⋅,则=a b 11.在△ABC 中,,P 是BN 上的一点,若,则实数m 的值为()A .3B .1C .D .12.已知.若恒成立,则实数的取值范围是()A .B .C .D .第Ⅱ卷二、填空题:本题共4小题,每题5分,满分20分,将答案填在答题纸上.13.23(log 9)(log 4)⋅=.此卷只装订不密封班级姓名准考证号考场号座位号14.若变量,x y 满足约束条件010210x y y x x -≤⎧⎪≤-⎨⎪-≥⎩,则2z x y =-的最小值为.15.过长方体的一个顶点的三条棱长分别是1、2、5,且它的八个顶点都在同一球面上,则这个球的表面积是.16.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,BC 边上的高与BC 边长相等,则bca b c c b 2++的最大值是.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知(,)2παπ∈,且4sin 5α=.(1)求tan()4πα-的值;(2)求2sin 2cos 1cos 2ααα-+的值.18.(12分)已知向量(cos ,sin )a αα= ,(cos ,sin )b ββ=,413||13a b -= .(1)求cos()αβ-的值;(2)若02πα<<,02πβ-<<,且4sin 5β=-,求sin α的值.19.(12分)已知等差数列}{n a 的前n 项和为n S ,且28,373==S a ,在等比数列}{n b 中,8,443==b b .(1)求n a 及n b ;(2)设数列}{n n b a 的前n 项和为n T ,求n T .20.(12分)已知函数()2sin()(0,)2f x x πωϕωϕ=+><的图像与直线2y =两相邻交点之间的距离为π,且图像关于3x π=对称.(1)求()y f x =的解析式;(2)先将函数()f x 的图象向左平移6π个单位,再将图像上所有横坐标伸长到原来的2倍,得到函数()g x 的图象.求()g x 的单调递增区间以及()3g x ≥的x 取值范围.21.(12分)如图1所示,在等腰梯形ABCD 中,,3,15,33BE AD BC AD BE ⊥===.把ABE ∆沿BE 折起,使得62AC =,得到四棱锥A BCDE -.如图2所示.(1)求证:面ACE ⊥面ABD ;(2)求平面ABE 与平面ACD所成锐二面角的余弦值.22.(12分)已知函数4()lg4xf x x-=+,其中(4,4)x ∈-.(1)判断并证明函数()f x 的奇偶性;(2)判断并证明函数()f x 在(4,4)-上的单调性;(3)是否存在这样的负实数k ,使22(cos )(cos )0f k f k θθ-+-≥对一切R θ∈恒成立,若存在,试求出k 取值的集合;若不存在,说明理由.2017-2018学年下学期高一期末考试试卷数学答案一、选择题.1-5:BACAB6-10:DDBCC11-12:CD二、填空题.13.414.6-15.π1016.22三、解答题.17.解:(1)∵(,)2παπ∈,4sin 5α=,∴3cos 5α=-,则4tan 3α=-,∴41tan 13tan()7441tan 13πααα----===+-.(2)由222sin 2cos 2sin cos cos 1cos 22cos 11ααααααα--=+-+2sin cos 2cos ααα-=,2tan 11126α-==-.18.解:(1)由已知得()a 1,cos b a b αβ==⋅=-,又41313a b -= ,2216213a ab b ∴-⋅+= ,()135cos =-∴βα.(2)由πβαβππα<-<∴<<-<<002,20,又()54cos ,sin 135αββ-==-,()123sin ,cos 135αββ∴-==,()[]651654135531312sin sin =⎪⎪⎭⎫ ⎝⎛-⨯+⨯=+-=∴ββαα.19.解:(1)设}{n a 的公差为d ,则由题有12821732111==⇒⎩⎨⎧=+=+d a d a d a ,∴n a n =.∵在等比数列}{n b 中,8,443==b b ,∴}{n b 的公比为234==b b q ,∴1332--==n n n q b b ,即12-=n n b .(2)由(1)知n a n =,12-=n n b ,∴12-⋅=n n n n b a .∴132********-⨯++⨯+⨯+⨯+=n n n T ,n n n n n T 22)1(2322212132⨯+⨯-++⨯+⨯+⨯=- ,∴12)1(12122)2221(212+⋅-=---⨯=++++-⨯=-n n nn n n n n n T ,即12)1(+⋅-=n n n T .20.解:(1)由已知可得T π=,2ππω=,∴2ω=,又()f x 的图象关于3x π=对称,∴232k ππϕπ⋅+=+,∴6k πϕπ=-,k Z ∈,∵22ππϕ-<<,∴6πϕ=-,所以()2sin(2)6f x x π=-.(2)由(1)可得()2sin(2)6f x x π=-,∴()2sin()6g x x π=+,由22262k x k πππππ-≤+≤+得,22233k x k ππππ-≤≤+,()g x 的单调递增区间为2[2,2]33k k ππππ-+,k Z ∈.∵2sin()36x π+≥,∴3sin()62x π+≥,∴222363k x k πππππ+≤+≤+,∴22,62x k x k k ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭Z .21.解:(1)证明:在等腰梯形ABCD 中3,15,BC AD BE AD ==⊥,可知6,9AE DE ==.因为3,33,BC BE BE AD ==⊥,可得6CE =.又因为6,62AE AC ==,即222AC CE AE =+,则AE EC ⊥.又,BE AE BE EC E ⊥⋂=,可得面BCDE ,故AE BD ⊥.又因为9tan 333DE DBE BE ∠===,则060DBE ∠=,33tan 333BC BEC BE ∠===,则030BEC ∠=,所以CE BD ⊥,又AE EC E ⋂=,所以BD ⊥面ACE ,又BD ⊂面ABD ,所以面ABD ⊥面ACE .(2)设EC BD O = ,过点O 作//OF AE 交AC 于点F,以点O 为原点,以,,OB OC OF 所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系O BCF -.在BCE ∆中,∵030BEO ∠=,BO EO ⊥,∴9333,,222EO CO BO ===,则2339,0,0,0,,0,0,,0222B C E ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∵1//,,62FO AE FO AE AE ==,∴3FO =,则()90,0,3,0,,62F A ⎛⎫- ⎪⎝⎭,∵//,9DE BC DE =,∴3ED BC = ,∴93,0,02D ⎛⎫- ⎪ ⎪⎝⎭,∴()()339933,,0,0,0,6,0,6,6,,,02222BE AE CA CD ⎛⎫⎛⎫===-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ,设平面ABE 的法向量为()1111,,n x y z = ,由11·0{·0n AE n BE == ,得11160{339022z x y =+=,取13x =,可得平面ABE 的法向量为()13,1,0n =-,设平面ACD 的一个法向量为()2222,,n x y z =,由22·0{·0n CA n CD == ,得1111660{933022y z x y -+=--=,取11x =,可得平面ABE 的一个法向量为()21,33,33n =--.设平面ABE 与平面ACD 所成锐二面角为θ,则1212·432165cos 55255n n n n θ=== ,所以平面ABE 与平面ACD 所成锐二面角的余弦值为216555.22.解:(1)∵44()lglg ()44x xf x f x x x+--==-=--+,∴()f x 是奇函数.(2)()f x 在(4,4)-上为减函数.证明:任取12,(4,4)x x ∈-且12x x <,则12121244()()lglg 44x x f x f x x x ---=-++121244lg 44x x x x -+=⨯+-21121212164()lg 164()x x x x x x x x +--=+--,∵2112164()x x x x +--2112164()0x x x x >--->,∴21121212164()1164()x x x x x x x x +-->+--,得12()()0f x f x ->,得到12()()f x f x >,∴()f x 在(4,4)-上为减函数.(3)∵22(cos )(cos )f k f k θθ-≥--22(cos )f k θ=-,∵()f x 在(4,4)-上为减函数,∴222204cos 44cos 4cos cos k k k k k θθθθ<⎧⎪-<-<⎪⎨-<-<⎪⎪-≤-⎩对R θ∈恒成立,由22cos cos k k θθ-≤-对R θ∈恒成立得22cos cos k k θθ-≤-对R θ∈恒成立,令2211cos cos (cos )42y θθθ=-=--,∵cos [1,1]θ∈-,∴1[2,]4y ∈-,∴22k k -≤-,得1k ≤-,由4cos 4k θ-<-<对R θ∈恒成立得:33k -<<,由224cos 4k θ-<-<对R θ∈恒成立得:22k -<<,即综上所得:21k -<≤-,所以存在这样的k ,其范围为21k -<≤-.。
2017-2018学年高一下学期期末考试数学试题 (4)
第Ⅰ卷(共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把你认为正确的选项序号填入相应题号的表格内)1.1.设,,,且,则()A. B. C. D.【答案】D【解析】当时,选项A错误;当时,选项B错误;当时,选项C错误;∵函数在上单调递增,∴当时,.本题选择D选项.点睛:判断不等式是否成立,主要利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简便.2. 如下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色的()A. 白色B. 黑色C. 白色可能性大D. 黑色可能性大【答案】A【解析】由图可知,珠子出现的规律是3白2黑、3白2黑依次进行下去的特点,据此可知白、黑珠子的出现以5为周期,又……1,故第36颗珠子应该是白色的,故选A.3.3.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是( )A. 对立事件B. 不可能事件C. 互斥但不对立事件D. 不是互斥事件【答案】C【解析】甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.选C.4.4.在中,,,,则解的情况()A. 无解B. 有唯一解C. 有两解D. 不能确定【答案】B【解析】【分析】根据正弦定理,结合题中数据解出,再由,得出,从而,由此可得满足条件的有且只有一个.【详解】中,,根据正弦定理,得,,得,由,得,从而得到,因此,满足条件的有且只有一个,故选B.【点睛】本题主要考查正弦定理在解三角形中的应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.5.5.一组数据的茎叶图如图所示,则数据落在区间内的概率为A. 0.2B. 0.4C. 0.5D. 0.6【答案】D【解析】【分析】根据茎叶图个原始数据落在区间内的个数,由古典概型的概率公式可得结论.【详解】由茎叶图个原始数据,数出落在区间内的共有6个,包括2个个个,2个30,所以数据落在区间内的概率为,故选D.【点睛】本题主要考查古典概型概率公式的应用,属于简单题. 在解古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.6.6.设,,则()A. B. C. D.【答案】C【解析】【分析】利用“作差法”,只需证明即可得结果.【详解】,,,,恒成立,,即,故选C.【点睛】本题主要考查“作差法”比较两个数的大小,属于简单题. 比较两个数的大小主要有三种方法:(1)作差法;(2)作商法;(3)函数单调性法;(4)基本不等式法.7.7.已知,,是一个等比数列的前三项,则的值为()A. -4或-1B. -4C. -1D. 4或1【答案】B【解析】【分析】由是一个等比数列的连续三项,利用等比中项的性质列方程即可求出的值. 【详解】是一个等比数列的连续三项,,整理,得,解得或,当时,分别为,构不成一个等比数列,,当时,分别为,能构成一个等比数列,,故选B.【点睛】本题主要考查等比数列的定义、等比中项的应用,意在考查对基础知识掌握的熟练程度以及函数与方程思想的应用,属于简单题.8.8.某班有49位同学玩“数字接龙”游戏,具体规则按如图所示的程序框图执行(其中为座位号),并以输出的值作为下一轮输入的值.若第一次输入的值为8,则第三次输出的值为()A. 8B. 15C. 20D. 36【答案】A【解析】【分析】由已知的程序框图,可知该程序的功能是利用条件结构,计算并输出变量的值,模拟程序的运行过程,可得结论.【详解】输入后,满足进条件,则输出;输入,满足条件,则输出;输入,不满足条件,,输出,故第三次输出的值为,故选A.【点睛】本题主要考查程序框图应用,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9.9.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1-160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第15组中抽出的号码为118,则第一组中按此抽签方法确定的号码是()A. 7B. 6C. 5D. 4【答案】B【解析】【分析】设第一组抽出的号码为,则第组抽出的号码应为,由第15组中抽出的号码为118,列方程可得结果.【详解】因为从160名学生中抽取容量为20的样本所以系统抽样的组数为,间隔为,设第一组抽出的号码为,则由系统抽样的法则,可知第组抽出的号码应为,第组应抽出号码为,得,故选B.【点睛】本题主要考查系统抽样的方法,属于简单题. 系统抽样适合抽取样本较多且个体之间没有明显差异的总体,系统抽样最主要的特征是,所抽取的样本相邻编号等距离,可以利用等差数列的性质解答.10.10.具有线性相关关系的变量,满足一组数据如表所示,若与的回归直线方程为,则的值是()A. 4B.C. 5D. 6【答案】A【解析】由表中数据得:,根据最小二乘法,将代入回归方程,得,故选A.11.11.若关于、的不等式组表示的平面区域是一个三角形,则的取值范围是( )A. B. C. D. 或【答案】C【解析】分析:先画出不等式组表示的平面区域,再根据条件确定的取值范围.详解:画出不等式组表示的平面区域如图阴影部分所示.由解得,∴点A的坐标为(2,7).结合图形可得,若不等式组表示的平面区域是一个三角形,则实数需满足.故选C.点睛:不等式组表示的平面区域是各个不等式所表示的平面区域点集的交集,由不等式组表示的平面图形的形状求参数的取值范围时,可先画出不含参数的不等式组表示的平面区域,再根据题意及原不等式组表示的区域的形状确定参数的取值范围.12.12.公比不为1的等比数列的前项和为,且,,成等差数列,若,则()A. -5B. 0C. 5D. 7【答案】A【解析】【分析】设公比为,运用等差数列中项的性质和等比数列的通项公式,解方程可得公比,再由等比数列的求和公式即可得结果.【详解】设的公比为,由成等差数列,可得,若,可得,解得舍去),则,故选A.【点睛】本题主要考查等比数列的通项公式、等比数列的求和公式以及等差中项的应用,意在考查综合运用所学知识解决问题的能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分,将答案填写在题中的横线上)13.13.二次函数的部分对应值如下表:则不等式的解集为;【答案】【解析】试题分析:两个根为2,-3,由函数值变化可知a>0∴ax2+bx+c>0的解集是(-∞,-2)∪(3,+∞)。
江西省2017—2018学年高一数学下学期期末考试试卷(二)
江西省2017—2018学年高一数学下学期期末考试试卷(二)(文科)(考试时间120分钟满分150分)一、单项选择题:本大题共12小题.每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的.1.sin1290°=()A.B.C.﹣D.﹣2.下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()A.y=x B.y=lgx C.y=2x D.y=3.圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣ B.﹣C.D.24.函数y=sin(3x+)+cos(3x+)的最小正周期是()A.6πB.2πC. D.5.底面水平放置的正三棱柱的所有棱长均为2,当其主视图有最大面积时,其左视图的面积为()A.B.3 C.D.46.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.B.C.D.7.已知x,y的取值如表所示,若y与x线性相关,且=0.5x+a,则a=()8.已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A.B.C.D.9.已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣ B.C.D.10.执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x11.已知圆(x+1)2+y2=4的圆心为C,点P是直线l:mx﹣y﹣5m+4=0上的点,若该圆上存在点Q使得∠CPQ=30°,则实数m的取值范围为()A.[﹣1,1] B.[﹣2,2] C.D.12.已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,]B.(0,]∪[,1)C.(0,]D.(0,]∪[,]二、填空题:本大题共4小题,每小题5分,共20分,把正确答案填在横线上.13.一个体积为8的正方体的顶点都在一个球面上,则此球的表面积是______.14.若△ABC的内角A、B、C所对的边a、b、c满足(a+b)2﹣c2=4,且C=60°,ab的值为______.15.已知tanα,tanβ是方程x2+3x+4=0的两根,α,β∈(﹣,)则α+β=______.16.已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是______.三、解答题:本大题共6小题,共70分。
江西省2017—2018学年高一数学下学期期末考试试卷(七)
江西省2017—2018学年高一数学下学期期末考试试卷(七)(考试时间120分钟满分150分)一、单项选择题:(本大题共12道小题,每小题5分,共60分)1.角α=的终边在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.若三点共线则m的值为()A.B.C.﹣2 D.23.将y=sin2x的图象向左平移个单位,则平移后的图象所对应的函数的解析式为()A.B. C.D.4.若sin(α﹣β)cosα﹣cos(α﹣β)sinα=m,且β为第二象限角,则cosβ的值为()A. B.C.D.5.已知函数f(x)=sin(ωx+)(ω>0)的最小正周期为π,则函数f(x)的图象()A.关于直线x=对称B.关于点(,0)对称C.关于点(,0)对称 D.关于直线x=对称6.设x∈R,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B. C.2D.107.已知sinαcosα=,且<α<,则cosα﹣sinα的值为()A.B.C.D.8.如图,已知正六边形P1P2P3P4P5P6,下列向量的数量积中最大的是()A. B.C. D.9.已知a是实数,则函数f(x)=1+asinax的图象不可能是()A.B.C.D.10.函数y=2sinx(sinx+cosx)的最大值为()A.B.C.D.211.如图平行四边形ABCD中,=(1,2),=(﹣3,2),则•=()A.1 B.2 C.3 D.412.在△ABC中,已知tan()=sinC,给出以下论断:①=1;②1<sinA+sinB≤;③sin2A+cos2B=1;④cos2A+cos2B=sin2C.其中正确的是()A.①③ B.②④ C.①④ D.②③二、填空题:本大题共4道小题,每小题5分,共20分.把答案填在题中横线上13.已知向量,满足||=2,与的夹角为60°,则在上的投影是______.14.已知x∈(﹣,0),cosx=,则tan2x=______.15.若函数y=sinx+mcosx图象的一条对称轴方程为,则实数m的值为______.16.如图,平面内有三个向量、、,其中与与的夹角为120°,与的夹角为30°,且||=2,||=1,||=,若=λ+μ(λ,μ∈R),则λ+μ的值为______.三、解答题:本大题共6小题,共70分.第17题10分,其它每题12分,解答写出文字说明、证明过程或演算步骤.17.已知向,满足||=1,||=6,且•(﹣)=2,求:(1)与的夹角;(2)|2﹣|的模.18.已知函数,(1)求函数y=f(x)的最大、最小值以及相应的x值;(2)若x∈[0,2π],求函数y=f(x)的单调增区间;(3)若y>2,求x的取值范围.19.已知函数f(x)=Asin(ωx+φ)+b (ω>0,|φ|<)的图象的一部分如图所示:(1)求f(x)的表达式;(2)试写出f(x)的对称轴方程.20.已知cosα=,cos(α﹣β)=,且0<β<α<.求:(1)tan2α的值;(2)β的大小.21.已知函数f(x)=2sin2(+x)﹣cos2x(Ⅰ)求f(x)的周期和单调递增区间(Ⅱ)若关于x的方程f(x)﹣m=2在x∈[,]上有解,求实数m的取值范围.22.=(sinωx+cosωx,cosωx)(ω>0),=(cosωx﹣sinωx,2sinωx),函数f(x)=+t,若f(x)图象上相邻两个对称轴间的距离为,且当x∈[0,π]时,函数f(x)的最小值为0.(1)求函数f(x)的表达式,并求f(x)的增区间;(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A﹣C),求sinA的值.参考答案一、单项选择题:1.C.2.A 3.C.4.C.5.B 6.B.7.D 8.A.9.D 10.A.11.C.12.B.二、填空题:13.答案为:114.答案为:﹣15.答案为:.16.答案为4.三、解答题:17.解:(1)∵•(﹣)=•﹣2=2,又||=1,||=6∴•=3,即||||cos<,>=3,解得cos<,>=又0≤<,>≤π,所以与的夹角为(2)|2﹣|2=42﹣4•+2=28,∴|2﹣|=218.解:(1)当2x﹣,k∈Z时,函数y=f(x)取得最大值为3,当2x﹣,k∈Z时,函数y=f(x)取得最小值为﹣1;(2)令T=2x﹣,k∈Z.也即kπ﹣(k∈Z)时,函数y=2sinT+1单调递增.又x∈[0,2π],∴函数y=f(x)的单调增区间;(3)若y>2,∴,k∈Z.解得:,k∈Z.19.解:(1)由图象可知,函数的最大值M=3,最小值m=﹣1,则A=,又,∴ω=,∴f(x)=2sin(2x+φ)+1,将x=,y=3代入上式,得φ)=1,∴,k∈Z,即φ=+2kπ,k∈Z,∴φ=,∴f(x)=2sin+1.(2)由2x+=+kπ,得x=+kπ,k∈Z,∴f(x)=2sin+1的对称轴方程为kπ,k∈Z.20.解:,.…,….….因为cos(α﹣β)=,所以sin(α﹣β)=,所以cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)=,所以β=.21.解:(I)∵f(x)=2sin2(+x)﹣cos2x=1﹣cos(+2x)﹣cos2x=1+sin2x﹣cos2x=2sin(2x﹣)+1.∴周期T=π;令2kπ﹣≤2x﹣≤2kπ,解得kπ﹣≤x≤kπ,∴单调递增区间为[kπ﹣,kπ],(k∈Z).(II)∵x∈[,],所以2x﹣∈[,],∴sin(2x﹣)∈[,1],所以f(x)的值域为[2,3],而f(x)=m+2,所以m+2∈[2,3],即m∈[0,1]22.解:(1)函数f(x)=+t=cos2ωx+sin2ωx+t=2sin(2ωx+)+t,由=T==,可得ω=,∴f(x)=.当x∈[0,π]时,,函数f(x)的最小值为1+t=0,∴t=﹣1,∴.由,k∈z,可得3kπ﹣π≤x≤3kπ+,故f(x)的增区间为[3kπ﹣π,3kπ+],k∈z.(2)∵f(C)=1=2sin()﹣1,∴sin()=1,由0<C<π可得,<<,∴=,∴C=,A+B=.又2sin2B=cos B+cos(A﹣C),∴2=cos(﹣A)+cos(A﹣),∴2cos2A=2sinA,即1﹣sin2A=sinA,再由sinA>0,求得sinA=.。
江西省2017—2018学年高一数学下学期期末考试试卷(三)
江西省2017—2018学年高一数学下学期期末考试试卷(三)(考试时间120分钟满分150分)一、单项选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC中,已知a=8,B=60°,A=45°,则b等于()A.B.C.D.2.执行如图所示的程序框图,输出S的值为()A.14 B.20 C.30 D.553.已知随机变量x,y的值如表所示,如果x与y线性相关且回归直线方程为=bx+,则实数b的值为()A.B.C.D.4.经过点(﹣3,2),倾斜角为60°的直线方程是()A.B.C.D.5.设a>b,则下列不等式成立的是()A.a2+b2>ab B.<0 C.a2>b2D.2a<2b6.已知不等式mx2+nx﹣<0的解集为{x|x<﹣或x>2},则m﹣n=()A.B.﹣C.D.﹣7.省农科站要检测某品牌种子的发芽率,计划采用随机数表法从该品牌800粒种子中抽取60粒进行检测,现将这800粒种子编号如下001,002,…,800,若从随机数表第8行第7列的数7开始向右读,则所抽取的第4粒种子的编号是()(如表是随机数表第7行至第9行)A.105 B.507 C.071 D.7178.下列四个命题:①样本方差反映的是所有样本数据与样本平均值的偏离程度;②某校高三一级部和二级部的人数分别是m、n,本次期末考试两级部数学平均分分别是a、b,则这两个级部的数学平均分为+;③某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查,现将800名学生从001到800进行编号,已知从497﹣﹣512这16个数中取得的学生编号是503,则初始在第1小组00l~016中随机抽到的学生编号是007.其中命题正确的个数是()A.0个B.1个C.2个D.3个9.若直线过点(1,1)且与两坐标轴所围成的三角形的面积为2,则这样的直线有()A.1条B.2条C.3条D.4条10.设x,y∈R,a>1,b>1,若a x=b y=3,a+b=2的最大值为()A.2 B.C.1 D.11.任取一个3位正整数n,则对数log2n是一个正整数的概率为()A .B .C .D .以上全不对12.设a n =sin,S n =a 1+a 2+…+a n ,在S 1,S 2,…S 100中,正数的个数是( )A .25B .50C .75D .100二.填空题(本大题共4小题,每小题5分,共20分)13.在正方形内有一扇形(见阴影部分),点P 随意等可能落在正方形内,则这点落在扇形外且在正方形内的概率为 .14.在锐角△ABC 中,BC=3,AB=,∠C=,则∠A= .15.已知正数x ,y 满足+=1,则+的最小值为 .16.数列{a n }中,a n +1a n =a n +1﹣1,且a 2011=2,则前2011项的和等于 .三、解答题(本大题共6小题,每小题10分,共70分.解答应写出文字说明、证明过程或演算步骤)17.甲、乙两人玩一种游戏;在装有质地、大小完全相同,编号分别为1,2,3,4,5,6六个球的口袋中,甲先模出一个球,记下编号,放回后乙再模一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢. (1)求甲赢且编号和为8的事件发生的概率; (2)这种游戏规则公平吗?试说明理由.18.设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,2a 1+1=a 2.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设数列b n =,求{b n }的前n 项和T n .19.某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到如下频率分布直方图.(Ⅰ)求分数在[70,80)内的频率;(Ⅱ)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的平均分、众数、中位数;(小数点后保留一位有效数字)(Ⅲ)用分层抽样的方法在各分数段的学生中抽取一个容量为20的样本,则各分数段抽取的人数分别是多少?20.在△ABC中,(5a﹣4c)cosB﹣4bcosC=0.(1)求cosB的值;(2)若c=5,b=,求△ABC的面积S.21.设数列{a n}的前项和为S n,且S n=,{b n}为等差数列,且a1=b1,a2(b2﹣b1)=a1.(Ⅰ)求数列{a n}和{b n}通项公式;(Ⅱ)设,求数列{c n}的前n项和T n.22.已知△ABC的三边a,b,c和面积S满足S=a2﹣(b﹣c)2,且b+c=8.(1)求cosA;(2)求S的最大值.参考答案一、单项选择题1.C2.C.3.D.4.C 5.A.6.B.7.B 8.C9.C.10.C11.B.12.D二.填空题13.答案为:.14.答案为:.15.答案为:25.16.答案为:1007.三、解答题17.解:(1)由题意知本题是一个古典概型,试验发生包含的甲、乙两人取出的数字共有6×6=36(个)等可能的结果,设“两个编号和为8”为事件A,则事件A包含的基本事件为(2,6),(3,5),(4,4),(5,3),(6,2)共5个,根据古典概型概率公式得到(2)这种游戏规则是公平的.设甲胜为事件B,乙胜为事件C,则甲胜即两编号和为偶数所包含的基本事件数有18个:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)∴甲胜的概率,乙胜的概率=P(B)∴这种游戏规则是公平的.18.解:(1)∵S4=4S2,2a1+1=a2,∴4a1+6d=4(2a1+1),2a1+1=a1+d,解得:a1=1,d=2,∴a n=2n﹣1;(2)由(1)可知,并项相加,得.19.解:(1)设分数在[70,80)内的频率为x,根据频率分布直方图,有:(0.01+0.015×2+0.025+0.005)×10+x=1,可得x=0.3;(2)估计该校高二年级学生政治成绩的平均分为:(45×0.01+55×0.015+65×0.015+75×0.03+85×0.025+95×0.005)×10=71,根据频率分布直方图,估计这40名学生期中政治成绩的众数为75,因为在频率分布直方图中第一、二、三组的频率之和为(0.010+0.015×2)×10=0.4,所以中位数=70+≈70.3;(3)[40,50)内抽取的人数是:20×0.010×10=2人;[50,60)内抽取的人数是:20×0.015×10=3人;[60,70)内抽取的人数是:20×0.015×10=3人;[70,80)内抽取的人数是:20×0.03×10=6人;[80,90)内抽取的人数是:20×0.025×10=5人;[9,100]取的人数是:20×0.00×10=1人,各分数段抽取的人数分别是2人,3人,3人,6人,5人,1人.20.解:(1)∵(5a ﹣4c )cosB ﹣4bcosC=0. ∴5sinAcosB=4sinCcosB +4sinBcosC=4sin (B +C )=4sinA ,∴cosB=.(2)由余弦定理得cosB==,即=,解得a=3或a=5.∵cosB=,∴sinB=.∴当a=3时,S △ABC =acsinB==,当a=5时,S △ABC =acsinB==.21.解:(Ⅰ)当n=1时,a 1=S 1=1,当n ≥2时,a n =S n ﹣S n ﹣1=()﹣()=,经验证当n=1时,此式也成立,所以,从而b 1=a 1=1,,又因为{b n }为等差数列,所以公差d=2,∴b n =1+(n ﹣1)2=2n ﹣1,故数列{a n }和{b n }通项公式分别为:,b n =2n ﹣1.(Ⅱ)由(Ⅰ)可知,所以+(2n ﹣1)2n ﹣1①①×2得+(2n ﹣3)2n ﹣1+(2n ﹣1)2n ②①﹣②得:﹣(2n ﹣1)2n==1+2n +1﹣4﹣(2n ﹣1)2n =﹣3﹣(2n ﹣3)2n .∴数列{c n}的前n项和.22.解:(1)由题意得:根据余弦定理得:a2=b2+c2﹣2bccosA⇒a2﹣b2﹣c2=﹣2bccosA代入上式得:即sinA=4﹣4cosA代入sin2A+cos2A=1得:(2)由(1)得∵b+c=8∴c=8﹣b∴=所以,面积S的最大值为。
2017-2018第二学期高一数学期末试卷(含答案)
3 1 2 2 a c a, 4 2 2
b2 c 2 c2 2 14 14 4 sin c 2 R sin 则有: cos ( R 为 ABD 外接圆半径) b 4 4 2 2 c 2
则有: 2 R
c 2 2 R 2 ( R 为 BDC 外接圆半径). ……12 分 sin C
Байду номын сангаас
13 ;
……4 分
k 3) k (Ⅱ) a kc (4 k 3, k 2), 2 b a ( 5, 2),因为平行,所以 5( k 2) 2(4
(18)(本小题满分 12 分) 解:(Ⅰ) S9 9 a5 126 a5 14 , a1 a3 a 5 a 7 4 a 4 48 a4 12 ,故 d 2 ,
第 1页 共 3 页
(19)(本小题满分 12 分)
解:(Ⅰ) b
( 1) ( 1) 0 1 ( 2) ( 1) 1 ( 2) 2 3 7 7 , a 22 10 15, 2 2 2 2 2 1 0 2 1 2 10 10 7 所以 y x 15 ; ……6 分 10
所以, 原式
当 n ≥ 3 时: an 1 a 2019 a 2020 1 2 二、填空题 (13) 60 (14) 2
n 1
(15) 33.75
(16) 30
(16)解析: b cos A acos B 2 3 b sin B cos A cos B sin A 2 3 sinB c 2 3 b .
(Ⅱ) y
7 15 15 25.5 . 10
江西省2017—2018学年高一数学下学期期末考试试卷(四)
江西省2017—2018学年高一数学下学期期末考试试卷(四)(文科)(考试时间120分钟 满分150分)一、单项选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.sin315°的值为( )A .﹣B .C .D .﹣2.函数f (x )=tan (ax +),(a ∈R 且a ≠0)的周期是( )A .B .C .D .3.设向量=(1,0),=(,),则下列结论中正确的是( )A .B .C .与垂直D .4.若不等式ax 2+8ax +21<0的解集是{x |﹣7<x <﹣1},那么a 的值是( )A .1B .2C .3D .45.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2﹣bc ,bc=2,则△ABC 的面积为( )A .B .1C .D .6.已知x +2y=1,则2x +4y 的最小值为( )A .8B .6C .D . 7.下列命题中,错误的是( )A .在△ABC 中,A >B 是sinA >sinB 的充要条件 B .在锐角△ABC 中,不等式sinA >cosB 恒成立C .在△ABC 中,若acosA=bcosB ,则△ABC 必是等腰直角三角形D .在△ABC 中,若B=60°,b 2=ac ,则△ABC 必是等边三角形8.已知数列﹛a n ﹜为等比数列,且,则tan (a 2a 12)的值为( )A .B .C .D .9.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若=,则=( )A .B .C .D .10.函数f (x )=Asin (ωx +φ)(A >0,ω>0,|φ|<)的部分图象如图示,则将y=f (x )的图象向右平移个单位后,得到的图象解析式为( )A.y=sin2x B.y=cos2x C.y=sin(2x+)D.y=sin(2x﹣)11.在△ABC中,a,b,c分别是∠A,∠B,∠C所对应的边,∠C=90°,则的取值范围是()A.(1,2)B.C.D.12.已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则(n∈N+)的最小值为()A.4 B.3 C.2﹣2 D.二、填空题(本大题共4小题,每小题5分,共20分)13.已知α∈(π,),其cosα=﹣,则tanα=______.14.若S n是数列{a n}的前n项的和,且,则数列{a n}的最大值的值为______.15.已知数列{a n}为等比数列,a1=3,a4=81,若数列{b n}满足b n=(n+1)log3a n,则{}的前n项和S n=______.16.①若α,β是第一象限角,且α>β,则sinα>sinβ;②函数是偶函数;③函数的一个对称中心是;④若关于x的方程在区间内的两个不同的实数根x1,x2,则x1+x2=π其中正确的结论有______(写出所有正确结论的序号)三、解答题(本大题共6小题,共70分)17.在锐角三角形中,边a、b是方程x2﹣2x+2=0的两根,角A、B满足:2sin(A+B)﹣=0,求角C的度数,边c的长度及△ABC的面积.18.已知:f(x)=ax2+(b﹣8)x﹣a﹣ab,当x∈(﹣3,2)时,f(x)>0;x∈(﹣∞,﹣3)∪(2,+∞)时,f(x)<0(1)求y=f(x)的解析式;(2)c为何值时,ax2+bx+c≤0的解集为R.19.已知等差数列{a n}的前四项和为10,且a2,a3,a7成等比数列.(1)求通项公式a n(2)设,求数列b n的前n项和S n.20.已知向量=(2cosx,sinx),=(cosx,2cosx),函数f(x)=•+m,(m∈R),且当x∈[0,]时,f(x)的最小值为2.(1)求f(x)的单调递增区间;(2)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的,再把所得的图象向右平移个单位,得到函数y=g(x)的图象,求函数g(x)的解析式.21.东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g(n)与科技成本的投入次数n的关系是g(n)=.若水晶产品的销售价格不变,第n次投入后的年利润为f(n)万元.(1)求出f(n)的表达式;(2)问从今年算起第几年利润最高?最高利润为多少万元?22.已知各项均为正数的等比数列{a n}满足a3=8,a5+a7=160,{a n}的前n项和为S n.(1)求a n;(2)若数列{b n}的通项公式为b n=(﹣1)n•n(n∈N+),求数列{a n•b n}的前n项和T n.参考答案一、单项选择题1.D.2.B.3.C 4.C.5.D.6.C.7.C.8.A.9.B.10.D.11.C.12.A.二、填空题13.答案为:214.答案为:12.15.答案为:.16.答案为:②④.三、解答题17.解:由2sin(A+B)﹣=0,得sin(A+B)=,∵△ABC为锐角三角形,∴A+B=120°,C=60°.又∵a、b是方程x2﹣2x+2=0的两根,∴a+b=2,a•b=2,∴c2=a2+b2﹣2a•bcosC=(a+b)2﹣3ab=12﹣6=6,∴c=,=absinC=×2×=.S△ABC18.解:(1)∵不等式f(x)>0的解集为x∈(﹣3,2),∴﹣3,2是方程ax2+(b﹣8)x﹣a﹣ab=0的两根,∴,且a<0,可得,∴f(x)=﹣3x2﹣3x+18.(2)由a<0,知二次函数y=ax2+bx+c的图象开口向下,要使不等式﹣3x2+5x+c≤0的解集为R,只需△≤0,即25+12c≤0,故c≤﹣.∴当c≤﹣时,不等式ax2+bx+c≤0的解集为R.19.解:(1)由题意知所以(2)当a n=3n﹣5时,数列{b n}是首项为、公比为8的等比数列所以当时,所以S n=n•综上,所以或S n=n•20.解:(1)∵(2cosx,sinx),=(cosx,2cosx),∴f(x)=•+m===.由,得.∴f(x)的单调递增区间[](k∈Z);(2)当x∈[0,]时, [],∴2sin(2x)∈[﹣1,2],则f(x)min=m=2,∴f(x)=,将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的,所得函数解析式为y=2sin(4x+)+3,再把所得的图象向右平移个单位,得到函数y=g(x)的图象,则g(x)=2sin[4(x﹣)+]+3=2sin(4x﹣)+3.21.解:(1)第n次投入后,产量为10+n万件,价格为100元,固定成本为元,科技成本投入为100n,…所以,年利润为…(2).由(1)=(万元)…当且仅当时即n=8 时,利润最高,最高利润为520万元.…答:从今年算起第8年利润最高,最高利润为520万元.…22.解:(1)设等比数列{a n}的首项为a1,公比为q,由a3=8,a5+a7=160,解得a1=2,q=2.所有.…(2)∵,∴∴相减可得=∴…。
2017-2018学年(新课标)最新江西省高一下学期期末考试数学试题及答案-精品试题
2017-2018学年江西省高一数学下学期期末综合测试时间:120 分值:150一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)(1)《莱因德纸草书》(Rhind Papyrus )是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的 1/3是较小的两份之和,问最小一份为(A )10 (B )5 (C )6 (D )11 (2)不等式()()12-+x x >0的解集为(A ){x x <—2或x >1} (B ){x —2<x <—1} (C ){x x <—1或x >2} (D ){x —1<x <2}(3)在△ABC 中,角C B A ,,所对的边分别为c b a ,,,若B b A a sin cos =,则B A A 2cos cos sin +等于(A )21-(B )21(C )—1 (D )1 (4)数列{n a }满足n a =)1(2+n n ,若前n 项和n S >35,则n 的最小值是(A )4 (B )5 (C )6 (D )7 (5)已知a >0,b >0,1=+b a ,则ba 221--的最大值为 (A )—3 (B )—4 (C )41-(D )29-(6)某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用茎叶图表示,如图,则甲、乙两名运动员得分的中位数分别为(A )20、18 (B )13、19 (C )19、13 (D )18、20(7)数列{n a }的通项公式n a =2cos 41πn +,其前n 项和为n S ,则2012S 等于(A )1006 (B )2012 (C )503 (D )022011≤--≥+-≥y x y x x 若y ax +的最小值为3,则a 的值为(8)已知点()y x M ,满足 (A)1 (B )2 (C )3 (D )4(9)如图,程序框图所进行的求和运算是(A )201...614121++++(B )191...51311++++ (C )181...41211++++(D )103221...212121++++ axex x 1223++在[﹣2,3]上的 (10)函数)(x f最大值为2,则实数a的 取值范围是(A )⎪⎭⎫⎢⎣⎡+∞,ln 312 (B)⎥⎦⎤⎢⎣⎡2ln 31,0(C )(]0,∞- (D )⎥⎦⎤ ⎝⎛∞-2ln 31, (11)在R 上定义运算⊗:b a ab b a ++=⊗2,则满足0)2(<-⊗x x 的实数x 的取值范围为(A )()2,0 (B )()2,1- (C )()()+∞-∞-,12,U (D )()1,2- (12)数列{n a }中,若11=a ,nnn a a a 211+=+,则这个数列的第10项=10a(A )19 (B )21 (C )191 (D )211二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上)(13)锐角三角形的三边分别为3,5,x ,则x 的范围是___________(14)y x ,满足)0(≥x x (>0)第9题图(15)已知x 与y 之间的一组数据:则y 与x 的线性回归方程______(16)若函数tx xt x tx x f ++++=222sin 2)(()0>t 的最大值为M ,最小值为N ,且4=+N M , 则实数t 的值为 .三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤)(17) (本小题满分10分)已知函数R x x a x x f ∈-+-=,21)( (Ⅰ)当25=a 时,解不等式10)(+≤x x f (Ⅱ)关于x 的不等式a x f ≥)(在R 上恒成立,求实数a 的取值范围.(18) (本小题满分12分)已知等差数列{n a }首项11=a ,公差为d ,且数列{n a2}是公比为4的等比数列 (1)求d ;(2)求数列{n a }的通项公式n a 及前n 项和n S ;(3)求数列{1.1+n n a a }的前n 项和n T(19) (本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得 到如图所示的频率分布直方图,质量指标值落在区间,,内的频率之比为4:2:1.(Ⅰ)求这些产品质量指标值落在区间内的频率;(Ⅱ)用分层抽样的方法在区间内抽取一个容量为6的样本,将该样本看成一个总体,从中任意抽取2件产品,求这2件产品都在区间内的概率.(20) (本小题满分12分)在△ABC 中,角C B A ,,所对的边分别为c b a ,,,且满足C a A c cos sin = (1)求角C 的大小;(2)求)cos(sin 3C B A +-的取值范围. (21) (本小题满分12分)北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估。
江西省2017-2018学年高一下学期期末考试数学(理)试题
2020届高一年级下学期期末考试数 学 试 卷(理)时间:120分钟 总分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若角的终边经过点,则( )A.B.C. D.2.若向量,满足:,,,则( )A. B. C. D.3.圆与直线的位置关系是( ) A. 相交 B. 相切 C. 相离 D. 直线过圆心4.在平面直角坐标系中,是圆上的四段弧(如图),点P 在其中一段上,角以O 为始边,OP 为终边,若,则P 所在的圆弧是学%科%网...学%科%网... A. B. C. D.5.将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减 6.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积=(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径等于米的弧田,按照上述经验公式计算所得弧田面积约是A. 平方米B. 平方米C. 平方米D. 平方米7.【2018年全国卷Ⅲ文】函数的最小正周期为A. B. C. D.8.设为等差数列的前项和,若,,则A. B. C. D.9.在平面直角坐标系中,已知两圆和,又点坐标为,是上的动点,为上的动点,则四边形AMQN能构成矩形的个数为A. 个B. 个C. 个D. 无数个10.直线分别与轴,轴交于A,B两点,点P在圆上,则面积的取值范围是()A. B. C. D.11.已知是平面向量,是单位向量.若非零向量与的夹角为,向量满足,则的最小值是A. B. C. 2 D.12.已知数列中,.若对于任意的,不等式恒成立,则实数的取值范围为A. B.C. D.二、填空题(每小5分,满分20分)13.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.14.已知且.求_________.15.设点O为的内部,点D,E分别为边AC,BC的中点,且,则.16.对于任一实数序列,定义为序列,它的第项是,假定序列的所有项都是,且,则_________.三、解答题(本大题共6小题,17题10分,其余每小题12分.解答应写出文字说明.证明过程或推演步骤.)17.已知角的终边经过点.(1)求的值;(2)求的值.18.已知数列的前项和为,且,在数列中,,点在直线上.(1)求数列,的通项公式;(2)记,求.19.如图,已知圆的方程为,过点的直线与圆交于点,与轴交于点,设,求证:为定值.20.【2018年文北京卷】已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若在区间上的最大值为,求的最小值.21.如图,在中,,的平分线交于点,设,其中是直线的倾斜角.(1)求的大小;(2)若,求的最小值及取得最小值时的的值.22.已知数列满足,数列的前项和为.(1)求的值;(2)若.①求证:数列为等差数列;②求满足的所有数对.。
2017—2018学年度第二学期高一数学期末考试(含答案)
2017—2018学年度第二学期教学质量检查高一数学考生注意:本卷共三大题,22小题,满分150分,时间120分钟.不准使用计算器.参考公式:用最小二乘法求线性回归方程a x b yˆˆˆ+=的系数公式: ()()()∑∑∑∑====-⋅⋅-=---=n i i ni ii ni i ni i ixn x yx n yx x x y y x xb1221121ˆ,x b y aˆˆ-=. 一、选择题:本大题共12小题,每小题5分,共60分. 每小题各有四个选择支,仅有一个选择支正确.请把正确选择支号在答题卡中的相应位置涂黑. 1.︒135sin 的值是( ) A.22B.22-C.23-D.23 2.已知向量),4(),1,(x b x a ==ρρ,若5=⋅b a ρρ,则x 的值为( )A.1B.2C.1±D.53.若圆22240x y x y ++-=关于直线20x y a -+=对称,则a 的值为( ) A.3- B. 1- C. 0 D. 44.为了调查某班级的作业完成情况,将该班级的52名同学随机编号01~52,用系统抽样....的方法抽取一个容量为4的样本,已知05、18、44号同学在样本中,那么样本中还有一位同学的编号应该是( ) A.29 B.30 C.31 D.325.已知α是第四象限角,且tan 2α=-,则sin 2α=( ) A.25-B. 25C.45-D. 456.要得到曲线3sin(2)5y x π=-,只需把函数3sin 2y x =的图象( )A .向左平移5π个单位 B .向右平移5π个单位 C .向左平移10π个单位 D .向右平移10π个单位7.运行如右图所示的程序框图,则输出的结果S 为( ) A .1- B .0 C .21 D .23-7第题图否2019?n <8.从集合{2,3,4,5}中随机抽取一个数a ,从集合{4,6,8}中随机抽取一个数b ,则向量(,)m a b =u r与 向量(1,2)n =r平行的概率为( )A.16B.14C.13D.129.过原点的直线l 与圆4)2()1(22=-+-y x 相交所得的弦长为32,则直线l 的斜率为( )A. 2B. 1C.43 D.1210.如图,圆C 内切于扇形AOB ,3AOB π∠=,若在扇形AOB 内任取一点,则该点在圆C 外的概率为( ) A .14B.13C.23D.3411.已知0ω>,函数()sin()4f x x πω=+在42ππ(,)上单调递减,则ω的取值范围是( ) A . (0,2] B .1(0,]2 C .13[]22, D .5[1]2, 12.设2,1OA OB ==u u u r u u u r ,0OA OB ⋅=u u u v u u u v ,OP OA OB λμ=+u u u v u u u v u u u v,且1=+μλ,则向量OA 在OP u u u v 上的投影的取值范围( ) A.]2,552(-B.]2,552(C. ]2,554(-D. ]2,554( 二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上. 13.在空间直角坐标系中,点)4,3,2(P 到y 轴的距离为________.14.已知,a b r u r 为单位向量,且,a b r r 所成角为3π,则2a b +r r 为_________.15.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某天阅读时间及人数的数据,结果用条形图表示(如右图),根据条形图可知 这50名学生在这天平均每人的课外阅读时间为 小时.16.已知sin 2cos y θθ=+,且θπ∈(0,),则当y 取得最大值时sin θ= .0.511.5220151050小时人数第15题图第10题图三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效. 17.(本小题10分)已知平面向量)2,1(=a ,),1(k -=.(1)当k 为何值时,向量a 与b a ρρ+2垂直;(2)当1=k 时,设向量与的夹角为θ,求θtan 及θ2cos 的值.18.(本小题12分)近年来,我国许多省市雾霾天气频发,为增强市民的环境保护意识,某市面向全市征召n 名义务宣传志愿者,成立环境保护宣传组织.现把该组织的成员按年龄分成5组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示,已知第2组有70人.)(1)求该组织中志愿者人数;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加某社区的宣传活动,然后在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有一名志愿者被抽中的概率.19.(本小题12分)某企业为了对新研发的一批产品进行合理定价,将产品按事先拟定的价格进行试销,得到一组销售数据()(),1,2,6i i x y i =⋯,如表所示:已知80y =.(1)求表格中q 的值;(2)已知变量,x y 具有线性相关关系,试利用最小二乘法原理,求产品销量y 关于试销单价x 的线性回归方程ˆˆˆybx a =+ ( 参考数据:662113050,271i i i i i x y x ====∑∑);(3)用(2)中的回归方程得到与i x 对应的产品销量的估计值记为i yˆ)6,...,2,1(=i , 当ˆ1i i y y -≤时,称(),i i x y 为一个“理想数据”.试确定销售单价分别为6,5,4时有哪些是“理想数据”.20.(本小题12分)设函数()2π2sin 24f x x x ⎛⎫=+⎪⎝⎭.(1)请把函数)(x f 的表达式化成)2||,0,0()sin()(πϕωϕω<>>++=A b x A x f 的形式,并求)(x f 的最小正周期;(2)求函数)(x f 在]2,4[ππ∈x 时的值域.21.(本小题12分)在平面内,已知点(1,1)A ,圆C :22(3)(5)4x y -+-=,点P 是圆C 上的一个动点,记线段PA 的中点为Q . (1)求点Q 的轨迹方程;(2)若直线:2l y kx =+与Q 的轨迹交于M N ,两点,是否存在直线l ,使得10OM ON •=u u u u r u u u r(O为坐标原点),若存在,求出k 的值;若不存在,请说明理由.22.(本小题12分)已知1≥a ,1)cos (sin cos sin )(-++-=x x a x x x f . (1)求当1=a 时,)(x f 的值域; (2)若函数)(x f 在3[0,]4π内有且只有一个零点,求a 的取值范围.2017—2018学年度第二学期教学质量检查 高一数学参考答案及评分标准二、填空题(每小题5分,满分20分)13.52 14.7; 15.0.95; 16.5三、解答题 17.(本小题满分10分)解:(1)Θ与2+a b r r 垂直,得2+0a a b ⋅=r r r() 即22+=0a a b r r rg……………………2分 即10120k -+= ……………………3分解得92k =-. ……………………4分(2)依题意,10102521||||cos =⨯+-==b a θ, ……………………6分因为[0,]θπ∈ sin 10θ∴==……………………7分 sin tan 3cos θθθ∴== ……………………8分 54110121cos 22cos 2-=-⨯=-=∴θθ ……………………10分18.(本小题满分l2分)解: (1)由题意:第2组的人数:7050.07n =⨯⨯,得到:=200n , 故该组织有200人.……………………3分(2)第3组的人数为0.3200=60⨯, 第4组的人数为0.2200=40⨯,第5组的人数为0.1200=20⨯. ∵第3,4,5组共有120名志愿者,∴利用分层抽样的方法在120名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组:606=3120⨯;第4组:406=2120⨯;第5组:206=1120⨯. ……………………5分 记第3组的3名志愿者为1A ,2A ,3A ,第4组的2名志愿者为1B ,2B , 第5组的1名志愿者为C .则从6名志愿者中抽取2名志愿者有:()12A A ,,()13A A ,,()11A B ,,()12A B ,,()1A C ,,()23A A ,,()21A B ,,()22A B ,,()2A C ,,()31A B ,,()32A B ,,()3A C ,,()12B B ,,()1B C ,,()2B C ,, 共有15种.……………………8分其中第3组的3名志愿者为1A ,2A ,3A ,至少有一名志愿者被抽中的有:()12A A ,,()13A A ,,()11A B ,,()12A B ,,()1A C ,,()23A A ,,()21A B ,,()22A B ,,()2A C ,,()31A B ,,()32A B ,,()3A C , 共有12种.……………………10分则第3组的为至少有一名志愿者被抽中的概率为124155P ==. ……………………12分 [用间接法求解亦可以给满分] 19. (本小题满分l2分) 解:(1)66880838490+++++=q y Θ,又80y =Q ,75=∴q . ……………………3分(2)4567891362x +++++==, ……………………4分2133050680241327162b ∧-⨯⨯∴==-⎛⎫- ⎪⎝⎭……………………6分 ()138041062a ∧∴=--⨯= ……………………7分 4106y x ∧∴=-+ ……………………8分(3)4106y x ∧=-+Q1111410690,909001y x y y ∧∧∴=-+=-=-=<,所以()()11,4,90x y =是“理想数据”;2222410686,=868421y x y y ∧∧=-+=--=>,所以()()22,5,84x y =不是“理想数据”; 3333410682,838211y x y y ∧∧=-+=-=-==,所以()()33,6,83x y =是“理想数据”.所以所求的“理想数据”为)90,4( ,)83,6(. ……………………12分20. (本小题满分l2分) 解: (1)()2ππ2sin 1cos 242f x x x x x ⎛⎫⎛⎫=+-=-+⎪ ⎪⎝⎭⎝⎭π1sin22sin 213x x x ⎛⎫=+=-+ ⎪⎝⎭, ……………………4分∴函数()f x 最小正周期为22T ππ== ……………………5分 (2) ππ,42x ⎡⎤∈⎢⎥⎣⎦Q∴ππ2π2,363x ⎡⎤-∈⎢⎥⎣⎦, ……………………7分 ∴π1sin 2[,1]32x ⎛⎫-∈ ⎪⎝⎭ ∴π2sin 2[1,2]3x ⎛⎫-∈ ⎪⎝⎭……………………10分 ∴()[2,3]f x ∈……………………11分 ∴函数()f x 的值域是[2,3]……………………12分21. (本小题满分l2分)(1)解:设点(),Q x y 、()00,P x y .Q 点P 在圆C 上,∴2200(3)(5)4x y -+-=. ① ……………………1分又Q PA 中点为点Q∴002121x x y y =+⎧⎨=+⎩………………… 3分可得021x x =-,021y y =-代入①得22(2)(3)1x y -+-=∴点Q 的轨迹方程为22(2)(3)1x y -+-= …………………… 4分 (2)假设存在直线l ,使得6=•OM ,设()11,M x y ,()22,N x y ,由222(2)(3)1y kx x y =+⎧⎨-+-=⎩ 得22(1)(24)40k x k x +-++= …………………… 6分因为直线与Q 的轨迹交于两点所以22=(24)16(1)0k k ∆+-+> 得403k <<② …………………… 7分 且121222244,11k x x x x k k ++==++ …………………… 8分又212121212(1)2()4OM ON x x y y k x x k x x +=+•++=+u u u u r u u u r222424(1)24=1011k k k k k+=+⨯+⨯+++ …………………… 9分∴2410k k +-= 解得2k =-± …………………… 10分因为2k =--②, …………………… 11分所以存在直线l :(22y x =-++,使得=10OM ON •u u u u r u u u r……………………12分22. (本小题满分l2分)解:(1)当1=a 时,1cos sin cos sin )(-++-=x x x x x f ,令x x t cos sin +=,则]2,2[-∈t ,21cos sin 2-=t x x ,22)1(21121)(--=-+--=t t t t g , 当1=t 时,0)(max =t g ,当2-=t 时,223)(min --=t g , 所以)(x f 的值域为]0,223[--……………………4分 (2)1)cos (sin cos sin )(-++-=x x a x x x f ,令sin cos t x x =+,则当3[0,]4x π∈时,t ∈,21sin cos 2t x x -=, 2221111()1()2222t h t at t a a -=-+-=--++, …………………… 5分)(x f 在3[0,]4π内有且只有一个零点等价于()h t 在[0,1)I 内有且只有一个零点,)2,1[无零点.因为1≥a , ……………………6分 ∴()h t 在[0,1)内为增函数,①若()h t 在[0,1)内有且只有一个零点,)2,1[无零点,故只需10(1)01(0)0020302a h h h ⎧⎪->⎧>⎪⎪-⎪≤⇒≤⎨⎨⎪⎪>⎩->得423>a ;……………………10分 ②若2为()h t 的零点,)2,1[内无零点,则0232=-a ,得423=a , 经检验,423=a 不符合题意. 综上,423>a . ……………………12分。
江西省丰城中学2017-2018学年高一下学期期中数学试卷(文科)Word版含解析
江西省丰城中学2017-2018学年高一下学期期中数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.)1.已知集合M={x|x 2<4},N={x|x 2﹣2x ﹣3<0},则集合M∩N 等于( )A .{x|x <﹣2}B .{x|x >3}C .{x|﹣1<x <2}D .{x|2<x <3}2.已知等比数列{a n }满足:a 2=2,a 5=,则公比q 为( )A .﹣B .C .﹣2D .23.不等式≥2的解集为( ) A .[﹣1,0) B .[﹣1,+∞) C .(﹣∞,﹣1] D .(﹣∞,﹣1]∪(0,+∞)4.《张丘建算经》卷上第22题为:今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第1天织5尺布,现在一月(按30天计)共织390尺布,则每天比前一天多织( )尺布.(不作近似计算)A .B .C .D .5.不等式组,所表示的平面区域的面积等于( )A .B .C .D .6.二次函数f (x )的图象如图所示,则f (x ﹣1)>0的解集为( )A .(﹣2,1)B .(0,3)C .(﹣1,2]D .(﹣∞,0)∪(3,+∞)7.△ABC 中,a .b .c 分别为∠A .∠B .∠C 的对边,如果a .b .c 成等差数列,∠B=30°,△ABC 的面积为,那么b 等于( )A .B .C .D .8.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若bcosC+ccosB=asinA ,则△ABC 的形状为 ( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定9.设等差数列{an }的前n项和为Sn,若Sm﹣1=﹣2,Sm=0,Sm+1=3,则m=()A.3 B.4 C.5 D.610.数列1,2,3,4…前n项的和为()A. +B.﹣ ++1C.﹣ + D.﹣ +11.在△ABC中,内角A,B,C依次成等差数列,AB=8,BC=5,则△ABC外接圆的面积为()A.B.16π C.D.15π12.已知不等式m2+(cos2θ﹣5)m+4sin2θ≥0恒成立,则实数m的取值范围是()A.0≤m≤4B.1≤m≤4C.m≥4或m≤0D.m≥1或m≤0二、填空题(本大题共4小题,每小题5分,共25分)13.轮船A和轮船B在中午12时同时离开海港O,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h、15 n mile/h,则下午2时两船之间的距离是n mile.14.已知函数f(x)=,若使不等式f(x)<成立,则x的取值范围为.15.在锐角△ABC中,边长a=1,b=2,则边长c的取值范围是.16.关于x的不等式ax2+bx+c<0的解集为{x|x<﹣2或x>﹣},则关于x的不等式ax2﹣bx+c>0的解集为.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算过程)17.解不等式:≥2.18.已知在△ABC中,角A、B、C所对的边分别为a,b,c,a=7,b=3,c=5.(1)求△ABC中的最大角;(2)求角C的正弦值.19.等差数列{an}的首项为23,公差为整数,且第6项为正数,从第7项起为负数.(1)求此数列的公差d;(2)当前n项和Sn是正数时,求n的最大值.20.该试题已被管理员删除21.某汽车运输公司,购买一批客车投入营运,据市场分析,每辆客车营运的总利润y(单位:10万元)与营运年数x(x∈N*)的关系为二次函数(如图示),则每辆客车营运多少年,其营运的年平均利润最大,并求其最大值?22.已知首项为的等比数列{an }不是递减数列,其前n项和为Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设,求数列{Tn}的最大项的值与最小项的值.江西省丰城中学2017-2018学年高一下学期期中数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.)1.已知集合M={x|x 2<4},N={x|x 2﹣2x ﹣3<0},则集合M∩N 等于( )A .{x|x <﹣2}B .{x|x >3}C .{x|﹣1<x <2}D .{x|2<x <3}【考点】交集及其运算.【专题】计算题.【分析】先化简两个集合,再由交集的定义求交集,然后比对四个选项,选出正确选项来【解答】解:由题意集合M={x|x 2<4}═{x|﹣2<x <2},N={x|x 2﹣2x ﹣3<0}={x|﹣1<x <3}, ∴M∩N={x|﹣1<x <2}故选C【点评】本题考查交集及其运算,求解的关键是化简两个集合及正确理解交集的定义.2.已知等比数列{a n }满足:a 2=2,a 5=,则公比q 为( )A .﹣B .C .﹣2D .2 【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】利用等比数列通项公式求解.【解答】解:∵等比数列{a n }满足:a 2=2,a 5=,∴2q 3=,解得q=.故选:B .【点评】本题考查等比数列的公比的求法,是基础题,解题时要认真审题,注意等比数列的通项公式的求法.3.不等式≥2的解集为( ) A .[﹣1,0) B .[﹣1,+∞) C .(﹣∞,﹣1] D .(﹣∞,﹣1]∪(0,+∞)【考点】其他不等式的解法.【分析】本题为基本的分式不等式,利用穿根法解决即可,也可用特值法.【解答】解:⇔⇔⇔⇔﹣1≤x<0故选A【点评】本题考查简单的分式不等式求解,属基本题.在解题中,要注意等号.4.《张丘建算经》卷上第22题为:今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第1天织5尺布,现在一月(按30天计)共织390尺布,则每天比前一天多织()尺布.(不作近似计算)A.B.C.D.【考点】等差数列的前n项和.【专题】等差数列与等比数列.【分析】设女织布每天增加d尺,由等差数列的前n项和公式可求结果.【解答】解:设该女织布每天增加d尺,由题意知S=30×5+d=390,30解得d=.故该女子织布每天增加尺.故选:C.【点评】本题考查等差数列的公差的求法,涉及等差数列的前n项和公式,属基础题.5.不等式组,所表示的平面区域的面积等于()A.B.C.D.【考点】简单线性规划的应用.【专题】计算题;数形结合.【分析】先根据约束条件画出可行域,求三角形的顶点坐标,从而求出表示的平面区域的面积即可.【解答】解:不等式组表示的平面区域如图所示,由得交点A的坐标为(1,1).又B、C两点的坐标为(0,4),(0,).=(4﹣)×1=.故S△ABC故选C.【点评】本题主要考查了简单的线性规划,以及利用几何意义求平面区域的面积,属于基础题.6.二次函数f(x)的图象如图所示,则f(x﹣1)>0的解集为()A.(﹣2,1)B.(0,3) C.(﹣1,2] D.(﹣∞,0)∪(3,+∞)【考点】二次函数的性质.【专题】转化思想;综合法;函数的性质及应用.【分析】根据函数f(x)的图象可得f(x)>0的解集为{x|﹣1<x<2},而f(x﹣1)的图象是由f(x ﹣1)的图象向右平移一个单位得到的,从而求得f(x﹣1)>0的解集.【解答】解:根据f(x)的图象可得f(x)>0的解集为{x|﹣1<x<2},而f(x﹣1)的图象是由f(x ﹣1)的图象向右平移一个单位得到的,故f(x﹣1)>0的解集为(0,3),故选:B.【点评】本题主要考查二次函数的图象,函数图象的平移规律,属于基础题.7.△ABC中,a.b.c分别为∠A.∠B.∠C的对边,如果a.b.c成等差数列,∠B=30°,△ABC的面积为,那么b等于()A.B.C.D.【考点】等差数列的通项公式;三角形的面积公式.【专题】计算题.【分析】由题意可得2b=a+c.平方后整理得a2+c2=4b2﹣2ac.利用三角形面积可求得ac的值,代入余弦定理可求得b的值.【解答】解:∵a,b,c成等差数列,∴2b=a+c.平方得a2+c2=4b2﹣2ac.①又△ABC的面积为,且∠B=30°,由S△=acsinB=ac•sin30°=ac=,解得ac=6,代入①式可得a2+c2=4b2﹣12,由余弦定理cosB====.解得b2=4+2,又∵b为边长,∴b=1+.故选:B【点评】本题考查等差数列和三角形的面积,涉及余弦定理的应用,属基础题.8.设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.不确定【考点】三角形的形状判断.【专题】解三角形.【分析】根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sinA的值进而求得A,判断出三角形的形状.【解答】解:∵bcosC+ccosB=asinA,∴sinBcosC+sinCcosB=sin(B+C)=sinA=sin2A,∵sinA≠0,∴sinA=1,A=,故三角形为直角三角形,故选:A.【点评】本题主要考查了正弦定理的应用,解题的关键时利用正弦定理把等式中的边转化为角的正弦,属于基本知识的考查.9.设等差数列{a n }的前n 项和为S n ,若S m ﹣1=﹣2,S m =0,S m+1=3,则m=( )A .3B .4C .5D .6【考点】等差数列的性质;等差数列的前n 项和.【专题】计算题;等差数列与等比数列.【分析】由a n 与S n 的关系可求得a m+1与a m ,进而得到公差d ,由前n 项和公式及S m =0可求得a 1,再由通项公式及a m =2可得m 值.【解答】解:a m =S m ﹣S m ﹣1=2,a m+1=S m+1﹣S m =3,所以公差d=a m+1﹣a m =1,S m ==0,得a 1=﹣2,所以a m =﹣2+(m ﹣1)•1=2,解得m=5,故选C .【点评】本题考查等差数列的通项公式、前n 项和公式及通项a n 与S n 的关系,考查学生的计算能力.10.数列1,2,3,4…前n 项的和为( )A . +B .﹣ ++1C .﹣ +D .﹣ +【考点】数列的求和.【专题】等差数列与等比数列.【分析】利用分组求和法求解.【解答】解:数列1,2,2,4…前n 项的和:S=(1+2+3+4+…+n)+()==﹣++1.故选:B.【点评】本题考查数列的前n项和的求法,是基础题,解题时要认真审题,注意分组求和法的合理运用.11.在△ABC中,内角A,B,C依次成等差数列,AB=8,BC=5,则△ABC外接圆的面积为()A.B.16π C.D.15π【考点】等差数列的性质.【专题】等差数列与等比数列.【分析】由题设条件,先求出角B,再由余弦定理求出AC,然后利用正弦定理求出∴△ABC外接圆半径,由此能求出△ABC外接圆面积.【解答】解:∵△ABC中,内角A,B,C依次成等差数列,∴A+C=2B,∴A+B+C=3B=180°,解得B=60°,∵AB=8,BC=5,∴AC2=82+52﹣2×8×5×cos60°=49,∴AC=7,∴△ABC外接圆半径R==,∴△ABC外接圆面积S==.故选:A.【点评】本题考查三角形外接圆面积的求法,是中档题,解题时要注意等差数列、正弦定理、余弦定理等知识点的合理运用.12.已知不等式m2+(cos2θ﹣5)m+4sin2θ≥0恒成立,则实数m的取值范围是()A.0≤m≤4B.1≤m≤4C.m≥4或m≤0D.m≥1或m≤0【考点】函数恒成立问题.【专题】计算题.【分析】先利用三角函数公式将抽象不等式变为三角不等式,再由三角函数的有界性结合一次函数的性质求参数m的范围,即可选出正确选项.【解答】解:∵m2+(cos2θ﹣5)m+4sin2θ≥0,∴m2+(cos2θ﹣5)m+4(1﹣cos2θ)≥0;∴cos2θ(m﹣4)+m2﹣5m+4≥0恒成立⇔不等式恒成立⇔m≤0或m≥4,故选C.【点评】本题考点是函数恒成立问题,利用函数的性质将不等式恒成立求参数的问题转化为求函数最值的问题,属于中档题.二、填空题(本大题共4小题,每小题5分,共25分)13.轮船A和轮船B在中午12时同时离开海港O,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h、15 n mile/h,则下午2时两船之间的距离是70 n mile.【考点】向量加减混合运算及其几何意义.【分析】本题是考查余弦定理的题目,在画方位角是注意不要出错,告诉两船的速度和行驶的时间,可以得到三角形的两边长,这样满足了余弦定理所需要的条件,得到结果.【解答】解:如图,∵轮船走了两个小时,∴OA=50,OB=30.∵由余弦定理可得AB2=OA2+OB2﹣2OA•OBcos120°=502+302﹣2×50×30×(﹣)=2500+900+1500=4900∴AB=70.故答案为:70.【点评】本题隐含着向量这一条件,并没有直接叙述向量,但船的航行既有大小又有方向是向量,向量是数形结合的典型例子,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,14.已知函数f(x)=,若使不等式f(x)<成立,则x的取值范围为{x|x<3} .【考点】其他不等式的解法.【专题】对应思想;综合法;直线与圆.【分析】根据函数的表达式解关于x≥2时的不等式f(x)<即可.【解答】解:∴f(x)=,∴x<2时,不等式f(x)<恒成立,x≥2时,x﹣<,解得:2≤x<3,综上,不等式的解集是:{x|x<3},故答案为:{x|x<3}.【点评】本题考查了分段函数问题,考查解不等式问题,是一道基础题.15.在锐角△ABC中,边长a=1,b=2,则边长c的取值范围是(,).【考点】余弦定理.【专题】计算题.【分析】根据余弦定理和锐角的余弦函数大于0可求得c的范围,进而利用两边之差小于第三边,求得c 的另一个范围,最后取交集.【解答】解:若c是最大边,则cosC>0.∴>0,∴c<.若b是最大边,必有cosB>0,有>0,解可得c>,综合可得<c<.故答案为:(,)【点评】本题主要考查了余弦定理的运用.余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题.16.关于x的不等式ax2+bx+c<0的解集为{x|x<﹣2或x>﹣},则关于x的不等式ax2﹣bx+c>0的解集为{x|<x<2}..【考点】一元二次不等式的解法.【专题】不等式的解法及应用.【分析】由不等式ax2+bx+c<0的解集得出a<0以及对应方程ax2+bx+c=0的两根,再由根与系数的关系式得、的值;把不等式ax2﹣bx+c>0化为x2﹣x+<0,代入数据求出不等式的解集即可.【解答】解:∵关于x的不等式ax2+bx+c<0的解集为{x|x<﹣2或x>﹣},∴a<0,且方程ax2+bx+c=0的根为x=﹣2或x=﹣,由根与系数的关系式得:﹣2+(﹣)=﹣,(﹣2)×(﹣)=,即=, =1;又关于x的不等式ax2﹣bx+c>0可化为x2﹣x+<0,即x2﹣x+1<0,解不等式,得<x<2,∴不等式ax2﹣bx+c>0的解集为{x|<x<2};故答案为:{x|<x<2}.【点评】本题考查了一元二次不等式与对应一元二次方程之间的关系以及根与系数的关系等知识,是基础题.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算过程)17.解不等式:≥2.【考点】一元二次不等式的解法.【专题】计算题;数形结合.【分析】把不等式的右边移项到左边,通分后把分子分母都分解因式,得到的式子小于等于0,然后根据题意画出图形,在数轴上即可得到原不等式的解集.【解答】解:不等式移项得:﹣2≥0,变形得:≤0,即2(x﹣)(x﹣6)(x﹣3)(x﹣5)≤0,且x≠3,x≠5,根据题意画出图形,如图所示:根据图形得:≤x<3或5<x≤6,则原不等式的解集为[,3)∪(5,6].【点评】此题考查了一元二次不等式的解法,考查了转化的思想及数形结合的思想.此类题先把分子分母分解因式,然后借助数轴达到求解集的目的.18.已知在△ABC中,角A、B、C所对的边分别为a,b,c,a=7,b=3,c=5.(1)求△ABC中的最大角;(2)求角C的正弦值.【考点】余弦定理;正弦定理.【专题】计算题;解三角形.【分析】(1)易判断最大角为A,直接由余弦定理可求cosA,进而可得A;(2)运用正弦定理即可求得;【解答】解:(1)由a=7,b=3,c=5,知最大角为A ,∵==﹣,∴∠A=120°;(2)由正弦定理,得==,∴角C 的正弦值为. 【点评】该题考查正弦定理、余弦定理及其应用,属基础题,熟记定理内容是解题关键.19.等差数列{a n }的首项为23,公差为整数,且第6项为正数,从第7项起为负数.(1)求此数列的公差d ;(2)当前n 项和S n 是正数时,求n 的最大值.【考点】等差数列的前n 项和;等差数列的通项公式.【专题】等差数列与等比数列.【分析】(1)由a 6>0,a 7<0且公差d ∈Z ,可求出d 的值;(2)由前n 项和S n >0,以及n ∈N*,求出n 的最大值.【解答】解:(1)由题意,得a 6=a 1+5d=23+5d >0,a 7=a 1+6d=23+6d <0,∴﹣<d <﹣,又d ∈Z ,∴d=﹣4;(2)前n 项和S n =23n+•(﹣4)>0,整理,得n (50﹣4n )>0;∴0<n <, 又∵n ∈N *,∴n 的最大值为12.【点评】本题考查了等差数列的有关运算问题,解题时应根据等差数列的性质与通项公式、前n 项和,进行计算,即可得出正确的答案,是基础题.20.该试题已被管理员删除21.某汽车运输公司,购买一批客车投入营运,据市场分析,每辆客车营运的总利润y(单位:10万元)与营运年数x(x∈N*)的关系为二次函数(如图示),则每辆客车营运多少年,其营运的年平均利润最大,并求其最大值?【考点】函数模型的选择与应用.【专题】应用题.【分析】先根据图象求出二次函数解析式,欲使营运年平均利润最大,即求的最大值,故先表示出此式,再结合基本不等式即可求其最大值.【解答】解:设二次函数为y=a(x﹣6)2+11(a<0),将点(4,7)代入,得a=﹣1,故二次函数为y=﹣x2+12x﹣25,则年平均利润为=﹣(x+)+12≤﹣2+12=2,当且仅当即x=5时,取等号,答:每辆客车营运5年,年平均利润最大,最大值为20万元.【点评】本小题主要考查二次函数的性质、基本不等式在最值问题中的应用、基本不等式等基础知识,考查运算求解能力、化归与转化思想.属于基础题.22.已知首项为的等比数列{an }不是递减数列,其前n项和为Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设,求数列{T n }的最大项的值与最小项的值.【考点】等差数列与等比数列的综合;等比数列的通项公式;数列的求和.【专题】等差数列与等比数列.【分析】(Ⅰ)设等比数列的公比为q ,由S 3+a 3,S 5+a 5,S 4+a 4成等差数列,可构造关于q 的方程,结合首项为的等比数列{a n }不是递减数列,求出q 值,可得答案.(Ⅱ)由(Ⅰ)可得S n 的表达式,由于数列为摆动数列,故可分类讨论求出在n 为奇数和偶数时的范围,综合讨论结果,可得答案.【解答】解:(Ⅰ)设等比数列的公比为q ,∵S 3+a 3,S 5+a 5,S 4+a 4成等差数列.∴S 5+a 5﹣(S 3+a 3)=S 4+a 4﹣(S 5+a 5)即4a 5=a 3,故q 2==又∵数列{a n }不是递减数列,且等比数列的首项为∴q=﹣∴数列{a n }的通项公式a n =×(﹣)n ﹣1=(﹣1)n ﹣1•(Ⅱ)由(Ⅰ)得S n =1﹣(﹣)n =当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=故0<≤=﹣=当n 为偶数时,S n 随n 的增大而增大,所以1>S n ≥S 2=故0>≥=﹣=综上,对于n ∈N *,总有≤≤故数列{T}的最大项的值为,最小项的值为n【点评】本小题主要考查等差数列的概念,等比数列的概念、通项公式、前n项和公式,数列的基本性质等基础知识,考查分类讨论思想,考查运算能力、分析问题和解析问题的能力.。
全国百强校:江西省2017-2018学年高一下学期期末考试数学(理)试题+答案
2020届高一年级下学期期末考试数 学 试 卷(理)时间:120分钟 总分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若角的终边经过点,则( )A.B.C. D.2.若向量,满足:,,,则( )A. B. C. D.3.圆与直线的位置关系是( ) A. 相交 B. 相切 C. 相离 D. 直线过圆心4.在平面直角坐标系中,是圆上的四段弧(如图),点P 在其中一段上,角以O 为始边,OP 为终边,若,则P 所在的圆弧是A. B. C. D.5.将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减 6.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积=(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径等于米的弧田,按照上述经验公式计算所得弧田面积约是A. 平方米B. 平方米C. 平方米D. 平方米7.【2018年全国卷Ⅲ文】函数的最小正周期为A. B. C. D.8.设为等差数列的前项和,若,,则A. B. C. D.9.在平面直角坐标系中,已知两圆和,又点坐标为,是上的动点,为上的动点,则四边形AMQN能构成矩形的个数为A. 个B. 个C. 个D. 无数个10.直线分别与轴,轴交于A,B两点,点P在圆上,则面积的取值范围是()A. B. C. D.11.已知是平面向量,是单位向量.若非零向量与的夹角为,向量满足,则的最小值是A. B. C. 2 D.12.已知数列中,.若对于任意的,不等式恒成立,则实数的取值范围为A. B.C. D.二、填空题(每小5分,满分20分)13.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.14.已知且.求_________.15.设点O为的内部,点D,E分别为边AC,BC的中点,且,则.16.对于任一实数序列,定义为序列,它的第项是,假定序列的所有项都是,且,则_________.三、解答题(本大题共6小题,17题10分,其余每小题12分.解答应写出文字说明.证明过程或推演步骤.)17.已知角的终边经过点.(1)求的值;(2)求的值.18.已知数列的前项和为,且,在数列中,,点在直线上.(1)求数列,的通项公式;(2)记,求.19.如图,已知圆的方程为,过点的直线与圆交于点,与轴交于点,设,求证:为定值.20.【2018年文北京卷】已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若在区间上的最大值为,求的最小值.21.如图,在中,,的平分线交于点,设,其中是直线的倾斜角.(1)求的大小;(2)若,求的最小值及取得最小值时的的值.22.已知数列满足,数列的前项和为.(1)求的值;(2)若.①求证:数列为等差数列;②求满足的所有数对.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若角的终边经过点,则()A. B.C. D.【答案】A【解析】由点P的坐标计算可得:,则:,,.本题选择A选项.点睛:利用三角函数的定义求一个角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x、纵坐标y、该点到原点的距离r.若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).2.若向量,满足:,,,则()A. B. C. D.【答案】B【解析】【分析】利用向量垂直的性质直接求解.【详解】∵向量,满足:,,,∴,解得=.故选:B.【点睛】本题考查向量的模的求法,考查向量垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,属于基础题.3.圆与直线的位置关系是()A. 相交B. 相切C. 相离D. 直线过圆心【答案】A【解析】圆的圆心为:,半径为:1圆心到直线即的距离为:.所以直线与圆相交.故选A.4.在平面直角坐标系中,是圆上的四段弧(如图),点P在其中一段上,角以O为始边,OP为终边,若,则P所在的圆弧是A. B.C. D.【答案】C【解析】分析:逐个分析A、B、C、D四个选项,利用三角函数的三角函数线可得正确结论.详解:由下图可得:有向线段为余弦线,有向线段为正弦线,有向线段为正切线.A选项:当点在上时,,,故A选项错误;B选项:当点在上时,,,,故B选项错误;C选项:当点在上时,,,,故C选项正确;D选项:点在上且在第三象限,,故D选项错误.综上,故选C.点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到所对应的三角函数线进行比较.5.将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】【分析】将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间为[﹣+kπ,+kπ],k∈Z,减区间为[+kπ,+kπ],k∈Z,由此能求出结果.【详解】将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间满足:﹣+2kπ≤2x≤,k∈Z,减区间满足:+2kπ≤2x≤,k∈Z,∴增区间为[﹣+kπ,+kπ],k∈Z,减区间为[+kπ,+kπ],k∈Z,∴将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数在区间上单调递增.故答案为:A.【点睛】(1)本题主要考查三角函数的图像的变换,考查三角函数的单调区间的求法,意在考查学生对这些知识的掌握水平和分析推理能力.(2)求函数的单调区间, 首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.6.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积=(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径等于米的弧田,按照上述经验公式计算所得弧田面积约是A. 平方米B. 平方米C. 平方米D. 平方米【答案】B【解析】【分析】在Rt△AOD中,由题意OA=4,∠DAO=,即可求得OD,AD的值,根据题意可求矢和弦的值,即可利用公式计算求值得解.【详解】如图,由题意可得:∠AOB=,OA=4,在Rt△AOD中,可得:∠AOD=,∠DAO=,OD=AO=,可得:矢=4﹣2=2,由AD=AO•sin=4×=2,可得:弦=2AD=2×2=4,所以:弧田面积=(弦×矢+矢2)=(4×2+22)=4≈9平方米.故答案为:B.【点睛】本题主要考查扇形的面积公式,考查学生对新的定义的理解,意在考查学生对这些知识的掌握水平和分析推理计算能力.7.【2018年全国卷Ⅲ文】函数的最小正周期为A. B. C. D.【答案】C【解析】分析:将函数进行化简即可详解:由已知得的最小正周期故选C.点睛:本题主要考查三角函数的化简和最小正周期公式,属于中档题8.设为等差数列的前项和,若,,则A. B. C. D.【答案】B【解析】分析:首先设出等差数列的公差为,利用等差数列的求和公式,得到公差所满足的等量关系式,从而求得结果,之后应用等差数列的通项公式求得,从而求得正确结果.详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.9.在平面直角坐标系中,已知两圆和,又点坐标为,是上的动点,为上的动点,则四边形AMQN 能构成矩形的个数为A. 个B. 个C. 个D. 无数个【答案】D【解析】【分析】根据题意画出图形,结合图形得出满足条件的四边形AMQN 能构成矩形的个数为无数个.【详解】如图所示,任取圆C 2上一点Q ,以AQ 为直径画圆,交圆C 1与M 、N 两点,则由圆的对称性知,MN=AQ ,且∠AMQ=∠ANQ=90°,∴四边形AMQN 是矩形,由作图知,四边形AMQN 能构成无数个矩形.故答案为:D.【点睛】(1)本题主要考查圆和圆的位置关系,意在考察学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是“以AQ 为直径画圆,交圆C 1与M 、N 两点”,这样可以得到无数个矩形.10.直线分别与轴,轴交于A ,B 两点,点P 在圆上,则面积的取值范围是( )A. B. C. D.【答案】A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,,则,点P在圆上,圆心为(2,0),则圆心到直线距离,故点P到直线的距离的范围为,则,故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题。
高一数学下学期期末考试试题(9)
﹣Tn=1×(﹣ 1) +2×(﹣ 1) +3×(﹣ 1) +4×(﹣ 1) +…+n×(﹣ 1) . ②
①﹣②,整理得
2Tn =﹣ 1+(﹣ 1) 2+(﹣ 1)3+(﹣ 1)4+…+(﹣ 1)n﹣ n(﹣ 1) = n+1
∴ Tn=
(﹣ 1) n﹣ .
﹣﹣ n(﹣ 1) n+1
【解析】 解法 2: bn=ancos( π an) =ncosnπ =n(﹣ 1)n =
4 小题,每小题 5 分.
13.从集合 【答案】
的所有子集中任取一个集合,它含有 2 个元素的概率为 __________ .
【解析】 由题意得,集合
有
个子集,含有 2 个元素的集合共有
种,
故含有 2 个元素的概率为
.
14.若直线 l 1:( a+2)x+(a﹣ 1)y+8=0 与直线 l 2:( a﹣ 3)x+( a+2)y ﹣ 7=0 垂直,那么 a 的值为 ________. 【答案】 ±2 【解析】 a=1 时,两条直线分别化为: 3x+8=0,﹣2x+3y ﹣ 7=0,此时两条直线不垂直, 舍去.a= ﹣2 时,两条直线分别化为:﹣ 3x+8=0,﹣ 5x﹣ 7=0,此时两条直线垂直,因此 a=﹣ 2 满足
号 位 座
封
密
号 场 考 不
订
装
号 证
考
准
只
卷
名 姓 此
级 班
江西赣州第一中学 2017-2018 学年下学期高一年级期末考试卷 数学
注意事项:
1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丰城中学2017-2018学年下学期高一期末考试试卷
数 学(文科)
本试卷总分值为150分 考试时间为120分钟
考试范围:必修五(数列、解三角形、不等式)、必修二(立体几何初步)
一、选择题(本大题共12小题,每小题5分,共60分,每小题有且只有一个正确选项) 1.已知数列}{n a 的通项公式为)(432*∈--=N n n n a n ,则4a 等于( ) A .1 B .2 C .0 D .3 2.若b a >,则下列不等式一定正确的是( ) A.bc ac > B.2
2
bc ac > C.
a
b 1
1> D.c b c a ->- 3.已知ABC ∆满足222
0c a ba b -+-=, 则角C 的大小为( )
A .
3π B .6π C .2
π
D .32π
4.设l 是一条直线,βα,是两个不同的平面,则下列结论正确的是( ) A.若l ∥α,l ∥β,则α∥β B.若l ∥α,l ⊥β,则α⊥β
C.若α⊥β,l ∥α,则l ⊥β
D.若α⊥β,l ⊥α,则l ⊥β
5.一个几何体的三视图如图所示(两个矩形,一个直角三角形),
则这个几何体的体积( )
A. 72
B. 48
C. 27
D. 36
6.等差数列}{n a 中,39741=++a a a ,27963=++a a a ,则数列}{n a 的前9项的和9
S
等于( )
A .66
B .99
C .144
D .297 7.在ABC ∆中,若tan tan 1A B ⋅<,则ABC ∆的形状是( ) A .锐角三角形 B .直角三角形
C .钝角三角形
D .可能是锐角三角形,也可能是钝角三角形 8.如图是某平面图形的直观图,则原平面图形的面积是( ) A .4 B .22 C .42 D .8
9.已知}{n a 是等差数列,公差0≠d ,且931,,a a a 成等比数列,则
10
429
31a a a a a a ++++等于( )
A.169
B.1611
C.1613
D.16
15 10.已知ABC ∆三个内角A,B,C 所对的边分别为c b a ,,,且满足a b >,则下列结论错误的
是( )
A. A B >
B. sin2sin2A B >
C. cos cos A B <
D. sin sin A B > 11.在ABC ∆中,角A B C 、、的对边分别为a b c 、、,
,4
a x
b B π
===
,若ABC ∆
有两解,则x 的取值范围是( )
A.
)
2 B. ()0,2
C. (2,
D. ()2,+∞
12.对于任意实数x ,不等式()()2
22240a x a ----<恒成立,则实数a 的取值范围是( )
A. (),2-∞
B. (],2-∞
C. ()2,2-
D. (]
2,2-
二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在题后对应横线上) 13.定义
bc ad d
b c a -=,若数列}{n a 为等比数列,且35=a ,则
273
8
a a a a -=__________.
14.某同学骑电动车以24km/h 的速度沿正北方向的公路行驶,在点A 处测得电视塔S 在电动车的北偏东30°方向上,15min 后到点B 处,测得电视塔S 在电动车的北偏东75°方向上,则点B 与电视塔S 的距离是__________km .
15.在数列}{n a 中,若14=a ,512=a ,且任意连续三项的和都是15,则=2018a ______. 16.如图,多面体OABCD , ,,OA OB OC 两两垂直, ==2AB CD ,
=B AD C ,
=AC BD ,,,A B C D 的外接球的表面积是_________.
(第14题图) (第16题图)
三、解答题(本大题共6小题,共70分,要求写出必要的解答步骤及文字说明) 17.(本小题满分共10分)已知等差数列}{n a ,n S 为其前n 项的和,3a =2,3S =0,n∈N *
. (1)求数列}{n a 的通项公式;
(2)若n a n b 3=,求数列{n b }的前n 项的和.
18.(本小题满分共12分)如图,在三棱柱ABC ﹣A 1B 1C 1中,BB 1⊥平面ABC ,∠ABC=90°,
AB=2,BC=BB 1=1,D 是棱A 1B 1上一点.
(1)证明:BC ⊥AD ;
(2)求三棱锥B ﹣ACD 的体积.
19.(本小题满分共12分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,已知
)cos 2()cos 1(B c C b -=+.
(1)求证:b c a ,,成等差数列; (2)若3
π
=C ,ABC ∆的面积为34,求c .
20.(本小题满分共12分)在三棱锥ABE P -中,⊥PA 底面ABE ,AE AB ⊥,
22
1
==
=AE AP AB ,D 是AE 的中点,C 是线段BE 上的一点,且5=BC ,连接PC ,PD ,CD.
(1)求证:CD ∥平面PAB ;
(2)求点A 到平面PCD 的距离.
21.(本小题满分共12分)ABC ∆中,角,,A B C 的对边分别是,,a b c ,满足
B c
C b a s i n 3
3
c o s +
=. (1)求角B 的值;
(2)若b =b a ≤,求1
2
a c -的取值范围.
22.(本小题满分共12分)已知数列}{n a , }{n b , n S 为数列}{n a 的前n 项和,124b a =,
22-=n n a S ,)()1(21*+∈+=+-N n n n b n nb n n .
(1)求数列}{n a 的通项公式; (2)证明}{
n
b n
为等差数列. (3)若数列}{n c 的通项公式为⎪⎩⎪⎨⎧-=为偶数为奇数
n b a n b a c n n n
n n ,4
,2,令n n n c c p 212+=-.n T 为}{n p 的
前n 项的和,求n T .。