高三数学理科模拟试卷
2010-2023历年河北省唐山市高三年级摸底考试理科数学试卷(带解析)
2010-2023历年河北省唐山市高三年级摸底考试理科数学试卷(带解析)第1卷一.参考题库(共10题)1.如图,在直三棱柱ABC-A1B1C1中,点D是BC的中点.(1)求证:A1B∥平面ADC1;(2)若AB⊥AC,AB=AC=1,AA1=2,求平面ADC1与ABA1所成二面角的正弦值.2.已知a>0,且a≠1,则函数f(x)=a x+(x-1)2-2a的零点个数为( )A.1B.2C.3D.与a有关3.设向量a,b满足||=||=|+|=1,则|-t|(t∈R)的最小值为( )A.B.C.1D.24.的展开式中的系数是___________.5.已知a>0,x,y满足约束条件,且z=2x+y的最小值为1,则a=( )A.1B.2C.D.6.已知双曲线C:(a>0,b>0)的一条渐近线与直线l:垂直,C的一个焦点到l的距离为1,则C的方程为__________________.7.已知,则sin2x的值为( )A.B.C.D.8.实数x,y满足x+2y=2,则3x+9y的最小值是________________.9.函数f(x)=是( )A.偶函数,在(0,+∞)是增函数B.奇函数,在(0,+∞)是增函数C.偶函数,在(0,+∞)是减函数D.奇函数,在(0,+∞)是减函数10.已知集合M={x|x≥-1},N={x|2-x2≥0},则M∪N=( ) A.[-1,+∞)B.[-1,]C.[-,+∞)D.(-∞,-]∪[-1,+∞)第1卷参考答案一.参考题库1.参考答案:1)见解析;(2)2.参考答案:B3.参考答案:A4.参考答案:565.参考答案:D6.参考答案:x2-=17.参考答案:A8.参考答案:69.参考答案:B10.参考答案:C。
2024届高三数学仿真模拟卷(全国卷)(理科)(全解全析)
2024年高考第三次模拟考试数学(理科)·全解全析(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,6【答案】A【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得.【详解】由260x x -≥,即()60x x -≥,解得6x ≥或0x ≤,所以{}(][)260,06,B x x x ∞∞=-≥=-⋃+,又{}24A x x =-≤≤,所以[]2,0A B ⋂=-.故选:A 2.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .14【答案】C【分析】运用复数代数运算及两复数相等的性质求解即可.【详解】由题意知,22231(i)i=i2422z a a=+=-+,所以23142a⎧-=⎪⎪=,解得12a=.故选:C.3.如图,已知AM是ABC的边BC上的中线,若AB a=,AC b=,则AM等于()A.()12a b-B.()12a b--C.()12a b+D.()12a b-+【答案】C【分析】根据平面向量线性运算法则计算可得.【详解】因为AM是ABC的边BC上的中线,所以12CM CB=,所以12AM AC CM AC CB=+=+()()()111222AC A CB A AC aBA b=+-=+=+.故选:C4.已知函数()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期为2π,直线π3x=是()f x图象的一条对称轴,则()f x的单调递减区间为()A.()π5π2π,2πZ66k k k⎛⎤-+∈⎥⎝⎦B.()5π2π2π,2πZ33k k k⎛⎤--∈⎥⎝⎦C.()4ππ2π,2πZ33k k k⎛⎤--∈⎥⎝⎦D.()π2π2π,2πZ33k k k⎛⎤-+∈⎥⎝⎦【答案】B【分析】根据()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期确定ω的值,根据函数的对称轴求出ϕ,结合正切函数的单调性,列出不等式,即可求得答案.【详解】由于()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象是将()tan y x ωϕ=+的图象在x 轴下方部分翻折到x 轴上方,且()tan y x ωϕ=+π0,02ωϕ⎛⎫><<⎪⎝⎭仅有单调递增区间,故()()tan f x x ωϕ=+和()tan y x ωϕ=+的最小正周期相同,均为2π,则π12π,2ωω=∴=,即()1tan 2f x x ϕ⎛⎫=+ ⎪⎝⎭,又直线π3x =是()f x 图象的一条对称轴,则1π1π,Z 232k k ϕ⋅+=∈,即1ππ,Z 26k k ϕ=-∈,结合π02ϕ<<,得π3ϕ=,故()1πtan 23f x x ⎛⎫=+ ⎪⎝⎭,令π1πππ,Z 223k x k k -<+≤∈,则5π2π2π2π,Z 33k x k k -<≤-∈,即()f x 的单调递减区间为()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦,故选:B5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件【答案】A【分析】根据充分性、必要性的定义,结合直线的斜率是否存在进行判断即可.【详解】当直线的斜率等于0时,直线的方程为1y =,代入方程224x y +=中,得x =,显然CD =;当直线的不存在斜率时,直线的方程为1x =,代入方程224x y +=中,得y =CD =因此是必要而不充分条件,故选:A6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种【答案】B【分析】根据题意,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,剩下的三人安排在其他三个名次,②丙不是最后一名,丙丁需要排在第二、三、四名,剩下的三人安排在其他三个名次,由加法原理计算可得答案.【详解】根据题意,丙丁都没有得到冠军,而丁不是最后一名,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,即丁有3种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有1863=⨯种名次排列情况;②丙不是最后一名,丙丁需要排在第二、三、四名,有23A 6=种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有6636⨯=种名次排列情况;则一共有361854+=种不同的名次情况,故选:B .7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.【答案】C【分析】先求出函数的定义域和奇偶性,排除BD ,再求出特殊点的函数值,得到答案.【详解】()πln sin ln cos 2x x x x f x x x⎛⎫⋅- ⎪⋅⎝⎭==定义域为()(),00,∞-+∞U ,且()()()ln cos ln cos x x x x f x f x x x-⋅-⋅-==-=--,所以函数()f x 是奇函数,图象关于原点中心对称,排除B 、D .又()ln 2cos 2202f ⋅=<,故A 错误.故选:C .8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α,则平面α与半球底面之间的几何体的体积是()A .3π24R B .3π24R C .3π12R D .3π12R 【答案】C 【分析】分别求得面α截圆锥时所得小圆锥的体积和平面α与圆柱下底面之间的部分的体积,结合祖暅原理可求得结果.【详解】 平面α截圆柱所得截面圆半径2r =,∴平面α截圆锥时所得小圆锥的体积2311ππ3212V r R R =⋅=,又平面α与圆柱下底面之间的部分的体积为232πV R R R =根据祖暅原理可知:平面α与半球底面之间的几何体体积33321πππ21212V V V R R R =-=-=.故选:C.9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<【答案】B【分析】用定义证明函数()f x 的奇偶性及在()0,1上的单调性,利用函数()f x 的奇偶性及单调性,对数函数ln y x =的性质及对数运算可得结果.【详解】因为函数()f x 的定义域为{}0x x ≠,又()()ln ln f x x x f x -=-==,所以()f x 为偶函数,当01x <<时,任取12x x >,()()12121221ln ln ln ln ln ln 0f x f x x x x x x x -=-=-=-<,即()()12f x f x <,所以()f x 在()0,1上为减函数,因为31ln2ln02>>>,所以()()()113ln ln2ln2ln2ln 22a f f f f f c-⎛⎫⎛⎫===-=<= ⎪ ⎪⎝⎭⎝⎭,即a c <,设3401,1x x <<<,则()4444ln ln ln f x x x x ===,()3333ln ln ln f x x x x ===-,若()()34f x f x =,则34ln ln x x -=,所以341x x =,因为2e ln 2ln212=->,所以22e 11ln e 22ln2ln 2b f f f ⎛⎫ ⎪⎛⎫⎛⎫=== ⎪ ⎪⎪-⎝⎭⎝⎭ ⎪ ⎪⎝⎭,又()21ln21ln202ln22ln2--=>--,即11ln202ln2>>>-,所以()1ln22ln2f f ⎛⎫< ⎪-⎝⎭,即b a <,故选:B.10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a=,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个【答案】B 【分析】由81a=,利用递推关系,分类讨论逆推出1a 的不同取值,进而可得答案.【详解】若81a =,又1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,根据上述运算法进行逆推,可得72a =,64a =,所以58a =或51a =;若58a =,则4316,32a a ==或35a =;当332a =时,2164,128a a ==或121a =;若35a =时,2110,20a a ==或13a =;当51a =,则4322,4,8a a a ===或21a =;当28a =时,116a =;当21a =时,12a =,故81a=时,1a 的所有可能的取值集合{}2,3,16,20,21,128M =即集合M 中含有6个元素.故选:B11.如图,已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为C 的离心率是()AB .32CD .3【答案】B【分析】根据斜率及双曲线的对称性得12BF F △为等边三角形,再根据同角间关系求解三角函数值,进而用正弦定理求出121410,33AF c AF c ==,由双曲线定义可得423c a =,从而得到离心率.【详解】由题意,直线1BF12π3BF F ∴∠=,又12BF BF =,所以12BF F △为等边三角形,故12122BF BF F F c ===,2112π2π,33BF F F F A ∠=∠=,在12AF F △中,21tan 0F F A ∠>,则21F F A ∠为锐角,则212111sin 14F F A F F A ∠=∠=,212πsin sin 3A F F A ⎛⎫=+∠= ⎪⎝⎭由正弦定理,12121221sin sin sin F F AF AF AF F AF F A==∠∠,=∴121410,33AF c AF c ==,由122AF AF a -=,得423c a =,32c e a ∴==.故答案选:B .12.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑【答案】D【分析】利用赋值法结合题目给定的条件可判断AC ,取()()2π2πsin,cos 33f x xg x x ==可判断B ,对于D ,通过观察选项可以推断()f x 很可能是周期函数,结合()()()(),f x g y g x f y 的特殊性及一些已经证明的结论,想到令1y =-和1y =时可构建出两个式子,两式相加即可得出()()()11f x f x f x ++-=-,进一步得出()f x 是周期函数,从而可求()20231n f n =∑的值.【详解】解:对于A ,令0x y ==,代入已知等式得()()()()()000000f f g g f =-=,得()00f =,故A错误;对于B ,取()()2π2πsin,cos 33f x xg x x ==,满足()()()()()f x y f x g y g x f y -=-及()()210f f -=≠,因为()3cos 2π10g ==≠,所以()g x 的图象不关于点()3,0对称,所以函数()21g x +的图象不关于点()1,0对称,故B 错误;对于C ,令0y =,1x =,代入已知等式得()()()()()11010f f g g f =-,可得()()()()110100f g g f ⎡⎤-=-=⎣⎦,结合()10f ≠得()100g -=,()01g =,再令0x =,代入已知等式得()()()()()00f y f g y g f y -=-,将()00f =,()01g =代入上式,得()()f y f y -=-,所以函数()f x 为奇函数.令1x =,1y =-,代入已知等式,得()()()()()21111f f g g f =---,因为()()11f f -=-,所以()()()()2111f f g g =-+⎡⎤⎣⎦,又因为()()()221f f f =--=-,所以()()()()1111f f g g -=-+⎡⎤⎣⎦,因为()10f ≠,所以()()111g g +-=-,故C 错误;对于D ,分别令1y =-和1y =,代入已知等式,得以下两个等式:()()()()()111f x f x g g x f +=---,()()()()()111f x f x g g x f -=-,两式相加易得()()()11f x f x f x ++-=-,所以有()()()21f x f x f x ++=-+,即:()()()12f x f x f x =-+-+,有:()()()()()()11120f x f x f x f x f x f x -+=++--+-+=,即:()()12f x f x -=+,所以()f x 为周期函数,且周期为3,因为()11f =,所以()21f -=,所以()()221f f =--=-,()()300f f ==,所以()()()1230f f f ++=,所以()()()()()()()2023111232023202311n f n f f f f f f ===++++===∑ ,故D 正确.故选:D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.【答案】3【分析】根据n S 求得n a ,再结合对勾函数的单调性,即可求得结果.【详解】因为2n S n n =+,则当2n ≥时,()()221112n n n a S S n n n n n -=-=+----=,又当1n =时,112a S ==,满足2n a n =,故2n a n =;则9n n S a +29191222n n n n n ++⎛⎫==++ ⎪⎝⎭,又9y x x=+在()1,3单调递减,在()3,+∞单调递增;故当3n =时,9n n+取得最小值,也即3n =时,9n n S a +取得最小值.故答案为:3.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.【答案】9542ω≤≤【分析】根据给定条件,利用辅助角公式化简函数()f x ,再利用正弦函数的性质求解即得.【详解】依题意,函数π()2sin(13f x x ω=+-,由()0f x =,得π1sin()32x ω+=,则ππ2π36x k ω+=+或π5π2π,Z 36x k k ω+=+∈,由[0,2π]x ∈,得πππ[,2π333x ωω+∈+,由()f x 在[0,2π]上恰有5个零点,得29ππ37π2π636ω≤+<,解得935412ω≤<,由3ππ22πx ω+≤-≤,得5ππ66x ωω-≤≤,即函数()f x 在5ππ[,66ωω-上单调递增,因此5ππ[,]ππ[,]41566ωω-⊆-,即45π6πω≤--,且π6π15ω≥,解得502ω<≤,所以正实数ω的取值范围为9542ω≤≤.故答案为:9542ω≤≤15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)【答案】15【分析】根据条件,两边求导得到12342345415(23)2345x a a x a x a x a x +=++++,再取=1x -,即可求出结果.【详解】因为52345012345(23)x a a x a x a x a x a x +=+++++,两边求导可得12342345415(23)2345x a a x a x a x a x +=++++,令=1x -,得到23454115(23)2345a a a a a -=-+-+,即12345234515a a a a a -+-+=,故答案为:15.16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数②(0,),()0x f x ∃∈+∞>③41(1)e f >④0x ∀>时,41()e xf x <【答案】②③【分析】根据构造函数的规律由令()()4e xg x f x =,再结合奇函数的性质可得①,求导分析单调性和极值可得②③④.【详解】令()()4e x g x f x =,则()()()()()4444e e e 4x x x g x f x f x f x f x '''=+=+⎡⎤⎣⎦,若()f x 是奇函数,则()()f x f x -=-,取0x =时,即()00f =,但(01f =),故①错误;因为4e 0,(0,)x x >∈+∞恒成立,且()4()0f x f x '+>,所以()0g x '>恒成立,()g x 在(0,)+∞上为单调递增函数,所以()()()()()44110e 101e g g f f f >⇒>⇒>,故②正确;由②可知,③正确;因为()g x 在(0,)+∞上为单调递增函数,所以当0x >时有()()()()0,001g x g g f >==,所以()()441e 1e x xf x f x >⇒>,故④错误;故答案为:②③三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC 的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.【答案】(1)35;(2)4.【详解】(1)由()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =-- 垂直,得0m n ⋅=,...............1分即sin (5sin 6sin )(5sin 5sin )(sin sin )0B B C A C C A -++-=,整理得2226sin sin sin sin sin 5B C A B C +-=,...............2分在ABC 中,由正弦定理得22265b c a bc +-=,...............3分由余弦定理得2223cos 25b c a A bc +-==,所以cos A 的大小为35................5分(2)由(1)知,在ABC 中,3cos 5A =,则4sin 5A ==,...............6分由22265b c a bc +-=,得22266482555a b c bc bc bc bc ==+-≥-=,即10bc ≤,...................................................................................................8分当且仅当b c =时取等号,...................................................................................................9分因此ABC 的面积12sin 425ABC S bc A bc ==≤ ,..........................................................11分所以ABC 的面积的最大值是4.....................................................12分18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k 2.706 3.841 6.63510.828【答案】(1)列联表见解析,有99%的把握认为在此社区内“关注流行语与性别有关”;(2)35【详解】(1)依题意,关注流行语居民人数为81410638+++=,不关注流行语居民人数为81422+=,...................................................................................................2分所以22⨯列联表如下:男女合计关注流行语30838不关注流行语101222合计4020602K 的观测值2260(3012108)7.03 6.63540203822K ⨯-⨯=≈>⨯⨯⨯,................................................................4分所以有99%的把握认为在此社区内“关注流行语与性别有关”...................5分(2)依题意,男居民选出406660⨯=(人),.......................................6分记为a b c d ,,,,女居民选出2人,记为,E F ,从6人中任选3人的样本空间{,,,,,,,,,,abc abd abE abF acd acE acF adE adF aEF Ω=,,,,,,,,,}bcd bcE bcF bdE bdF bEF cdE cdF cEF dEF ,共20个,.................................9分选出的3人为2男1女的事件{,,,,,,,,,,,}A abE abF acE acF adE adF bcE bcF bdE bdF cdE cdF =,共12个,...........11分所以选出的3人为2男1女的概率123()205P A ==......................................12分19.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.【答案】(1)证明见解析(2)存在;4AP =-【详解】(1)证明:如图,设,M N 分别为,EF AB 边的中点,连接,,MN DM CN ,..1分因为⊥AE 平面,,5,4,3ABC AE CD BF AE CD BF ===∥∥,所以42AE BFMN CD +===,//MN BF ,进而MN CD ∥,即四边形CNMD 为平行四边形,可得MD CN ∥,......................................3分在底面正三角形ABC 中,N 为AB 边的中点,则CN AB ⊥,......................................4分又⊥AE 平面ABC ,且CN ⊂平面ABC ,所以AE CN ⊥.由于⋂=AE AB A ,且AE AB ⊂、平面ABFE ,所以CN ⊥平面ABFE ......................5分因为,MD CN CN ⊥∥平面ABFE ,则MD ⊥平面ABFE ,又MD ⊂平面DEF ,则平面DEF ⊥平面AEFB .......................................6分(2)如图,以点A为坐标原点,建立空间直角坐标系,则()())0,0,5,0,2,4,E D F .设点()0,0,P t,则)()()1,1,0,2,1,0,2,4DF DE DP t =--=-=--..................8分设平面PDF 的法向量为()1111,,n x y z = ,平面EDF 的法向量为()2222,,n x y z =.由题意知110,0,n DF n DP ⎧⋅=⎪⎨⋅=⎪⎩即()111110,240,y z y t z --=-+-=⎪⎩令12z =,则114,y t x =-=14,2n t ⎫=-⎪⎭ ,......................................9分220,0,n DF n DE ⎧⋅=⎪⎨⋅=⎪⎩即222220,20,y z y z --=-+=⎪⎩取22z =,则)22n = ,...............................10分由121212π1cos ,cos 32n n n n n n ⋅===,28290t t +-=,解得:4t =±-,由于点P 为线段AE 上一点,故05t ≤≤,所以4t =-,......................................11分当4t =-时,二面角P DF E --所成角为锐角,即存在点P 满足,此时4AP =.......................................12分20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.【答案】(1)22143x y +=(2)(ⅰ)证明见解析;(ⅱ)4【详解】(1)点31,2P ⎛⎫⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴,则有()1,0F 设椭圆C 的焦距为()20c c >,则1c =,.......................................................................1分点31,2P ⎛⎫ ⎪⎝⎭代入椭圆方程,有()222219191441a b a a +=+=-,解得2a =,则222413b a c =-=-=,所以椭圆C 的方程为22143x y +=...................................................................................3分(2)(ⅰ)设直线l 的方程为y kx m =+,由22143y y k x x m =+⎧⎪⎨⎪+⎩=,消去y ,整理得()2223484120kxkmx m +++-=,因为l 交椭圆C 于,A B 两点,所以()22Δ48430k m =-+>,设()()1122,,,A x y B x y ,所以21212228412,3434km m x x x x k k -+=-=++, (5)分因为直线AF 和直线BF 关于PF 对称,所以()()()()12121212121212220111111AF BF kx x m k x x my y kx m kx m k k x x x x x x +-+-+++=+=+==------所以()()()21212224128222203434m kmkx x m k x x m k m k m k k --+-+-=⨯+-⨯-=++所以222282488860km k km k m mk m --+--=解得4m k =-................................................................................................................7分所以直线l 的方程为()44y kx k k x =-=-,所以直线l 过定点()4,0................................,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.......8分(ⅱ)设直线l 的方程为4x ny =+,由224143x ny x y =+⎧⎪⎨+=⎪⎩,消去x ,整理得()223424360n y ny +++=,因为l 交椭圆C 于,A B 两点,所以()()()222Δ241443414440n n n =-+=->,解得24n >,........................................................................................................9分1212222436,3434n y y y y n n +=-=++,所以12y y -=所以121331822ABFS y y =⨯-=⨯⨯ .............................10分令()24,0n t t -=>则18184ABC S ==≤,当且仅当163t =时取等号,所以ABF △面积的最大值为4......................................................................12分21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.【答案】(1)单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;极大值21(1)f e =,极小值(0)0f =;(2)(]0,2e 【详解】(1)当2a =时,()22=exx f x ()()2222222e e 22(1)=e e x x xxx x x x f x ⋅-⋅⋅--'=......................................2分令()=0f x ',解得0x =或1x =,......................................3分所以()()x f x f x '、、的关系如下表:x(,0)-∞0(0,1)1(1,)+∞()f x '-+-()f x 单调递减0单调递增21e 单调递减所以函数()f x 的单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;......................................4分极大值21(1)f e=,极小值(0)0f =;......................................5分(2)[]222()cos ln ()ln 4cos ln 2ln 4e eaa x xx x f x f x a x x a x x ⎛⎫-≥-⇔-≥- ⎪⎝⎭ln 2e 2(ln 2)cos(ln 2)0a x x a x x a x x -⇔----≥......................................6分令()e 2cos t g t t t =--,其中ln 2a x x t -=,设l (2)n a x x F x =-,0a >2()2a a x x xF x --='=令()0F x '>,解得:02ax <<,......................................8分所以函数()F x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增,在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减,max ()ln 22a a F x F a a ⎛⎫==- ⎪⎝⎭,且当0x +→时,()F x →-∞,所以函数()F x 的值域为,ln 2a a a ⎛⎤-∞- ⎥⎝⎦;......................................9分又()e 2sin t g t t '=-+,设()e 2sin t h t t =-+,,ln 2a t a a ⎛⎤∈-∞- ⎥⎝⎦,则()e cos t h t t '=+,当0t ≤时,e 1,sin 1t t ≤≤,且等号不同时成立,即()0g t '<恒成立;当0t >时,e 1,cos 1t t >≥-,即()0h t '>恒成立,所以()h t 在(0,)+∞上单调递增,又(0)1g '=-,(1)e 2sin10g '=-+>,所以存在0(0,1)t ∈,使得0()0g t '=,当00t t <<时,()0g t '<,当0t t >时,()0g t '>,所以函数()g t 在0(,)t -∞上单调递减,在0(,)t +∞上单调递增,且(0)0g =......................................11分当ln 02aa a -≤即02e a <≤时,()0g t ≥恒成立,符合题意;当ln02a a a ->即2e a >时,取10min ln ,2a t a a t ⎧⎫=-⎨⎬⎩⎭,必有1()0g t <,不符合题意.综上所述:a 的取值范围为(]0,2e ......................................12分(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.(10分)在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C 与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.【答案】(1)C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=.(2)存在,坐标为33,,4444⎛⎛--- ⎪ ⎪⎝⎭⎝⎭【详解】(1)由题设曲线C 的参数方程,消参得()2214x y -+=,............................2分由cos ,sin x y ρθρθ==,且)πsin sin cos 4ρθρθρθ⎛⎫-=-=⎪⎝⎭y =30x y -+=,......................................4分∴C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=...............................5分(2)当0y =时,()33,0x A =-⇒-,易知()12cos ,2sin B a a +,设(),M x y ,可得()()3,,2cos 1,2sin AM x y MB a x a y =+=-+-,......................................6分32cos 1cos 1,2sin sin x a x x a AM MB y a y y a +=-+=-⎧⎧=⇒⎨⎨=-=⎩⎩(a 是参数),消参得方程为()2211,x y ++=......................................8分且1,2,1,3E C C E C E r r r r r r ==-=+=,则圆心距离2,d ==得C E C E r r d r r -<<+,则两圆相交,故两圆存在公共点,联立方程组()()22221114x y x y ⎧++=⎪⎨-+=⎪⎩,解得34x y ⎧=-⎪⎪⎨⎪=⎪⎩或34x y ⎧=-⎪⎪⎨⎪=⎪⎩,故坐标为33,,44⎛⎛--- ⎝⎭⎝⎭......................10分选修4-5:不等式选讲23.(10分)已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.【答案】(1)113x x x ⎧⎫≤≥⎨⎬⎩⎭或(2)证明见解析【详解】(1)()2122f x x x x =-+-+,当0x <时,532x -+≥,解得0x <,......................................1分当102x ≤<时,332x -+≥,解得103x ≤≤,......................................2分当112x ≤<时,12x +≥,解得x ∈∅,......................................3分当1x ≥时,532x -≥,解得1x ≥,......................................4分综上所述,()2f x ≥的解集为13x x ⎧≤⎨⎩或}1≥x .......................................5分(3)由已知可得()5301330211<12531x x x x f x x x x x -+<⎧⎪⎪-+≤≤⎪=⎨⎪+≤⎪⎪->⎩,所以当12x =时,()f x 的最小值为32...............................................................................................6分1a b ∴+=,211,24a b a b ab +⎛⎫+=∴≤= ⎪⎝⎭,当且仅当12a b ==取等,......................................8分令t ab =,则104t <≤,211()212225224a b ab a b ab ab t a b ab ab ab t +-⎛⎫⎛⎫++=++=+-=+-≥ ⎪⎪⎝⎭⎝⎭,当且仅当14t =取等,此时12a b ==.......................................10分。
高三数学试卷理科及答案
一、选择题(每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若存在实数a,使得f(a) = 0,则a的取值范围是()。
A. a > 0B. a < 0C. a = 0D. a ≠ 02. 下列函数中,是奇函数的是()。
A. y = x^2B. y = x^3C. y = |x|D. y = x^2 + 13. 在等差数列{an}中,若a1 = 2,d = 3,则第10项an的值为()。
A. 27B. 28C. 29D. 304. 若等比数列{bn}中,b1 = 2,b3 = 8,则公比q的值为()。
A. 2B. 4C. 8D. 165. 下列命题中,正确的是()。
A. 函数y = log2(x + 1)的图像在y轴上无定义B. 函数y = e^x的图像在第一象限内单调递减C. 函数y = sin(x)的周期为πD. 函数y = tan(x)的图像在y轴上无定义6. 已知直线l的方程为2x - y + 3 = 0,点P(1, 2)到直线l的距离为()。
A. 1B. 2C. 3D. 47. 在直角坐标系中,点A(1, 2),B(3, 4),C(5, 6)构成三角形ABC,则三角形ABC的面积S为()。
A. 2B. 3C. 4D. 58. 已知函数f(x) = ax^2 + bx + c,若f(1) = 2,f(2) = 4,则f(3)的值为()。
A. 6B. 8C. 10D. 129. 在等差数列{an}中,若a1 = 3,d = 2,则前n项和Sn的表达式为()。
A. Sn = n^2 + 2nB. Sn = n^2 + 3nC. Sn = n^2 + 4nD. Sn = n^2 + 5n10. 已知等比数列{bn}中,b1 = 3,b3 = 27,则前n项和Tn的表达式为()。
A. Tn = 3^nB. Tn = 3^(n+1)C. Tn = 3^(n-1)D. Tn = 3^(n-2)二、填空题(每小题5分,共25分)11. 若函数y = ax^2 + bx + c的图像开口向上,则a的取值范围是__________。
高三数学(理科)模拟试题及答案
高三数学(理科)模拟试题及答案姓名: 班级: 座位号: 分数: 一、选择题:(每题 分,总计 分,把答案填在答题卡上。
)1、 10i2-i =A 、 -2+4iB 、 -2-4iC 、 2+4iD 、 2-4i 答案:解:原式10i(2+i)24(2-i)(2+i)i==-+、故选A 、2、 设集合{}1|3,|04x A x x B x x -⎧⎫=>=<⎨⎬-⎩⎭,则A B = A 、 ∅ B 、 ()3,4 C 、()2,1- D 、 ()4.+∞ 答案:解:{}{}1|0|(1)(4)0|144x B x x x x x x x -⎧⎫=<=--<=<<⎨⎬-⎩⎭、(3,4)A B ∴=、故选B 、3、 已知ABC ∆中,12cot 5A =-, 则cos A =A 、 1213B 、513C 、513-D 、 1213-答案:解:已知ABC ∆中,12cot 5A =-,(,)2A ππ∴∈、12cos 13A ===-故选D 、4、曲线21xy x =-在点()1,1处的切线方程为A 、 20x y --=B 、 20x y +-=C 、450x y +-=D 、 450x y --= 答案:解:111222121||[]|1(21)(21)x x x x x y x x ===--'==-=---,故切线方程为1(1)y x -=--,即20x y +-=故选B 、5、 已知正四棱柱1111ABCD A BCD -中,12AA AB =,E 为1AA 中点,则异面直线BE 与1CD 所成的角的余弦值为A 、B 、 15C 、D 、 35答案:解:令1AB =则12AA =,连1A B 1C D ∥1A B ∴异面直线BE 与1CD 所成的角即1A B与BE 所成的角。
在1A BE ∆中由余弦定理易得1cos 10A BE ∠=。
故选C6、 已知向量()2,1,10,||a a b a b =⋅=+=,则||b =A 、B 、C 、5D 、 25解:222250||||2||520||a b a a b b b =+=++=++||5b ∴=。
四川省成都外国语学校2024届高三下学期高考模拟(三)理科数学试题(含答案)
四川省成都外国语学校2024届高三下学期高考模拟(三)数学(理科)本试卷满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、座位号和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上。
写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A .B .C .D .2.已知为虚数单位,若复数为纯虚数,则实数( )A .B .2C .D .43.“”是“方程表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知为锐角,若,则( )ABCD5.正方形的边长为2,是的中点,是的中点,则( )A .4B .3C .D .6.已知非零实数,满足,则下列不等式不一定成立的是( )A .B .C .D .7.已知函数,,则图象为如图的函数可能是( ){}240,A x x x x =-≤∈Z {}14B x x =-≤<A B = []1,4-[)0,4{}0,1,2,3,4{}0,1,2,3i ()242i z m m =---m =2±2-13m <<22113x y m m+=--αsin 22πα⎛⎫-= ⎪⎝⎭cos α=ABCD E AD F DC ()EB EF BF +⋅=4-3-a b 1a b >+221a b >+122a b +>24a b>1ab b>+()214f x x =+()sin g x x =A .B .C .D .8.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A .B .C.D .9.已知甲同学从学校的2个科技类社团,4个艺术类社团,3个体育类社团中选择报名参加,若甲报名了两个社团,则在仅有一个是艺术类社团的条件下,另一个是体育类社团的概率( )A .B .C .D .10.鼎湖峰,矗立于浙江省缙云县仙都风景名胜区,状如春笋拔地而起,其峰顶镶嵌着一汪小湖,传说黄帝炼丹鼎坠积水成湖.白居易曾以诗赋之:“黄帝旌旗去不回,片云孤石独崔嵬,有时风激鼎湖浪,散作晴天雨点来”.某校开展数学建模活动,有建模课题组的学生选择测量鼎湖峰的高度,为此,他们设计了测量方案.如图,在山脚测得山顶得仰角为,沿倾斜角为的斜坡向上走了90米到达点(,,,在同一个平面内),在处测得山顶得仰角为,则鼎湖峰的山高为( )米()()14y f x g x =+-()()14y f x g x =--()()y f x g x =()()g x y f x =cm 3cm 22π8π223π163π356131234A P 45︒15︒B A B P Q B P 60︒PQA .B .C .D .11.已知正方体的棱长为4,,分别是棱,的中点,则平面截该正方体所得的截面图形周长为( )A .6B .CD12.已知,分别是双曲线:(,)的左右焦点,过的直线分别交双曲线左、右两支于、两点,点在轴上,,平分,则双曲线的离心率( )ABCD .二、填空题:本题共4小题;每小题5分,共20分。
陕西省西安市第一中学2023-2024学年高三下学期高考考前模拟考试理科数学试题
陕西省西安市第一中学2023-2024学年高三下学期高考考前模拟考试理科数学试题一、单选题1.已知集合{}17A x x =-<<,{}09B x x =<<,则A B ⋃=( ) A .()1,0- B .()1,9-C .()0,7D .()0,92.若复数10i3i 13iz =+-,则z =( ) ABC .5D .103.已知直线0Ax By C ++=与直线23y x =-垂直,则( ) A .20A B =-≠ B .20A B =≠ C .20B A =-≠D .20B A =≠4.若0,a b ≥∈R,则化简2log 322+ ) A .3a b ++ B .3a b ++ C .2a b ++D .2a b ++5.在(92的展开式中,第8项的系数为( ) A .144-B .144C .1D .18-6.若x ,y 满足约束条件0,30,20,x x y x y ≥⎧⎪+-≤⎨⎪-≤⎩则2z x y =+得取值范围是( )A .[]0,3B .[)3,+∞C .[]0,5D .[)5,+∞7.已知函数()()cos 2210f x x x ωωω=+>的最小正周期为π,则()f x 的图象的一个对称中心为( ) A .π,012⎛⎫- ⎪⎝⎭B .π,012⎛⎫ ⎪⎝⎭C .π,112⎛⎫- ⎪⎝⎭D .π,112⎛⎫ ⎪⎝⎭8.小李到长途客运站准备乘坐客车去某地,有甲、乙两个公司的客车可以选择,已知甲公司的下一趟客车将在15分钟内的某个时刻发车,乙公司的下一趟客车将在20分钟内的某个时刻发车,则他等车时间不超过8分钟的概率为( )A .35B .1625C .1825 D .459.在长方体1111ABCD A B C D -中,1AC 与平面11ADD A 所成的角为1,AC α与AB 所成的角为β,则( )A .αβ=B .παβ+=C .π2αβ+=D .π4αβ-=10.如图所示,在六面体ABEDC 中,22CB CD CA ===,AB DE BE AD ===BD AE == )A .4πB .9πC .12πD .16π11.已知双曲线22:1169x y C -=的左、右顶点分别为12,,A A P 是C 右支上一点,直线12,PA PA 与直线2x =的交点分别为,M N ,记12,PA A PMN V V 的外接圆半径分别为12,R R ,则12R R 的最大值为( )ABCD12.下列不等式中正确的是( )A .11πeπe >B.1eπ>C .2e2ππe<⋅D .2π2e ln π>二、填空题13.已知椭圆C :()222104x y a a +=>的焦距为C 的离心率为.14.已知向量(),a m m =r,m ∈R ,()0,2b =r ,则a b +r r 的最小值为.15.如图,在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知60,45,3B A c a ==-=o o ,B ∠的平分线BD 交边AC 于点,D AB 边上的高为,CF BC 边上的高为,AE BD CF P ⋂=,,AE CF R BD AE Q ⋂=⋂=,则PQR ∠=;PQ =.16.已知(),,0,1x y z ∈,且x y z xy xz yz k ++---<,则k 的最小值为.三、解答题17.记n S 为等差数列{}n a 的前n 项和,已知315S =,535S =. (1)求{}n a 的通项公式; (2)设2nn na b =,求数列{}n b 的前n 项和n T . 18.多年统计数据表明如果甲、乙两位选手在决赛中相遇,甲每局比赛获胜的概率为23,乙每局比赛获胜的概率为13.本次世界大赛,这两位选手又在决赛中相遇.赛制为五局三胜制(最先获得三局胜利者获得冠军).(1)现在比赛正在进行,而且乙暂时以1:0领先,求甲最终获得冠军的概率;(2)若本次决赛最终甲以3:2的大比分获得冠军,求甲失分局序号之和X 的分布列和数学期望.19.如图所示,在四棱锥P ABCD -中,//AB CD ,2AD DC CB ===, 4AB =,PAD V 为正三角形.(1)证明:D 在平面PAC 上的射影H 为PAC △的外心(外接圆的圆心); (2)当二面角P AD C --为120o 时,求直线AD 与平面APB 所成角ϕ的正弦值.20.已知1,14P ⎛⎫ ⎪⎝⎭为抛物线C :()220y px p =>上的一点,直线x my n =+交C 于A ,B 两点,且直线PA ,PB 的斜率之积为2. (1)求C 的准线方程;(2)求34m n ⎛⎫- ⎪⎝⎭的最小值.21.已知函数()()()()22cos 4sin ,4sin 8cos f x ax x a x x g x a x x x x =--=--.(1)如果16a =,求曲线()()y f x g x =+在πx =处的切线方程;(2)如果对于任意的π0,2x ⎛⎫∈ ⎪⎝⎭都有()0f x >且()0g x >,求实数a 满足的条件.22.已知平面直角坐标系xOy 中,直线l 的参数方程为12,22x t y t =+⎧⎨=-⎩(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=. (1)求l 的极坐标方程以及C 的参数方程;(2)已知直线m 的倾斜角为锐角α,m 与l 交于点M ,m 与C 交于O ,N 两点,若3OM ON ⋅=,求α.23.已知函数()263f x x x =-++. (1)求不等式()10f x >的解集;(2)记()f x 的最小值为m ,若a ,b ,c 为正数且1a b c ++=,。
理科数学高三模拟试题答案解析
理科数学(一)答案解析1. 答案D 解析:{2,1,0,1,2}U =--,{0,1}U B =ð,故(){0,1,2}U A B = ð.2. 答案 B 解析:sin sin sin sin 2a b b A B ABa=⇒==,又000180B B A <<>且,0060120B ∴=或3.A.【解析】)6si n(π+=x y 图象上各点的横坐标缩短到原来的21倍(纵坐标不变),得到函数s i n (2)6y x π=+;再将图象向右平移3π个单位,得函数s i n [2()]s i n (2)362y x x πππ=-+=-,2π-=x 是其图象的一条对称轴方程. 4.【解析】选C 22(1)11(1)(1)i z i ii i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-5.D.【解析】若,αβ相交,则,a b 可能相交,也可能异面,故D 为假命题.6.【解析】选A 甲地由1名教师和2名学生:122412C C =种7. D 【解析】由()(),,0FB AB c b a b ⋅=⋅-=,得20ac b -+=,所以220ac c a -+-=,即210e e -+-=,解得2e =或2e =(舍去).8. C 【解析】对应的可行域如图.当直线3z x y =-过点()0,4A 时,z 有最小值-4;由图可知z 没有最大值.9. B 【解析】作出满足题意的区域如下图,则由几何概型得,所求概π112=-.10. C 【解析】因为0a b >>,所以0a b ->.所以4=,当且仅当224a a=且b a b =-,即2a b ==时等号同时成立.故代数式)(12b a b a -+的最小值为4.11.C 【解析】e 2xy '=+,00|e 23x k y ='==+=,则切线方程为13y x -=,即31y x =+.12. D 【解析】3311()log (1)0log (1)33x xf x x x ⎛⎫⎛⎫=--=⇒-= ⎪ ⎪⎝⎭⎝⎭,在同一坐标系中作出函数3l o g (1)y x =-与13xy ⎛⎫= ⎪⎝⎭的图象,不妨设12x x <,则由函数对称性可知3132l o g (1)l o g (1)0x x -+-<,得31212log [()1]0x x x x -++<,即1212()11x x x x -++<.所以1212x x x x <+.第Ⅱ卷13. -3或2【解析】由两直线平行的充要条件得()1320a a +-⨯=,解得3a =-或2a =.14. 2-【解析】显然公比1≠q ,设首项为1a ,则由0323=+S S ,得qq a qq a --⨯-=--1)1(31)1(2131,即4323=-+q q ,即0)1(4)1(4422223=-+-=-+-q q q q q q ,即0)44)(1(2=++-q q q ,所以0)2(4422=+=++q q q ,解得2-=q .理得cos C = 2222a b cab+-,故2cos cos 42S ab C ab C ==.又由正弦定理得1sin 2S ab C =,所以1cos sin 22ab C ab C =,所以tan C =又()0,πC ∈,所以3C π=.16. -4【解析】由x 2=2y 可知y =12x 2,这时y ′=x ,由P ,Q 的横坐标为4,-2,这时P (4,8),Q (-2,2), 以点P 为切点的切线方程PA 为y -8=4(x -4),即4x -y -8=0①;以点Q 为切点的切线方程QA 为y -2=-2(x +2),即2x +y +2=0②;由①②联立得A 点坐标为(1,-4),这时纵坐标为-4. 三.解答题17. 解:(1)条件可化为:)cos cos cB bC -= .根据正弦定理有sin )cos sin cos A C BB C -=.cos sin()A B C B =+,由基本不等式可知2262(2a c ac ac =+-≥-=-.……6分即3(2ac ≤+, 故△ABC 的面积1sin 242S ac B ==≤.即当a =c=236+时,△ABC 的面积的最大值为2)12(3+. ……12分∴.241222131312a a a a OF S V V EBC EBC F EFC B =⋅⋅⋅⋅=⋅==∆--………12分 18.【答案】19.20(1)椭圆方程E 为:1121622=+yx(3分)(2)(法一)1AF 方程为:0643=+-y x ,2AF 方程为:2=x 设角分线上任意一点为()y x P ,,则25643-=+-x y x 。
河南省安阳市2023届高三第二次模拟考试理科数学试题
一、单选题二、多选题1. 正确表示图中阴影部分的是()A.M ∪N B .M ∩N C.(M ∪N )D.(M ∩N )2.若曲线在点处的切线与直线平行,且对任意的,不等式恒成立,则实数m 的最大值为( )A.B.C.D.3. 定义域为R的奇函数满足,则( )A .0B.C .1D .不确定4. 设集合M ={0,3},N ={1,2,3},则M ∪N =A .{3}B .{0,1,2}C .{1,2,3}D .{0,1,2,3}5. 在信息论中,设某随机事件发生的概率为p ,称为该随机事件的自信息.若随机抛一枚均匀的硬币1次,则“正面朝上”这一事件的自信息为( )A .0B.C .1D .26.如图所示的多面体是由底面为的长方体被截面所截得到的,其中,,,,则点到平面的距离为()A.B.C.D.7. 某同学解关于的不等式时,因弄错了常数的符号,解得其解集为,则不等式的解集为( )A.B.C.D.8. 已知点A (2,4),B (3,6),则直线AB 的斜率为( )A.B.C .2D .-29. 下列说法正确的是( )A.若,则随机变量的方差B.若,,则C .若随机事件满足,,,则河南省安阳市2023届高三第二次模拟考试理科数学试题三、填空题四、解答题D .数据5,7,8,11,13,15,17的第80百分位数为1510. 已知函数的定义域为为奇函数,则( )A.函数的图象关于对称B.函数是周期函数C.D.11. 定义在实数集的函数的图象的一个最高点为,与之相邻的一个对称中心为,将的图象向右平移个单位长度得到函数的图象,则( )A .的振幅为B.的频率为C .的单调递增区间为D .在上只有一个零点12. 已知直线的一个方向向量为,且经过点,则下列结论中正确的是( )A .的倾斜角等于B .在轴上的截距等于C .与直线垂直D .上的点与原点的距离最小值为13.函数的图象向右平移个单位得到函数的图象,且与的图象关于点对称,那么的最小值等于_______________.14.设函数图象上任意一点处的切线为,总存在函数图象上一点处的切线,使得,则实数的最小值为_________.15.已知和的图像的对称轴完全相同,则时,的取值范围是________.16. 已知椭圆:的一个焦点与的焦点重合,点在椭圆上.(1)求椭圆的方程;(2)设直线:()与椭圆交于两点,且以为对角线的菱形的一顶点为,求面积的最大值(为坐标原点).17. 已知正项数列,其前项和满足.(1)求的通项公式;(2)证明:.18. 用、、、个数字组成一个六位数,要求每个数字都至少用到一次.(1)求所有满足条件的六位数的个数;(2)记数字用到的次数为,求的分布列和数学期望.19. 如图,在平面直角坐标系中,椭圆的右焦点为,离心率为.分别过,的两条弦,相交于点(异于,两点),且.(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值.20. 已知,(1)求函数的单调区间;(2)若不等式恒成立,求的取值范围.21. 已知函数.(Ⅰ)当时,求的单调区间.(Ⅱ)当时,的最大值为,求的对称中心.。
高三理科数学模拟试题6
高三理科数学模拟试题6第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.1.集合}032|{2<--=x x x M ,}|{a x x N >=,若N M ⊆,则实数a 的取值范围是( )A .),3[+∞ B .),3(+∞ C .]1,(--∞ D .)1,(--∞ 2.为虚数单位)复数i iiz (21+-=在复平面上对应的点位于( ) A.第一象限 B. 第二象限C. 第三象限D. 第四象限3.数列{}n a 的首项为3,{}n b 为等差数列且1(*)n n n b a a n N +=-∈.若则32b =-,1012b =,则8a =( ) A. 0 B. 3 C. 8 D. 114.已知命题01,:;25sin ,:2>+∈∀=∈∃x R q x R x p 都有命题使R ,.01,:25sin ,:2>++∀=∈∃x x x q x R x p 都有命题使01,;5sin ,:2>++∈=∈∃x x R x q x R x p 都有命题使,.01,;25sin ,>++∈=∈∃x R q x R x 都有命题使给出下列结论:①命题“q p ∧”是真命题 ②命题“q p ⌝∧”是假命题 ③命题“q p ∨⌝”是真命题④命题“q p ⌝∨⌝”是假命题, 其中正确的是( )A.②④B.②③C.③④D.①②③5.曲线2y x=与直线1y x =-及4x =所围成的封闭图形的面积为( ) A. 42ln 2- B. 2ln 2- C. 4ln 2- D. 2ln 26.右图给出的是计算111124620++++的值的一个框图,其中菱形判断框内应填入的条件是( )A .10>iB .10<iC .11>iD .11<i7.已知某一随机变量x 的概率分布如下,且EX=5.9,则a 的值为( )x4 a9 p0.50.2bA.5B. 6C.7D. 88.已知双曲线2215x y m -=(0m >)的右焦点与抛物线212y x =的焦点相同,则此双曲线的离心率为( )A .6 B .322 C .32 D .349.函数y=ln(1-x)的图象大致为( )10.设函数()(,)y f x =-∞+∞在内有定义,对于给定的正数K ,定义函数:()K f x =(),(),,().f x f x K K f x K ⎧⎨⎩≤>取函数||()x f x a -=1(1).,a K a =当时函数>()K f x 在下列区间上单调递减的是( ) A.(,0)-∞B.(,)a -+∞C.(,1)-∞-D.(1,)+∞第Ⅱ卷(100分)二.填空题:本大题共5小题,每小题5分。
江苏省高三下学期模拟考试(理科)数学试卷-附带答案解析
江苏省高三下学期模拟考试(理科)数学试卷-附带答案解析班级:___________姓名:___________考号:___________一、单选题1.已知集合{}{}22,0,1,2,3A x x x B =-≥=,则()RBA =( )A .{0}B .{}0,1C .{}1,2D .{}0,1,22.设复数z 的共轭复数为z ,若()()1i i z z -=∈C ,则z 对应的点位于复平面内的( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.在ABC ∆中点N 满足2AN NC =,记BN a =,NC b =那么BA =( ) A .2a b -B .2a b +C .a b -D .a b +4.将正弦曲线向右平移π4个单位长度,再将图象上各点的纵坐标伸长到原来的2倍(横坐标不变),得到下列哪个函数的图象( ) A .π2sin()4x + B .π2sin()4y x =- C .1πsin()24y x =+D .1πsin()24y x =-5.已知正项等差数列{}n a 的前n 项和为()*n S n N ∈,若28793a a a --=,则158S a -的值为( )A .3B .14C .28D .426.如图,一个底面半径为2a 的圆锥,其内部有一个底面半径为a 的内接圆柱,3a ,则该圆锥的体积为( ).A 3a B 3a C .3a D .3a7.已知函数f (x )满足f (2x )=log 2x ,则f (16)=( ) A .﹣1 B .1C .2D .48.记i A d 为点i A 到平面α的距离,给定四面体1234A A A A -,则满足()122,3,4i A A d d i ==的平面α的个数为( ) A .1B .2C .5D .8二、多选题9.已知正四棱锥的侧面积为 )A B .侧棱与底面所成的角为60︒ C .棱锥的每一个侧面都是等边三角形D .棱锥的内切球的表面积为(8π- 10.已知,,0x y x y ∈<<R 且,则( ) A .sin sin x y <B <C .21x y -<D .11x y x y <++ 11.已知椭圆()2222:10x y C a b a b +=>>的离心率为12,左,右焦点分别为1F 和2F ,P 为椭圆上一点(异于左,右顶点),且12PF F △的周长为6,则下列结论正确的是( )A .椭圆C 的焦距为1B .椭圆C 的短轴长为C .12PF F △D .椭圆C 上存在点P ,使得1290F PF ∠=12.以下命题正确的是( )A .设()f x 与()g x 是定义在R 上的两个函数,若()()()()1212f x f x g x g x +≥+恒成立,且()f x 为奇函数,则()g x 也是奇函数B .若对任意1x ,2x ∈R 都有()()()()1212f x f x g x g x ->-成立,且函数()f x 在R 上单调递增,则()()f xg x +在R 上也单调递增C .已知0a >,1a ≠函数(),1,,1,x a x f x a x x ⎧≤=⎨->⎩若函数()f x 在[]0,2上的最大值比最小值多52,则实数a 的取值集合为12⎧⎫⎨⎬⎩⎭三、填空题13.若(6x 的展开式中4x 的系数为30,则=a ______.14.点P 为抛物线y 2=x 上的动点,过点P 作圆M :(x -3) 2+y 2=1的一条切线,切点为A ,则PA ·PM 的最小值为________.15.若直线y x m =+与曲线2y ax =和ln y x =均相切,则=a __________.16.设点O 是面积为4的ABC 内部一点,且有340OA OB OC ++=,则BOC 的面积为__________.四、解答题17.在凸四边形ABCD 中(1)若=45ABC ∠︒,求CD ;(2)若BCD ∠的角平分线交对角线BD 于点E ,求BC CE CD ++的最大值. 18.如图,在直三棱柱111ABC A B C 中(1)求证:平面1A BC ⊥平面11ABB A ; (2)若AC 与平面1A BC 所成的角为π6,点E 为线段1A C 的中点,求平面AEB 与平面CEB 夹角的大小. 19.古人云:“腹有诗书气自华.”现在校园读书活动热潮正在兴起,某校为统计学生一周课外读书的时间,从全校学生中随机抽取200名学生,获得了他们一周课外读书时间(单位:h )的数据如表所示:(1)求,a b 的值;如果按读书时间0,6],6,12],1(((2,18]分组,用分层抽样的方法从这200名学生中抽取20人,再从这20人中随机选取3人,求恰有2人一周课外读书时间在(12,18]内的概率.(2)若将样本频率视为概率,从该校学生中随机选取3人,记X 为一周课外读书时间在(12,18]内的人数,求X 的分布列和数学期望,并估计该校一周人均课外读书的时间. 20.已知数列{}n a ,{}n b 满足1n n n b a a +=-,其中*N n ∈.(1)若12a =和2nn b =.①求证:{}n a 为等比数列; ②试求数列{}n n a ⋅的前n 项和.(2)若2n n b a +=,数列{}n a 的前6291项之和为1926,前77项之和等于77,试求前2024项之和是多少? 21.已知点A 是抛物线x 2=2py (p >0)上的动点,过点M (-1,2)的直线AM 与抛物线交于另一点B . (1)当A 的坐标为(-2,1)时,求点B 的坐标;(2)已知点P (0,2),若M 为线段AB 的中点,求PAB 面积的最大值.22.记()f x ',()g x '分别为函数()f x ,()g x 的导函数.若存在0x R ∈,满足()()00f x g x =,且()()00f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.已知()ln f x x ax =+和()2g x bx =.(1)若1b =,()f x 和()g x 存在“S 点”,求a 的值;(2)对任意0a >,是否存在实数0b >,使得()ln f x x ax =+,()2g x bx =存在“S 点”?请说明理由.参考答案与解析1.B【分析】求出A 及其补集,通过交集运算求得结果.【详解】集合{}{221A x x x x x =-≥=≤-或2}x ≥R {|12}A x x ∴=-<<又{}0,1,2,3B = 所以()RBA ={}0,1故选:B . 2.C【分析】利用复数除法运算求得z ,从而求得z ,进而确定正确答案. 【详解】依题意()()()i 1i i 1i 11i 1i 1i 1i 222z +-+====-+--+ 所以11i 22z =--,对应点为11,22⎛⎫-- ⎪⎝⎭,在第三象限.故选:C 3.A【分析】根据向量的线性运算将BA 分解为BA BN NA =+,再转化为a ,b 表示即可. 【详解】22BA BN NA BN NC a b =+=-=-. 故选:A. 4.B【解析】左右平移变换是横坐标x 改变,原则简记为 “左加右减”;伸缩变换是相应变量乘以对应倍数即可.【详解】sin y x =向右平移π4个单位长度得sin(4)πy x =-,再将图象上各点的纵坐标伸长到原来的2倍(横坐标不变)得π2sin()4y x =-. 故选:B.【点睛】本题考查图象的平移和伸缩变化,要牢记每一种变换对解析式系数的影响,方可解决此类题. 5.D【分析】根据等差数列的性质得7982a a a +=,则可由已知等式求8a 的值,从而利用求和公式和等差数列性质求158S a -得值.【详解】解:正项等差数列{}n a ,则0n a >若28793a a a --=,则28798323a a a a =++=+,解得83a =或81a =-(舍)则()115815888815215144222a a a S a aa a +⨯⨯-=-=-==. 故选:D. 6.B【分析】作出该几何体的轴截面,求出内接圆柱的高,利用三角形相似求出圆锥的高,即可求的其体积. 【详解】作出该几何体的轴截面如图示:AB 为圆锥的高设内接圆柱的高为h ,而2,BC a BD r a ===3a ,即23πa h a =则h =由于AB ED ∥,故CAB CED △∽△,则h DCAB BC=即22a aa-=,故AB =所以圆锥体积为231π(2)3V a a =⨯⨯=故选:B 7.C【分析】根据16=24,代入求解即可.【详解】∵函数f (x )满足f (2x )=log 2x ,且f (16)=f (24) ∴f (16)=f (24)=log 24=2 故选:C . 8.D【分析】分类讨论,当平面α与平面234A A A 平行时,分析可得2个,当平面α经过234A A A △的中位线时分析可得6个,从而得解.【详解】到点23,A A 和4A 的距离相等的平面α有两种类型,与平面234A A A 平行或者经过234A A A △的某一条中位线.当平面α与平面234A A A 平行时,如下图1设121314,,A A A A A A 的三等分点分别为234,B B B ,(靠近1A ) 对于平面234B B B ,利用三角形相似可知1212222A A d A B d A B ==,平面234B B B 符合题意. 在线段1i A A 的延长线上取i C 使得()12,3,4i i i A A AC i == 对于平面234C C C ,利用三角形相似可知1212222A A d AC d A C ==,平面234C C C 符合题意 即平面α与平面234A A A 平行时,满足条件的平面有2个; 设232434,,A A A A A A 的中点分别为,,E F G 当平面α经过234A A A △的中位线EF 时 如下图2:对于平面2B EF ,2B 在线段12A A 上且12222A B A B =利用三角形相似可知1212222AAd A Bd A B==又34//EF A A,EF⊂平面2B EF,34A A⊄平面2B EF,可得34A A//平面2B EF且E、F分别为2324,A A A A的中点则到平面2B EF的距离相等因此平面2B EF符合题意.如下图3:对于平面34B B FE,3B在线段13A A上,4B在线段41A A上且131433442A B A BA B A B==,利用三角形相似可知1313332AAd A Bd A B==又34//EF A A,EF⊂平面34B B FE,34A A⊄平面34B B FE,可得34A A∥平面34B B FE且E、F分别为2324,A A A A的中点则到平面34B B FE的距离相等因此平面34B B FE符合题意.对于中位线EG GF、,也有类似结论,即平面α经过234A A A△的某条中位线时,满足条件的平面有6个综上所述,符合题意的平面共有8个. 故选:D .【点睛】难点点睛:本题判断满足条件的平面的个数时,难点在于要发挥空间想象能力,明确满足条件的平面的位置,作图分析,说明平面所处的位置是怎样的,加以说明,解决问题. 9.ACD【分析】设底面边长为2a ,侧棱长为b ,求出棱锥体积,通过构造函数,求导可知当1a =,及2b =时棱锥体积最大,然后再逐项判断即可.【详解】设底面边长为2a ,侧棱长为b ,则14242a S =⨯⨯=侧面即=而21(2)3V a =⨯=故243a V ==设26()3(0f a a a a =-<<,则()()()542666161(1)()'1a a a a a f a a a a =-=-=++-易知函数()f a 在()0,1单调递增,在单调递减∴当1a =时,()f a 取得最大值,此时棱锥的体积最大,且2b = ∴底面边长为2,侧棱长为A 正确;侧棱与底面所成的角为PBO ∠,而sin OP PBO PB ∠=45PBO ∠=︒,选项B 错误; 由于底面边长与侧棱长均为2,故侧面为等边三角形,选项C 正确;设内切球的半径为r ,由于P ABCD V -=1442242S ⎛=+⨯⨯⨯=+ ⎝⎭表∴3V r S ===表∴4(8S ππ==-内,选项D 正确.故选:ACD .10.BCD【分析】取特殊值可说明A 错;根据指数函数以及幂函数的单调性,可判断B,C 的对错;利用作差法可判断D 的对错.【详解】对于A ,取2,33x y ππ==满足,,0x y x y ∈<<R 且,但sin sin x y =,故A 错;对于B ,12y x =是定义域上的增函数,故,,0x y x y ∈<<R 且B 正确; 对于C, 0x y -<,故0221x y -<=,故C 正确; 对于D ,011(1)(1)x y x y x y x y --=<++++故11x y x y <++,故D 正确 故选:BCD. 11.BC 【分析】根据12e =,226a c +=解得,,a b c 可判断AB ;设()00,P x y ,由1212012PF F S F F y =知当P 点为椭圆的上顶点或下顶点时面积最大,求出面积的最大值可判断C ;假设椭圆C 上存在点P ,设12,PF m PF n ==,求出m n +、mn ,,m n 可看作方程2460x x -+=,求出判别式∆可判断D. 【详解】由已知得12c e a ==,226a c +=解得2,1a c == 2223b a c =-= 对于A ,椭圆C 的焦距为22c =,故A 错误;对于B ,椭圆C 的短轴长为2b =B 正确; 对于C ,设()00,P x y ,12120012==PF F SF F y c y 当P 点为椭圆的上顶点或下顶点时面积的最大,此时0==y b 12PF F △C 正确;对于D ,假设椭圆C 上存在点P ,使得1290F PF ∠=,设12,PF m PF n == 所以24m n a +==,22216244m n mn c +=-==和6mn =所以,m n 是方程2460x x -+=,其判别式16240∆=-<,所以方程无解,故假设不成立,故D 错误. 故选:BC. 12.ABD【分析】A 选项,利用赋值法及()f x 的奇偶性推导出()g x 的奇偶性;B 选项,利用定义法和()f x 在R 上单调递增证明出结论;C 选项,对a 分类讨论,由单调性求出最值,列出方程,求出a 的值;D 选项,由函数的对称性求解.【详解】令21x x =-,则()()()()1111f x f x g x g x +-≥+-,因为()f x 为奇函数,所以()()()()1111f x f x g x g x -≥+-恒成立,即()()110g x g x ≥+-,所以()()110g x g x +-=,即()()11g x g x -=-,所以则()g x 也是奇函数,A 正确;设12x x <,因为()f x 在R 上单调递增,所以()()12f x f x <,因为()()()()1212f x f x g x g x ->-恒成立,所以()()()()()()121221f x f x g x g x f x f x -<-<-,从而()()()()11220f x g x f x g x +-+<⎡⎤⎡⎤⎣⎦⎣⎦ 令()()()h x f x g x =+,则()()()()()()1211220h x h x f x g x f x g x -=+--<,所以()()12h x h x <,故()()()h x f x g x =+在R 上也单调递增,B 正确;当1a >时,(),1,,1,x a x f x a x x ⎧≤=⎨->⎩在[]0,2上的最大值为()1f a =,最小值为()01f =或()22f a =-,当512a -=时,解得:72a =此时()3212f =>,满足题意;当()522a a --=时,522=无解,舍去; 当01a <<时,在[]0,1x ∈上,()xf x a =是减函数,(]1,2x ∈上,()f x x a =-+是减函数,因为()011f a =>-+,所以函数最大值为()01f =,而()()2211f a a f =-+<-+=,所以函数的最小值为()22f a =-+,因此()5122a --+=,解得:()10,12a =∈符合题意; 综上:实数a 的取值集合为1,272⎧⎫⎨⎬⎩⎭,C 错误;由()()2f x f x -+=可得:()f x 关于()0,1中心对称,()1x g x x+=也关于()0,1中心对称,从而()f x 与()g x 的图象的交点关于()0,1中心对称,从而1280x x x ++⋅⋅+=⋅与128248y y y ++⋅⋅⋅+=⨯=,D 正确. 故选:ABD【点睛】抽象函数的对称性有以下结论:若()()f a x f b x c -++=,则()f x 关于,22a b c +⎛⎫⎪⎝⎭中心对称; 若()()f a x f b x -=+,则()f x 关于2a bx +=对称.13.2【分析】利用二项展开式的通项公式,列式求a .【详解】二项展开式的通项公式616rr rr T C x-+=⋅⋅当2r =时,4x 的系数是2630C a ⋅=解得:2a = 故答案为:214.74【分析】求出22||||1PA PM PA PM ⋅==-,设点2(,)P y y ,化简表达式,利用二次函数的性质,求解最小值即可.【详解】解:由已知易得22||||1PA PM PA PM ⋅==-设点2(,)P y y ,则()22224222577||13158()244PM y y y y y -=-+-=-+=-+当252y =时,2||1PA PM PM ⋅=-取得最小值74. 故答案为:7415.14##0.25【分析】先根据直线和ln y x =相切求出m ,再利用直线和2y ax =相切求出a . 【详解】设直线y x m =+与ln y x =相切于点()00,ln x x 1y x'= 因为直线y x m =+与ln y x =相切,所以011x =,且00ln x x m =+; 解得01,1x m ==-;因为直线1y x =-与曲线2y ax =相切联立得210ax x -+=,0a ≠且140a ∆=-=,即14a =. 故答案为:1416.12##0.5【分析】根据340OA OB OC ++=确定点O 的位置,然后将面积比转化为边长比即可.【详解】340OA OB OC ++= 371747OA OB OC ∴=-+;设17OA OD -=;则:3477OD OB OC =+,即B,C,D 三点共线;所以||18||BOC ABCS OD AD S==; 11482BOCS∴=⨯=;故答案为:12 17.; .【分析】(1)运用差角公式求得sin DBC ∠,再运用正弦定理求得CD 即可.(2)运用余弦定理及基本不等式求得BC CD +的范围,由等面积法求得CE ,将问题转化为求关于BC CD +的二次型函数在区间上的最值. 【详解】(1)连接BD ,如图所以35,sin5BD ABD=∠=4cos5ABD∠=所以43sin sin(45)()55DBC ABD∠=︒-∠-BCD△中sin sinCD BDDBC DCB=∠∠;∴sinsinBDCD DBCDCB=⋅∠==∠(2)BCD△中2222cos120BD BC CD BC CD=+-⋅⋅︒∴2222()325()()()44BC CDBC CD BC CD BC CD BC CD+=+-⋅≥+-=+,当且仅当BC CD=时取等号∴2100()3BC CD+≤,即:0BC CD<+∵BCD BCE CDES S S=+△△△∴111sin120sin60sin60222BC CD BC CE CD CE⋅⋅︒=⋅⋅︒+⋅⋅︒∴BC CD BC CE CD CE⋅=⋅+⋅∴2()25BC CD BC CDCEBC CD BC CD⋅+-==++∴2()25BC CDCE CD BC BC CDBC CD+-++=+++令t BC CD=+∴225252tCE CD BC t tt t-++=+=-0t<∵252y tt=-在(上单调递增∴当t y取得最大值为2.∴BC CE CD++.18.(1)证明见解析;(2)π3.【分析】(1)根据线面垂直的判定定理可得BC ⊥平面11ABB A ,再由面面垂直的判定定理得证; (2)利用线面角求出边长,再建立空间直角坐标系,利用向量法求夹角. 【详解】(1)在直三棱柱111ABC A B C 中1A A BC ⊥ 又AB BC ⊥,1A AAB A =和1,A A AB ⊂平面11ABB A所以BC ⊥平面11ABB A ,又BC ⊂平面1A BC 所以平面1A BC ⊥平面11ABB A . (2)设11A BAB M =,连接CM ,如图则1A B 中点为M ,且1AM A B ⊥∵平面1A BC ⊥平面11ABB A 且交线为1A B ,AM ⊂平面11ABB A ∴AM ⊥平面1A BC所以直线AC 与平面1A BC 所成的角为π6ACM ∠=又12AA AB ==,则2AM AC BC = 以B 为原点,1,,BA BC BB 分别为x ,y ,z 轴正方向建立坐标系 则(2,0,0),(0,2,0),(1,1,1)A C E 设平面AEB 的法向量为(,,)n x y z =20n BA x n BE x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,令1y =,则0,1x z ==-,故(0,1,1)n =- 设平面CEB 的法向量为()111,,m x y z =111120m BC y m BE x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,令11x =,则10y =,11z =-故(1,0,1)m =- 设平面AEB 与平面CEB 的夹角为θ ∴1cos 2||||n m n m θ⋅==⋅,又π02θ<≤ π3θ∴=.19.(1)1224,a b ==;读书时间在(12,18]内的概率为91190; (2)分布列见解析,()E X =3920;该校一周人均课外读书的时间为12.32h.【分析】(1)由频数÷总数=频率可得,a b 的值;由分层抽样可知20人中在]((0,6],6,12中的有7人,在(12,18]中的有13人,据此可得答案;(2)由题可得X 的可能取值为0,1,2,3,且13~3,20X B ⎛⎫⎪⎝⎭,由此可得分布列及期望;结合表格数据可估计该校一周人均课外读书的时间.【详解】(1)由频数÷总数=频率可得2000.0612,2000.1224a b =⨯==⨯=. 由题意知,从样本中抽取20人,抽取比例为110,所以从(](](]0,6,6,12,12,18三组中抽取的人数分别为2,5,13,从这20人中随机抽取3人,恰有2人一周课外读书时间在(]12,18内的概率12713320C C 91C 190P ==.(2)由题意得,总人数为200,一周课外读书时间在(]12,18内的人数为130,因此从该校任取1人,一周课外读书时间落在区间(]12,18内的概率是1320. X 的可能取值为0,1,2,3,且13~3,20X B ⎛⎫ ⎪⎝⎭,所以33137()C (0,1,2,3)2020kkk P X k k -⎛⎫⎛⋅⎫=== ⎪⎪⎝⎭⎝⎭所以X 的分布列为数学期望1339()32020E X =⨯=. 该校一周人均课外读书时间的估计值为10.0230.0350.0570.0690.07110.1213⨯+⨯+⨯+⨯+⨯+⨯+⨯0.25150.23170.1712.32(h)+⨯+⨯=.20.(1)①证明见解析;②1(1)22+=-⋅+n n S n(2)20241849=T【分析】(1)①,利用累加法求解n a 即可;②由①得2n n a =,令2nn n c na n ==⋅,{}n c 的前n 项和为n S ,利用错位相减法求解数列的和即可;(2)推出数列{}n a 是一个周期为6的周期数列,然后求解数列{}n a 的任意连续6项之和为0,然后利用其周期和相关值求出12,a a ,则得到答案.【详解】(1)①证明:12nn n a a +-=,当2n ≥时累加得()()()112211n n n n n a a a a a a a a ---=-+-++-+1212222n n --=++++()12122212n n --=+=-11222n n n n a a ++∴== ()2n ≥ 又211212,2,4,2a a b a a ===∴=所以{}n a 为首项为2,公比为2的等比数列.②由①得2n n a =,令2nn n c na n ==⋅,{}n c 的前n 项和为n S则2311231122232(1)22n nn n n S c c c c c n n --=+++⋯++=⋅+⋅+⋅+⋯+-⋅+⋅,A23412122232(1)22n n n S n n +=⋅+⋅+⋅+⋯+-⋅+⋅,BA B -得23122222n n n S n +-=+++⋯+-⋅()211121222(1)2212n n n n n -++-=+-⋅=-⋅--1(1)22n n S n +∴=-⋅+(2)若21n n n n b a a a ++==-,则32163n n n n n n n a a a a a a a +++++=-=-⇒=-= 所以数列{}n a 是周期为6的周期数列,设1a m = 2a t =1234560a a a a a a ∴+++++=设数列{}n a 的前n 项和为n T ,则60n T =. 所以629110486332221926963T T T a a ⨯+====⇒= 7712655377T T T a ⨯+====,所以123886a a a =-=所以2024337622128869631849T T T a a ⨯+===+=+=. 21.(1)()6,9 (2)2【分析】(1)将A 的坐标代入抛物线方程可得抛物线的方程为:24x y = 再根据直线AM 的方程,联立抛物线方程可得B 的坐标;(2)设直线AB 的方程:()21y k x -=+ 联立抛物线的方程,结合韦达定理与M 为线段AB 的中点可得1pk =-再代入PAB 的面积可得S =进而根据二次函数的最值求解即可 (1)当A 的坐标为()2,1-时,则2221p =⋅,所以24p = 所以抛物线的方程为:24x y = 由题意可得直线AM 的方程为:()211212y x --=+-+,即3y x代入抛物线的方程可得24120x x --=解得2x =-(舍)或6 所以,B 的坐标为()6,9 (2)法一:设直线AB 的方程:()21y k x -=+ 即2y kx k =++设直线AB 与y 轴的交点为Q ,()11,A x y 和()22,B x y由222y kx k x py=++⎧⎨=⎩ 可得22240x pkx pk p ---=,122x x pk +=和1224x x pk p =-- 因为M 为线段AB 的中点,所以1212x x pk +==- 令0x =,2y k =+即()0,2Q k +,所以PQ k = 则PAB 的面积12111222S PQ x x k k =⋅-=⋅=⋅12k =⋅把1pk =-代入上式,S当2k =时,则max 2S =,所以PAB 的面积的最大值为2.(2)法二:222y kx k x py =++⎧⎨=⎩可得22240x pkx pk p ---=,122x x pk +=,1224x x pk p =-- 因为M 为线段AB 的中点,所以1212x x pk +==- 设点P 到直线AB 的距离为d,则d =AB ==1122S AB d k =⋅=⋅把1pk =-代入上式 S所以,当2k =时,ABC 的面积的最大值为2 22.(1)1(2)存在,理由见解析【分析】(1)设“S 点”为0x ,然后可得200000ln 12x ax x a x x ⎧+=⎪⎨+=⎪⎩,然后解出即可;(2)假设对任意0a >,存在实数0b >,使得()y f x =与()y g x =有“S 点”, 设为1x ,然后可得2111ln x ax bx +=,1112a bx x +=,消去b 得1112ln 0x ax -=>,然后可得10x <消去a 得1211ln x b x -=,然后证明对任意0a >,方程1112ln x ax -=在(有解即可. 【详解】所以200000ln 12x ax x a x x ⎧+=⎪⎨+=⎪⎩,消去a 得200ln 1x x +=记()2ln h x x x =+,显然()h x 在()0,+∞上是增函数,而()11h =因此200ln 1x x +=只有一个解01x =,所以211a =-=.(2)假设对任意0a >,存在实数0b >,使得()y f x =与()y g x =有“S 点” 设为1x ()2g x bx '= 所以2111ln x ax bx +=①,1112a bx x +=②,由②得21112ax bx +=③ ①③消去b 得1112ln 0x ax -=>,11ln 2x <和10x < ①③消去a 得1211ln x b x -=,在10x <<1211ln 0x b x -=> 下面证明对任意0a >,方程1112ln x ax -=在(有解设()(0l 1n 2x H x ax x =--<<,函数()H x在定义域(上是减函数0x →时 ()H x →+∞0H=-<,图像连续不断,所以存在10x <使得()10H x =.综上,任意0a >,存在实数1211ln 0x b x -=>,使得()y f x =与()y g x =有“S 点”。
天津市高三模拟考试(理科)数学试卷-带答案解析
天津市高三模拟考试(理科)数学试卷-带答案解析班级:___________姓名:___________考号:___________一、单选题1.集合{}24A x x => 和 {}51B x x =-<<,则()R A B ⋂=( )A .{}52x x -<<-B .{}22x x -<<C .{}21x x -<<D .{}21x x -≤<2.若21:|34|2,:02p x q x x -<<--,则p ⌝是q ⌝的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.函数()2114cos 22x x x xf x ---+=+的部分图象大致是( )A .B .C .D .4.为了了解一片经济林的生长情况 ,随机抽测了其中60株树木的底部周长(单位:cm ) , 所得数据均在区间[]80,130上,其频率分布直方图如图所示 ,则在抽测的60株树木中,树木的底部周长小于100cm 的棵数是( )A .18B .24C .36D .485.当曲线y 240kx y k -++=有两个不同的交点时, 实数k 的取值范围是( ) A .3(,0)4-B .35,4[)12-C .3[1,)4--D .3(,]4-∞-6.设,,1,1x y R a b ∈>>,若3x y a b == 2a b +=,则11x y+的最大值为( )A .4B .3C .2D .17.已知双曲线22:1124x y C -= ,点F 是C 的右焦点,若点P 为C 左支上的动点,设点P 到C 的一条渐近线的距离为d ,则||d PF +的最小值为( )A .2+B .C .8D .108.将函数()()cos 04f x x πωω⎛⎫=+> ⎪⎝⎭的图象向右平移4π个单位长度后得到函数()g x 的图象 若()g x 在5,44ππ⎛⎫ ⎪⎝⎭上单调递减 则ω的最大值为( ) A .14B .34C .12D .19.已知函数222,0()ln ,0x kx k x f x x x ⎧++⎪=⎨>⎪⎩ 若关于x 的不等式()f x k 的解集为[,][,]m n a b ⋃ 且n a <127232mn ab k +-< 则实数k 的取值范围为( )A .54,167⎛⎫⎪⎝⎭B .14,87⎛⎫ ⎪⎝⎭C .15,88⎛⎫ ⎪⎝⎭D .14,27⎡⎫⎪⎢⎣⎭二、填空题10.已知i 为虚数单位 则复数2021i =_______.11.若2nx ⎛ ⎝的展开式中二项式系数之和为256 则展开式中常数项是__________. 12.已知2x > 则42x x +-的最小值是______.13.圆柱的体积为34π 若该圆柱的两个底面的圆周在同一个球的球面上 则该球的体积为____________.三、双空题14.某志愿者召开春季运动会 为了组建一支朝气蓬勃、训练有素的赛会志愿者队伍 欲从4名男志愿者 3名女志愿者中随机抽取3人聘为志愿者队的队长 则在“抽取的3人中至少有一名男志愿者”的前提下“抽取的3人中全是男志愿者”的概率是___________;若用X 表示抽取的三人中女志愿者的人数 则()E X =___________.15.已知平面四边形ABCD AC BD ⊥ 3AB = 2AD = 712DC AB =则BAD ∠=______;动点E F 分别在线段DC CB 上 且DE DC λ= CF CB λ= 则AE AF ⋅的取值范围为____.四、解答题16.记ABC 的内角A B C 的对边分别为a b c 已知点D 为AB 的中点 点E 满足2AE EC = 且()()cos cos cos πsin a A a B C A C +-=-.(1)求A ;(2)若BC =DE =求ABC 的面积. 17.如图,正三棱柱111ABC A B C 中,E 是AC 中点.(1)求证:1AB 平面1BEC ;(2)若2AB =,1AA ,求点A 到平面1BEC 的距离;(3)当1A A AB 为何值时,二面角1E BC C --18.已知坐标平面内三点()()()2,4,2,0,1,1A B C ---. (1)求直线AB 的斜率和倾斜角;(2)若,,,A B C D 可以构成平行四边形且点D 在第一象限 求点D 的坐标; 19.已知等差数列{}n a 的前n 项和为n S 公差0d > 且231424,10a a a a =+=. (1)求数列{}n a 的通项公式; (2)若()*12111N n nT n S S S =++⋯+∈ 求n T . 20.已知函数()2e xf x x =.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)证明:当0x >时 ()3e 2e xf x ≥-.参考答案与解析1.D【分析】解出集合A 利用补集和交集的含义即可得到答案. 【详解】24x > 则2x >或<2x - 则{2A xx =<-∣或2}x > R{22}A x x =-≤≤∣{51}B x x =-<<∣ 则()R {21}A B xx ⋂=-≤<∣ 故选:D. 2.B【分析】首先解不等式得到p ⌝:2x ≥或23x ≤q ⌝:2x ≥或1x ≤- 再根据包含关系即可得到答案. 【详解】|34|2x -< 得2342x -<-< 即223x << 即p ⌝:2x ≥或23x ≤.由2102x x <--得220x x --< 即12x -<< q ⌝:2x ≥或1x ≤-.因为{|2x x ≥或1}x ≤-{|2x x ≥或2}3x ≤所以p ⌝是q ⌝的必要不充分条件. 故选:B 3.C【分析】由已知可得 ()04f = 可得出A 、B 项错误;根据()π0f > 可得出D 项错误. 【详解】由已知可得 ()f x 定义域为R 且()21104cos0442210f --+==+= 所以A 、B 项错误;又()()()()2211114cos 4cos 2222x x x x x x x xf x f x -------+-+-===++ 所以()f x 为偶函数. 又()22π1π1π1π1π4cos ππ4π02222f ------+-==>++ 所以D 项错误 C 项正确.故选:C. 4.B【分析】根据频率直方图中小矩形的面积代表这一组的频率进行求解即可. 【详解】由频率直方图可知:树木的底部周长小于100cm 的棵数为:(0.0150.025)106024+⨯⨯=故选:B 5.C【分析】作曲线y =24y kx k =++的图象 计算出直线24y kx k =++与曲线y =时对应的实数k 的值 数形结合可得结果.【详解】对方程y =224y x =- 即()2204y x y +=≥所以曲线y 224x y +=的上半圆对直线方程变形得()24y k x =++ 该直线过定点()2,4P - 且斜率为k 如下图所示:当直线24y kx k =++与半圆y 2= 解得34k =-当直线24y kx k =++过点()2,0A 时 440k += 解得1k =-.由图形可知 当曲线y 24y kx k =++有两个相异的交点时 31,4k ⎡⎫∈--⎪⎢⎣⎭.故选:C 6.C【分析】先解出,x y 再根据对数性质化简 最后根据基本不等式求最值. 【详解】3log 3,log 3x y a b a b x y ==∴==333log l 1og log ()1a b ab x y∴+=+=29a b ab +=≤(当且仅当2a b =时取等号)因此3log 1192y x +≤=即11x y+的最大值为2 故选:C【点睛】本题考查指数式与对数式转换、对数运算性质、基本不等式求最值 考查综合分析求解能力 属中档题. 7.A【分析】设双曲线左焦点为(40)F '-,,求出其到渐近线的距离 利用双曲线定义将||d PF +转化为2||a PE F P ++' 利用当,,P F E '三点共线时 2F a PE P ++'取得最小值 即可求得答案.【详解】由双曲线22:1124x y C -=,可得2a b == (40)F ,设双曲线左焦点为(40)F '-,不妨设一条渐近线为:b l y x x a =-= 即0x = 作PE l ⊥ 垂足为E 即||PE d = 作F H l '⊥,垂足为H 则||2F H '==因为点P 为C 左支上的动点所以2PF PF a '-= 可得2PF a PF '=+ 故2|2|d FP PE a PF a PE F P '+=++=++'由图可知 当,,P F E '三点共线时 即E 和H 点重合时 2||a PE F P ++'取得最小值最小值为2||2F H '⨯=即||d PF +的最小值为2 故选:A . 8.B【分析】求得()cos 44g x x ωππω⎛⎫=-+ ⎪⎝⎭ 由5,44x ππ⎛⎫∈ ⎪⎝⎭可求得4444x πωπππωωπ<-+<+ 结合函数()g x 的单调性可得出关于ω的不等式 由此可得出ω的最大值.【详解】将()f x 的图象向右平移4π个单位长度后得到()cos 44g x x ωππω⎛⎫=-+ ⎪⎝⎭的图象. 因为5,44x ππ⎛⎫∈ ⎪⎝⎭所以4444x πωπππωωπ<-+<+ 因为()g x 在5,44ππ⎛⎫⎪⎝⎭上单调递减 所以4πωππ+≤ 304ω<≤ 所以ω的最大值为34.故选:B. 9.A【分析】易知0k > 由表达式画出函数图像 再分类讨论y k =与函数图像的位置关系 结合不等关系即可求解【详解】易知当0k > 0x 时 22227()224k f x x kx k x k ⎛⎫=++=++ ⎪⎝⎭()f x 的图象如图所示.当直线y k =在图中1l 的位置时 22724k k k << 得1427k <<,m n 为方程2220x kx k k ++-=的两根即2220x kx k k ++-=的两根 故22mn k k =-; 而1ab =则2211327212122232mn ab k k k k k k +-=-+-=-+<即2644850k k -+< 解得1588k << 所以1427k <<;当直线y k =在图中2l 的位置时 22k k 且0k > 得102k <;此时0n = 则112712232mn ab k k +-=-< 得51162k <≤.所以 k 的取值范围是54,167⎛⎫⎪⎝⎭.故选:A【点睛】本题考查函数零点与方程根的关系 数形结合思想 分类讨论思想 属于中档题 10.i .【解析】直接利用虚数单位i 的运算性质得答案. 【详解】20214505()i i i i ==; 故答案为:i .【点睛】本题考查复数代数形式的乘除运算 考查了虚数单位i 的性质 是基础题. 11.28【分析】根据二项式展开式的系数和公式可得n 的值 然后再利用展开式通项公式求得常数项.【详解】解:因为2nx ⎛ ⎝的展开式中二项式系数之和为256 所以2256n= 故8n = 即该二项式为882223x x x -⎛⎫⎛⎫=- ⎪⎝⎭⎝设其展开式的通项为1k T + 则1k T +=()()()2216282338811kk k kkk k k C xx C x----⎛⎫-=- ⎪⎝⎭当216203k k --=时 即6k = 此时该项为()668128C ⨯-=故答案为:28. 12.6【分析】根据给定条件 利用均值不等式计算作答.【详解】2x >则44(2)22622x x x x +=+-+≥=-- 当且仅当422x x =-- 即4x =时取“=” 所以42x x +-的最小值是6. 故答案为:6 13.43π 【分析】利用柱体的体积公式求出圆柱的高 由勾股定理求出球的半径 根据球的体积公式可得结果.【详解】设圆柱的高为h圆柱体积为34π 234h ππ∴⨯⨯=⎝⎭1h = 设球半径为R 则()22221R =+244R = 可得1R =∴球的体积为34433R ππ= 故答案为43π.【点睛】本题主要考查圆柱与球体的性质 以及柱体与球体的体积公式 意在考查综合运用所学知识解答问题的能力 考查了空间想象能力 属于中档题. 14.217 97##219 【分析】由条件概率公式计算在“抽取的3人中至少有一名男志愿者”的前提下“抽取的3人中全是男志愿者”的概率 由古典概型概率公式计算事件0,1,2,3X =的概率 再由期望公式公式得结论.【详解】由题意三人全是男志愿者 即事件X 0= 34374(0)35C P X C === 21433718(1)35C C P X C ===()12433712235C C P X C === 33371(3)35C P X C ===181219()1233535357E X =⨯+⨯+⨯= 再记全是男志愿者为事件A 至少有一名男志愿者为事件B 4()(0)35P A P X ===34()1(3)35P B P X =-== 4()235(|)34()1735P AB P A B P B ===.故答案为:217;97. 15.2π3##120︒ 819,644⎡⎤⎢⎥⎣⎦【分析】根据向量基本定理和向量垂直的数量积为0计算得到1cos 2BAD ∠=- 求出2π3BAD ∠= 建立直角坐标系 写出点的坐标 表达出向量,AE AF 的坐标 从而求出向量数量积的关系式 求出取值范围. 【详解】712AC AD DC AD AB =+=+BD AD AB =- 所以()22757121212AC BD AD AB AD AB AD AB AD AB ⎛⎫⋅=+⋅-=-⋅- ⎪⎝⎭57554cos 9cos 0121242AB AD BAD BAD =-⋅⋅∠-⨯=--∠= 解得:1cos 2BAD ∠=-因为()0,πBAD ∠∈ 所以2π3BAD ∠=以A 作坐标原点 AB 所在直线为x 轴 垂直AB 的直线为y 轴建立平面直角坐标系 则()()(30,0,3,0,,4A B DC ⎛- ⎝因为DE DC λ= CF CB λ= 01λ≤≤ 所以设((),,E m F n t由()71,0,04m λ⎛⎫+= ⎪⎝⎭得:714m λ=-39,,44nt λ⎛⎛-= ⎝⎝解得:93,44n t λ=+= 所以)279363639144416164AE AF λλλλ⎛⎫⎛⎫⋅=-+=-+ ⎪⎪⎝⎭⎝⎭、26318116264λ⎛⎫=-+ ⎪⎝⎭ 当12λ=时 26318116264AE AF λ⎛⎫⋅=-+ ⎪⎝⎭取得最小值 最小值为8164 当0λ=或1时 取得最大值 最大值为94所以AE AF ⋅的取值范围是819,644⎡⎤⎢⎥⎣⎦故答案为:2π3 819,644⎡⎤⎢⎥⎣⎦16.(1)2π3A =;【分析】(1)由三角形内角性质及正弦定理边角关系可得sin A A = 进而求角的大小;(2)在△ABC 、△ADE 中应用余弦定理可得2219b c bc ++=、32b c =求出b 、c 再由三角形面积公式求面积.(1)由πA B C ++=得:()()cos cos cos sin a B C a B C A C -++-=- 即2sin sin cos sin a B C A C =-由正弦定理得sin sin sin cos sin A B C B A C =在△ABC 中sin 0B > sin 0C > 故sin A A = 则tan A =因为()0,πA ∈ 所以2π3A =. (2)在△ABC 中 由余弦定理2222cos a b c bc A =+- 得2219b c bc ++=在△ADE 中 由余弦定理得2247943b c bc ++= 所以()22224794319b c bc b c bc ++=++ 化简得225224810b bc c --= 即()()2326270b c b c -+= 所以32b c = 代入2219b c bc ++=得:3b = 2c =则△ABC 的面积12πsin 3sin 23ABC S bc A ===. 17.(1)证明见解析(3)1【分析】(1) 连接1CB 交1BC 于点F ,连接EF ,根据中位线即可证明1EF AB ∥,再利用线面平行判定定理即可证明;(2)根据正三棱柱的几何特征,求出各个长度及1,BEC ABE S S ,再用等体积法即可求得;(3)建立合适空间直角坐标系,设出1,AB A A 长度,找到平面1EBC 及平面1BC C 的法向量,建立等式,求出1,AB A A 长度之间的关系即可证明.【详解】(1)证明:连接1CB 交1BC 于点F ,连接EF 如图所示:因为三棱柱111ABC A B C所以四边形11BB C C 为平行四边形所以F 为1CB 中点因为E 是AC 中点所以1EF AB ∥因为EF ⊂平面1BEC ,1AB ⊄平面1BEC所以1AB 平面1BEC ;(2)由题知,因为正三棱柱111ABC A B C所以1CC ⊥平面ABC且ABC 为正三角形因为2AB =,1AA所以BE =1EC 1BC 所以1BEC △为直角三角形11322BEC S =112ABE S =⨯△ 记点A 到平面1BEC 的距离为h则有11A BEC C ABE V V --= 即111133BEC ABE S h S CC ⨯⨯=⨯⨯即131323h ⨯⨯=解得h =故A 到平面1BEC (3)由题,取11A C 中点为H ,可知1EH CC ∥所以EH ⊥平面ABC因为ABC 为正三角形,E 是AC 中点所以BE AC ⊥故以E 为原点,EC 方向为x 轴,EH 方向为y 轴,EB 方向为z 轴建立如图所示空间直角坐标系不妨记1AB a,A A b所以1300000000222a a a E ,,,B ,,,,b,,,,C C 1133,,0,0,,0,,0222,a a ab EB b BC CC记平面1EBC 的法向量为()111,,x n y z =则有100n BC n EB ⎧⋅=⎪⎨⋅=⎪⎩即1111020a x by z ⎧+=⎪⎪=取12x b ,可得()2,,0b a n =-;记平面1BC C 的法向量为()222,,m x y z =则有1100n CC n BC ⎧⋅=⎪⎨⋅=⎪⎩即2222002by a x by z =⎧⎪⎨+=⎪⎩ 取2x =可得()3,0,1m =;因为二面角1E BC C --所以cos ,m nm n m n ⋅===解得: a b = 即当11A AAB =时,二面角1E BC C --18.(1)斜率为1 倾斜角为π4;(2)()3,5;【分析】(1)根据直线的斜率公式可求得AB 的斜率 进而求得倾斜角;(2)根据平行四边形对边平行 可得对边斜率相等 设(),D x y ,由斜率公式列出方程组即可求得答案. 【详解】(1)由题意可知直线AB 的斜率为4122-=--直线倾斜角范围为[0,π) 所以直线AB 的倾斜角为π4;(2)如图 当点D 在第一象限时 ,CD AB BD AC k k k k ==设(),D x y 则11114212y x y x -⎧=⎪⎪+⎨+⎪=⎪--+⎩ 解得35x y =⎧⎨=⎩故点D 的坐标为()3,5;19.(1)2n a n =(2)1n nT n =+【分析】(1)利用等差数列下标和性质得2310a a += 联立解得234,6a a == 求出d 值 写出通项即可;(2)利用等差数列前n 和公式求得(22)(1)2n n n S n n +==+ 则1111n S n n =-+ 最后利用裂项相消求和即可. 【详解】(1)等差数列{}n a 公差0d > 23142324,10a a a a a a =+=+=. 解得234,6a a == 或236,4a a == 但此时20d =-<故2d = ()()224222n a a n d n n ∴=+-=+-=(2)12422a a d =-=-= 则(22)(1)2n n n S n n +==+ 1111(1)1n S n n n n ∴==-++ 1211111111122311n n n T S S S n n n ⎛⎫⎛⎫⎛⎫∴=+++=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 20.(1)3e 2e 0x y --=;(2)证明见解析.【分析】(1)先求出切线的斜率 再求出切点即得解;(2)令()()3e 2e x F x f x =-+ 利用导数求出函数的最小值即得证.【详解】(1)解:由题得()22e e x x f x x x '=+ 所以()13e f '=又()1f =e 所以切线方程为()e 3e 1y x -=- 即3e 2e 0x y --=.(2)证明:令()()23e 2e e 3e 2e x x x F x f x x =-+=-+()()()()222e e 3e e 23e 31x x x x x F x x x x x x x '=+-=+-=+-当()0,1x ∈时 ()0F x '< 当()1,x ∈+∞时 ()0F x '>.所以()F x 在()0,1上单调递减 在()1,+∞上单调递增.所以当0x >时 ()min ()10F x F == 0x ∴>时 ()0F x ≥故当0x >时 ()3e 2e x f x ≥-.。
高考数学理科模拟试题(附答案)
高三年级第一次模拟考试数 学 试 题(理)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟。
第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将答案涂在答题卡上.........。
1.复数23()1i i +-= ( )A .-3-4iB .-3+4iC .3-4iD .3+4i2.已知条件:|1|2,:,p x q x a +>>⌝⌝条件且p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .1a ≥ B .1a ≤ C .1a ≥- D .3a ≤-3.函数()|2|ln f x x x =--在定义域内零点可能落在下列哪个区间内( )A .(0,1)B .(2,3)C .(3,4)D .(4,5) 4.如右图,是一程序框图,则输出结果为( )A .49B .511 C .712 D .613 5.已知n S 为等差数列{}n a 的前n 项和,若641241,4,S S S S S ==则 的值为( )A .94B .32C .54D .46.要得到函数()sin(2)3f x x π=+的导函数'()f x 的图象,只需将()f x 的图象( )A .向左平移2π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)B .向左平移2π个单位,再把各点的纵坐标缩短到原来的12倍(横坐标不变)C .向右平移4π个单位,再把各点的纵坐标伸长到原来的12倍(横坐标不变)D .向右平移4π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) 7.过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 引它的渐近线的垂线,垂足为M ,延长FM 交y 轴于E ,若|FM|=2|ME|,则该双曲线的离心率为( )A .3B .2C .3D .28.如图所示的每个开关都有闭合与不闭合两种可能,因此5个开关共有25种可能,在这25种可能中电路从P 到Q 接通的情况有( )A .30种B .10种C .24种D .16种第Ⅱ卷(非选择题,共110分)二、填空题:本大题共6小题,每小题5分,共30分,将答案填写在答题纸上。
高三高考理科数学模拟卷
2022年普通高等学校招生全国统一考试预测卷(理科数学)(考试时间:120分钟;试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(){},02lg <+=x x A 集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤⎪⎭⎫⎝⎛≤=2211xx B ,则=⋃B A ( )A.()0,2-B.()1,2--C.(]0,2-D.()0,1- 2.若复数z 满足i i z ,33=-为虚数单位,则4-z 的最大值为( ) A. 8 B.6 C.4 D.2 3.“0>a ”是“函数()()xe a x xf -=在()+∞,0上有极值”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,若,1,1541a S a =+=则=4a ( ) A.32 B.24 C.16 D.85.函数()333x x f xx --=的图像大致为( )6.某市教育局准备举办主题为“学党史,争当新时代先锋”的党史知识竞赛,要求每个学校派出一支代表队参赛,每支代表队由3人组成,且既有男生又有女生,既有教师又有学生,已知甲校通过校内初赛选拔出8名选手,其中男、女教师各1名,男、女学生各3名,若从中选取3人组成代表队参赛,则不同的选法种数为( )A.18B.24C.30D.367.已知20242023452024log ,log 2,20232022===c b a ,则c b a ,,的大小关系是( )A.a c b <<B.a b c <<C.c a b <<D.c b a <<8.在△ABC 中,D 为边BC 上一点,且,3,2,0===⋅CD BD BC AD 则()=⋅+BC AC AB ( ) A.25 B.25- C.5- D.59.已知圆()()92:221=++-y m x O 与圆()()12222=+++y n x O :相切,则22n m +的最小值为( ) A.8 B.2 C.3 D.410.已知△ABC 中,内角C B A ,,所对的边分别为c b a ,,,且(),tan tan sin sin tan 2B A B C B +=,7=a 5=c ,则△ABC 的面积为( )A.340B.320C.315D.31011.已知抛物线()02:2>=p px y C 的焦点为()0,2F ,过点F 的直线交抛物线C 于B A ,两点,△OAB 的重心为点G ,则点G 到直线0133=+-y x 的距离的最小值为( )A.22B.2C.2D.22 12.若函数()a x x xe x f x---=ln 存在零点,则a 的取值范围为( )A.()1,0B.[)∞+,1 C.⎪⎭⎫⎢⎣⎡e e ,1 D.⎥⎦⎤ ⎝⎛1,1e二、填空题:本题欧共4小题,每小题5分,共20分.13.在正六边形内任取一点,则该点取自正六边形内切圆内的概率为 .14.已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-+≥+≤+-,02,02,022y x y x y x 则24+-=y x z 的最小值为 .15.已知直三棱柱111C B A ABC -的底面为正三角形,,421==AB AA D 是侧棱1BB 上一点,且1DC AD ⊥,则三棱锥D C B A 11-外接球的体积为 .16.已知各项均为正数的数列{}n a 的前n 项和为n S ,且()()11,1111+=-=++n n n n a a a a a .若[]x 表示不超过x 的最大整数,()⎥⎦⎤⎢⎣⎡+=n n S n b 212,则数列{}n b 的前n 项和=2021T .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第2117-题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且满足*+∈+==N n S S a n n ,12,111(1)证明:数列{}1+n S 为等比数列; (2)设11++=n n n n S S a b ,数列{}n b 的前n 项和为n T ,证明:1<n T .18.(本小题满分12分)如图,三棱柱111C B A ABC -中,2,1,,,60111==⊥⊥︒=∠AA AC AB C A BC AC AC A . (1)求证:ABC C A 平面⊥1;(2)若直线1BA 与平面11B BCC 所成角的正弦值为43,求二面角C BB A --11的余弦值.19.(本小题满分12分)核酸检测也就是病毒DNA 和RNA 的检测,是目前病毒检测最先进的检验方法,在临床上主要用于新型冠状、乙肝、丙肝和艾滋病的病毒检测,通过核酸检测,可以检测血液中是否存在病毒核酸,以诊断机体有无病原体感染.某研究机构为了提高检测效率降低检测成本,设计了如下试验,预备12份试验用血液标本,其中2份阳性,10份阴性,从标本中随机取出n 份分为一组,将样本分成若干组,从每一组的标本中各取一部分,混合后检测,若结果为阴性,则判定该组标本均为阴性,不再逐一检测;若结果为阳性,需对该组标本逐一检测.依此类推,直到确定所有样本的结果,若每次检测费用为a 元,记检测的总费用为x 元. (1)当3=n 时,求X 的分布列和数学期望;(2)△比较3=n 与4=n 两种方案哪一个更好,说明理由.△试猜想100份标本中有2份阳性,98份阴性时,n=5和n=10两种方案哪一个更好(只需给出结论不必证明).20.(本小题满分12分)已知椭圆()012222>>=+b a by a x E :的离心率为322,E B A 是,的上,下顶点,E F F 是21,的左、右焦点,且四边形21BF AF 的面积为24. (1)求椭圆E 的方程;(2)若上是E Q P ,异于B A ,的两动点,且,2-=PAQB k k 证明:直线PQ 恒过定点.21.(本小题满分12分)已知函数()()()xe x a x x x x x g R a x a x xf --++++=∈-+=ln cos sin 1,ln 122.(1)讨论函数()x f 的单调性;(2)若函数()()(),0,>-=x x g x f x H 讨论()x H 的零点个数.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修44-:坐标系与参数方程在直角坐标系xOy 中,曲线C 的参数方程为()为参数ααααα⎩⎨⎧-=++=cos 3sin 4cos 4sin 33y x ,以坐标原点O 为极点,x轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为()R ∈=ρπθ4.(1)求曲线C 的极坐标方程;(2)设直线l 与曲线C 相交于点,,B A 求OBOA 11-.23.(本小题满分10分)选修54-:不等式选讲 已知函数()a x x f -=.(1)若()12-≥x x f 的解集为[]2,0,求实数a 的值;(2)若对于任意的R x ∈,不等式()322+>++a a x x f 恒成立,求实数a 的取值范围.。
福州高级中学高三(数学理科)模拟试卷
高数学(理科)模拟试卷注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答,答题前,请在答题卷的密封线内填写学校、班级、准考证号、姓名;2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.参考公式:样本数据12,,,n x x x 的标准差s =x 为样本平均数.第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合2{|lg(4),}A x y x x Z ==-∈,则A .i A ∈B .2i A ∈ C .3i A ∈ D .4i A ∉ 2.已知倾斜角为α的直线l 与直线210x y ++=垂直,则tan 2α的值为A.45 B. 34 C. 43 D. 233.“2a =”是 “函数()2xf x ax =-有零点”的A.充分不必要条件B.必要不充分条件C. 充要条件D. 既不充分也不必要条件4.一个简单几何体的主视图,左视图如图所示,则其俯视图不可能为①长方形;②正方形;③圆;④椭圆.其中正确的是A .①②B .②③C .③④D .①④5.若.1)8(),()4(,)cos(2)(-=-=+++=ππφωf t f t f t m x x f 且都有对任意实数则实数m 的值等于A .1±B .3±C .-3或1D .-1或36.已知ABCDEF 是边长为1的正六边形,则()BA BC CF ⋅+的值为A.34 C. 32 D.32-7.已知)(x f 为定义在),(+∞-∞上的可导函数,且)()(x f x f '<对于R x ∈恒成立,且e 为自然对数的底,则A. )0()2012(),0()1(2012f e f f e f ⋅>⋅> B. )0()2012(),0()1(2012f e f f e f ⋅>⋅< C. )0()2012(),0()1(2012f e f f e f ⋅<⋅> D. )0()2012(),0()1(2012f ef f e f ⋅<⋅<8.形如45132这样的数称为“波浪数”,即十位数字,千位数字均比它们各自相邻的数字大,则由1、2、3、4、5可构成的数字不重复的五位“波浪数”的概率为A.16B.320C.11120D.215A .5B .4C .3D .210.设x R ∈,记不超过x 的最大整数为[]x ,如[]2.52=,[]2.53-=-,令{}[]x x x =-,) A.是等差数列但不是等比数列 B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列pm2.5(毫克/立方米)第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置。
陕西省西安中学2024届高三模拟考试(一)数学(理科)试题含答案解析
西安中学高2024届高三模拟考试(一)数学(理科)(满分:150分时间:120分钟)命题人:李晶一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}2|20M x x x =-<,{}2|10N x x =-<,则M N ⋃=()A.(1,2)- B.(1,1)- C.(0,2)D.(0,1)2.已知2i 1iz-=-+,则z =()A.1i +B.1i -C.3i -D.3i+3.ABC 中,2DC BD =,P 为线段AD 中点,若BP BA BC λμ=+ ,则λμ+的值为()A.13B.12C.23D.344.随着新一代人工智能技术的快速发展和突破,以深度学习计算模式为主的AI 算力需求呈指数级增长.现有一台计算机每秒能进行155104⨯次运算,用它处理一段自然语言的翻译,需要进行1282次运算,那么处理这段自然语言的翻译所需时间约为(参考数据:lg 20.301≈,0.43110 2.698≈)()A.222.69810⨯秒B.232.69810⨯秒C.242.69810⨯秒D.252.69810⨯秒5.已知,,a b c ∈R ,则下列选项中是“a b <”的充分不必要条件的是()A.c c ab>B.22ac bc <C.22a b < D.33a b<6.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()①若//m α,//n α,则//m n②若//αβ,m α⊂,那么//m β③若αβ⊥,m α⊂,n β⊂,则m n ⊥④若m β⊥,//m α,则αβ⊥A.②④B.①②C.②③D.③④7.已知椭圆()222:1039x y C b b+=<<的左、右焦点分别为12,F F ,点P 为椭圆C 上一点,若212PF F F =且121cos 4F PF ∠=,则b =()A.B.C.2D.8.若1nx ⎫-⎪⎭的展开式的二项式系数之和为16,则21nx ⎫+⎪⎭的展开式中41x 的系数为()A.8B.28C.56D.709.函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的图象经过点10,2⎛⎫- ⎪⎝⎭,将该函数的图象向右平移π3个单位长度后,所得函数图象关于原点对称,则ω的最小值是()A.52B.83C.3D.7210.已知cos tan 1sin αβα=-,()1sin tan cos ααβα++=,若π0,2β⎛⎫∈ ⎪⎝⎭,则β=()A.π12 B.π6C.4π D.π311.已知双曲线2222:1x y C a b-=(0a >,0b >)的离心率为,圆22()9x a y -+=与C的一条渐近线相交,且弦长不小于4,则a 的取值范围是()A.(]0,1 B.30,2⎛⎤ ⎥⎝⎦C.(]0,2 D.50,2⎛⎤ ⎥⎝⎦12.若函数()21ln 22f x a x x x =+-有两个不同的极值点12,x x ,且()()1221t f x x f x x -+<-恒成立,则实数t 的取值范围为()A.(),5-∞- B.(],5-∞- C.(),22ln2-∞- D.(],22ln2-∞-二、填空题(本大题共4小题,共20分)13.已知数据15,14,14,a ,16的平均数为15,则其方差为______.14.函数()f x 是定义在R 上的函数,且()1f x +为偶函数,()2f x +是奇函数,当[]0,1x ∈时,()31x f x =-,则()567f =______.15.在ABC 中,2B A =,点D 在线段AB 上,且满足23AD BD =,ACD BCD ∠=∠,则cos A 等于________.16.如图,正方形1111D C B A 与正方形ABCD 的中心重合,边长分别为3和1,1P ,2P ,3P ,4P 分别为11A D ,11A B ,11B C ,11C D 的中点,把阴影部分剪掉后,将四个三角形分别沿AD ,AB ,BC ,CD 折起,使1P ,2P ,3P ,4P 重合于P 点,则四棱锥P ABCD -的高为________,若直四棱柱22223333A B C D A B C D -内接于该四棱锥,其上底面四个顶点在四棱锥侧棱上,下底面四个顶点在面ABCD 内,则该直四棱柱22223333A B C D A B C D -体积的最大值为________.三、解答题(本大题共7小题,第17-21题为必考题,第22、23题为选考题)(一)必考题(共60分)17.已知等差数列{}n a 的首项为1,公差为2.正项数列{}n b 的前n 项和为n S ,且22n n n S b b =+.(1)求数列{}n a 和数列{}n b 的通项公式;(2)若,2,n n n b a n c n ⎧=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项和.18.某班组织投篮比赛,比赛分为,A B 两个项目.比赛规则是:①选手在每个项目中投篮5次,每个项目投中3次及以上为合格;②第一个项目投完5次并且合格后才可以进入下一个项目,否则该选手结束比赛;③选手进入第二个项目后,投篮5次,无论投中与否均结束比赛.已知选手甲在A 项目比赛中每次投中的概率都是0.5.(1)求选手甲参加A 项目合格的概率;(2)已知选手甲参加B 项目合格的概率为0.6.比赛规定每个项目合格得5分,不合格得0分.设累计得分为X ,为使累计得分X 的期望最大,选手甲应选择先进行哪个项目的比赛(每个项目合格的概率与次序无关)?请说明理由.19.如图,在三棱柱111ABC A B C -中,直线1C B ⊥平面ABC ,平面11AA C C ⊥平面11BB C C.(1)求证:1AC BB ⊥;(2)若12AC BC BC ===,在棱11A B 上是否存在一点P ,使二面角1P BC C --的余弦值为31010?若存在,求111B P A B 的值;若不存在,请说明理由.20.已知函数()()ln 2e xf x x x x =-+-.(1)求曲线()y f x =在点()()1,1f 处的切线方程(2)若()f x b ≤对任意的1,12x ⎛⎫∈⎪⎝⎭恒成立,求满足条件的实数b 的最小整数值.21.已知抛物线2:2(0)E y px p =>的焦点为,F E 上任意一点P 到F 的距离与到点(2,0)Q 的距离之和的最小值为3.(1)求抛物线E 的标准方程.(2)已知过点Q 且互相垂直的直线12,l l 与E 分别交于点,A C 与点,B D ,线段AC 与BD 的中点分别为,M N .若直线,OM ON 的斜率分别为12,k k ,求12k k 的取值范围.(二)选考题(共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.)22.在直角坐标系xOy 中,直线1C 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数,π02α<<),把1C 绕坐标原点逆时针旋转π2得到2C ,以坐标原点O 为极点,x 轴正半轴为极轴,取相同的单位长度建立极坐标系.(1)写出1C ,2C 的极坐标方程;(2)若曲线3C 的极坐标方程为8sin ρθ=,且1C 与3C 交于点A ,2C 与3C 交于点B (A ,B 与点O 不重合),求AOB 面积的最大值.23.已知0,0,0a b c >>>,函数()2f x x a x =++-,不等式()5f x ≥的解集为{2x x ≤-或}3x ≥.(1)求实数a 的值;(2)若()f x 的最小值为,M b c M +=,求证:1111b c+≥+.西安中学高2024届高三模拟考试(一)数学(理科)(满分:150分时间:120分钟)命题人:李晶一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}2|20M x x x =-<,{}2|10N x x =-<,则M N ⋃=()A.(1,2)- B.(1,1)- C.(0,2)D.(0,1)【答案】A 【解析】【分析】先求解两个一元二次不等式,再根据并集定义求解即得.【详解】因为{}220{02}M x x x x x =-<=<<∣,{}210{11}N x x x x =-<=-<<∣,所以{12}M N xx =-<< ∣.故选:A .2.已知2i 1iz-=-+,则z =()A.1i +B.1i- C.3i- D.3i+【答案】B 【解析】【分析】根据条件求出z 的代入形式,进而可得其共轭复数.【详解】2i 21i 1i 1izz z -=-⇒-=-⇒=++,所以1i z =-.故选:B .3.ABC 中,2DC BD =,P 为线段AD 中点,若BP BA BC λμ=+ ,则λμ+的值为()A.13B.12C.23D.34【答案】C 【解析】【分析】用BA ,BC表示BP ,求出λ、μ的值,进而求得结果.【详解】由2DC BD =,得13BD BC = ,又P 为线段AD 中点,所以()1111122326BP BA BD BA BC BA A BC B BC λμ⎛⎫=+=+=+⎪= ⎝⎭+,即12λ=,16μ=,所以112263λμ+=+=.故选:C4.随着新一代人工智能技术的快速发展和突破,以深度学习计算模式为主的AI 算力需求呈指数级增长.现有一台计算机每秒能进行155104⨯次运算,用它处理一段自然语言的翻译,需要进行1282次运算,那么处理这段自然语言的翻译所需时间约为(参考数据:lg 20.301≈,0.43110 2.698≈)()A.222.69810⨯秒B.232.69810⨯秒C.242.69810⨯秒D.252.69810⨯秒【答案】B 【解析】【分析】设所需时间为t 秒,则1512851024t ⋅⨯=,然后两边取对数化简计算即可【详解】设所需时间为t 秒,则1512851024t ⋅⨯=,lg lg52lg 215128lg 2t +-+=,∴lg 131lg 216t =-,lg 1310.3011623.431t ≈⨯-=,∴23.4310.4312323101010 2.69810t ≈=⨯=⨯∴秒,故选:B.5.已知,,a b c ∈R ,则下列选项中是“a b <”的充分不必要条件的是()A.c c ab>B.22ac bc <C.22a b < D.33a b<【答案】B 【解析】【分析】根据不等式性质及指数函数的单调性,结合充分条件,必要条件的定义逐项判断即可.【详解】对于A ,当1,1a b =-=,满足a b <,但c c ab>不成立,当1,1,1a b c ==-=时,满足c c ab>,但a b <不成立,故A 错误;对于B ,当0c =时,a b <¿22ac bc <,但22ac bc a b <⇒<,故B 正确;对于C ,2,1a b =-=时,a b <,但22a b <不成立,1,2a b ==-时,22a b <,但a b <不成立,故C 错误;对于D ,因为指数函数3x y =在R 上单调递增,故33a b a b <⇔<,故D 错误.故选:B6.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()①若//m α,//n α,则//m n②若//αβ,m α⊂,那么//m β③若αβ⊥,m α⊂,n β⊂,则m n ⊥④若m β⊥,//m α,则αβ⊥A.②④ B.①②C.②③D.③④【答案】A 【解析】【分析】举例说明判断①③;利用面面平行的性质判断②;利用线面平行的性质、面面垂直的判定推理判断④即可得解.【详解】三棱柱一底面三角形两边所在直线都平行于另一底面,而这两边所在直线相交,①错误;若//αβ,m α⊂,由面面平行的性质得//m β,②正确;若αβ⊥,令,αβ的交线为l ,m α⊂,n β⊂,当//,//m l n l 时,//m n ,③错误;由//m α,知存在过m 与平面α相交的平面,令交线为c ,有//c m ,而m β⊥,则c β⊥,因此αβ⊥,④正确,所以正确命题的序号是②④.故选:A7.已知椭圆()222:1039x y C b b+=<<的左、右焦点分别为12,F F ,点P 为椭圆C 上一点,若212PF F F =且121cos 4F PF ∠=,则b =()A.B.C.2D.【答案】D 【解析】【分析】画出图形,根据椭圆的定义和性质及余弦定理的应用求解即可.【详解】由题意知该椭圆的焦点在x轴上,如图所示:由题意2122PF F F c ==,1226PF PF a +==,所以162PF c =-,由余弦定理得:222121212121cos 24PF PF F F F PF PF PF +-∠==,即()()2226244126224c c c c c-+-=-⨯,即2560c c -+=解得:2c =或3c =(舍去)由222a c b -=,所以25b b =⇒=故选:D.8.若1n x ⎫-⎪⎭的展开式的二项式系数之和为16,则21nx ⎫+⎪⎭的展开式中41x 的系数为()A.8B.28C.56D.70【答案】C【解析】【分析】根据二项式系数和求得n ,根据二项式展开式的通项公式求得正确答案.【详解】1nx ⎫-⎪⎭的展开式的二项式系数之和216,4n n ==,则821131nx x x -⎛⎫⎫+=+ ⎪⎪⎭⎝⎭展开式的通项公式为:()818413388C C rrr r r x x x ---⎛⎫⨯⨯=⨯ ⎪⎝⎭,令844,53rr -=-=,所以41x的系数为5388876C C 56321⨯⨯===⨯⨯.故选:C9.函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的图象经过点10,2⎛⎫- ⎪⎝⎭,将该函数的图象向右平移π3个单位长度后,所得函数图象关于原点对称,则ω的最小值是()A.52B.83C.3D.72【答案】A 【解析】【分析】由()102f =-求ϕ,再根据平移变换求出平移后的解析式,然后根据对称性即可求解.【详解】因为函数()()sin f x x ωϕ=+的图象经过点10,2⎛⎫-⎪⎝⎭,所以()10sin 2f ϕ==-,又2πϕ<,所以π6ϕ=-,将()πsin 6f x x ω⎛⎫=-⎪⎝⎭的图象向右平移π3个单位长度后,所得函数图象的解析式为ππππsin sin 3636y x x ωωω⎡⎤⎛⎫⎛⎫=--=-- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,因为ππsin 36y x ωω⎛⎫=-- ⎪⎝⎭的函数图象关于原点对称,所以πππ,36k k ω--=∈Z ,得13,2k k ω=--∈Z ,因为0ω>,所以当1k =-时,ω取得最小值15322-=.故选:A 10.已知cos tan 1sin αβα=-,()1sin tan cos ααβα++=,若π0,2β⎛⎫∈ ⎪⎝⎭,则β=()A.π12 B.π6C.4π D.π3【答案】C 【解析】【分析】利用已知条件和两角和的正切公式,先求出角α,再利用已知条件即可求解.【详解】因为()tan()tan tan =tan 1tan()tan αββααββαββ+-+-=++⋅,又因为cos tan 1sin αβα=-,()1sin tan cos ααβα++=,所以(1sin )(1sin )cos cos 1sin cos cos (1sin )cos 1sin tan 1sin cos cos (1sin )cos (1sin )1cos 1sin cos (1sin )ααααααααααααααααααααα+⋅--⋅+---==+⋅-+⋅++⋅--,所以22(1sin )(1sin )cos cos 1sin cos tan cos (1sin )cos (1sin )2cos αααααααααααα+⋅--⋅--==⋅-+⋅+因为22sin cos 1αα+=,所以tan 0α=,所以π,Z k k α=∈,所以当k 为奇数时,cos 1α=-,sin 0α=,当k 为偶数时,cos 1α=,sin 0α=,因为cos tan 1sin αβα=-,所以tan 1β=±,因为π0,2β⎛⎫∈ ⎪⎝⎭,所以π4β=.故选:C.11.已知双曲线2222:1x y C a b-=(0a >,0b >)的离心率为,圆22()9x a y -+=与C的一条渐近线相交,且弦长不小于4,则a 的取值范围是()A.(]0,1 B.30,2⎛⎤ ⎥⎝⎦C.(]0,2 D.50,2⎛⎤ ⎥⎝⎦【答案】D 【解析】【分析】根据双曲线的离心率可得渐近线方程为2y x =±,结合弦长可得4≥,运算求解即可.【详解】设双曲线C 的半焦距为0c >,则c e a ===2b a =,且双曲线C 的焦点在x 轴上,所以双曲线C 的渐近线为2y x =±,因为圆22()9x a y -+=的圆心为(),0a ,半径3r =,可知圆22()9x a y -+=关于x 轴对称,不妨取渐近线为2y x =,即20x y -=,则圆心(),0a 到渐近线的距离3=<d ,可得3502<<a ,又因为圆22()9x a y -+=与双曲线C 的一条渐近线相交弦长为=,由题意可得4≥,解得502a <≤,所以a 的取值范围是50,2⎛⎤⎥⎝⎦.故选:D.12.若函数()21ln 22f x a x x x =+-有两个不同的极值点12,x x ,且()()1221t f x x f x x -+<-恒成立,则实数t 的取值范围为()A.(),5-∞- B.(],5-∞- C.(),22ln2-∞- D.(],22ln2-∞-【答案】B 【解析】【分析】首先对()f x 求导,得()()220x x af x x x'-+=>,根据题意得到方程220x x a -+=有两个不相等的正实数根,结合根与系数的关系求得a 的取值范围,然后将不等式进行转化,结合根与系数的关系得到()()1212f x f x x x +--关于参数a 的表达式,从而构造函数,利用导数知识进行求解.【详解】依题意得()()2220a x x af x x x x x-+=+-=>',若函数()f x 有两个不同的极值点12,x x ,则方程220x x a -+=有两个不相等的正实数根12,x x ,可得1212Δ440200a x x x x a =->⎧⎪+=>⎨⎪=>⎩,解得01a <<,因为()()1221t f x x f x x -+<-,可得()()2212121112221211ln 2ln 222t f x f x x x a x x x a x x x x x <+--=+-++---()()()()()()2221212121212121211ln 3ln 322a x x x x x x a x x x x x x x x =++-+=++--+21ln 232ln 42a a a a a a =+⨯--⨯=--.设()()ln 401h a a a a a =--<<,则()ln 0h a a ='<,则()h a 单调递减,()()15h a h >=-,可知5t ≤-.所以实数t 的取值范围是(],5-∞-.故选:B .【点睛】关键点睛:1.利用导数与极值点之间的关系及一元二次方程有两个不相等的正实数根,求得a 的取值范围是解决问题的前提;2.利用韦达定理二元换一元,通过构造函数解决问题.二、填空题(本大题共4小题,共20分)13.已知数据15,14,14,a ,16的平均数为15,则其方差为______.【答案】45##0.8【解析】【分析】先由平均数的公式计算出平均数,再根据方差的公式计算【详解】因为151********a ++++=,所以16a =,所以21111455s +++==.故答案为:4514.函数()f x 是定义在R 上的函数,且()1f x +为偶函数,()2f x +是奇函数,当[]0,1x ∈时,()31x f x =-,则()567f =______.【答案】2-【解析】【分析】先由函数的奇偶性确定函数的周期为4,再由奇偶性得到()()()()5674142111f f f f =⨯-=-=-,计算出结果即可.【详解】因为()1f x +为偶函数,则有()()11f x f x +=-,故()f x 的图像关于1x =对称,则有()()2f x f x +=-①,()2f x +是奇函数,则()()22f x f x -+=-+②,联立①②可得:()()2f x f x -+=--,变形为()()2f x f x +=-,所以()()()()()42f x f x f x f x +=-+=--=,则()f x 是周期为4的周期函数,所以()()()()5674142111f f f f =⨯-=-=-,又当[]0,1x ∈时,()31xf x =-,所以()()()5671312f f =-=--=-.故答案为:2-.15.在ABC 中,2B A =,点D 在线段AB 上,且满足23AD BD =,ACD BCD ∠=∠,则cos A 等于________.【答案】34##0.75【解析】【分析】根据三角形的边角关系,结合角平分线定理、二倍角公式、正弦定理即可求得cos A 的值.【详解】在ABC 中,角,,A B C 对应的边分别为,,a b c ,点D 在线段AB 上,且满足23AD BD =,所以332,555AD AB c BD c ===,又ACD BCD ∠=∠,所以由角平分线定理可得AC BC AD BD =,所以3255b ac c =,则32b a =,又2B A =,所以sin sin 22sin cos B A A A ==,则sin cos 2sin BA A=,由正弦定理得3sin 32cos 2sin 224a Bb A A a a ====.故答案为:34.16.如图,正方形1111D C B A 与正方形ABCD 的中心重合,边长分别为3和1,1P ,2P ,3P ,4P 分别为11A D ,11A B ,11B C ,11C D 的中点,把阴影部分剪掉后,将四个三角形分别沿AD ,AB ,BC ,CD 折起,使1P ,2P ,3P ,4P 重合于P 点,则四棱锥P ABCD -的高为________,若直四棱柱22223333A B C D A B C D -内接于该四棱锥,其上底面四个顶点在四棱锥侧棱上,下底面四个顶点在面ABCD 内,则该直四棱柱22223333A B C D A B C D -体积的最大值为________.【答案】①.2②.2327【解析】【分析】作出图形,可知四棱锥P ABCD -为正四棱锥,取AB 的中点E ,连接AC 、BD 交于点O ,连接PE 、EF 、PF ,则四棱锥的高为PF ,直四棱柱22223333A B C D A B C D -内接于该四棱锥,则底面2222A B C D 为正方形,作出截面PBD 的平面图,设2B F x =,计算得出四棱柱体积的函数关系式,运用导数研究可得其体积最大值.【详解】由题意可知,四棱锥P ABCD -为正四棱锥,PAB 边AB 上的高为1PE =,如下图所示:取AB 的中点E ,连接AC 、BD 交于点F ,连接PE 、EF 、PF ,则F 为AC 、BD 的中点,由正四棱锥的几何性质可知,PF ⊥平面ABCD ,因为E 、F 分别为AB 、AC 的中点,则//EF BC 且1122EF BC ==,因为EF ⊂平面ABCD ,则PF EF ⊥,所以,2PF ===,在PEB △中,得52PB ==,1222BF BD ===作出四棱柱22223333A B C D A B C D -内接于该四棱锥在平面PBD 上的平面图如图所示:设2B F x =,0,2x ⎛⎫∈ ⎪ ⎪⎝⎭,则222BB BF B F x =-=-,因为23~BB B BPF ,所以232B B PF BB BF =,解得233622B B x =-,所以直四棱柱22223333A BCD A B C D -的体积()322222231···2V x A C B D B B ==,所以()2V x '=-+,当20,3x ⎛⎫∈ ⎪ ⎪⎝⎭时()0V x '>,当22,32x ⎛∈ ⎝⎭时()0V x '<,所以函数()V x在0,3⎛⎫ ⎪ ⎪⎝⎭上单调递增,,32⎛ ⎝⎭上单调递减,所以当23x =时体积最大,最大为327V ⎛⎫= ⎪ ⎪⎝⎭.故答案为:32,2327.三、解答题(本大题共7小题,第17-21题为必考题,第22、23题为选考题)(一)必考题(共60分)17.已知等差数列{}n a 的首项为1,公差为2.正项数列{}n b 的前n 项和为n S ,且22n n n S b b =+.(1)求数列{}n a 和数列{}n b 的通项公式;(2)若,2,nn n b a n c n ⎧=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项和.【答案】(1)21n a n =-,n b n=(2)()144213n n n +--+【解析】【分析】(1)直接得到{}n a 的通项公式,由11,1,2n nn S n b S S n -=⎧=⎨-≥⎩作差得到11n n b b --=,从而求出{}n b 的通项公式;(2)由(1)可得21,2,n n n n c n -⎧=⎨⎩为奇数为偶数,利用分组求和法计算可得.【小问1详解】依题意可得()12121n a n n =+-=-,∵22n n n S b b =+①,当2n ≥时,21112n n n S b b ---=+②,()()()2211111 20n n n n n n n n n n n b b b b b b b b b b b ------⇒=-+-⇒+--+=①②,()()1110n n n n b b b b --⇒+--=,()2n ≥,∵0n b >,∴11n n b b --=,且在①式中令111n b =⇒=或10b =(舍去),∴()111n b n n =+-⨯=,综上可得21n a n =-,n b n =.【小问2详解】由(1)可得,21,2,2,nn n b n a n n n c n n -⎧⎧==⎨⎨⎩⎩为奇数为奇数为偶数为偶数,∴()()1221321242n n n c c c c c c c c c -+++=+++++++ ()()2421543222n n =+++-++++ ()()()14144244212143nn n n n n +--⨯-=+=-+-.18.某班组织投篮比赛,比赛分为,A B 两个项目.比赛规则是:①选手在每个项目中投篮5次,每个项目投中3次及以上为合格;②第一个项目投完5次并且合格后才可以进入下一个项目,否则该选手结束比赛;③选手进入第二个项目后,投篮5次,无论投中与否均结束比赛.已知选手甲在A 项目比赛中每次投中的概率都是0.5.(1)求选手甲参加A 项目合格的概率;(2)已知选手甲参加B 项目合格的概率为0.6.比赛规定每个项目合格得5分,不合格得0分.设累计得分为X ,为使累计得分X 的期望最大,选手甲应选择先进行哪个项目的比赛(每个项目合格的概率与次序无关)?请说明理由.【答案】(1)0.5(2)选手甲应选择先进行B 项目,理由见解析【解析】【分析】(1)由题意选手甲需要在5次投篮中投中3,4或5次及格,再求解概率和即可;(2)分别分析先进行A 项目和B 项目的得分数学期望,再判断即可.【小问1详解】由题意选手甲需要在5次投篮中投中3,4或5次,每次中与不中的概率均为0.5,故合格的概率为()354555545555C 0.5C 0.5C 0.510510.520.50.5++=++⨯=⨯=.【小问2详解】选手甲应选择先进行B 项目,理由如下:由题意,若选手甲先参加A 项目,则X 的所有可能取值为0,5,10,则()010.50.5P X ==-=,()()50.510.60.2P X ==⨯-=,()100.50.60.3P X ==⨯=.所以累计得分X 的期望()00.550.2100.34E X =⨯+⨯+⨯=;若选手甲先参加B 项目,则X 的所有可能取值为0,5,10,则()010.60.4P X ==-=,()()50.610.50.3P X ==⨯-=,()100.60.50.3P X ==⨯=.所以累计得分X 的期望()00.450.3100.3 4.54E X =⨯+⨯+⨯=>,所以为使累计得分的期望最大,选手甲选择先进行B 项目比赛.19.如图,在三棱柱111ABC A B C -中,直线1C B ⊥平面ABC ,平面11AA C C ⊥平面11BB C C .(1)求证:1AC BB ⊥;(2)若12AC BC BC ===,在棱11A B 上是否存在一点P ,使二面角1P BC C --的余弦值为31010?若存在,求111B P A B 的值;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,13.【解析】【分析】(1)利用面面垂直的性质、线面垂直的性质判定推理即得.(2)作1//Cz C B ,建立空间直角坐标系,利用面面角的向量求法求解即得.【小问1详解】在三棱柱111ABC A B C -中,由1C B ⊥平面ABC ,,AC BC ⊂平面ABC ,得11,C B BC C B AC ⊥⊥,在平面11BB C C 内过B 作1BO CC ⊥于O ,由平面11AA C C ⊥平面11BB C C ,平面11AA C C 平面111BB C C CC =,得BO ⊥平面11AA C C ,而AC ⊂平面11AA C C ,则有BO AC ⊥,显然11,,BO C B B BO C B =⊂ 平面11BB C C ,因此AC ⊥平面11BB C C ,又1BB ⊂平面11BB C C ,所以1AC BB ⊥.【小问2详解】过点C 作1//Cz C B ,由11,C B BC C B AC ⊥⊥,得,Cz CA Cz CB ⊥⊥,由(1)知AC ⊥平面11BB C C ,BC ⊂平面11BB C C ,则CA CB ⊥,即直线,,CA CB Cz 两两垂直,以点C 为原点,直线,,CA CB Cz 分别为,,x y z 轴建立空间直角坐标系,由12AC BC BC ===,得11(2,0,0),(0,2,0),(0,2,2),(0,4,2)A B C B ,(0,2,0),(2,2,0)CB BA ==-,假定在棱11A B 上存在一点P ,使二面角1P BC C --的余弦值为31010,令111(2,2,0),01B P B A BA λλλλλ===-<< ,则(2,42,2)P λλ-,(2,42,2)CP λλ=-,设平面PBC 的一个法向量(,,)n x y z = ,则2(42)2020n CP x y z n CB y λλ⎧⋅=+-+=⎪⎨⋅==⎪⎩,令1x =,得(1,0,)n λ=- ,显然平面1BCC 的一个法向量(1,0,0)m =,依题意,310cos ,10m n 〈〉=,解得13λ=,即11113B P A B λ==,所以在棱11A B 上存在一点P ,使二面角1P BC C --的余弦值为31010,11113B P A B =.20.已知函数()()ln 2e xf x x x x =-+-.(1)求曲线()y f x =在点()()1,1f 处的切线方程(2)若()f x b ≤对任意的1,12x ⎛⎫∈ ⎪⎝⎭恒成立,求满足条件的实数b 的最小整数值.【答案】(1)1e 0y ++=.(2)3-.【解析】【分析】(1)求出()f x 在1x =处的导数值,求出()1f ,即可得出切线方程;(2)先由题意,将问题转化为:得到()()ln 2e xf x x x x b =-+-≤,对任意的1,12x ⎛⎫∈ ⎪⎝⎭恒成立;()(2)e ln x f x x x x =-+-,求出其导数,得出存在01(,1)2x ∈,函数()y f x =在区间01(,)2x 上单调递增,在区间0(),1x 上单调递减,由隐零点的整体代换的处理方法可得出答案.【小问1详解】()()()ln 2e 11e x f x x x x f =-+-=-- ,,()()()()1111e 1e 10x x f x x x f x x ⎛⎫=-+-=--⎪⎭''= ⎝,,∴曲线()y f x =在点()()1,1f 处的切线方程为()1e 0y ---=,即1e 0y ++=.【小问2详解】()()ln 2e x f x x x x b =-+-≤对任意的1,12x ⎛⎫∈ ⎪⎝⎭恒成立,()()()1111e 1e x x f x x x x x ⎛⎫=-+-=-- ⎝'⎪⎭,令()1e xh x x =-,则函数()h x 在1,12x ⎛⎫∈ ⎪⎝⎭上单调递增,()120,1e 102h h ⎛⎫=-=- ⎪⎝⎭.∴在唯一01,12x ⎛⎫∈ ⎪⎝⎭,使得使得0()0h x =,即00001eln x x x x ==-,,且当012x x <<时,()0h x <,即()0f x '>;当01x x <<时,()0h x >,即()0f x '<.所以,函数()y f x =在区间01(,)2x 上单调递增,在区间0(),1x 上单调递减,∴()()0max0000001()2e ln 12x f x f x x x x x x ⎛⎫==-+-=-+ ⎪⎝⎭,01,12x ⎛⎫∈ ⎪⎝⎭则00112()y x x =-+在1(,1)2上单调递增,所以00112()(4,3)x x -+∈--,∴满足条件的实数b 的最小整数值为3-.21.已知抛物线2:2(0)E y px p =>的焦点为,F E 上任意一点P 到F 的距离与到点(2,0)Q 的距离之和的最小值为3.(1)求抛物线E 的标准方程.(2)已知过点Q 且互相垂直的直线12,l l 与E 分别交于点,A C 与点,B D ,线段AC 与BD 的中点分别为,M N .若直线,OM ON 的斜率分别为12,k k ,求12k k 的取值范围.【答案】(1)24y x =(2)1,04⎡⎫-⎪⎢⎣⎭【解析】【分析】(1)根据题意结合抛物线的定义分析可得232+≥+=pPF PQ ,进而可得2p =;(2)设直线1l 的方程为2x my =+,直线2l 的方程为12x y m=-+,与抛物线方程联立,利用韦达定理整理得1222112-+=+k k m m,利用基本不等式运算求解.【小问1详解】抛物线E 的准线方程为2px =-,设点P 到准线的距离为d .由抛物线的定义,得232pPF PQ d PQ +=+≥+=,解得2p =,当且仅当,,P Q F 三点共线时,等号成立,所以抛物线E 的标准方程为24y x =.【小问2详解】设()()()()11223344,,,,,,,A x y B x y C x y D x y ,由题意可知,12,l l 的斜率存在且均不为0,设直线1l 的方程为2x my =+,将其代入24y x =,得2480y my --=,则有134y y m +=.同理可得:设直线2l 的方程为12x y m=-+,则244y y m +=-.所以132422,22M N y y y y y m y m++====-,所以2222M M x my m =+=+,21222=-+=+N N x y m m,所以12222222112122422N M M N y y m m k k x x m m m m -=⋅=⋅=-≥=-++++,当且仅当221m m=,即1m =±时取等号,又易知120k k <,所以12k k 的取值范围为1,04⎡⎫-⎪⎢⎣⎭.【点睛】方法点睛:与圆锥曲线有关的取值范围问题的三种解法:(1)数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解;(2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解;(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.(二)选考题(共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.)22.在直角坐标系xOy 中,直线1C 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数,π02α<<),把1C 绕坐标原点逆时针旋转π2得到2C ,以坐标原点O 为极点,x 轴正半轴为极轴,取相同的单位长度建立极坐标系.(1)写出1C ,2C 的极坐标方程;(2)若曲线3C 的极坐标方程为8sin ρθ=,且1C 与3C 交于点A ,2C 与3C 交于点B (A ,B 与点O 不重合),求AOB 面积的最大值.【答案】22.π,02θαα=<<;ππ,022θαα=+<<.23.16【解析】【分析】(1)通过消参得到直线1C 的直角坐标方程,再利用极坐标方程和直角坐标方程之间的互化公式即可;(2)利用极坐标的几何意义结合二倍角公式求解即可.【小问1详解】直线1C 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数,π02α<<),故()tan y x α=,则()sin tan cos ρθαρθ=,即θα=;故1C 的极坐标方程为:π,02θαα=<<.把1C 绕坐标原点逆时针旋转π2得到2C ,故2C 的极坐标方程为:ππ,022θαα=+<<.【小问2详解】曲线3C 的极坐标方程为8sin ρθ=,且1C 与3C 交于点A ,2C 与3C 交于点B ,联立方程得,()ππ8sin ,,8sin ,22A B αααα⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,故11ππsin 8sin 8sin sin 32sin cos 16sin 2162222AOB S OA OB AOB ααααα⎛⎫=∠=⨯⨯+⨯==≤ ⎪⎝⎭ .故AOB 面积的最大值为16.23.已知0,0,0a b c >>>,函数()2f x x a x =++-,不等式()5f x ≥的解集为{2x x ≤-或}3x ≥.(1)求实数a 的值;(2)若()f x 的最小值为,M b c M +=,求证:1111b c+≥+.【答案】(1)1a =(2)见解析【解析】【分析】(1)根据绝对值的定义,等价转化不等式,解得含参解集,建立方程,可得答案;(2)利用绝对值的三角不等式,结合基本不等式“1”的妙用,可得答案.【小问1详解】解法一:由()5f x ≥,得25x a x ++-≥∣∣,由0a >,则02a -<<,等价于225x a a x ≤-⎧⎨-+-≥⎩或225a x a -<<⎧⎨+≥⎩或2225x x a ≥⎧⎨+-≥⎩,得32x a a x ≤-⎧⎪⎨--≤⎪⎩或272x a x ≥⎧⎪⎨-≥⎪⎩.因为不等式()5f x ≥的解集为{2xx ≤-∣或3}x ≥,所以732a-=,解得1a =,当1a =时,由32x a a x ≤-⎧⎪⎨--≤⎪⎩,解得2x ≤-,符合题意,故1a =.解法二:由()5f x ≥,得25x a x ++-≥,因为不等式()5f x ≥的解集为{2xx ≤-∣或3}x ≥,所以22253325a a -++--=++-=,,得1a =.经验证,1a =符合题意,故1a =.【小问2详解】因为()()1212f x x x x x =++-≥+--=3,当且仅当()()120x x +-≤时取等号,所以3M =,所以3b c +=.所以()111111111221141414b c c b b c c b c b ⎛⎫+⎛⎫⎛⎫+=+++=++≥+= ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,当且仅当11b cc b +=+,即12b c ==,时取等号.。
陕西省商洛市2024届高三第五次模拟预测理科数学试题
陕西省商洛市2024届高三第五次模拟预测理科数学试题一、单选题1.设集合{3},{24}A x x B x x =<=-<<∣∣,则A B =U ( ) A .{4}xx <∣ B .{3}xx <∣ C .{2}x x >-∣ D .{23}xx -<<∣ 2.已知复数z 满足32i 2iz=+-,则z 的实部与虚部之和为( ) A .3B .5C .7D .93.已知AB AC ⊥u u u r u u u r,2AB =u u u r ,则AB BC ⋅=u u u r u u u r ( )A .0B .2C .4-D .44.已知方程()22211mx m y +-=表示焦点在y 轴上的椭圆,则m 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .()1,+∞D .()0,15.设,x y 满足约束条件360,210,30,x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩则z x y =+的最大值是( )A .5-B .0C .2D .46.执行如图所示的程序框图,输出的S 的值为( )A .28B .36C .45D .557.如图,这是一个正方体的平面展开图,若将其还原成正方体,下列直线中,与直线AD是异面直线的是( )A .FGB .EHC .EFD .BC8.若将函数()()2cos cos sin 1f x x x x =+-的图象向左平移π4个单位长度得到()g x 的图象,则()g x 图象的对称中心的坐标是( ) A .()3ππ,08k k ⎛⎫-+∈ ⎪⎝⎭ZB .()ππ,08k k ⎛⎫-+∈ ⎪⎝⎭ZC .()3ππ,082k k ⎛⎫-+∈ ⎪⎝⎭ZD .()ππ,082k k ⎛⎫-+∈ ⎪⎝⎭Z9.设一组样本数据1210,,,x x x L 的平均值是1,且2221210,,,x x x L 的平均值是3,则数据1210,,,x x x L 的方差是( ) A .1B .2C .3D .410.已知抛物线2:2(0)E y px p =>的焦点为F ,直线1x =与E 交于A ,B 两点,直线4x =与E 交于C ,D 两点,若A ,B ,C ,D 四点构成的梯形的面积为18,则||||||||F A F B F C F D +++=( )A .14B .12C .16D .1811.已知正四棱锥外接球的半径为3,内切球的半径为1,则该正四棱锥的高为( )A .4B .4C .4D .412.已知定义在R 上的函数()f x 满足()()262f x f x +=-,且()()()112f x f x f -++=-,512f ⎛⎫= ⎪⎝⎭,现有下列4个结论: ①(2024)1f =;②()f x 的图象关于直线3x =-对称; ③()f x 是周期函数;④202511(1)20252kk kf k =⎛⎫--= ⎪⎝⎭∑.其中结论正确的个数为( )A .1B .2C .3D .4二、填空题13.函数y14.在ABC V 中,,,A B C 所对的边分别为,,a b c .若16,3c b B ===,则a =.15.3名男生和3名女生随机站成一排,每名女生至少与一名男生相邻,则不同的排法种数为.16.若函数()()e 1ln ln xf x a x x a =+---的最小值为0,则a =.三、解答题17.人工智能发展迅猛,在各个行业都有应用.某地图软件接入了大语言模型后,可以为用户提供更个性化的服务,某用户提出:“请统计我早上开车从家到公司的红灯等待时间,并形成统计表.”地图软件就将他最近100次从家到公司的导航过程中的红灯等待时间详细统计出来,将数据分成了[)55,65,[)65,75,[)75,85,[)85,95,[]95,105(单位:秒)这5组,并整理得到频率分布直方图,如图所示.(1)求图中a 的值;(2)估计该用户红灯等待时间的中位数(结果精确到0.1);(3)根据以上数据,估计该用户在接下来的10次早上从家到公司的出行中,红灯等待时间低于85秒的次数.18.已知数列{}n a 的各项均为正数,其前n 项和为{},n n S S 是等比数列,31256,2a a a S a ==.(1)求数列{}n S 的通项公式;(2)设3log n n n b a S =⋅,求数列{}n b 的前n 项和n T .19.如图1,在平面四边形BCDP 中,//PD BC ,BA AD ⊥,垂足为,2A PA AB BC AD ===,将PAB V 沿AB 翻折到SAB △的位置,使得平面SAB ⊥平面ABCD ,如图2所示.(1)设平面SCD 与平面SAB 的交线为l ,证明:BC l ⊥.(2)在线段SC 上是否存在一点Q (点Q 不与端点重合),使得二面角Q BD C --的余弦值为SQ QC 的值;若不存在,请说明理由.20.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为C 记O 为坐标原点,过点()0,2的直线l 与C 相交于不同的两点,A B . (1)求C 的方程;(2)证明:“OAB △的面积为是“//AB x 轴”的必要不充分条件. 21.已知函数()()212ln ,2f x ax kx x f x =-+'为()f x 的导函数. (1)若2x =是()f x 的极大值点,求a 的取值范围;(2)已知()()1212,0,x x x x ∈+∞≠,若存在k ∈R ,使得()()12f x f x =成立,证明:()()120f x f x ''+>.22.在直角坐标系xOy 中,曲线1C 的方程为22(3)9x y ++=,曲线2C 的方程为40x y+=,以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系. (1)求曲线12,C C 的极坐标方程;(2)若射线00π:0,π2l θθρθ⎛⎫=≥<< ⎪⎝⎭与曲线1C 交于点A (异于极点),与曲线2C 交于点B ,且2||||48OA OB ⋅=,求0θ. 23.已知函数()32f x x x =++-.(1)求不等式()8f x <的解集;(2)若不等式()24f x m m ≥-恒成立,求2m 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丰南一中2013高三数学理试题(3.1)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.等差数列{}n a 及等比数列{}n b 中,,0,02211>=>=b a b a 则当3≥n 时有( ) A .n n b a >B . n n b a =C . n n b a ≥D . n n b a ≤2. 设点(2,3)A -,(3,2)B --,直线l 过点(1,1)P 且与线段AB 相交,则l 的斜率k 的取值范围是( ) A .34k ≥或4k ≤- B .344k -≤≤C .344k -≤≤D .4k ≥或34k ≤- 3. 若直线x k y l )1(2:1-=-和直线2l 关于直线1+=x y 对称,那么直线2l 恒过定点( )A .(2,0)B .(1,-1)C .(1,1)D .(-2,0)4. 设,cos sin )cos (sin a a a a f =+若21)(=t f ,则t 的值为 ( ) A .2± B.2 C.22± D.225. 若函数()3xf x e x =-,x R ∈,则函数的极值点的个数是( )A .0B .1C .2D .36. 已知F 是抛物线2y x =的焦点,,A B 是抛物线上的两点,3AF BF +=,则线段AB 的中点M 到y 轴的距离为( )A .34 B .1 C .54 D .747. 已知双曲线E 的中心为原点,()3,0F 是E 的焦点,过F 的直线l 与E 相交于,A B 两点,且AB 的中点为()12,15N --,则E 的方程为( ) A .22136x y -= B .22145x y -= C .22163x y -= D .22154x y-= 8. 将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为( )9. 设,a b 为两条直线,,αβ为两个平面,则下列结论成立的是( )A .若,,a b αβ⊂⊂且//a b ,则//αβB .若,,a b αβ⊂⊂且a b ⊥,则αβ⊥C .若//a α,,b α⊂则//a bD .若,,a b αα⊥⊥则//a b 10.设n S 是等比数列{}n a 的前n 项和,3613S S =,则612SS 等于( ) A.13 B.15 C.18 D.19 11. 在锐角ABC ∆中,若2C B =,则cb的范围( ) A.B.)C .()0,2D.)12. 设()f x 是定义在x R ∈上以2为周期的偶函数,已知(0,1)x ∈,()()12log 1f x x =-,则函数()f x 在(1,2) 上( )A .是增函数且()0f x <B .是增函数且()0f x >C .是减函数且()0f x <D .是减函数且()0f x >二、填空题(本大题共有4小题,每小题5分,共20分,将答案填写在答题卡相应的位置上) 13. 将函数sin 2y x =的图象向左平移(0)ϕϕπ≤<个单位后,得函数sin(2)3y x π=-的图象,则ϕ等于 .14. 设命题:p 22310x x -+≤,命题:q ()221(1)0x a x a a -+++≤.若q 是p 的必要不充分条件,则实数a 的取值范围是________.15.已知各顶点都在同一个球面上的正四棱锥高为3,体积为6,则这个球的表面积是_____.16.已知直线0x y m ++=与圆222x y +=交于不同的两点A 、B ,O 是坐标原点,OA OB AB +≥,那么实数m 的取值范围是________.三、解答题(要求写出必要的计算步骤和思维过程。
) 17.(本小题满分12分)在ABC ∆中,A B C 、、的对边分别为a b c 、、,且cos 3cos cos b C a B c B =-. (1)求cos B 的值;(2)若2BA BC ⋅=,b =a 和c .18.(本小题满分12分)设各项均为正数的等比数列{}n a 中,1310a a +=,3540a a +=.设2log n n b a =.(1)求数列{}n b 的通项公式; (2)若11c =,1n n n nbc c a +=+,求证:3n c <;19.(本小题满分12分)00(,)P x y 0()x a ≠± 是双曲线:E 22221x y a b-=(0,0)a b >> 上一点,M 、N 分别是双曲线E 的左、右顶点,直线PM ,PN 的斜率之积为15.(1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A ,B 两点,O 为坐标原点,C为双曲线上一点,满足OC OA OB λ=+20.(本小题满分12分)如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.AB ∥CD ,BC CD AB 22==,EA EB ⊥.(1)求证:AB DE ⊥;(2)求直线EC 与平面ABE 所成角的正弦值;21.(本小题满分12分)设函数1()ln ().f x x a x a R x =--∈(I)讨论()f x 的单调性;(II )若()f x 有两个极值点1x 和2x ,记过点1122(,()),(,())A x f x B x f x 的直线的斜率为k ,问:是否存在a ,使得2?k a =-若存在,求出a 的值,若不存在,请说明理由.请考生在第22、23、24三题中任选一题做答,如果多做。
则按所做的第一题记分.答题时用2B 铅笔在答题卡上把所选的题号涂黑.22.(本小题满分10分)《选修4—1:几何证明选讲》如图,直线AB 过圆心O ,交⊙O 于,A B ,直线AF 交⊙O 于F (不与B 重合),直线l 与⊙O 相切于C ,交AB 于E ,且与AF 垂直,垂足为G ,连结AC .求证:(1) BAC CAG ∠=∠;(2) 2AC AE AF =∙.23. (本小题满分10分)《选修4—4:坐标系与参数方程》在直角坐标系xoy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数) M 是1C 上的动点,P 点满足2OP OM =,P 点的轨迹为曲线2C .(1)求2C 的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求AB . 24. (本小题满分10分)《选修4—5:不等式选讲》设函数()3f x x a x =-+,其中0a >. (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集; (Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤- ,求a 的值.丰南一中2013高三数学理试题(3.1)13. 65π 14. ⎣⎢⎡⎦⎥⎤0,12 15. 16π 16. (-2,-2]∪[2,2)三、解答题:17.(1)由正弦定理得2sin a R A =,2sin b R B =,2sin c R C =又cos 3cos cos b C a B c B =-,∴sin cos 3sin cos sin cos B C A B C B =-,… 2分即sin cos sin cos 3sin cos B C C B A B +=,∴()sin 3sin cos B C A B +=,… 4分 ∴sin 3sin cos A A B =,又sin 0A ≠,∴1cos 3B =。
6分 (2)由2BA BC ⋅= 得cos 2ac B =,又1cos 3B =,∴ 6.ac =。
8分由2222cos b a c ac B =+-,b =2212a c +=,。
10分∴()20a c -=,即a c =,∴a c ==。
12分18.解:(1)设数列{a n }的公比为q (q >0),由题意有⎩⎪⎨⎪⎧a 1+a 1q 2=10a 1q 2+a 1q 4=40,。
2分 ∴a 1=q =2, 。
4分∴a n =2n, ∴b n =n . 。
6分 (2)∵c 1=1<3,c n +1-c n =n2n , 。
8分当n ≥2时,c n =(c n -c n -1)+(c n -1-c n -2)+…+(c 2-c 1)+c 1=1+12+222+…+n -12n -1,∴12c n =12+122+223+…+n -12n . 。
10分 相减整理得:c n =1+1+12+…+12n -2-n -12n -1=3-n +12n -1<3,故c n <3. 。
12分19.解:(1)点P (x 0,y 0)(x 0≠〒a )在双曲线x 2a 2-y 2b 2=1上,有x 20a 2-y 20b2=1, 。
1分由题意又有y 0x 0-a 〃y 0x 0+a =15, 。
2分可得a 2=5b 2,c 2=a 2+b 2=6b 2,则e =c a =305. 。
4分(2)联立⎩⎪⎨⎪⎧x 2-5y 2=5b 2y =x -c,得4x 2-10cx +35b 2=0,设A (x 1,y 1),B (x 2,y 2)则⎩⎪⎨⎪⎧x 1+x 2=5c 2,x 1x 2=35b24① 。
6分设()33,OC x y = ,OC OA OB λ=+ ,即⎩⎪⎨⎪⎧x 3=λx 1+x 2y 3=λy 1+y 2又C 为双曲线上一点,即x 23-5y 23=5b 2,有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2。
7分化简得:λ2(x 21-5y 21)+(x 22-5y 22)+2λ(x 1x 2-5y 1y 2)=5b 2。
9分又A (x 1,y 1),B (x 2,y 2)在双曲线上,所以x 21-5y 21=5b 2,x 22-5y 22=5b 2由①式又有x 1x 2-5y 1y 2=x 1x 2-5(x 1-c )(x 2-c )=-4x 1x 2+5c (x 1+x 2)-5c 2=10b 2得λ2+4λ=0,解出λ=0或λ=-4. 。
12分 20.解:(1)证明:取AB 中点O ,连结EO ,DO .因为EA EB =,所以AB EO ⊥ 。
2分 因为四边形ABCD 为直角梯形, BC CD AB 22==,BC AB ⊥,所以四边形OBCD 为正方形,所以OD AB ⊥. 。
4分 所以⊥AB 平面EOD . 所以 ED AB ⊥. 。
6分 (2)解法1:因为平面⊥ABE 平面ABCD ,且BC AB ⊥面。
8分。
9分。
11分 。