专题一 集合 函数 导数

合集下载

集合、函数与导数、不等式

集合、函数与导数、不等式

函数的定义与性质
包括函数的定义、函数的表示法(解析法、列表 法、图像法)、函数的性质(单调性、奇偶性、 周期性、有界性)等。
不等式的性质与解法
包括不等式的性质(传递性、可加性、可乘性、 正数可乘性等)、不等式的解法(一元一次不等 式、一元二次不等式、分式不等式、绝对值不等 式等)。
易错难点剖析
集合运算中的错误
06
总结回顾与拓展延伸
关键知识点总结回顾
集合的基本概念与运算
包括集合的定义、表示法、元素与集合的关系、 集合间的关系(子集、真子集、相等)、集合的 运算(并集、交集、补集)等。
导数的定义与计算
包括导数的定义、导数的几何意义、导数的计算 (基本导数公式、导数的四则运算、复合函数求 导、隐函数求导、参数方程求导等)。
导数在经济学中 的应用
导数在经济学中有广泛 应用,如边际分析、弹 性分析等。通过导数可 以研究经济变量之间的 变化关系,为经济决策 提供数学支持。
不等式在优化问 题中的应用
不等式在优化问题中有 重要作用,如约束条件 中的不等式可以限制变 量的取值范围。同时, 不等式也可以用于刻画 目标函数的性质,如凸 函数和凹函数的定义就 与不等式密切相关。
反函数与复合函数
反函数
设函数$y=f(x)$的定义域为$D_f$,值域 为$R_f$。如果存在一个函数$g:R_f rightarrow D_f$,使得对于任意的$x in D_f, y in R_f$,都有$g(y)=x Leftrightarrow y=f(x)$,则称函数$g(y)$ 为函数$f(x)$的反函数,记作$g=f^{-1}$。
如忽视空集的情况,对并集和 交集的理解不清等。
函数性质理解不透彻
如对函数单调性的判断不准确 ,对函数奇偶性的判断方法掌 握不牢等。

高考数学二轮复习 专题1 集合、常用逻辑用语、函数与导数 第一讲 集合与常用逻辑用语 理-人教版高三

高考数学二轮复习 专题1 集合、常用逻辑用语、函数与导数 第一讲 集合与常用逻辑用语 理-人教版高三

专题一 集合、常用逻辑用语、函数与导数第一讲 集合与常用逻辑用语一、集合的含义与表示 1.集合的含义. (1)集合中元素的性质.集合中的元素具有确定性、互异性、无序性三个特征. (2)元素与集合的关系.元素与集合的关系有属于、不属于两种. 2.集合的表示法⎩⎪⎨⎪⎧列举法,描述法,韦恩图.二、集合间的关系 1.包含关系.若任意元素x ∈A ,则x ∈B ,那么集合A 与B 的关系是A ⊆B . (1)相等关系:若A ⊆B 且A ⊇B ,则A =B .三、集合的运算 1.集合的三种运算.(1)并集:A ∪B ={x |x ∈A ,或x ∈B }; (2)交集:A ∩B ={x |x ∈A ,且x ∈B };(3)补集:∁U A ={x |x ∈U ,且x ∉A }其中U 为全集,A ⊆U . 2.运算性质及重要结论.(1)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A ; (2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A ;(3)A∩∁U A=∅,A∪∁U A=U;(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.1.四种命题.(1)四种命题之间的相互关系.(2)四种命题的真假关系.①两个命题互为逆否命题,它们有相同的真假性.②两个命题互为逆命题或否命题,它们的真假性没有关系.2.充分条件、必要条件与充要条件.(1)定义:对于“若p,则q”形式的命题,如果已知p⇒q,那么p是q的充分条件;如果q⇒p,那么p是q的必要条件;如果既有p⇒q,又有q⇒p,则记作p⇔q,就是说p 是q的充要条件.(2)若p⇒q但q⇒/p,则p是q的充分不必要条件;若q⇒p但p⇒/ q,则p是q的必要不充分条件.2.全称量词与全称命题.(1)全称量词:短语“对所有的”“对任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.(2)全称命题:含有全称量词的命题叫做全称命题.3.特称量词(存在量词)与特称命题(存在性命题).(1)特称量词(存在量词):短语“存在一个”“至少有一个”等在逻辑中通常叫做特称量词(存在量词),用符号“∃”表示.(2)特称命题(存在性命题):含有特称量词(存在量词)的命题叫做特称命题(存在性命题).判断下面结论是否正确(请在括号中打“√”或“×”).(1){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.(×)(2)若{x2,1}={0,1},则x=0,1.(×)(3)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.(√)(4)若一个命题是真命题,则其逆否命题是真命题.(√)(5)“a=2”是“(a-1)(a-2)=0”的必要不充分条件.(×)(6)(2014·某某卷改编)设a,b∈R,则“a+b>4”是“a>2且b>2”的充分条件.(×)1.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是(B)2.(2014·某某一模)“α=π3”是“sin α=32”的(B)A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件3.(2015·某某卷)设A,B是两个集合,则“A∩B=A”是“A⊆B”的(C)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:∵ A∩B=A⇔A⊆B,∴“A∩B=A”是“A⊆B”的充要条件.4.(2015·某某卷)设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁U B)=(B)A.{1,2,5,6} B.{1}C.{2} D.{1,2,3,4}解析:∵ U={1,2,3,4,5,6},B={2,3,4},∴∁U B={1,5,6},∴A∩(∁U B)={1}.一、选择题1.(2015·卷)若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=(A)A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}解析:如图所示,易知A∩B={x|-3<x<2}.2.(2015·新课标Ⅰ卷)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A∩B中元素的个数为(D)A.5 B.4C.3 D.2解析:A∩B={x|x=3n+2,n∈N}∩{6,8,12,14}={8,14},答案选D.3.(2015·某某卷)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=(A)A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]解析:M ={x |x 2=x }={0,1},N ={x |lg x ≤0}={x |0<x ≤1},M ∪N =[0,1],故选A. 4.(2015·某某卷)设A ,B 是两个集合,则“A ∩B =A ”是“A ⊆B ”的(C ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:∵ A ∩B =A ⇔A ⊆B ,∴“A ∩B =A ”是“A ⊆B ”的充要条件. 5.(2014·某某卷)命题“∀x ∈R,|x |+x 2≥0”的否定是(C ) A .∀x ∈R ,|x |+x 2<0 B .∀x ∈R ,|x |+x 2≤0 C .∃x 0∈R ,|x 0|+x 20<0 D .∃x 0∈R ,|x 0|+x 20≥0 二、填空题6.下列命题中,②④(填序号)为真命题. ①“A ∩B =A ”成立的必要条件是“”;②“若x 2+y 2=0,则x ,y 全为0”的否命题; ③“全等三角形是相似三角形”的逆命题; ④“圆内接四边形对角互补”的逆否命题. 解析:①A ∩B =A ⇒A ⊆B 但不能得出,∴①不正确;②否命题为:“若x 2+y 2≠0,则x ,y 不全为0”,是真命题;③逆命题为:“若两个三角形是相似三角形,则这两个三角形全等”,是假命题;④原命题为真,而逆否命题与原命题是两个等价命题,所以逆否命题也为真命题.7.(2015·某某卷)若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为1.解析:由题意,原命题等价于tan x ≤m 在区间⎣⎢⎡⎦⎥⎤0,π4上恒成立,即y =tan x 在⎣⎢⎡⎦⎥⎤0,π4上的最大值小于或等于m ,又y =tan x 在⎣⎢⎡⎦⎥⎤0,π4上的最大值为1,所以m ≥1,即m 的最小值为1.三、解答题8.已知集合A ={x |x 2-3x -10≤0},B ={x |m +1≤x ≤2m -1},若A ∪B =A ,某某数m的取值X 围.解析:∵A ∪B =A ,∴B ⊆A .∵A ={x |x 2-3x -10≤0}={x |-2≤x ≤5}, ①若B =∅,则m +1>2m -1, 即m <2,∴m <2时,A ∪B =A . ②若B ≠∅,如图所示,则m +1≤2m -1,即m ≥2.由B ⊆A 得⎩⎪⎨⎪⎧-2≤m +1,2m -1≤5,解得-3≤m ≤3. 又∵m ≥2,∴2≤m ≤3.由①②知,当m ≤3时,A ∪B =A . 因此,实数m 的取值X 围是(-∞,3].9.设p :方程x 2+mx +1=0有两个不等的负根,q :方程4x 2+4(m -2)x +1=0无实根.若“p ∨q ”为真,“p ∧q ”为假,某某数m 的取值X 围.解析:若方程x 2+mx +1=0有两个不等的负根, 则⎩⎪⎨⎪⎧Δ=m 2-4>0,x 1+x 2=-m <0,∴m >2,即p :m >2.x 1x 2=1>0. 若方程4x 2+4(m -2)x +1=0无实根, 则Δ=16(m -2)2-16<0, 即1<m <3,∴q :1<m <3.∵p ∨q 为真,则p ,q 至少一个为真,又p ∧q 为假,则p ,q 至少一个为假, ∴p ,q 一真一假,即p 真q 假或p 假q 真. ∴⎩⎪⎨⎪⎧m >2,m ≤1或m ≥3或⎩⎪⎨⎪⎧m ≤2,1<m <3.∴m ≥3或1<m ≤2.故实数m 的取值X 围为(1,2]∪[3,+∞).10.设a ,b ∈R,集合⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b ,0},求a 2 016+b 2 016的值.思路点拨:因为a 为分母,所以a ≠0,从而b a=0,故b =0,进而知a 2=1,可求a ,b . 解析:由已知,得a ≠0,∴b a=0,即b =0. 则在集合{a 2,a +b ,0}中,a 2=1.∴a =±1. 又a =1时,不合题意,∴a =-1. ∴a2016+b2016=(-1)2016=1.。

专题一 集合 函数 导数

专题一  集合 函数 导数

专题一 集合、函数与导数及应用考纲解读1.集合(1)集合的含义与表示①了解集合的含义、元素与集合的“属于”关系.②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集. ②在具体情境中,了解全集与空集的含义. (3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. ②理解在给定集合中一个子集的补集的含义,会求给定子集的补集. ③能使用韦恩图(Venn )表达集合的关系及运算.2.函数概念与基本初等函数I (指数函数、对数函数、幂函数) (1)函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念. ②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.③了解简单的分段函数,并能简单应用.④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.⑤会运用函数图像理解和研究函数的性质. (2)指数函数①了解指数函数模型的实际背景.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数的概念,理解指数函数的单调性,掌握函数图像通过的特殊点. (3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.②理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点. ③了解指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1). (4)幂函数①了解幂函数的概念.②结合函数21321x y x y x y x y x y =====,,,,的图象,了解它们的变化情况.(5)函数与方程①结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.②根据具体函数的图像,能够用二分法求相应方程的近似解.(6)函数模型及其应用①了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用. 16.导数及其应用(1)导数概念及其几何意义 ①了解导数概念的实际背景. ②理解导数的几何意义. (2)导数的运算①能根据导数定义,求函数xy x y x y c y 12====,,,的导数.②能利用下面给出的基本初等函数公式和导数的四则运算法则求简单函数的导数.·常见基本初等函数的导数公式和常用导数运算公式:()0()c c '=为常数 ()sin cos x x '=;x x sin )(cos -=' ;x x e e =')(;1)0(ln )(≠>='a a a a a x x 且; x x 1)(ln =';1)0(log 1)(log ≠>='a a e xx a a 且 ·常用的导数运算法则:·法则1 [])()()()(x v x u x v x u '±'='± ·法则2 [])()()()()()(x v x u x v x u x v x u '+'='·法则3 )0)(()()()()()()()(2≠'-'='⎥⎦⎤⎢⎣⎡x v x v x v x u x v x u x v x u (3)导数在研究函数中的应用①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数一般不超过三次).②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数一般不超过三次). (4)生活中的优化问题会利用导数解决某些实际问题.一、知识网络结构1、元素与集合之间是“属于”或“不属于”关系;集合与集合之间是“包含”或“包含于”关系.集合知识作为整个数学知识的基础,在高考中重点考查的是集合的化简,以及利用集合与简易逻辑的知识来指导我们思维,寻求解决其他问题的方法,同时 集合作为中学数学工具,主要用来表示函数的定义域、值域以及不等式的解集.2、四种命题之间的相互关系原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互一个命题的真假与其他三个命题的真假有如下三条关系:(原命题⇔逆否命题)①、原命题为真,它的逆命题不一定为真. ②、原命题为真,它的否命题不一定为真. ③、原命题为真,它的逆否命题一定为真. 3、全称命题与特称命题全称命题的一般形式:,()x M p x ∀∈特称命题的一般形式:00,()x M P x ∃∈全称命题的否定形式:00,()x M P x ∃∈⌝特称命题的否定形式:,()x M P x ∀∈⌝4、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法.5.常见的基本初等函数有:一次函数:(),, 0.f x kx b b k =+≠是常数其中 二次函数:2(),0.f x ax bx c a =++≠其中 对数函数:()log ,0 1.a f x x a a =>≠且指数函数:(),00.xf x a a a =>≠且幂函数:(),0.f x x αα=≠其中 6.常见函数与抽象函数的图象和性质会求函数的定义域、值域、单调性、周期性、奇偶性等,并会处理它们之间的内在原则,同时注意函数本身的限制条件:定义域优先的原则.函数图象的三大基本问题:作图、识图、用图. 7.函数图象变换的四种形式 (1)平移变换 (2)对称变换 ①1()(),()(),()(),()(),y f x y f x y f x y f x y f x y f x y f x y f x y x -=-==-==--===与与与与每组中两个函数图象分别关于轴、轴、原点、直线y=x 对称.②若对定义域内的一切x 均有()(),f x m f m x +=-则()y f x =图象关于直线x m =对称;(3)伸缩变换 (4)翻转变换①(),y f x =作出()y f x =的图象,将图象位于x 轴下方的部分以x 轴为对称轴翻折到x 轴上方.②(),y f x =作出()y f x =在y 轴右边的图象部分,以y 轴为对称轴将其翻折到左边得到()y f x =在y 轴左边部分的图象.8.导数及其应用导数:若函数f(x)在x 0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若存在,则称f(x)在x 0处可导,此极限值称为f(x)在点x 0处的导数(或变化率),记作(x 0)或或,即.由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件.若f(x)在区间I 上有定义,且在每一点可导,则称它在此敬意上可导.导数的几何意义是:f(x)在点x 0处导数(x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率.函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为导数的定义:函数()y f x =在0x x =处的导数/0000()()()limx f x x f x f x x∆→+∆-=∆.导数的几何意义:曲线()y f x =上点00(,())x f x 处的切线的斜率为/0()f x .因此曲线()y f x =在点()(,00x f x )处的切线方程为/000()()()y f x f x x x -=-. 导数的物理意义:若质点运动的位移函数为S =s (t ),则0t t =时质点运动的瞬时速度是0'()s t . 复合函数求导法:设函数y=f(u),u=(x),已知(x)在x 处可导,f(u)在对应的点u(u=(x))处可导,则复合函数y=f[(x)]在点x 处可导,且(f[(x)]=.函数单调性:⑴函数单调性的判定方法:设函数在某个区间内可导, 如果>0,则为增函数; 如果<0,则为减函数.xy x ∆∆→∆0lim'f 0'x x y =0x dxdy 000)()(lim)('0x x x f x f x f x x --=→'f )(x f y =0x )(x f y =))(,(0x f x )(x f y =))(,(0x f x )(0'x f ).)((0'0x x x f y y -=-ϕϕϕϕϕ)')(')](['x x f ϕϕ)(x f y =)('x f )(x f y =)('x f )(x f y =⑵常数的判定方法;如果函数在区间内恒有=0,则为常数.极值的判别方法:(极值是在附近所有的点,都有<,则是函数的极大值,极小值同理) 当函数在点处连续时,①如果在附近的左侧>0,右侧<0,那么是极大值; ②如果在附近的左侧<0,右侧>0,那么是极小值.也就是说是极值点的充分条件是点两侧导数异号,而不是=0①. 此外,函数不可导的点也可能是函数的极值点②.当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同). 注①:若点是可导函数的极值点,则=0. 但反过来不一定成立. 对于可导函数,其一点是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数,使=0,但不是极值点.②例如:函数,在点处不可导,但点是函数的极小值点.极值与最值区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较. 几种常见的函数导数:(为常数)()9.函数与导数的综合应用导数作为中学数学中的工具,主要用来判断函数的单调性、求函数的极值、最值.二、考题方向分析)(x f y =I )('x f )(x f y =0x )(x f )(0x f )(0x f )(x f )(x f 0x 0x )('x f )('x f )(0x f 0x )('x f )('x f )(0x f 0x 0x )('x f 0x )(x f )('x f 0x 3)(x x f y ==0=x )('x f 0=x ||)(x x f y ==0=x 0=x 0'=C C x x cos )(sin'=1')(-=n n nx x R n ∈x x sin )(cos '-=x x 1)(ln '=e xx a a log 1)(log '=x x e e =')(a a a x x ln )('=函数与导数既是高中数学最重要的基础知识,又是高中数学的主干知识,还是高中数学的主要工具,在高考中占有举足轻重的地位,其考查的内容和形式也是丰富多彩的.对于函数,高中数学在各章节的知识渗透有函数的思想与方法,函数的影子几乎闪现与每个问题之中,对于函数内容的备考,首先要掌握基本概念和基本运算,牢记基本函数的图像与性质,重视函数与方程、数形结合、转化与化归、分类讨论等数学思想与方法在解题中的应用.导数属于新课程改革后增加的内容,是高中数学知识的一个重要的交汇点,命题范围非常广泛,为函数的考查提供了广阔天地,处于一种特殊的地位.三、经典例题讲解例1(2010全国)(4)(理)函数的反函数是 (A )(B ) (C ) (D )【答案】D【命题意图】本题主要考察反函数的求法及指数函数与对数函数的互化. 【解析】由原函数解析式解得,即,又;∴在反函数中,故选D.例2(2011全国)(5)(理)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9【答案】C【命题意图】本题主要考查三角函数的图像变换中的平移和图像重合问题,同时考查三角函数的周期性. 【解析】由题意得()cos[()]cos()cos 33f x x x xππωωωω=-=-=所以,2,3k k zπωπ=∈,6,.k k z ω=∈故ω的最小值为6.例3 (2014全国新课标)(理) (1)设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=A. {1}B. {2}C. {0,1}D. {1,2} 【答案】D【命题意图】本题主要考查集合的运算和一元二次不等式的解法.1ln(1)(1)2x y x +-=>211(0)x y e x +=->211(0)x y e x +=+>211(R)x y e x +=-∈211(R)x y e x +=+∈【解析】把M={0,1,2}中的数,代入不等式2-320,x x +≤经检验x=1,2满足. 例4 (2014全国新课标)(理)(8)设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x,则a =A. 0B. 1C. 2D. 3 【答案】 D【命题意图】本题主要考查导数的几何意义. 【解析】..3.2)0(,0)0(.11-)(),1ln(-)(D a f f x a x f x ax x f 故选联立解得且==′=∴+=′∴+= 例5.函数f (x )=1+log 2x 与g (x )=21-x 在同一直角坐标系下的图像大致是( )【答案】 C【命题意图】本题主要考查函数的图像问题.【解析】f (x )=1+log 2x 的图像可由f (x )=log 2x 的图像上移1个单位得到,且过点(1/2,0),(1,1),由指数函数性质可知g (x )=21-x 为减函数,且过点(0,2),故选C.例6(2011全国文)(21)已知函数32()331f x x ax x =-++ (Ⅰ)设2a =,求()f x 的单调区间;(Ⅱ)设()f x 在区间(2,3)中至少有一个极值点,求a 的取值范围. 【命题意图】本题主要考查利用导数求函数的单调性和极值问题.【解析】(Ⅰ)当2a =时,2()3123f x x x '=-+. 令()0,f x '>,22x x <>解得或则函数32()331f x x ax x =-++的单调增区间是(,2(2)-∞++∞和.令()0f x '<,解得,22x -<<+则函数32()331f x x ax x =-++的单调减区间是(2.(Ⅱ)(省略)例7(2014全国新课标)(理)(21) 已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间;(2)若21()2f x x ax b ≥++,求(1)a b +的最大值. 【命题意图】本题主要考查函数、不等式、方程与导数的综合应用.【解析】(1)1211()(1)(0)()(1)(0)2x x f x f e f x x f x f e f x --'''=-+⇒=-+令1x =得:(0)1f =1211()(1)(0)(1)1(1)2x f x f e x x f f e f e --'''=-+⇒==⇔= 得:21()()()12x x f x e x x g x f x e x '=-+⇒==-+()10()x g x e y g x '=+>⇒=在x R ∈上单调递增()0(0)0,()0(0)0f x f x f x f x ''''>=⇔><=⇔<得:()f x 的解析式为21()2x f x e x x =-+且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ (2)21()()(1)02x f x x ax b h x e a x b ≥++⇔=-+-≥得()(1)x h x e a '=-+ ①当10a +≤时,()0()h x y h x '>⇒=在x R ∈上单调递增x →-∞时,()h x →-∞与()0h x ≥矛盾②当10a +>时,()0ln(1),()0ln(1)h x x a h x x a ''>⇔>+<⇔<+ 得:当ln(1)x a =+时,min ()(1)(1)ln(1)0h x a a a b =+-++-≥22(1)(1)(1)ln(1)(10)a b a a a a +≤+-+++>令22()ln (0)F x x x x x =->;则()(12ln )F x x x '=-()00()0F x x F x x ''>⇔<<<⇔>当x =,max ()2e F x =当1,a b =-=时,(1)a b +的最大值为2e 四、经典预测训练试题一、选择题1. 已知集合}0)3(|{<-=x x x P ,}2|||{<=x x Q ,则=Q P ( ) A .)0,2(-B .)2,0(C .)3,2( D .)3,2(- 2.下列命题中,真命题是( )B .∀x ∈R,2x >x 2C .a +b =0的充要条件是ab =-1D .a >1,b >1是ab >1的充分条件3.已知A ={0,1},B ={-1,0,1},f 是从A 到B 的映射,则满足f (0)>f (1)的映射有( )A .3个B .4个C .5个D .2个4.下列函数中既是奇函数,又在区间[-1,1]上单调递减的是( ) A .f (x )=sin x B .f (x )=-|x +1| C .f (x )=12(a x +a -x )D .f (x )=-x5.函数f (x )=1nx -6+2x 的零点一定位于区间( ) A .(3,4) B .(2,3) C .(1,2) D .(5,6)二、填空题6.函数y =-x 2-2ax (0≤x ≤1)的最大值是a 2,则实数a 的取值范围是_____.7.已知函数31()()log 5x f x x=-,若x 0是方程f (x )=0的解,且0<x 1<x 0,则f (x 1)的值为__________(正负情况).8.已知函数f (x )的定义域为[-1,5],部分对应值如下表,f (x )的导函数y =f ′(x )的图像如图所示.x -104 5下列关于函数f(x)的命题:①函数f(x)的值域为[1,2];②函数f(x)在[0,2]上是减函数;③如果当x∈[-1,t]时,f(x)的最大值2,那么t的最大值为4;④当1<a<2时,函数y=f(x)-a有4个零点.其中是真命题的是________.三、解答题9.(2008年全国)(理)(22)设函数sin()2cosxf xx=+.求()f x的单调区间.10.(文科)已知函数f(x)=x3+2x2-ax+1.(1)若函数f(x)在点(1,f(1))处的切线的斜率为4,求实数a的值;(2)若函数g(x)=f′(x)在区间(-1,1)上存在零点,求实数a的取值范围.(理科)(2014·郑州质检)已知函数f(x)=x-ln(x+a)在x=1处取得极值.(1)求实数a的值;(2)若关于x的方程f(x)+2x=x2+b在[1/2,2]上恰有两个不相等的实数根,求实数b的取值范围.答案1、答案D2、答案 D解析∵a>1>0,b>1>0,∴由不等式的性质,得ab>1.即a>1,b>1⇒ab>1.3、答案 A解析当f(0)=-1时,f(1)可以是0或1,则有2个映射.当f(0)=0时,f(1)=1,则有1个映射.4、答案 D5、答案 B解析f(1)=-3<0,f(2)=-32<0,f(3)=13>0,故选B.6、答案-1≤a≤0解析 f (x )=-x 2-2ax =-(x +a )2+a 2,若f (x )在[0,1]上最大值是a 2,则0≤-a ≤1,即-1≤a ≤0.7、答案:正值解析:分别作y =(1/5)x 与y =log 3x 的图象,如图可知,当0<x 1<x 0时,(1/5)x1>log 3x 1,∴f (x 1)>0.8、答案 ②解析 根据导函数f ′(x )的图像可知f (x )的三个极值点为0,2,4,其中0,4是极大值点,2是极小值点,再结合f (x )的部分对应值表可得f (x )的大致图像如下:①由于f (2)的值不确定,因此①错;②显然正确;③由于f (0)=2,因此对于0≤t ≤5,均满足条件,故③错;④与①的道理相同,y =f (x )-a 有4个零点,即y =a 与y =f (x )的图像有4个交点,此时a 的取值范围依然与f (2)的大小有关,因此④错误.故正确的只有②.9、解析:22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+¢==++ 当2π2π2π-2π33k x k <<+(k ÎZ )时,1cos 2x >-,即()0f x ¢>; 当2π4π2π2π+33k x k +<<(k ÎZ )时,1cos 2x <-,即()0f x ¢<. 因此()f x 在每一个区间2π2π2π,2π33k k 骣琪-+琪桫(k ÎZ )是增函数, ()f x 在每一个区间2π4π2π,2π33k k 骣琪++琪桫(k ÎZ )是减函数. 10、(文科)答案 (1)a =3 (2)[-4/3,7)解析 由题意得g (x )=f ′(x )=3x 2+4x -a .(1)f ′(1)=3+4-a =4,∴a =3.(2)g (x )=f ′(x )在区间(-1,1)上存在零点,等价于3x 2+4x =a 在区间(-1,1)上有解,也等价于直线y =a 与曲线y =3x 2+4x ,x ∈(-1,1)有公共点,作图得a ∈[-4/3,7).(理科)答案 (1)0 (2)54+ln2≤b <2。

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-

第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。

专题01 集合的含义及运算-名师揭秘2020年高考数学(文)一轮总复习之集合函数导数 Word版含解析

专题01 集合的含义及运算-名师揭秘2020年高考数学(文)一轮总复习之集合函数导数 Word版含解析

专题01 集合的含义及运算一、本专题要特别小心:1.元素与集合,集合与集合关系混淆陷阱;2.造成集合中元素重复陷阱;3.隐含条件陷阱;4.代表元变化陷阱;5.分类讨论陷阱;6.子集中忽视空集陷阱;7.新定义问题;8.任意、存在问题中的最值陷阱.二、【学习目标】1.了解集合的含义、元素与集合的“属于”关系,能用自然语言、图形语言、集合语言(列举法或描述法)来描述不同的具体问题,理解集合中元素的互异性;2.理解集合之间包含和相等的含义,能识别给定集合的子集,了解在具体情境中全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集,理解在给定集合中一个子集的补集的含义,会求给定子集的补集;4.能使用韦恩(V enn)图表达集合间的关系与运算.三、【知识要点】1.集合的含义与表示(1)一般地,我们把研究对象统称为元素,把一些元素组成的总体叫集合,简称集.(2)集合中的元素的三个特征:确定性、互异性、无序性.(3)集合的表示方法有:描述法、列举法、区间法、图示法.(4)集合中元素与集合的关系分为属于与不属于两种,分别用“∈”或“∉”来表示.(5)常用的数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R.2.集合之间的关系(1)一般地,对于两个集合A,B.如果集合A的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B;若A⊆B,且A≠B,,我们就说A是B的真子集.(2)不含任何元素的集合叫做空集,记作φ,它是任何一个集合的子集,是任何一个非空集合的真子集。

3.集合的基本运算(1)并集:A∪B={x|x∈A或x∈B};(2)交集:A∩B={x|x∈A且x∈B};(3)补集:∁U A=.4.集合的运算性质(1)A∩B=A⇔A⊆B,A∩A=A,A∩∅=∅;(2)A∪B=A⇔A⊇B,A∪A=A,A∪∅=A;(3)A⊆B,B⊆C,则A⊆C;(4)∁U(A∩B)=∁U A∪∁U B,∁U(A∪B)=∁U A∩∁U B,A∩∁U A=∅,A∪∁U A=U,∁U(∁U A)=A;(5)A⊆B,B⊆A,则A=B.四.题型方法规律总结(一)集合的含义与表示例1.已知集合,则中元素的个数为A.9 B.8 C.5 D.4【答案】A【解析】,当时,;当时,;当时,;所以共有9个,选A.练习1.给出下列四个关系式:(1);(2);(3);(4),其中正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】(1)R为实数集,为实数,所以正确;(2)Z、Q分别为两个集合,集合间不能用属于符号,所以错误;(3)空集中没有任何元素,所以错误;(4)空集为任何集合的子集,所以正确.故选B.练习2.若A={1,2},B={(x,y)|x∈A,y∈A},则集合B中元素的个数为()A.1 B.2 C.3 D.4【答案】D【解析】由题意得集合,所以集合B中共有4个元素.故选D.(二)集合中代表元易错点揭秘例2.已知集合A满足条件:若a∈A,则∈A,那么集合A中所有元素的乘积为() A.-1 B.1 C.0 D.±1【答案】B【解析】由题意,当时,,令代入,则,则,则,即,所以,故选B.练习1.若集合A={x|mx2+2x+m=0,m∈R}中有且只有一个元素,则m的取值集合是A.{1}B.{}C.{0,1}D.{,0,1}【答案】D【解析】时,,满足题意;时,,.综上的取值集合是.练习2.用列举法表示集合=________.【答案】{-11,-6,-3,-2,0,1,4,9}.【解析】,为的因数则则答案为练习3.集合{|y y ∈N =用列举法可表示为__________.【答案】{}1,2,4,8 【解析】∵,1x x ∈≠N ,∴当0x =时, 8y =-,不符合题意, 当2x =时, 8y =,符合题意, 当3x =时, 4y =,符合题意, 当4x =时, 83y =,不符合题意, 当5x =时, 2y =,符合题意,当6x =时, 85y =,不符合题意, 当7x =时, 86y =,不符合题意,当8x =时, 87y =,不符合题意,当9x =时, 1y =,符合题意,则y =,不符合题意.∴用列举法可表示为{}1,2,4,8. (三)集合的基本关系 例3.已知集合,,若,则实数的取值集合为( )A .B .C .D .【答案】D【解析】∵集合M={x|x 2=1}={﹣1,1},N={x|ax=1},N ⊆M ,∴当a=0时,N=∅,成立; 当a≠0时,N={}, ∵N ⊆M ,∴或=1.解得a=﹣1或a=1,综上,实数a 的取值集合为{1,﹣1,0}.故选:D.练习1.已知集合,,则的真子集的个数为()A.3 B.4 C.7 D.8【答案】C【解析】由题意得,,∴,∴的真子集的个数为个.故选C.练习2.若函数在区间内没有最值,则的取值范围是()A.B.C.D.【答案】B【解析】函数的单调区间为,由,得.∵函数在区间内没有最值,∴函数在区间内单调,∴,∴,解得.由,得.当时,得;当时,得,又,故.综上得的取值范围是.故选B.练习3.已知集合,,若,则实数的取值范围是( ) A.B.C.D.【答案】A【解析】由已知得,由,则,又,所以.故选A.(四)子集中常见错误例4. 已知集合,,若,则实数的取值范围是( )A.B.C.D.【答案】C【解析】当集合时,,解得,此时满足;当,即时,应有:,据此可得:,则,综上可得:实数的取值范围是.本题选择C选项.练习1.Z(M)表示集合M的子集个数,设集合A=,B=,则= A.3 B.4 C.5 D.7【答案】B【解析】;B=∴;集合的子集有:∴Z(A∩B)=4.故选:B练习2.设集合,不等式的解集为B.(Ⅰ)当时,求集合A,B;(Ⅱ)当,求实数的取值范围.【答案】(Ⅰ),;(Ⅱ)或.【解析】(Ⅰ)当时,,.(Ⅱ)①若,即时,可得, 满足,故符合题意.②当时,由,可得,且等号不能同时成立, 解得. 综上可得或.∴实数的取值范围是.练习3.设全集U=R ,集合A={x|1≤x <4},B={x|2a≤x <3-a}.(1)若a=-2,求B∩A ,B∩(∁U A);(2)若A ∪B=A ,求实数a 的取值范围. 【答案】(1)B ∩A =[1,4),B ∩(∁U A )= [-4,1)∪[4,5);(2) .【解析】(1)∵A ={x |1≤x <4},∴∁U A ={x |x <1或x ≥4},∵B ={x |2a ≤x <3-a },∴a =-2时,B ={-4≤x <5},所以B ∩A =[1,4), B ∩(∁U A )={x |-4≤x <1或4≤x <5}=[-4,1)∪[4,5). (2)A ∪B =A ⇔B ⊆A , ①B =∅时,则有2a ≥3-a ,∴a ≥1, ②B ≠∅时,则有,∴,综上所述,所求a 的取值范围为.(五)集合的基本运算 例5.已知,,则()R AB ð中的元素个数为( )A .1B .2C .6D .8【答案】B【解析】解:{1x x =<,或3}x ≥,,,的元素个数为2个.故选:B .练习1.已知集合,,若A B A ⋂=,则实数a 的取值范围是( )A .(],3-∞-B .(),3-∞-C .(],0-∞D .[)3,+∞ 【答案】A【解析】由已知得[]3,3A =-,由A B A ⋂=,则A B ⊆,又[),B a =+∞,所以3a ≤-.故选A.练习2.集合,,若,则的取值范围是( )A .B .C .D .【答案】B 【解析】根据题意,可得,,要使,则,故选B.练习3.设全集是实数集,,则图中阴影部分所表示的集合是________.【答案】【解析】∵,∴, ∴.(六)集合的应用例6.学校先举办了一次田径运动会,某班共有8名同学参赛,又举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班总共的参赛人数为( ) A .20 B .17C .14D .23【答案】B【解析】因为参加田径运动会的有8名同学,参加球类运动会的有12名同学,两次运动会都参加的有3人,所以两次运动会中,这个班总共的参赛人数为.故选B练习1.已知集合.给定一个函数,定义集合若对任意的成立,则称该函数具有性质“”(I)具有性质“”的一个一次函数的解析式可以是_____;(Ⅱ)给出下列函数:①;②;③,其中具有性质“”的函数的序号是____.(写出所有正确答案的序号)【答案】(答案不唯一)①②【解析】(I)对于解析式:,因为,,…符合。

最新高考数学复习精品课件 集合与常用逻辑用语、函数与导数

最新高考数学复习精品课件 集合与常用逻辑用语、函数与导数

专题一 集合与常用逻辑用语、函数与导数
走向高考 ·二轮专题复习 ·新课标版 ·数学
疑难误区警示 1.认清集合元素的属性及元素所代表的意义. 2. 区 分 命 题 的 否 定 和 否 命 题 的 不 同 , 否 命 题 是 对 命 题 的 条件和结论都否定,而命题的否定仅对命题的结论否定. 3.p 或 q 的否定:綈 p 且綈 q;p 且 q 的否定:綈 p 或綈 q. 4.“A 的充分不必要条件是 B”是指 B 能 推 出 A,且 A 不能推出 B; 而“A 是 B 的充分不必要条件”则是指 A 能推出 B,且 B 不能推出 A.
专题一 集合与常用逻辑用语、函数与导数
走向高考 ·二轮专题复习 ·新课标版 ·数学
4.简单的逻辑联结词“且”、“或”、“非” 用逻辑联结词“且”把命题 p 和命题 q 联 结 起 来 , 就 得 到 一个新命题,记作“p∧q”; 用逻辑联结词“或”把命题 p 和命题 q 联 结 起 来 , 就 得 到 一个新命题,记作“p∨q”; 对一个命题 p 全 盘 否 定 , 就 得 到 一 个 新 命 题 , 记 作 p”. “綈
走向高考 ·二轮专题复习 ·新课标版 ·数学
“全 称 量 词 与 存 在 量 词 题进行否定.
”主 要 考 查 对 含 有 一 个 量 词 的 命
考查对充分条件、必要条件、充要条件等概念的理解.
专题一 集合与常用逻辑用语、函数与导数
走向高考 ·二轮专题复习 ·新课标版 ·数学
命题规律 集合知识一般以一个选择题的形式出现, 其中以集合知识 为载体,集合与不等式、解析几何知识相结合是考查的重点, 难 度 为 中 、 低 档 ; 对 常 用 逻 辑 用 语 的 考查一般以一个选择题或
定的材料考查阅读理解能力和创新意识, 考查运用所学知识分 析解决问题能力. “命题及其关系”主要考查四种命题的定义及相互关系. “简 单 的 逻 辑 联 结 词 “且”、“非”的 含 义 , 能 用 关的数学内容. ”主 要 考 查 逻 辑 联 结 词 “或”、

高考数学二轮复习专题

高考数学二轮复习专题

高考数学二轮复习专题汇总1专题一:集合、函数、导数与不等式。

此专题函数和导数以及应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。

每年高考中导数所占的比重都非常大,一般情况是在客观题中考查导数的几何意义和导数的计算,属于容易题;二是在解答题中进行综合考查,主要考查用导数研究函数的性质,用函数的单调性证明不等式等,此题具有很高的综合性,并且与思想方法紧密结合。

2专题二:数列、推理与证明。

数列由旧高考中的压轴题变成了新高考中的中档题,主要考查等差等比数列的通项与求和,与不等式的简单综合问题是近年来的热门问题。

3专题三:三角函数、平面向量和解三角形。

平面向量和三角函数的图像与性质、恒等变换是重点。

近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题、一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点。

平面向量具有几何与代数形式的“双重性”,是一个重要的知识交汇点,它与三角函数、解析几何都可以整合。

4专题四:立体几何。

注重几何体的三视图、空间点线面的关系及空间角的计算,用空间向量解决点线面的问题是重点。

5专题五:解析几何。

直线与圆锥曲线的位置关系、轨迹方程的探求以及最值范围、定点定值、对称问题是命题的主旋律。

近几年高考中圆锥曲线问题具有两大特色:一是融“综合性、开放性、探索性”为一体;二是向量关系的引入、三角变换的渗透和导数工具的使用。

我们在注重基础的同时,要兼顾直线与圆锥曲线综合问题的强化训练,尤其是推理、运算变形能力的训练。

6专题六:概率与统计、算法与复数。

要求具有较高的阅读理解和分析问题、解决问题的能力。

高考对算法的考查集中在程序框图,主要通过数列求和、求积设计问题。

高考数学二轮复习策略1.加强思维训练,规范答题过程解题一定要非常规范,俗语说:“不怕难题不得分,就怕每题都扣分”,所以大家要形成良好的思维品质和学习习惯,务必将解题过程写得层次分明结构完整。

集合、函数与导数

集合、函数与导数

专题集合、函数与导数一、考情分析函数是整个高中数学的核心内容,是高中数学的主线,所有知识均可与函数建立联系,都可围绕这一主线展开学习考查,它贯穿于中学数学的始末,而函数的四大性质更是高考对函数内容考查的重中之重,其中单调性与奇偶性更是高考的必考内容,在高考命题中函数常与方程、不等式等其他知识结合考查,而且考查的形式不一,时而选择题,时而填空题,时而解答题.二、经验分享1.单调区间是定义域的子集,故求单调区间时应树立“定义域优先”的原则,单调区间只能用区间表示,不能用集合或不等式表示,如有多个单调区间应分开写,不能用并集符号“∪”连接,也不能用“或”连接.2.函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也是单调的;③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.3.解函数不等式问题的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的抽象符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.4.关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.5.掌握以下两个结论,会给解题带来方便:①f (x )为偶函数⇔f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.三、知识拓展1.对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=()1f x ,则T =2a (a >0). (3)若f (x +a )=-()1f x ,则T =2a (a >0). (4)若()()()2f x a f x a f x +=+-,则T =6a (a >0). (5)若f (x +a )=()()11f x f x -+,则T =2a (a >0).(6)若f (x +a )=()()11f x f x +-,则T =4a (a >0).2.函数对称性与函数周期性的关系(1)若函数()f x 的图象既关于直线x a =对称,又关于直线x b =对称()a b ≠,则()f x 是周期函数,且()2b a -是它的一个周期.(2)若函数()f x 的图象既关于点(),0a 对称,又关于点(),0b 对称()a b ≠,则()f x 是周期函数,且()2b a -是它的一个周期.(3)若函数()f x 的图象既关于直线x a =对称,又关于点(),0b 对称()a b ≠,则()f x 是周期函数,且()4b a -是它的一个周期.3.函数()1,0x f x x ⎧=⎨⎩为有理数,为无理数是一个奇特的函数,该函数是偶函数,是周期函数,但没有最小正周期,也无法作出其图象.4. 设()[]x g f y =是定义在M 上的函数,若()f x 与()g x 的单调性相反,则()[]x g f y =在M 上是减函数;若()f x 与()g x 的单调性相同,则()[]x g f y =在M 上是增函数,简称同增异减.5. 对称性的一般结论①若()()f a x f b x +=-,则()f x 图像关于直线2a bx +=对称;②()y f a x =+与()y f b x =-的图像关于直线2b ax -=(即a x b x +=- )对称. 四、题型分析(一) 函数单调性的灵活应用【例1】如果对定义在R 上的函数()f x ,对任意两个不相等的实数12,x x ,都有11221221()()()()x f x x f x x f x x f x +>+,则称函数()f x 为“H 函数”.给出下列函数①e xy x =+;②2y x =;③3sin y x x =-;④ln 0()00x x f x x ⎧≠⎪=⎨=⎪⎩. 以上函数是“H 函数”的所有序号为 .【分析】本题的重点和难点均为对“H 函数”本质的认识和理解,即如何处理和转化题中所给不等式:11221221()()()()x f x x f x x f x x f x +>+,采用合并重组的方法进行处理,得()()()12120x x f x f x -->⎡⎤⎣⎦ ,由单调性定义的本质,可以看出“H 函数”本质上就是个单调递增函数.当x<0时为减函数,当x>0为增函数,不符合,故选①③.【点评】本题主要考查了单调函数的定义和函数单调性的判断(定义法,图像法,导数法),学生在初步理解时可能有一种无从入手的感觉,如果对函数单调性定义的本质不能领悟的话,则将无法完成此题了,可见在教师的教和学生的学中最终要让学生去理解和领悟知识的本质.【小试牛刀】【2018届常熟中学高三10月阶段性抽测】已知函数,若,则实数的取值范围为__________.【答案】(-2,1) 【解析】很明显函数满足,且:,据此可得函数是定义在上的单调递增的奇函数,据此,不等式即:,脱去符号有:,求解关于实数a 的不等式可得实数的取值范围为.(二) 函数奇偶性的灵活应用【例2】已知函数22(1)sin ()31x a xf x x ++=++(a R ∈),2(ln(log 5))5f =,则5(ln(log 2))f =__________.【分析】先把()f x 分离常数,()22sin 41x a xf x x +=++,根据奇函数性质可得()()8f x f x +-=【答案】3【解析】()()41sin 231sin 1231sin 122222+++=+++++=++++=x xa x x x a x x x x a x x f , 令()()1sin 242++=-=x xa x x f x g ,则()x g 为奇函数,()()()()145log ln 5log ln 22=-=f g , ()()()()12log ln 5log 1ln 2log ln 525-=-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=g g g ,()()()()342log ln 2log ln 55=+=g f ,故选C.【点评】本题对函数奇偶性的考查较为隐蔽,只有通过分离常数,才能看出()f x 是一个常数函数与一个奇函数的和,故本题对能力要求较高. 【小试牛刀】已知函数()211log e xf x x e e⎛⎫=+-⎪⎝⎭,则使得()()121f x f x +<-的x 的范围是__________. 【答案】()0,2【解析】由于()()f x f x -=,所以函数为偶函数,且在()0,+∞上为减函数.要()()121f x f x +<-,则需121x x +>-,解得()0,2x ∈.(三) 函数单调性与奇偶性的综合应用【例3】设)(x f 是定义在R 上的奇函数,且当2)(,0x x f x =≥时,若对任意的]2,[+∈t t x ,不等式)(2)(x f t x f ≥+恒成立,则实数t 的取值范围是 .【分析】本题已明确指出是个奇函数,故易求出它的整个解析式(一个分段函数),此时画出它的图象,就能发现它是一个单调递增函数,难点在于题中所给不等式)(2)(x f t x f ≥+中,2()f x 的系数2如何处理?再次仔细观察所求函数的解析式的结构特征,发现满足:围.【解析】∵)(x f 是定义在R 上的奇函数,且当0≥x 时,2)(x x f = ∴当x <0,有-x >0,2)()(x x f -=-, ∴2)(x x f =-,即2)(x x f -=,∴⎩⎨⎧<-≥=)0(,)0(,)(22x x x x x f ,∴)(x f 在R 上是单调递增函数,∵不等式)2()(2)(x f x f t x f =≥+在[t,t+2]恒成立,【点评】本题主要考查了函数的奇偶性和单调性,其中奇偶性是一个明条件,单调性是一个隐条件,作出函数的图象易发现它的单调性,这也再次说明数形结合的重要性,本题最后转化成一个恒成立问题,运用分离参数的方法求解的,这正说明函数性质的应用是十分广泛的,它能与很多知识结合,考查学生综合运用所学知识解决问题的能力.【小试牛刀】已知偶函数()f x 在[)0,+∞单调递减,()20f =,若()10f x ->,则x 的取值集合是__________. 【答案】(- 1 , 3 ).(四) 函数性质的综合运用【例4】已知定义在R 上的函数)(x f 满足)2(x f -为奇函数,函数)3(+x f 关于直线1=x 对称,则下列式子一定成立的是 ①)()2(x f x f =- ②)6()2(+=-x f x f③1)2()2(=+⋅-x f x f ④0)1()(=++-x f x f【分析】由题中函数)(x f 满足)2(x f -为奇函数,结合奇函数的定义转化可得:()(4)f x f x =--,再由条件:函数)3(+x f 关于直线1=x 对称,结合对称性的规律可得:(4)(4)f x f x -=+,最后由周期性的概念可转化为:()(4)(8)f x f x f x =-+=+,可见函数的周期为8,即可求解.【解析】因为(2)f x -为奇函数,所以(2)(2)f x f x -=-+,则()(4)f x f x =--.又因为(3)f x +关于直线1x =对称,所以()f x 关于4x =对称,所以(4)(4)f x f x -=+,则()(4)(8)f x f x f x =-+=+,于是8为函数()f x 的周期,所以(2)(6)f x f x -=+,故答案为②.【点评】本题主要考查了学生对抽象函数的处理能力,考查了函数的奇偶性、对称性和周期性,要想顺利完成本题有一个难点:)2(x f -为奇函数的处理,这要对奇函数定义本质有充分的理解,函数的四大性质在抽象函数的考查中往往会综合在一起,这也正是此类题目一般较难的原因,在我们复习备考中一定要加强对所学概念本质的理解,这并非一日之功了,须注意平时的积累和磨炼.【小试牛刀】【2018届东台安丰中学高三第一次月考】已知函数()f x 是定义在R 上的奇函数,且()()2f x f x +=-,当()2,0x ∈-时,()xf x e =,则()()20172018f f +=__________.【答案】1e-在解决函数性质有关的问题中,如果结合函数的性质画出函数的简图,根据简图进一步研究函数的性质,就可以把抽象问题变的直观形象、复杂问题变得简单明了,对问题的解决有很大的帮助.(1)一般的解题步骤:利用函数的周期性把大数变小或小数变大,然后利用函数的奇偶性调整正负号,最后利用函数的单调性判断大小;(2)画函数草图的步骤:由已知条件确定特殊点的位置,然后利用单调性确定一段区间的图象,再利用奇偶性确定对称区间的图象,最后利用周期性确定整个定义域内的图象.五、迁移运用1.【淮安市淮海中学2018届高三上第一次调研】已知定义在R 上的偶函数()f x ,当0x ≥时,()()2log 1f x x =+,则使得()()21f x f x <-成立的x 的取值范围为__________. 【答案】113x -<<【解析】由题意()f x 为定义在R 上的偶函数,∴()()f f x x =, ∴()()21f x f x <-等价于()()f 2f 1x x <-又当0x ≥时,()()2log 1f x x =+,∴()f x 在)[0 ∞+,上单调递增,所以21x x <-,即()()2221x x <-,23210x x +-<,113x -<<故答案为:113x -<<2.【南师附中2017届高三模拟二】已知()f x 是定义在区间[]1,1-上的奇函数,当0x <时,()()1fx x x =-.则关于m 的不等式()()2110f m f m -+-<的解集为__________. 【答案】[)0,1【解析】当0x >时,则()()()0,11x f x x x x x -<-=---=+,即()()1f x x x -=+,所以()()1f x x x =-+,结合图像可知:函数在[]1,1-单调递减,所以不等式()()2110f m f m -+-<可化为2220{111 111m m m m -->-≤-≤-≤-≤,解之得01m ≤<,应填答案[)0,1.3.【南通中学2018届高三10月月考】已知函数,若对任意实数都有,则实数的取值范围是____________.【答案】【解析】构造函数,函数为奇函数且在上递减,即,即,即,所以即恒成立,所以,所以,故实数的取值范围是.4.【泰州中学2018届高三上学期开学考试】已知是定义在上的奇函数,当时,,不等式的解集用区间表示为__________.【答案】【解析】根据题意,是定义在上的奇函数,则有, 当时,为减函数,则当时,也为减函数,综合可得在上为减函数, 若,则有,解可得,即不等式的解集为.故答案为:.5.【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=mx 2+x +m +2在(-∞,2)上是增函数,则实数m 的取值范围是________. 【答案】1,04⎡⎤⎢⎥⎣⎦【解析】当m =0时,f(x)=x +2,符合;当m≠0时,必须0122m m<⎧⎪⎨≥⎪⎩,-,解得-14≤m<0.综上,实数m 的取值范围是-14≤m≤0. 6.【无锡市2018届高三上期中基础性检测】已知函数()11212x f x =-+,则()()2110f a f a ++->的解为______________.【答案】()1,0-7.【2016-2017学年度江苏苏州市高三期中调研考试】已知函数()f x 是定义在R 上的周期为2的奇函数,当01x <<时,()8xf x =,则193f ⎛⎫-= ⎪⎝⎭__________. 【答案】-2 【解析】试题分析:由题意131911()()()82333f f f -=-=-=-=-.8.【2016-2017学年度江苏苏州市高三期中调研考试】已知函数()()2x af x x a -=+,若对于定义域内的任意1x ,总存在2x 使得()()21f x f x <,则满足条件的实数a 的取值范围是____________. 【答案】0a ≥【解析】由题意函数()f x 无最小值,22221()()()x a a a f x x a x a x a +-==-++++,令1t x a=+,则0t ≠,2()2f x y at t ==-+,0a =时,函数为y t =,符合题意,0a ≠时,20a -<,即0a >,综上有a 的取值范围是0a ≥.9.【南京市2017届高三年级学情调研】已知(),()f x g x 分别是定义在R 上的奇函数和偶函数,且1()()()2xf xg x +=,若存在01[,1]2x ∈,使得等式00()(2)0af x g x +=成立,则实数a 的取值范围是 .【答案】 【解析】试题分析:11()()()()()()()()222x xx f x g x f x g x f x g x -+=⇒-+-=⇒-+=,所以11()2()222(),()22x x x xf xg x -+==,所以00000022200(2)22223,22[]()2222x x x x x x g x t a t t f x t t ---++=-===+=-∈-,所以min max 22t a t a ==== 即实数a的取值范围是. 10.【2016届江苏省泰州中学高三上学期第二次月考】已知函数ax x x x f +-=ln )(在()e ,0上是增函数,函数2)(2a a e x g x+-=,当[]3ln ,0∈x 时,函数)(x g 的最大值M 与最小值m 的差为23,则=a .【答案】25 【解析】因为函数ax x x x f +-=ln )(在()e ,0上是增函数,所以0ln 1)('≥--=x a x f 在()e ,0上恒成立,即2≥-a ,即2≥a ;因为⎪⎪⎩⎪⎪⎨⎧≥+-≤≤+-=+-=a x aa e a x a e a a a e x g x xxln ,2ln 0,22)(222,若3ln ln ≥a ,即3≥a 时,)(x g 在[]3ln ,0单调递减,则2)3(ln )0(=-=-g g m M (舍),当3ln ln <a ,即32<≤a 时,函数)(x g 在[]a ln ,0上递减,在[]3ln ,ln a 上递增,且042)3(ln )0(≥-=-a g g ,所以23)(ln )0(=-=-a g g m M ,即2312)21(22=-=-+-a a a a ,解得25=a ;故填25. 【方法点睛】本题考查导数与函数的单调性、最值,属于难题.先利用“若函数)(x f 可导,则)(x f 在某区间上递增0)('≥⇔x f 在该区间恒成立”求得a 的取值范围;再利用绝对值的代数意义将)(x f 化为分段函数,再讨论a 与3的大小关系利用函数的单调性求最值,作差求解即可.11.函数()f x 同时满足:①对于定义域上的任意x ,恒有()()0f x f x +-=;②对于定义域上的任意12,x x .当12x x ≠,恒有()()12120f x f x x x -<-.则称函数()f x 为“理想函数”,则下列三个函数中:(1)()1f x x =,(2)()2f x x =,(3)()22x x f x xx ⎧-≥=⎨<⎩.称为“理想函数”的有 (填序号). 【答案】(3)12.已知函数f (x )=24,(1)34,(1)x ax x ax a x ⎧-+⎨-+->⎩≤,且f (x )在R 上递减,则实数a 的取值范围 .【答案】[]2,3 【解析】试题分析:由题意可得2120114134a a a a a ⎧≥⎪⎪-<⎨⎪-⨯+≥-⨯+-⎪⎩23a ⇒≤≤.【思路点晴】分段函数在R 上具有单调性时,各段应先满足在各自范围内的单调性,再注意各自端点处函数的大小关系即可.13.已知函数()y f x =为奇函数,且对定义域内的任意x 都有(1)(1)f x f x +=--,当(2,3)x ∈时,2()log (1)f x x =-,给出以下4个结论:①函数()y f x =的图象关于点(,0)()k k Z ∈成中心对称; ②函数|()|y f x =是以2为周期的周期函数; ③当(1,0)x ∈-时,2()log (1)f x x =--;④函数(||)y f x =在(,1)()k k k Z +∈上单调递增. 其中所以正确结论的序号为 . 【答案】【解析】试题分析:对定义域内的任意x 都有(1)(1)f x f x +=--,则函数()f x 关于点(1,0)对称,又因为函数()f x 为奇函数,所以图像关于原点(0,0)对称,所以函数()f x 的周期为2.结合图像特征知,其图象关于点(,0)()k k Z ∈成中心对称,故命题正确.当(2,3)x ∈时,2()log (1)f x x =-,所以由对称性可求出(1,2)x ∈时,)(log )(x x f y --=--=342,且此时函数值小于0.设(-1,0)x ∈,所以此时的解析式为)(log )]([log )()(x x x f x f y --=+--=+==123222,故命题正确.结合前面的分析可以知函数|()|y f x =是以2为周期的周期函数,故命题正确.函数()f x 的在(-1,0)是单调递增的,且此时()0f x <,故(||)y f x =在(-1,0)上是单调递减的,故命题④错误.因此答案为【方法点睛】此题型也是高考的常考题型,其方法是从定性和定量两个方面分析.例如命题,求函数解析式,我们要定量研究,即具体而准确的从数上去推理运算,从而判断命题是否正确.对于本题中的周期性、对称性、单调性,我们不需准确的作图,或严格的理论证明,可以结合条件画出草图判断出结果即可.14.已知:定义在R 上的函数()f x ,对于任意实数a, b 都满足()()()f a b f a f b +=,且(1)0f ≠,当0,()1x f x >>时.(Ⅰ)求(0)f 的值;(Ⅱ)证明()f x 在(),-∞+∞上是增函数; (Ⅲ)求不等式21()(24)f x x f x +<-的解集.【答案】(Ⅰ)1 (Ⅱ)详见解析 (Ⅲ)(4,1)- 【解析】试题分析:(Ⅰ)求(0)f 的值只需将已知关系式中1,0a b ==代入即可求解;(Ⅱ)抽象函数单调性的判定采用定义法;任取12x x <,借助于()()()f a b f a f b +=判定()()12,f x f x 的大小关系,当满足()()12f x f x <时函数为增函数;(Ⅲ)将不等式右侧1(24)f x -转化为(24)f x -+,借助于函数为增函数得到关于x 的不等式,解不等式即可得到解集试题解析:(Ⅰ)解:令1,0(1)(10)(1)(0)a b f f f f ===+=则(1)0(0)1f f ≠∴=Q(Ⅱ)证明:当0-x>0x <时由()()()(0)1,()0f x f x f x x f f x -=-==-> 得()0f x >()0x f x ∴>对于任意实数,设1221210()1x x x x f x x <->->则21211211()(())()()()f x f x x x f x f x x f x =+-=->Q()(,)y f x ∴=-∞+∞函数在上是增函数。

《集合、函数与导数》专题1,2(答案详解)

《集合、函数与导数》专题1,2(答案详解)

高二数学假期作业一.选择题(共16小题)1.若集合A={y|y=2x+2},B={x|﹣x2+x+2≥0},则()A.A⊆B B.A∪B=R C.A∩B={2}D.A∩B=∅2.已知集合A={x|0<x<2},B={x|x2<1},则A∪B=()A.(0,1) B.(﹣1,2)C.(﹣1,1)D.(﹣∞,﹣1]∪[2,+∞)3.已知集合M={x|3x﹣x2>0},N={x|x2﹣4x+3>0},则M∩N=()A.(0,1) B.(1,3) C.(0,3) D.(3,+∞)4.已知集合A={x|x2﹣x﹣12<0},B={x|y=log2(x+4)},则A∩B=()A.(﹣3,3)B.(﹣3,4)C.(0,3) D.(0,4)5.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B=()A.{8,10} B.{8,12} C.{8,14} D.{8,10,14}6.已知集合,则A∩B=()A.[﹣1,3]B.(﹣1,3]C.(0,1]D.(0,3]7.已知全集为R,集合M={﹣1,1,2,4},N={x|x2﹣2x>3},则M∩(∁R N)=()A.{﹣1,1,2}B.{1,2}C.{4}D.{x|﹣1≤x≤2}8.已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”,给出下列四个集合:①M={(x,y)|y=};②M={(x,y)|y=sinx+1};③={(x,y)|y=2x﹣2};④M={(x,y)|y=log2x}其中是“垂直对点集”的序号是()A.②③④B.①②④C.①③④D.①②③9.已知二次函数f(x)=ax2+bx(a,b∈R),满足f(1﹣x)=f(1+x),且在区间[﹣1,0]上的最大值为3,若函数g(x)=|f(x)|﹣mx有唯一零点,则实数m的取值范围是()A.[﹣2,0]B.[﹣2,0)∪[2,+∞)C.[﹣2,0)D.(﹣∞,0)∪[2,+∞)10.定义在R上的函数g(x)=e x+e﹣x+|x|,则满足g(2x﹣1)<g(3)的x的取值范围是()A.(﹣∞,2)B.(﹣2,2)C.(﹣1,2)D.(2,+∞)11.函数f(x)定义在实数集R上,f(2﹣x)=f(x),且当x≥1时f(x)=log2x,则有()A.f()<f(2)<f()B.f()<f(2)<f()C.f()<f()<f(2)D.f(2)<f()<f(12.已知函数f(x)=,则f(x)的值域是()A.[1,+∞)B.[0,+∞)C.(1,+∞)D.[0,1)∪(1,+∞)13.若函数y=f(x)的图象如图所示,则函数y=f(1﹣x)的图象大致为()A.B.C.D.14.函数y=的值域为()A.(﹣∞,﹣2]∪[﹣1,+∞)B.(﹣∞,﹣2)∪(﹣1,+∞)C.{y|y≠﹣1,y∈R}D.{y|y≠﹣2,y∈R}15.已知函数f(x)=设m>n≥﹣1,且f(m)=f(n),则m•f(m)的最小值为()A.4 B.2 C.D.216.若函数f(x)=(x2+x﹣2)(x2+ax+b)是偶函数,则f(x)的最小值为()A.B.C.﹣ D.﹣二.填空题(共8小题)17.已知集合A={0,1,2,3,4},B={m|m=2n,n∈A},M={x∈R|x>2},则集合B ∩∁R M=.18.设集合A={x|x2﹣x﹣6<0},B={x|﹣3≤x≤1},则A∪B=.19.设M是一个非空集合,#是它的一种运算,如果满足以下条件:(Ⅰ)对M中任意元素a,b,c都有(a#b)#c=a#(b#c);(Ⅱ)对M中任意两个元素a,b,满足a#b∈M.则称M对运算#封闭.下列集合对加法运算和乘法运算都封闭的为.①{﹣2,﹣1,1,2}②{1,﹣1,0}③Z④Q.20.设[x]表示不超过实数x的最大整数,例如:[4.3]=4,[﹣2.6]=﹣3,则点集{(x,y)|[x]2+[y]2=25}所覆盖的面积为.21.函数f(x)=﹣log2为奇函数,则实数a=.22.已知g(x)=mx+2,f(x)=x2﹣2x,若对∀x1∈[﹣1,2].∃x0∈[﹣1,2],有g(x1)=f(x0)成立,则m的取值范围是.23.已知f(x)是定义在R上的偶函数,且f(x+2)=f(x)对x∈R恒成立,当x∈[0,1]时,f(x)=2x,则f(﹣log224)=.24.函数f(x)=ax2+(b﹣2a)x﹣2b为偶函数,且在(0,+∞)单调递减,则f(x)>0的解集为.三.解答题(共6小题)25.记函数f(x)=lg(x2﹣x﹣2)的定义域为集合A,函数g(x)=的定义域为集合B.(1)求①A∩B;②(∁R A)∪B;(2)若C={x|(x﹣m+1)(x﹣2m﹣1)<0},C⊆B,求实数m的取值范围.26.已知集合A={y|y=,x∈R},B={x|y=lg(1﹣2x)}(1)求出集合A,集合B;(2)求(∁U B)∩A.27.已知集合A={x∈R|ax2﹣3x+2=0,a∈R}.(1)若A是空集,求a的取值范围;(2)若A中只有一个元素,求a的值,并把这个元素写出来.28.已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h(a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.29.已知函数f(x)=4x﹣2x,实数s,t满足f(s)+f(t)=0,a=2s+2t,b=2s+t.(1)当函数f(x)的定义域为[﹣1,1]时,求f(x)的值域;(2)求函数关系式b=g(a),并求函数g(a)的定义域D;(3)在(2)的结论中,对任意x1∈D,都存在x2∈[﹣1,1],使得g(x1)=f(x2)+m成立,求实数m的取值范围.30.已知函数f(x)=.(1)判断函数f(x)的奇偶性,并证明;(2)若不等式f(x)>log9(2c﹣1)有解,求c的取值范围.参考答案与试题解析一.选择题(共16小题)1.(2017•楚雄州一模)若集合A={y|y=2x+2},B={x|﹣x2+x+2≥0},则()A.A⊆B B.A∪B=R C.A∩B={2}D.A∩B=∅【分析】y=2x+2>2,可得集合A=(2,+∞).由﹣x2+x+2≥0,化为x2﹣x﹣2≤0,解出可得B=[﹣1,2].再利用集合的运算性质即可得出.【解答】解:y=2x+2>2,∴集合A={y|y=2x+2}=(2,+∞).由﹣x2+x+2≥0,化为x2﹣x﹣2≤0,解得﹣1≤x≤2.∴B={x|﹣x2+x+2≥0}=[﹣1,2].∴A∩B=∅,故选:D.【点评】本题考查了集合的运算性质、不等式的解法、函数的性质,考查了推理能力与计算能力,属于中档题.2.(2017•唐山三模)已知集合A={x|0<x<2},B={x|x2<1},则A∪B=()A.(0,1) B.(﹣1,2)C.(﹣1,1)D.(﹣∞,﹣1]∪[2,+∞)【分析】根据题意,解x2<1可得集合B,由集合并集的定义计算可得答案.【解答】解:根据题意,集合A={x|0<x<2},B={x|x2<1}={x|﹣1<x<1},则A∪B={x|﹣1<x<2}=(﹣1,2);故选:B.【点评】本题考查集合的并集计算,关键是理解集合并集的定义.3.(2017•甘肃二模)已知集合M={x|3x﹣x2>0},N={x|x2﹣4x+3>0},则M∩N=()A.(0,1) B.(1,3) C.(0,3) D.(3,+∞)【分析】分别求出M与N中不等式的解集确定出M与N,找出两集合的交集即可.【解答】解:由M中不等式变形得:x(x﹣3)<0,解得:0<x<3,即M=(0,3),由N中不等式变形得:(x﹣1)(x﹣3)>0,解得:x<1或x>3,即N=(﹣∞,1)∪(3,+∞),则M∩N=(0,1),故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.4.(2017•龙门县校级模拟)已知集合A={x|x2﹣x﹣12<0},B={x|y=log2(x+4)},则A∩B=()A.(﹣3,3)B.(﹣3,4)C.(0,3) D.(0,4)【分析】求出A中不等式的解集确定出A,求出B中x的范围确定出B,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣4)(x+3)<0,解得:﹣3<x<4,即A=(﹣3,4),由B中y=log2(x+4),得到x+4>0,解得:x>﹣4,即B=(﹣4,+∞),则A∩B=(﹣3,4),故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.5.(2017•宜宾模拟)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B=()A.{8,10} B.{8,12} C.{8,14} D.{8,10,14}【分析】用列举法写出集合A,根据交集的定义写出A∩B.【解答】解:集合A={x|x=3n+2,n∈N}={2,5,8,11,14,…},B={6,8,10,12,14},则集合A∩B={8,14}.故选:C.【点评】本题考查了交集的定义与应用问题,是基础题.6.(2017•黔东南州一模)已知集合,则A∩B=()A.[﹣1,3]B.(﹣1,3]C.(0,1]D.(0,3]【分析】求出A与B中不等式的解集分别确定出A与B,找出两集合的交集即可.【解答】解:由A中不等式变形得:(x+1)(x﹣3)≤0,且x+1≠0,解得:﹣1<x≤3,即A=(﹣1,3],由B中不等式变形得:lgx≤1=lg10,解得:0<x≤10,即B=(0,10],则A∩B=(0,3],故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.7.(2017•咸阳二模)已知全集为R,集合M={﹣1,1,2,4},N={x|x2﹣2x>3},则M∩(∁R N)=()A.{﹣1,1,2}B.{1,2}C.{4}D.{x|﹣1≤x≤2}【分析】求出N中不等式的解集确定出N,根据全集R,求出N的补集,找出M与N 补集的交集即可.【解答】解:由N中不等式变形得:(x﹣3)(x+1)>0,解得:x<﹣1或x>3,即N=(﹣∞,﹣1)∪(3,+∞),∵全集为R,∴∁R N=[﹣1,3],∵M={﹣1,1,2,4},∴M∩(∁R N)={﹣1,1,2},故选:A.【点评】此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.8.(2017•晋中二模)已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”,给出下列四个集合:①M={(x,y)|y=};②M={(x,y)|y=sinx+1};③={(x,y)|y=2x﹣2};④M={(x,y)|y=log2x}其中是“垂直对点集”的序号是()A.②③④B.①②④C.①③④D.①②③【分析】利用数形结合的方法解决,根据题意,若集合M={(x,y)|y=f(x)}是“垂直对点集”,就是在函数图象上任取一点A,得直线OA,过原点与OA垂直的直线OB,若OB总与函数图象相交即可.【解答】解:由题意,若集合M={(x,y)|y=f(x)}满足:对于任意A(x1,y1)∈M,存在B(x2,y2)∈M,使得x1x2+y1y2=0成立,因此.所以,若M是“垂直对点集”,那么在M图象上任取一点A,过原点与直线OA垂直的直线OB总与函数图象相交于点B.对于①:M={(x,y)|y=},其图象是过一、二象限,且关于y轴对称,所以对于图象上的点A,在图象上存在点B,使得OB⊥OA,所以①符合题意;对于②:M={(x,y)|y=sinx+1},画出函数图象,在图象上任取一点A,连OA,过原点作直线OA的垂线OB,因为y=sinx+1的图象沿x轴向左向右无限延展,且与x轴相切,因此直线OB总会与y=sinx+1的图象相交.所以M={(x,y)|y=sinx+1}是“垂直对点集”,故②符合题意;对于③:M={(x,y)|y=2x﹣2},其图象过点(0,﹣1),且向右向上无限延展,向左向下无限延展,所以,据图可知,在图象上任取一点A,连OA,过原点作OA的垂线OB必与y=2x﹣2的图象相交,即一定存在点B,使得OB⊥OA成立,故M={(x,y)|y=2x﹣2}是“垂直对点集”.故③符合题意;对于④:M={x,y)|y=log2x},对于函数y=log2x,取点(1,0),与y轴垂直,所以没有对应点,切点T明显在x轴下方有对应点所以对切点T,不存在点M,使得OM⊥OT,所以M={(x,y)|y=log2x}不是“垂直对点集”;故④不符合题意.故选:D.【点评】本题考查“垂直对点集”的判断,是中档题,解题时要认真审题,注意函数性质的合理运用.9.(2017•天津学业考试)已知二次函数f(x)=ax2+bx(a,b∈R),满足f(1﹣x)=f (1+x),且在区间[﹣1,0]上的最大值为3,若函数g(x)=|f(x)|﹣mx有唯一零点,则实数m的取值范围是()A.[﹣2,0]B.[﹣2,0)∪[2,+∞)C.[﹣2,0)D.(﹣∞,0)∪[2,+∞)【分析】由题意可得直线x=1为函数f(x)的对称轴,即有﹣=1①,讨论a>0,a <0,得到f(x)在区间[﹣1,0]的单调性,可得最大值,a﹣b=3②,解方程组可得a,b的值.作出函数f(x)=|x2﹣2x|的图象和直线y=mx,再分类讨论,结合图象即可得到结论.【解答】解:二次函数f(x)=ax2+bx(a,b∈R),满足f(1﹣x)=f(1+x),可得直线x=1为函数f(x)的对称轴,即有﹣=1①由f(x)在区间[﹣1,0]上的最大值为3,若a>0时,则f(x)在[﹣1,0]递减,f(﹣1)取得最大值,且为a﹣b=3②若a<0时,f(x)在[﹣1,0]递增,f(0)取得最大值,且为0,不成立.由①②解得a=1,b=﹣2.则f(x)=x2﹣2x,若函数g(x)=|f(x)|﹣mx有唯一零点,即为方程|f(x)|=mx有唯一实根,作出y=|f(x)|的图象和直线y=mx的图象,当m=0,有y=0与y=|f(x)|有两个交点;当m>0时,由mx=2x﹣x2,即有x2+(m﹣2)x=0,由判别式(m﹣2)2﹣4×0=0,解得m=2.由图象可得m≥2时,y=|f(x)|的图象和直线y=mx的图象有两个交点;当0<m<2,y=|f(x)|的图象和直线y=mx的图象有,三个交点;当m<0时,且y=mx为曲线y=|f(x)|的切线时,只有一个交点,即为原点为切点,y=|f(x)|=x2﹣2x(x<0),可得mx=x2﹣2x即x2﹣(2+m)x=0只有相等的两实根,可得判别式(2+m)2﹣4×0=0,解得m=﹣2.由图象可得﹣2≤m<0时,y=|f(x)|的图象和直线y=mx的图象只有一个交点,即为原点.综上可得,所求m的范围为[﹣2,0).故选:C.【点评】本题考查二次函数的解析式的求法,注意运用函数的对称性和单调性,考查函数的零点,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.10.(2017•成都四模)定义在R上的函数g(x)=e x+e﹣x+|x|,则满足g(2x﹣1)<g (3)的x的取值范围是()A.(﹣∞,2)B.(﹣2,2)C.(﹣1,2)D.(2,+∞)【分析】根据f(﹣x)=e x+e﹣x+|x|=f(x)得该函数是偶函数,再由函数的单调性以及对称性求出不等式的解集.【解答】解::∵函数f(﹣x)=e x+e﹣x+|x|=f(x),∴函数f(x)是偶函数,故函数f(x)的图象关于y轴对称.∵f(2x﹣1)<f(3),且函数在(0,+∞)上是增函数,故函数在(﹣∞,0)上是减函数,∴|2x﹣1|<3,解得﹣1<x<2,故选:C.【点评】本题考查了函数奇偶性和单调性的应用,利用奇(偶)函数图象的对称性,将函数值的大小对应的不等式进行转化,体现了转化思想,属于中档题.11.(2017•贵州模拟)函数f(x)定义在实数集R上,f(2﹣x)=f(x),且当x≥1时f(x)=log2x,则有()A.f()<f(2)<f()B.f()<f(2)<f()C.f()<f()<f(2)D.f(2)<f()<f(【分析】易判断f(x)在[1,+∞)上的单调性,根据f(2﹣x)=f(x)可把f(),f ()转化到区间[1,+∞)上,借助函数单调性可作出大小判断.【解答】解:∵x≥1时f(x)=log2x,∴f(x)在[1,+∞)上单调递增,∵f(2﹣x)=f(x),∴f()=f(2﹣)=f(),f()=f(2﹣)=f(),又1<<2,∴f()<f()<f(2),即f()<f()<f(2),故选C.【点评】本题考查函数的单调性及其应用,解决本题的关键是利用所给条件把问题转化到已知区间上利用函数性质解决问题.12.(2017•孝义市模拟)已知函数f(x)=,则f(x)的值域是()A.[1,+∞)B.[0,+∞)C.(1,+∞)D.[0,1)∪(1,+∞)【分析】求出x≤1时二次函数的值域,再由基本不等式求出x>1时函数的值域,取并集得答案.【解答】解:由f(x)=,知当x≤1时,x2≥0;当x>1时,x+﹣3≥2﹣3=4﹣3=1,当且仅当x=,即x=2时取“=”,取并集得:f(x)的值域是[0,+∞).故选:B.【点评】本题考查分段函数值域的求法,分段函数的值域分段求,然后取并集即可,是中档题.13.(2014•湖南二模)若函数y=f(x)的图象如图所示,则函数y=f(1﹣x)的图象大致为()A.B.C.D.【分析】先找到从函数y=f(x)到函数y=f(1﹣x)的平移变换规律是:先关于y轴对称得到y=f(﹣x),再整体向右平移1个单位;再画出对应的图象,即可求出结果.【解答】解:因为从函数y=f(x)到函数y=f(1﹣x)的平移变换规律是:先关于y轴对称得到y=f(﹣x),再整体向右平移1个单位即可得到.即图象变换规律是:①→②.故选:A.【点评】本题考查了函数的图象与图象的变换,培养学生画图的能力,属于基础题,但也是易错题.易错点在于左右平移,平移的是自变量本身,与系数无关.14.(2017春•龙泉驿区校级月考)函数y=的值域为()A.(﹣∞,﹣2]∪[﹣1,+∞)B.(﹣∞,﹣2)∪(﹣1,+∞)C.{y|y≠﹣1,y ∈R}D.{y|y≠﹣2,y∈R}【分析】由题意可得x=log2,即>0,解得即可.【解答】解:y==﹣1+,则y+1=,则2x﹣1=,则2x=1+,则x=log2,∴>0,解的y>﹣1或y<﹣2,故选:B.【点评】本题考查了函数的定义和解析式以及定义域和值域相关问题,属于中档题.15.(2017•钦州二模)已知函数f(x)=设m>n≥﹣1,且f(m)=f(n),则m•f(m)的最小值为()A.4 B.2 C.D.2【分析】做出f(x)的图象,根据图象判断m的范围,利用基本不等式得出最小值.【解答】解:做出f(x)的函数图象如图所示:∵f(m)=f(n),m>n≥﹣1,∴1≤m<4,∴mf(m)=m(1+)=m+≥2.当且仅当m=时取等号.故选:D.【点评】本题考查了分段函数的图象,基本不等式的应用,属于中档题.16.(2017•天津二模)若函数f(x)=(x2+x﹣2)(x2+ax+b)是偶函数,则f(x)的最小值为()A.B.C.﹣ D.﹣【分析】根据题意,由于函数f(x)为偶函数,则可得f(﹣x)=f(x),即(x2﹣x﹣2)(x2﹣ax+b)=(x2+x﹣2)(x2+ax+b),分析可得a、b的值,即可得函数f(x)的解析式,对其求导,分析可得当x=±时,f(x)取得最小值;计算即可的答案.【解答】解:根据题意,函数f(x)=(x2+x﹣2)(x2+ax+b)是偶函数,则有f(﹣x)=f(x),即(x2﹣x﹣2)(x2﹣ax+b)=(x2+x﹣2)(x2+ax+b)分析可得:﹣2(1﹣a+b)=0,4(4+2a+b)=0,解可得:a=﹣1,b=﹣2,则f(x)=(x﹣1)(x+2)(x2﹣x﹣2)=x4﹣5x2+4,f′(x)=4x3﹣10x=x(4x2﹣10),令f′(x)=0,可得当x=±时,f(x)取得最小值;又由函数为偶函数,则f(x)min=()4﹣5()2+4=﹣;故选:C【点评】本题考查函数的最值计算,关键是利用函数的奇偶性求出a、b的值,确定函数的解析式,属于中档题二.填空题(共8小题)17.(2017•天津二模)已知集合A={0,1,2,3,4},B={m|m=2n,n∈A},M={x∈R|x>2},则集合B∩∁R M={0,2} .【分析】根据题意,分析可得集合B,由补集的定义可得∁R M,进而由交集的定义计算可得答案.【解答】解:根据题意,集合A={0,1,2,3,4},则B={m|m=2n,n∈A}={0,2,4,6,8},而M={x∈R|x>2},则∁R M={x|x≤2},故B∩∁R M={0,2};故答案为:{0,2}.【点评】本题考查集合的交、补集的运算,关键是求出集合B.18.(2017•天津二模)设集合A={x|x2﹣x﹣6<0},B={x|﹣3≤x≤1},则A∪B=[﹣3,3).【分析】根据题意,解x2﹣x﹣6<0可得集合A,进而有集合并集的定义计算可得答案.【解答】解:根据题意,x2﹣x﹣6<0⇒﹣2<x<3,则A={x|x2﹣x﹣6<0}={x|﹣2<x<3}=(﹣2,3),而B={x|﹣3≤x≤1}=[﹣3,1],则A∪B=[﹣3,3);故答案为:[﹣3,3).【点评】本题考查集合并集的运算,涉及一元二次不等式的解法,关键是求出集合A.19.(2016•潍坊模拟)设M是一个非空集合,#是它的一种运算,如果满足以下条件:(Ⅰ)对M中任意元素a,b,c都有(a#b)#c=a#(b#c);(Ⅱ)对M中任意两个元素a,b,满足a#b∈M.则称M对运算#封闭.下列集合对加法运算和乘法运算都封闭的为②③④.①{﹣2,﹣1,1,2}②{1,﹣1,0}③Z④Q.【分析】根据已知中“M对运算#封闭”的定义,逐一分析给定的四个集合是否满足“M对运算#封闭”的定义,可得答案.【解答】解:①中,当a=﹣1,b=1时,a+b=0∉{﹣2,﹣1,1,2},当a=﹣2,b=2时,a×b=﹣4∉{﹣2,﹣1,1,2},故①中集合对加法和乘法都不封闭,②中集合M={1,﹣1,0}满足:(Ⅰ)对M中任意元素a,b,c都有(a+b)+c=a+(b+c);(Ⅱ)对M中任意两个元素a,b,满足a+b∈M.故②中集合对加法运算和乘法运算都封闭;③中集合M=Z满足:(Ⅰ)对M中任意元素a,b,c都有(a+b)+c=a+(b+c);(Ⅱ)对M中任意两个元素a,b,满足a+b∈M.故③中集合对加法运算和乘法运算都封闭;④中集合M=Q满足:(Ⅰ)对M中任意元素a,b,c都有(a+b)+c=a+(b+c);(Ⅱ)对M中任意两个元素a,b,满足a+b∈M.故④中集合对加法运算和乘法运算都封闭;故答案为:②③④【点评】本题考查的知识点是元素与集合关系的判断,正确理解“M对运算#封闭”的定义,是解答的关键.20.(2017•临川区校级模拟)设[x]表示不超过实数x的最大整数,例如:[4.3]=4,[﹣2.6]=﹣3,则点集{(x,y)|[x]2+[y]2=25}所覆盖的面积为12.【分析】根据方程,对于x,y≥0时,求出x,yd的整数解,分别对|[x]|=5、4、3、0时确定x的范围,对应的y的范围,求出面积,再求其和.【解答】解:方程:[x]2+[y]2=25x,y≥0时,[x],[y]的整解有两组,(3,4),(0,5)显然x的最大值是5|[x]|=5时,5≤x<6,或者﹣5≤x<﹣4,|[y]|=0,0≤y<1,围成的区域是2个单位正方形|[x]|=4时,4≤x<5,或者﹣4≤x<﹣3,|[y]|=3,﹣3≤y<﹣2,或者3<y≤4,围成的区域是4个单位正方形|[x]|=3时,3≤x<4,或者﹣3≤x<﹣2,|[y]|=4,﹣4≤y<﹣3,或者4<y≤5,围成的区域是4个单位正方形|[x]|=0时,0≤x<1,|[y]|=5,5≤y<6 或者﹣5≤y<﹣4,围成的区域是2个单位正方形总面积是:12故答案为:12.【点评】本题考查探究性问题,是创新题,考查分类讨论思想,是中档题.21.(2017•佛山一模)函数f(x)=﹣log2为奇函数,则实数a=1.【分析】由题意,f(﹣x)=﹣f(x),可得﹣﹣log2=﹣+log2,即可求出a 的值.【解答】解:由题意,f(﹣x)=﹣f(x),可得﹣﹣log2=﹣+log2∴a=±1,a=﹣1,函数定义域不关于原点对称,舍去.故答案为1.【点评】本题考查奇函数的定义,考查学生的计算能力,属于中档题.22.(2017•新疆一模)已知g(x)=mx+2,f(x)=x2﹣2x,若对∀x1∈[﹣1,2].∃x0∈[﹣1,2],有g(x1)=f(x0)成立,则m的取值范围是[﹣1,] .【分析】由已知中f(x)=x2﹣2x,g(x)=mx+2,对∀x1∈[﹣1,2],∃x0∈[﹣1,2],使g(x1)=f(x0),可得函数g(x)=mx+2在区间[﹣1,2]上的值域是函数f(x)=x2﹣2x在区间[﹣1,2]上的值域的子集,由此可以构造关于m的不等式,解不等式即可求出m的取值范围.【解答】解:∵f(x)=x2﹣2x,∴x0∈[﹣1,2],∵f(x0)∈[﹣1,3]又∵∀x1∈[﹣1,2],∃x0∈[﹣1,2],使g(x1)=f(x0),若m>0,则g(﹣1)≥﹣1,g(2)≤3解得﹣≤m≤,即0<m≤,若m=0,则g(x)=2恒成立,满足条件;若m<0,则g(﹣1)≤3,g(2)≥﹣1解各m≥﹣1即﹣1≤m<0综上满足条件的m的取值范围是﹣1≤m≤故m的取值范围是[﹣1,]故答案为:[﹣1,].【点评】本题考查的知识点是函数的值域,函数的定义域及其求法,二次函数的性质,其中根据已知条件对m进行分类讨论,是解答本题的关键.23.(2017•沙坪坝区校级模拟)已知f(x)是定义在R上的偶函数,且f(x+2)=f(x)对x∈R恒成立,当x∈[0,1]时,f(x)=2x,则f(﹣log224)=.【分析】根据题意,分析可得f(﹣log224)=f(log224)=f(4+log2)=f(log2),结合函数的解析式可得f(log2)的值,综合即可得答案.【解答】解:根据题意,由于f(x)是定义在R上的偶函数,且f(x+2)=f(x),则f(﹣log224)=f(log224)=f(4+log2)=f(log2),0<log2<1,又由当x∈[0,1]时,f(x)=2x,则f(log2)==,即f(﹣log224)=;故答案为:.【点评】本题函数的值的计算,涉及函数的奇偶性、周期性的性质,关键是充分利用函数的周期性.24.(2017•日照一模)函数f(x)=ax2+(b﹣2a)x﹣2b为偶函数,且在(0,+∞)单调递减,则f(x)>0的解集为{x|﹣2<x<2} .【分析】根据题意,由于函数f(x)=ax2+(b﹣2a)x﹣2b为偶函数,可得该二次函数的对称轴为y轴,分析可得b=2a,结合函数的单调性可得a>0;综合可得f(x)>0,即ax2﹣4a>0,解可得x的取值范围,即可得答案、【解答】解:根据题意,函数f(x)=ax2+(b﹣2a)x﹣2b为二次函数,若其为偶函数,则该二次函数的对称轴为y轴,必有,即b=2a,故f(x)=ax2﹣4a.再根据函数在(0,+∞)单调递减,可得a<0.若f(x)>0,即ax2﹣4a>0,解可得﹣2<x<2,故解集为{x|﹣2<x<2}.【点评】本题考查二次函数的性质,涉及函数的奇偶性、单调性的应用,注意结合二次函数的性质进行分析.三.解答题(共6小题)25.(2017春•启东市校级期中)记函数f(x)=lg(x2﹣x﹣2)的定义域为集合A,函数g(x)=的定义域为集合B.(1)求①A∩B;②(∁R A)∪B;(2)若C={x|(x﹣m+1)(x﹣2m﹣1)<0},C⊆B,求实数m的取值范围.【分析】对于(1)先将函数的定义域A和B求出来,再根据集合的运算法则运算即可;对于(2)要考虑C=∅时,C≠∅时要讨论m﹣1和2m+1的大小.【解答】解:(1)依题意,得A={x|x2﹣x﹣2>0}=(﹣∞,﹣1)∪(2,+∞)B={x||3﹣x|x|≥0}=[﹣3,3],①A∩B=[﹣3,﹣1)∪(2,3]②(∁R A)∪B=[﹣3,3],(2)∵(x﹣m+1)(x﹣2m﹣1)<0,∴[x﹣(m﹣1)][x﹣(2m+1)]<0①当m﹣1=2m+1,即m=﹣2时,C=∅,满足C⊆B②当m﹣1<2m+1,即m>﹣2时,C=(m﹣1,2m+1),要使C⊆B,只要得﹣2<m≤1③当2m+1<m﹣1,即m<﹣2时,C=(2m+1,m﹣1),要使C⊆B,只要得m∈∅综上,m 的取值范围是[﹣2,1]【点评】本题考查不等式的解法和集合的运算,分类讨论的思想方法,属于基础题.26.(2017春•湖北期中)已知集合A={y|y=,x∈R},B={x|y=lg(1﹣2x)}(1)求出集合A,集合B;(2)求(∁U B)∩A.【分析】(1)分别求出函数的定义域和值域即可得到集合A,集合B,(2)根据集合交集、补集的运算法则,代入计算可得答案.【解答】解:(1)集合A={y|y=,x∈R},∵e x>0,∴﹣e x<0,∴4﹣e x<4,∴A=(﹣∞,2)∵B={x|y=lg(1﹣2x)},∴1﹣2x>0,解得x<,故B=(﹣∞,),(2)由B=(﹣∞,),∴∁U B=[,+∞),∴(∁U B)∩A=[,e).【点评】本题考查的知识点是交,并,补的混合运算,熟练掌握集合的运算规则是解答的关键.27.(2017春•淄川区校级月考)已知集合A={x∈R|ax2﹣3x+2=0,a∈R}.(1)若A是空集,求a的取值范围;(2)若A中只有一个元素,求a的值,并把这个元素写出来.【分析】(1)若A是空集,则方程ax2﹣3x+2=0无解,故△=9﹣8a<0,由此解得a的取值范围.(2)若A中只有一个元素,则a=0 或△=9﹣8a=0,求出a的值,再把a的值代入方程ax2﹣3x+2=0,解得x的值,即为所求【解答】解:(1)若A是空集,则方程ax2﹣3x+2=0无解,故△=9﹣8a<0,解得a>,故a的取值范围为(,+∞).(2)若A中只有一个元素,则a=0 或△=9﹣8a=0,解得a=0 或a=.当a=0时,解ax2﹣3x+2=0 可得x=.当a=时,解ax2﹣3x+2=0 可得x=.故A中的元素为和.【点评】本题主要考查集合中参数的取值问题,体现了分类讨论的数学思想,属于中档题.28.(2017•上海一模)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h(a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.【分析】(1)设t=3x,则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,φ(t)的对称轴为t=a,当a=1时,即可求出f(x)的值域;(2)由函数φ(t)的对称轴为t=a,分类讨论当a<时,当≤a≤3时,当a>3时,求出最小值,则h(a)的表达式可求;(3)假设满足题意的m,n存在,函数h(a)在(3,+∞)上是减函数,求出h(a)的定义域,值域,然后列出不等式组,求解与已知矛盾,即可得到结论.【解答】解:(1)∵函数f(x)=9x﹣2a•3x+3,设t=3x,t∈[1,3],则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,对称轴为t=a.当a=1时,φ(t)=(t﹣1)2+2在[1,3]递增,∴φ(t)∈[φ(1),φ(3)],∴函数f(x)的值域是:[2,6];(Ⅱ)∵函数φ(t)的对称轴为t=a,当x∈[﹣1,1]时,t∈[,3],当a<时,y min=h(a)=φ()=﹣;当≤a≤3时,y min=h(a)=φ(a)=3﹣a2;当a>3时,y min=h(a)=φ(3)=12﹣6a.故h(a)=;(Ⅲ)假设满足题意的m,n存在,∵n>m>3,∴h(a)=12﹣6a,∴函数h(a)在(3,+∞)上是减函数.又∵h(a)的定义域为[m,n],值域为[m2,n2],则,两式相减得6(n﹣m)=(n﹣m)•(m+n),又∵n>m>3,∴m﹣n≠0,∴m+n=6,与n>m>3矛盾.∴满足题意的m,n不存在.【点评】本题主要考查二次函数的值域问题,二次函数在特定区间上的值域问题一般结合图象和单调性处理,是中档题.29.(2017•上海模拟)已知函数f(x)=4x﹣2x,实数s,t满足f(s)+f(t)=0,a=2s+2t,b=2s+t.(1)当函数f(x)的定义域为[﹣1,1]时,求f(x)的值域;(2)求函数关系式b=g(a),并求函数g(a)的定义域D;(3)在(2)的结论中,对任意x1∈D,都存在x2∈[﹣1,1],使得g(x1)=f(x2)+m 成立,求实数m的取值范围.【分析】(1)换元根据t=2x∈[,2],g(t)=t2﹣t单调递增,即可求f(x)的值域;(2)配方得出:(2s+2t)2﹣2•2s+t﹣(2s+2t)=0,a2﹣2b﹣a=0,a≥2,a≥2,a>0,求解即可得出b=,1<a≤2;(3)g(x)=(x2﹣x)∈(0,1],f(x)∈[﹣,2],对任意x1∈D,都存在x2∈[﹣1,1],使得g(x1)=f(x2)+m成立,即可求实数m的取值范围.【解答】解:(1)∵函数f(x)=4x﹣2x,f(x)的定义域为[﹣1,1]时,∴t=2x∈[,2],g(t)=t2﹣t单调递增,∵g()=﹣,g(2)=2,∴f(x)的值域为:[﹣,2].(2)∵f(s)+f(t)=0,∴4s﹣2s+4t﹣2t=0,化简得出:(2s+2t)2﹣2•2s+t﹣(2s+2t)=0,∵a=2s+2t,b=2s+t.2s+2t≥2.a≥2∴a2﹣2b﹣a=0,a≥2,a≥2,a>0即b=,1<a≤2,D=(1,2];(3)g(x)=(x2﹣x)∈(0,1],f(x)∈[﹣,2].∵对任意x1∈D,都存在x2∈[﹣1,1],使得g(x1)=f(x2)+m成立,∴(0,1]⊆[﹣+m,2+m].∴﹣1≤m≤.【点评】本题综合考查了函数的性质,配方求解,考查换元法,考查学生分析解决问题的能力,属于综合题.30.(2017•杨浦区二模)已知函数f(x)=.(1)判断函数f(x)的奇偶性,并证明;(2)若不等式f(x)>log9(2c﹣1)有解,求c的取值范围.【分析】(1)利用奇函数的定义,即可得出结论;(2)f(x)===﹣+∈(﹣,),不等式f(x)>log9(2c﹣1)有解,可得>log9(2c﹣1),即可求c的取值范围.【解答】解:(1)函数的定义域为R,f(x)==,f(﹣x)==﹣f(x),∴函数f(x)是奇函数;(2)f(x)===﹣+∈(﹣,)∵不等式f(x)>log9(2c﹣1)有解,∴>log9(2c﹣1),∴0<2c﹣1<3,∴.【点评】本题考查奇函数的定义,考查函数的值域,考查学生分析解决问题的能力,属于中档题.。

回归课本专题一集合、函数、导数

回归课本专题一集合、函数、导数

回归课本专题一:集合、函数、导数第1页回归课本专题一:集合、函数、导数一.集合:1.弄清集合中元素的属性▲⑴已知集合{}(){}2,,1x y y x B x y y A ==+==,则B A 中元素的个数是 .⑵设集合{}342+-==x x y x M ,⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-∈+==3,6,cos 3sin ππx x x y y NM N = .2.}|{B x A x x B A ∈∈=且 ;}|{B x A x x B A ∈∈=或 ;{},U C A x x U x A =∈∉.,A B x A X B ⊆⇔∀∈∈; 真子集怎样定义?含n 个元素的集合的子集个数为2n,真子集个数为2n-1. ▲满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有______个.3.韦恩图▲期中考试,某班数学优秀率为70%,语文优秀率为75%.问:上述两门学科都优秀的百分率至少为 .4.()()()B C A C B A C U U U =, ()()()B C A C B A C U U U =,A ∩B=A ⇔A ∪B=B ⇔A ⊆B ⇔C U B ⊆C U A ⇔A ∩C U B=∅⇔C U A ∪B=U▲已知集合{}{}A B A m x m x B x x x A =-≤≤+=≤--= ,121,01032,则实数m 的取值范围为 .(解题时要注意对空集的讨论) 5.补集思想常运用于解决否定型或正面较复杂的有关问题 二.函数:1.指数式、对数式:m a=1m nm naa -=, 当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.log (0,1,0)b a a N N b a a N =⇔=>≠>;log a N a N =,;()log ()log m n a a nb b m=;log ()log log a a a MN M N =+;log log log aa a M M N N=-; 1log log a b b a =.▲2log1()2=________;33)5(lg 5lg 2lg 3)2(lg +⋅+= .2.二次函数:⑴三种形式:一般式2()f x ax bx c =++;顶点式2()()f x a x h k =-+; 零点式12()()()f x a x x x x =--;b=0时,()f x 为偶函数.⑵区间最值:配方后一看开口方向,二讨论对称轴与区间的相对位置关系. ▲已知函数()224422+-+-=a a ax x x f 在区间[]2,0上有最小值3,求a 的值.3. 反比例函数: )0x (xc y ≠=平移⇒b x ca y -+=(中心为()a b ,) 4. 常见函数xax y +=:奇函数;0<a 时;在(),0-∞,()0,+∞上是增函数;0a >时,在((,,0,-∞上是增函数;在())0,+∞上是减函数.5. 幂、指数、对数函数的图象和性质: ▲⑴若0.52a =,πlog 3b =,22πlog sin5c =,则c b a ,,的大小关系为 . ⑵设11132a ⎧⎫∈-⎨⎬⎩⎭,,,,则使函数a y x =的定义域为R 且为奇函数的所有a 为 .⑶不等式1)1lg(<-x 的解集是 方程07369=-⋅-xx 的解是 . ⑷ 研究方程))(lg()3lg()1lg(R a x a x x ∈-=-+-的实数解的个数.6. 单调性:①定义法;②导数法.▲已知函数3()f x x ax =-在区间[1,)+∞上是增函数,则a 的取值范围是_ ; 注意:⑴可导函数)(x f 为增函数能推出()0f x '≥,但反之不一定.如函数1)(=x f ,其导数0)(≥'x f ,但它在),(+∞-∞上不是单调函数,所以()0f x '≥是可导函数)(x f 为增函数的必要不充分条件.⑵复合函数由同增异减判定.▲函数)212log 2y x x =-+的单调递增区间是________.▲已知)3(l o g )(22a ax x x f +-=在[)+∞,2上是增函数,则实数a 的取值范围是 .7.奇偶性:()f x 是偶函数⇔()()(||)f x f x f x -==;()f x 是奇函数⇔()()f x f x -=-;定义域内含零的奇函数的图像过原点(f(0)=0);定义域关于原点对称是函数为奇函数或偶函数的必要而不充分的条件. 8.周期性:(1)类比“三角函数图像”得周期.▲已知定义在R 上的函数()f x 是以2为周期的奇函数,则方程()0f x =在[2,2]-上至少有__________个实数根. (2)周期函数的定义:函数()f x 满足()()x a f x f +=(0)a ≠恒成立,则()f x 是周期为a 的周期函数.①函数()f x 满足()()x a f x f +=-,则2T a =;②若1()(0)()f x a a f x +=≠恒成立,则2T a =; ③若1()(0)()f x a a f x +=-≠恒成立,则2T a =.回归课本专题一:集合、函数、导数第2页▲ ⑴设)(x f 是),(+∞-∞上的奇函数,)()2(x f x f -=+,当10≤≤x 时,x x f =)(,则)5.47(f 等于_____;⑵定义在R 上的偶函数()f x 满足(2)()f x f x +=,且在[3,2]--上是减函数,若,αβ是锐角三角形的两个内角,则(sin ),(cos )f f αβ的大小关系为_________;⑶若函数)(x f 是定义在R 上的奇函数,且当),0(+∞∈x 时,)1()(3x x x f +=,那么当)0,(-∞∈x 时,)(x f =________. 9.常见的图象变换①函数()a x f y +=的图象是把函数()x f y =的图象沿x 轴向左)0(>a 或向右)0(<a 平移a 个单位得到的.▲函数()lg(2)1f x x x =⋅+-的图象与x 轴的交点个数有____个 ②函数()x f y =+a 的图象是把函数()x f y =助图象沿y 轴向上)0(>a 或向下)0(<a 平移a 个单位得到的.▲将函数a ax by ++=的图象向右平移2个单位后又向下平移2个单位,所得图象如果与原图象关于直线x y =对称,那么0,1)(≠-=b a A R b a B ∈-=,1)( 0,1)(≠=b a C R b a D ∈=,0)( .正确的有 .③函数()ax f y =)0(>a 的图象是把()x f y =的图象沿x 轴伸缩为原来的a1得到的.▲⑴将函数()y f x =的图像上所有点的横坐标变为原来的13(纵坐标不变),再将此图像沿x 轴方向向左平移2个单位,所得图像对应的函数为_____;⑵如若函数(21)y f x =-是偶函数,则函数(2)y f x =的对称轴方程是_______. ④函数()x af y =)0(>a 的图象是把()x f y =的图象沿y 轴伸缩为原来的a 倍得到.10.函数图像的对称性:①满足条件()()f x a f b x +=-的函数的图象关于直线2a bx +=对称.(两函数()y f a x =+与()y f b x =-图像关于直线2b ax -=对称.) ▲已知二次函数)0()(2≠+=a bx ax x f 满足条件)3()5(-=-x f x f 且方程x x f =)( 有等根,则)(x f =_____;②点(,)x y 关于y 轴的对称点为 ;函数()x f y =关于y 轴的对称曲线方程为 ; ③点(,)x y 关于x 轴的对称点为 ;函数()x f y =关于x 轴的对称曲线方程为 ; ④点(,)x y 关于原点的对称点为 ;函数()x f y =关于原点的对称曲线方程为 ; ⑤点(,)x y 关于直线y x a =±+的对称点为 ;曲线(,)0f x y =关于直线y x a =±+ 的对称曲线的方程为 .提醒:证明函数图像的对称性,即证明图像上任一点关于对称中心(对称轴)的对称点仍在图像上.▲已知函数)(1)(R a xa ax x f ∈--+=.求证:函数)(x f 的图像关于点(,1)M a -成中心对称图形.⑥曲线(,)0f x y =关于点(,)a b 的对称曲线的方程为(2,2)0f a x b y --=. ▲⑴若函数x x y +=2与)(x g y =的图象关于点(-2,3)对称,则)(x g =______ ⑵作出函数2|log (1)|y x =+及2log |1|y x =+的图象;⑶若函数)(x f 是定义在R 上的奇函数,则函数)()()(x f x f x F +=的图象关于____对称 11.几类常见的抽象函数 :①正比例函数型:()(0)f x kx k =≠ ---------------()()()f x y f x f y ±=±;②幂函数型:2()f x x = --------------()()()f xy f x f y =,()()()x f x f yf y =; ③指数函数型:()x f x a = ----------()()()f x y f x f y +=,()()()f x f x y f y -=;④对数函数型:()log a f x x = ---()()()f xy f x f y =+,()()()xf f x f y y=-;⑤三角函数型:()tan f x x = ----- ()()()1()()f x f y f x y f x f y ++=-.▲设()f x 的定义域为()+∞,0,对任意()+∞∈,0,y x ,都有()()()xf f x f y y=-,且1x >时,()0f x <,又1()12f =,①求证()f x 为减函数;②解不等式2()(5)f x f x ≥-+-.12. 题型方法总结:Ⅰ.判定相同函数:定义域相同且对应法则相同. Ⅱ. 求函数解析式的常用方法:(1)待定系数法――已知所求函数的类型.▲已知()f x 为二次函数,且 )2()2(--=-x f x f ,且f(0)=1,图象在x 轴上截得的线段长为22,求()f x 的解析式 .(2)代换(配凑)法――已知形如(())f g x 的表达式,求()f x 的表达式. (()f x 的定义域应是()g x 的值域)▲①已知,sin )cos 1(2x x f =-求()2x f 的解析式;②若221)1(xx x x f +=-,则函数)1(-x f =_____; (3)函数方程――对已知等式进行赋值,从而得到关于()f x 及另外一个函数的方程.回归课本专题一:集合、函数、导数第3页▲①已知()2()32f x f x x +-=-,求()f x 的解析式; ②已知()f x 是奇函数,)(x g 是偶函数,且()f x +)(x g =11-x ,则()f x = . Ⅲ. 求定义域:使函数解析式有意义(分母;偶次根式被开方数;对数真数;底数;零指数幂的底数;实际问题有意义;复合函数等.) ▲①若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为__________;②若函数2(1)f x +的定义域为[2,1)-,则函数()f x 的定义域为________. Ⅳ.求值域: ⑴直接法(将自变量化到一处,有定义域逐步探求);⑵借助函数的单调性;⑶基本不等式;⑷利用函数与方程的关系;⑸数形结合 ▲ 求下列函数的值域:⑴313x xy =+;(2)22sin 3cos 1y x x =--;(3)21y x =+;(4)2sin 11cos y θθ-=+;⑹y =三.导数:1.导数几何意义:k=f /(x 0)表示曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率. V =s /(t)表示t 时刻即时速度,a=v ′(t)表示t 时刻加速度. ▲(1)一物体的运动方程是21s t t =-+,其中s 的单位是米,t 的单位是秒,那么物体在3t =时的瞬时速度为_____.(2) 质点P 在半径为10cm 的圆上逆时针作匀速圆周运动,角速度为2/rad s .设(10,0)A 为起始点,求时刻t 时,点P 在y 轴上的射影点M 的速度为 2. 导数的几何意义及它的简单应用 ⑴切线▲已知函数3()3f x x x =-过点(2,6)P -作曲线()y f x =的切线,求此切线的方程.⑵单调性:分析()y f x =定义域,求导数,解不等式'()0f x ≥得增区间,解不等式'()0f x ≤得减区间,注意'()0f x =的点.▲设0>a 函数ax x x f -=3)(在),1[+∞上单调函数,则实数a 的取值范围______;⑶ 求极值、最值:求导数,求0)(='x f 的根,列表检验)(x f '在根左右两侧符号,得极值,把极值与区间端点函数值比较,最大的为最大值,最小的是最小值.▲(1)函数5123223+--=x x x y 在[0,3]上的最大值、最小值分别是______; (2)方程0109623=-+-x x x 的实根的个数为 .注意:0x 可导函数的是极值点的充要条件是()00f x '=,且在0x 点两侧导数异号,()00f x '=是0x 为极值点的必要而不充分条件.▲⑴函数()3221f x x ax bx a x =+++=在处有极小值10,则a+b 的值为____⑵已知函数2221()(1ax a f x x x -+=∈+R ),其中a ∈R .①当1a =时,求曲线()y f x =在点(2,(2))f 处的切线方程;②当0a ≠时,求函数()f x 的单调区间与极值.3. 恒成立问题、存在性问题及零点问题:(归结为单调性、极值、最值问题) 四、练习1.(必修①P14.8(1)改编)若集合U={16,}x x x N *≤≤∈,A={2,3,5},B={1,4},则()()U U C A C B = .2.(必修①P17.6)已知集合A=[1,4),集合B=)a -∞(,,若A B ≠⊂,则a 的范围为 . 3.(必修①P17.10)期中考试,(1)班数学优秀率为70%,语文优秀率为75%.则语文、数学两门学科都优秀的百分率至少为 .4.(必修①P33.13)已知一个函数的解析式为2y x =,它的值域为{1,4},这样的函数有 个. 5. (必修①P55.11)对于任意的12,x x R ∈,若函数()2xf x =,则12()()2f x f x +与12()2x x f +的大小关系是 .(必修①P71.12)对于任意的12,0x x ∈+∞(,),若函数()l g f x x =,则12()()2f x f x +与12()2x x f +的大小关系是 . 6. (必修①P55.9改编)已知函数()y f x =是定义在R 上的奇函数,且x<0时,()12x f x =+,则此函数的解析式为 .7. (必修①P55.6改编)若函数2()12xxk f x k -=+⋅在定义域上为奇函数,则k= .8. (必修①P93.3改编)已知函数()21,[1,5]f x x x =+∈,则函数2(3)f x -= .9.(必修①P94.27)若关于x 的方程23(37)40tx t x +-+=的两实根为αβ,满足012αβ<<<<,则实数t 的取值范围为 .10. (必修①P94.28)已知定义在实数集R 上的偶函数()f x 在区间[0,)+∞上是单调递增函数,若(1)(lg )f f x <,则x 的取值范围是 .11.(选修1-1P72.13)设曲线2(0)y x x =≥,直线0y =及(0)x t t =>围成的封闭图形的面积为()t S = ,则()='t S .12.(选修1-1P84.1)水波的半径以50cm/s 的速度向外扩张,当半径为250cm 时,圆面积的膨胀率为 .13. (选修1-1P84.3)酒杯的形状为倒立的圆锥,杯深8cm ,上口宽6cm ,水以203/cm s 的流量倒入杯中,当水深为4cm 时,水升高的瞬时变化率为 . 14.函数xy e ex =-的极小值为 . 15.曲线1cos 2y x x =-在6x π=处的切线方程为 ;回归课本专题一:集合、函数、导数第4页16.函数1()sin 2f x x x =+在[0,2]π上的值域为 . 17. 不等式02)1(≥+-x x 的解集 _________________.18. 设k ∈R , x 1 , x 2是方程x 2-2kx+1-k 2=0的两个实数根, 则x 21+x 22的最小值为__________.19. 已知A={x|x 2+(P+2)x+4=0}, M={x|x>0}, 若A ∩M=φ, 则实数P 的取值范围__________. 20.给出平面区域如图所示, 若使目标函数Z=ax+y (a>0), 取得最大值的最优解有无数个, 则a 值为______ .21.已知关于x 的不等式组2122kx x k ≤++≤有唯一实数解,则实数k 的取值集合 . 22.已知x m x f q R m x x p )37()(:|1|||:--=-+,的解集为>不等式是减函数,如果两个命题有且只有一个正确,则实数m 的取值范围为______________.23.函数()f x 的定义域为{|,1}x x R x ∈≠且,已知(1)f x +为奇函数,当1x <时,2()21f x x x =-+,则当1x >时, ()f x 的递减区间是_______________. 24.设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =____. 25.若()log (2)a f x ax =-在[0,1]上是减函数,则a 的取值范围是 .26.已知2(199)443()f x x x x R +=++∈,那么函数()f x 的最小值为 ________. 27.设2()lg()1f x a x =+-是奇函数,则使()0f x <的x 的取值范围是__________. 28.(必修1P 55ex8改编)已知定义在R 上的函数()y f x =满足条件3()()2f x f x +=-,且函数3()4y f x =-是奇函数,给出以下几个命题:① 函数()f x 是周期函数; ② 函数()f x 的图象关于点3(,0)4-对称; ③ 函数()f x 是偶函数; ④ 函数()f x 在R 上是单调函数. 在上述四个命题中,真命题的序号是 (写出所有真命题的序号). 29.(选修2-3P 33例2改编)函数d cx bx x x f +++=23)(在区间]2,1[-上是减函数,则c b +的最大值为 . 30.(必修1P 81习题 2.5ex4改编)方程|sin |(0)x k k x=>有且仅有两个不同的实数解,()θϕθϕ>,则以下有关两根关系的结论正确的序号是____________.① sin cos ϕϕθ=;② sin cos ϕϕθ=- ;③ cos sin ϕθθ= ④ sin sin θθϕ=- 五、品味经典1.(必修1P95.32改编)已知过原点O 的直线与函数8log y x =的图像交于A,B 两点,分别过A,B 作y 轴的平行线与函数2log y x =的图像交于C,D 两点. (1)试证明:O,C,D 三点共线; (2)当0BC BD ⋅=时,求经过B,C,D 三点的圆方程.2.已知函数()f x 的导数2()33,(0),,,12f x x ax f b a b R a '=-=∈<<. (1)若()f x 在区间[1,1]-上的最小值、最大值分别为-2,1,求,a b 的值; (2)在(1)的条件下,求经过点P (2,1)且与曲线()f x 相切的直线L 的方程.3.已知2()ln ,()3f x x x g x x ax ==-+-. (1)求函数()f x 在[,2]t t +(0t >)上的最小值;(2)对一切(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围;(3)证明:对一切(0,)x ∈+∞,都有12ln x x e ex>-成立.回归课本专题一:集合、函数、导数第5页。

高考数学一本策略复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案文

高考数学一本策略复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案文

第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合交集运算·T1本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合交集运算·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算·T1Ⅱ卷集合的并集运算·T1Ⅲ卷求集合交集中元素个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的交集运算、一元二次不等式的解法·T1Ⅲ卷集合的补集运算·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解.(2)若已知的集合是点集,用数形结合法求解.(3)若已知的集合是抽象集合,用Venn图求解.(1)(2018·南宁模拟)设集合M={x|x<4},集合N={x|x2-2x<0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B=( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B 【类题通法】破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn 图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4解析:将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A. 答案:A2.(2018·德州模拟)设全集U =R ,集合A ={x ∈Z |y =4x -x 2},B ={y |y =2x,x >1},则A ∩(∁U B )=( )A .{2}B .{1,2}C .{-1,0,1,2}D .{0,1,2}解析:由题意知,A ={x ∈Z |4x -x 2≥0}={x ∈Z |0≤x ≤4}={0,1,2,3,4},B ={y |y >2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3)D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x+x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数 【类题通法】判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a =-2”是“直线l 1:ax -y +3=0与l 2:2x -(a +1)y +4=0互相平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当a =-2时,直线l 1:2x +y -3=0,l 2:2x +y +4=0,所以直线l 1∥l 2;若l 1∥l 2,则-a (a +1)+2=0,解得a =-2或a =1.所以“a =-2”是“直线l 1:ax -y +3=0与l 2:2x -(a +1)y +4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m ,n 为两个非零向量,则“m 与n 共线”是“m·n =|m·n |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当m 与n 反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n =|m·n|,则m·n =|m|·|n|·cos〈m ,n 〉=|m |·|n |·|cos 〈m ,n 〉|,则cos 〈m ,n 〉=|cos 〈m ,n 〉|,故cos 〈m ,n 〉≥0,即0°≤〈m ,n 〉≤90°,此时m 与n 不一定共线,即必要性不成立.故“m 与n 共线”是“m·n =|m·n|”的既不充分也不必要条件,故选D.答案:D 【类题通法】1.(2018·胶州模拟)设x ,y 是两个实数,命题“x ,y 中至少有一个数大于1”成立的充分不必要条件是( )A .x +y =2B .x +y >2C .x 2+y 2>2D .xy >1解析:当⎩⎪⎨⎪⎧x ≤1y ≤1时,有x +y ≤2,但反之不成立,例如当x =3,y =-10时,满足x+y ≤2,但不满足⎩⎪⎨⎪⎧x ≤1y ≤1,所以⎩⎪⎨⎪⎧x ≤1y ≤1是x +y ≤2的充分不必要条件.所以“x +y >2”是“x ,y 中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:根据祖暅原理,“A ,B 在等高处的截面积恒相等”是“A ,B 的体积相等”的充分不必要条件,即綈q 是綈p 的充分不必要条件,即命题“若綈q, 则綈p ”为真,逆命题为假,故逆否命题“若p ,则q ”为真,否命题“若q ,则p ”为假,即p 是q 的充分不必要条件,选A.答案:A授课提示:对应学生用书第107页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( ) A .{0,2} B .{1,2}C .{0}D .{-2,-1,0,1,2}解析:A ∩B ={0,2}∩{-2,-1,0,1,2}={0,2}. 故选A. 答案:A2.(2017·高考山东卷)设函数y =4-x 2的定义域为A ,函数 y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)解析:由题意可知A ={x |-2≤x ≤2},B ={x |x <1},故A ∩B ={x |-2≤x <1}. 答案:D3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1≤x <32 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪32<x ≤3 解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <32. 答案:B4.(2018·高考全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( ) A .{0} B .{1} C .{1,2}D .{0,1,2}解析:∵A ={x |x -1≥0}={x |x ≥1},∴A ∩B ={1,2}.故选C. 答案:C5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.答案:D6.(2018·郑州四校联考)命题“若a >b ,则a +c >b +c ”的否命题是( ) A .若a ≤b ,则a +c ≤b +c B .若a +c ≤b +c ,则a ≤b C .若a +c >b +c ,则a >b D .若a >b ,则a +c ≤b +c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b ,则a +c ≤b +c ”,故选A.答案:A7.(2018·石家庄模拟)“x >1”是“x 2+2x >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:由x 2+2x >0,得x >0或x <-2,所以“x >1”是“x 2+2x >0”的充分不必要条件. 答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C 二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x-x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧x ,y ⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x+1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________. 解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2. 答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m-2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。

集合、函数与导数

集合、函数与导数

专题集合、函数与导数一、考情分析函数是整个高中数学的核心内容,是高中数学的主线,所有知识均可与函数建立联系,都可围绕这一主线展开学习考查,它贯穿于中学数学的始末,而函数的四大性质更是高考对函数内容考查的重中之重,其中单调性与奇偶性更是高考的必考内容,在高考命题中函数常与方程、不等式等其他知识结合考查,而且考查的形式不一,时而选择题,时而填空题,时而解答题.二、经验分享1.单调区间是定义域的子集,故求单调区间时应树立“定义域优先”的原则,单调区间只能用区间表示,不能用集合或不等式表示,如有多个单调区间应分开写,不能用并集符号“∪”连接,也不能用“或”连接.2.函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也是单调的;③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.3.解函数不等式问题的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的抽象符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.4.关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.5.掌握以下两个结论,会给解题带来方便:①f (x )为偶函数⇔f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.三、知识拓展1.对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=()1f x ,则T =2a (a >0). (3)若f (x +a )=-()1f x ,则T =2a (a >0). (4)若()()()2f x a f x a f x +=+-,则T =6a (a >0). (5)若f (x +a )=()()11f x f x -+,则T =2a (a >0).(6)若f (x +a )=()()11f x f x +-,则T =4a (a >0).2.函数对称性与函数周期性的关系(1)若函数()f x 的图象既关于直线x a =对称,又关于直线x b =对称()a b ≠,则()f x 是周期函数,且()2b a -是它的一个周期.(2)若函数()f x 的图象既关于点(),0a 对称,又关于点(),0b 对称()a b ≠,则()f x 是周期函数,且()2b a -是它的一个周期.(3)若函数()f x 的图象既关于直线x a =对称,又关于点(),0b 对称()a b ≠,则()f x 是周期函数,且()4b a -是它的一个周期. 3.函数()1,0x f x x ⎧=⎨⎩为有理数,为无理数是一个奇特的函数,该函数是偶函数,是周期函数,但没有最小正周期,也无法作出其图象.4. 设()[]x g f y =是定义在M 上的函数,若()f x 与()g x 的单调性相反,则()[]x g f y =在M 上是减函数;若()f x 与()g x 的单调性相同,则()[]x g f y =在M 上是增函数,简称同增异减.5. 对称性的一般结论①若()()f a x f b x +=-,则()f x 图像关于直线2a bx +=对称;②()y f a x=+与()y f b x=-的图像关于直线2b ax-=(即a x b x+=-)对称. 四、题型分析(一) 函数单调性的灵活应用【例1】如果对定义在R上的函数()f x,对任意两个不相等的实数12,x x,都有11221221()()()()x f x x f x x f x x f x+>+,则称函数()f x为“H函数”.给出下列函数①e xy x=+;②2y x=;③3siny x x=-;④ln0()00x xf xx⎧≠⎪=⎨=⎪⎩. 以上函数是“H函数”的所有序号为.【分析】本题的重点和难点均为对“H函数”本质的认识和理解,即如何处理和转化题中所给不等式:11221221()()()()x f x x f x x f x x f x+>+,采用合并重组的方法进行处理,得()()()1212x x f x f x-->⎡⎤⎣⎦,由单调性定义的本质,可以看出“H函数”本质上就是个单调递增函数.当x<0时为减函数,当x>0为增函数,不符合,故选①③.【点评】本题主要考查了单调函数的定义和函数单调性的判断(定义法,图像法,导数法),学生在初步理解时可能有一种无从入手的感觉,如果对函数单调性定义的本质不能领悟的话,则将无法完成此题了,可见在教师的教和学生的学中最终要让学生去理解和领悟知识的本质.【小试牛刀】【2018届常熟中学高三10月阶段性抽测】已知函数,若,则实数的取值范围为__________.【答案】(-2,1) 【解析】很明显函数满足,且:,据此可得函数是定义在上的单调递增的奇函数,据此,不等式即:,脱去符号有:,求解关于实数a 的不等式可得实数的取值范围为.(二) 函数奇偶性的灵活应用【例2】已知函数22(1)sin ()31x a xf x x ++=++(a R ∈),2(ln(log 5))5f =,则5(ln(log 2))f =__________.【分析】先把()f x 分离常数,得()22sin 41x a xf x x +=++根据奇函数性质可得()()8f x f x +-=【答案】3【解析】()()41sin 231sin 1231sin 122222+++=+++++=++++=x xa x x x a x x x x a x x f , 令()()1sin 242++=-=x xa x x f x g ,则()x g 为奇函数,()()()()145log ln 5log ln 22=-=f g , ()()()()12log ln 5log 1ln 2log ln 525-=-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=g g g ,()()()()342log ln 2log ln 55=+=g f ,故选C.【点评】本题对函数奇偶性的考查较为隐蔽,只有通过分离常数,才能看出()f x 是一个常数函数与一个奇函数的和,故本题对能力要求较高. 【小试牛刀】已知函数()211log e xf x x e e⎛⎫=+-⎪⎝⎭,则使得()()121f x f x +<-的x 的范围是__________. 【答案】()0,2【解析】由于()()f x f x -=,所以函数为偶函数,且在()0,+∞上为减函数.要()()121f x f x +<-,则需121x x +>-,解得()0,2x ∈.(三) 函数单调性与奇偶性的综合应用【例3】设)(x f 是定义在R 上的奇函数,且当2)(,0x x f x =≥时,若对任意的]2,[+∈t t x ,不等式)(2)(x f t x f ≥+恒成立,则实数t 的取值范围是 .【分析】本题已明确指出是个奇函数,故易求出它的整个解析式(一个分段函数),此时画出它的图象,就能发现它是一个单调递增函数,难点在于题中所给不等式)(2)(x f t x f ≥+中,2()f x 的系数2如何处理?再次仔细观察所求函数的解析式的结构特征,发现满足:围.【解析】∵)(x f 是定义在R 上的奇函数,且当0≥x 时,2)(x x f = ∴当x <0,有-x >0,2)()(x x f -=-, ∴2)(x x f =-,即2)(x x f -=,∴⎩⎨⎧<-≥=)0(,)0(,)(22x x x x x f ,∴)(x f 在R 上是单调递增函数,∵不等式)2()(2)(x f x f t x f =≥+在[t,t+2]恒成立,【点评】本题主要考查了函数的奇偶性和单调性,其中奇偶性是一个明条件,单调性是一个隐条件,作出函数的图象易发现它的单调性,这也再次说明数形结合的重要性,本题最后转化成一个恒成立问题,运用分离参数的方法求解的,这正说明函数性质的应用是十分广泛的,它能与很多知识结合,考查学生综合运用所学知识解决问题的能力.【小试牛刀】已知偶函数()f x 在[)0,+∞单调递减,()20f =,若()10f x ->,则x 的取值集合是__________. 【答案】(- 1 , 3 ).(四) 函数性质的综合运用【例4】已知定义在R 上的函数)(x f 满足)2(x f -为奇函数,函数)3(+x f 关于直线1=x 对称,则下列式子一定成立的是 ①)()2(x f x f =- ②)6()2(+=-x f x f③1)2()2(=+⋅-x f x f ④0)1()(=++-x f x f【分析】由题中函数)(x f 满足)2(x f -为奇函数,结合奇函数的定义转化可得:()(4)f x f x =--,再由条件:函数)3(+x f 关于直线1=x 对称,结合对称性的规律可得:(4)(4)f x f x -=+,最后由周期性的概念可转化为:()(4)(8)f x f x f x =-+=+,可见函数的周期为8,即可求解.【解析】因为(2)f x -为奇函数,所以(2)(2)f x f x -=-+,则()(4)f x f x =--.又因为(3)f x +关于直线1x =对称,所以()f x 关于4x =对称,所以(4)(4)f x f x -=+,则()(4)(8)f x f x f x =-+=+,于是8为函数()f x 的周期,所以(2)(6)f x f x -=+,故答案为②.【点评】本题主要考查了学生对抽象函数的处理能力,考查了函数的奇偶性、对称性和周期性,要想顺利完成本题有一个难点:)2(x f -为奇函数的处理,这要对奇函数定义本质有充分的理解,函数的四大性质在抽象函数的考查中往往会综合在一起,这也正是此类题目一般较难的原因,在我们复习备考中一定要加强对所学概念本质的理解,这并非一日之功了,须注意平时的积累和磨炼.【小试牛刀】【2018届东台安丰中学高三第一次月考】已知函数()f x 是定义在R 上的奇函数,且()()2f x f x +=-,当()2,0x ∈-时,()xf x e =,则()()20172018f f +=__________.【答案】1e-在解决函数性质有关的问题中,如果结合函数的性质画出函数的简图,根据简图进一步研究函数的性质,就可以把抽象问题变的直观形象、复杂问题变得简单明了,对问题的解决有很大的帮助.(1)一般的解题步骤:利用函数的周期性把大数变小或小数变大,然后利用函数的奇偶性调整正负号,最后利用函数的单调性判断大小;(2)画函数草图的步骤:由已知条件确定特殊点的位置,然后利用单调性确定一段区间的图象,再利用奇偶性确定对称区间的图象,最后利用周期性确定整个定义域内的图象.五、迁移运用1.【淮安市淮海中学2018届高三上第一次调研】已知定义在R 上的偶函数()f x ,当0x ≥时,()()2log 1f x x =+,则使得()()21f x f x <-成立的x 的取值范围为__________. 【答案】113x -<<【解析】由题意()f x 为定义在R 上的偶函数,∴()()f f x x =, ∴()()21f x f x <-等价于()()f 2f 1x x <-又当0x ≥时,()()2log 1f x x =+,∴()f x 在)[0 ∞+,上单调递增,所以21x x <-,即()()2221x x <-,23210x x +-<,113x -<<故答案为:113x -<<2.【南师附中2017届高三模拟二】已知()f x 是定义在区间[]1,1-上的奇函数,当0x <时,()()1f x x x =-.则关于m 的不等式()()2110f m f m -+-<的解集为__________. 【答案】[)0,1【解析】当0x >时,则()()()0,11x f x x x x x -<-=---=+,即()()1f x x x -=+,所以()()1f x x x =-+,结合图像可知:函数在[]1,1-单调递减,所以不等式()()2110f m f m -+-<可化为2220{111 111m m m m -->-≤-≤-≤-≤,解之得01m ≤<,应填答案[)0,1.3.【南通中学2018届高三10月月考】已知函数,若对任意实数都有,则实数的取值范围是____________.【答案】【解析】构造函数,函数为奇函数且在上递减, 即,即,即,所以即恒成立,所以,所以,故实数的取值范围是.4.【泰州中学2018届高三上学期开学考试】已知是定义在上的奇函数,当时,,不等式的解集用区间表示为__________.【答案】【解析】根据题意,是定义在上的奇函数,则有, 当时,为减函数,则当时,也为减函数,综合可得在上为减函数, 若,则有,解可得,即不等式的解集为.故答案为:. 5.【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=mx 2+x +m +2在(-∞,2)上是增函数,则实数m 的取值范围是________. 【答案】1,04⎡⎤⎢⎥⎣⎦【解析】当m =0时,f(x)=x +2,符合;当m≠0时,必须0122m m<⎧⎪⎨≥⎪⎩,-,解得-14≤m<0.综上,实数m 的取值范围是-14≤m≤0. 6.【无锡市2018届高三上期中基础性检测】已知函数()11212xf x =-+,则()()2110f a f a ++->的解为______________.【答案】()1,0-7.【2016-2017学年度江苏苏州市高三期中调研考试】已知函数()f x 是定义在R 上的周期为2的奇函数,当01x <<时,()8xf x =,则193f ⎛⎫-= ⎪⎝⎭__________. 【答案】-2 【解析】试题分析:由题意131911()()()82333f f f -=-=-=-=-.8.【2016-2017学年度江苏苏州市高三期中调研考试】已知函数()()2x af x x a -=+,若对于定义域内的任意1x ,总存在2x 使得()()21f x f x <,则满足条件的实数a 的取值范围是____________. 【答案】0a ≥【解析】由题意函数()f x 无最小值,22221()()()x a a a f x x a x a x a +-==-++++,令1t x a=+,则0t ≠,2()2f x y at t ==-+,0a =时,函数为y t =,符合题意,0a ≠时,20a -<,即0a >,综上有a 的取值范围是0a ≥.9.【南京市2017届高三年级学情调研】已知(),()f x g x 分别是定义在R 上的奇函数和偶函数,且1()()()2xf xg x +=,若存在01[,1]2x ∈,使得等式00()(2)0af x g x +=成立,则实数a 的取值范围是 .【答案】 【解析】试题分析:11()()()()()()()()222x xx f x g x f x g x f x g x -+=⇒-+-=⇒-+=,所以11()2()222(),()22x x x xf xg x -+==,所以00000022200(2)22223,22]()222x x x x x x g x t a t t f x t t ---++=-===+=-∈-,所以min max 22t a t a ==== 即实数a的取值范围是. 10.【2016届江苏省泰州中学高三上学期第二次月考】已知函数ax x x x f +-=ln )(在()e ,0上是增函数,函数2)(2a a e x g x+-=,当[]3ln ,0∈x 时,函数)(x g 的最大值M 与最小值m的差为23,则=a . 【答案】25【解析】因为函数ax x x x f +-=ln )(在()e ,0上是增函数,所以0ln 1)('≥--=x a x f 在()e ,0上恒成立,即02≥-a ,即2≥a ;因为⎪⎪⎩⎪⎪⎨⎧≥+-≤≤+-=+-=a x aa e a x a e a a a e x g x xxln ,2ln 0,22)(222,若3ln ln ≥a ,即3≥a 时,)(x g 在[]3ln ,0单调递减,则2)3(ln )0(=-=-g g m M (舍),当3ln ln <a ,即32<≤a 时,函数)(x g 在[]a ln ,0上递减,在[]3ln ,ln a 上递增,且42)3(ln )0(≥-=-a g g ,所以23)(ln )0(=-=-a g g m M ,即2312)21(22=-=-+-a a a a ,解得25=a ;故填25.【方法点睛】本题考查导数与函数的单调性、最值,属于难题.先利用“若函数)(x f 可导,则)(x f 在某区间上递增0)('≥⇔x f 在该区间恒成立”求得a 的取值范围;再利用绝对值的代数意义将)(x f 化为分段函数,再讨论a 与3的大小关系利用函数的单调性求最值,作差求解即可.11.函数()f x 同时满足:①对于定义域上的任意x ,恒有()()0f x f x +-=;②对于定义域上的任意12,x x .当12x x ≠,恒有()()12120f x f x x x -<-.则称函数()f x 为“理想函数”,则下列三个函数中:(1)()1f x x =,(2)()2f x x =,(3)()22x x f x xx ⎧-≥=⎨<⎩.称为“理想函数”的有 (填序号). 【答案】(3)12.已知函数f (x )=24,(1)34,(1)x ax x ax a x ⎧-+⎨-+->⎩≤,且f (x )在R 上递减,则实数a 的取值范围 .【答案】[]2,3 【解析】试题分析:由题意可得2120114134a a a a a ⎧≥⎪⎪-<⎨⎪-⨯+≥-⨯+-⎪⎩23a ⇒≤≤.【思路点晴】分段函数在R 上具有单调性时,各段应先满足在各自范围内的单调性,再注意各自端点处函数的大小关系即可.13.已知函数()y f x =为奇函数,且对定义域内的任意x 都有(1)(1)f x f x +=--,当(2,3)x ∈时,2()log (1)f x x =-,给出以下4个结论:①函数()y f x =的图象关于点(,0)()k k Z ∈成中心对称; ②函数|()|y f x =是以2为周期的周期函数; ③当(1,0)x ∈-时,2()log (1)f x x =--;④函数(||)y f x =在(,1)()k k k Z +∈上单调递增. 其中所以正确结论的序号为 . 【答案】【解析】试题分析:对定义域内的任意x 都有(1)(1)f x f x +=--,则函数()f x 关于点(1,0)对称,又因为函数()f x 为奇函数,所以图像关于原点(0,0)对称,所以函数()f x 的周期为2.结合图像特征知,其图象关于点(,0)()k k Z ∈成中心对称,故命题正确.当(2,3)x ∈时,2()log (1)f x x =-,所以由对称性可求出(1,2)x ∈时,)(log )(x x f y --=--=342,且此时函数值小于0.设(-1,0)x ∈,所以此时的解析式为)(log )]([log )()(x x x f x f y --=+--=+==123222,故命题正确.结合前面的分析可以知函数|()|y f x =是以2为周期的周期函数,故命题正确.函数()f x 的在(-1,0)是单调递增的,且此时()0f x <,故(||)y f x =在(-1,0)上是单调递减的,故命题④错误.因此答案为【方法点睛】此题型也是高考的常考题型,其方法是从定性和定量两个方面分析.例如命题,求函数解析式,我们要定量研究,即具体而准确的从数上去推理运算,从而判断命题是否正确.对于本题中的周期性、对称性、单调性,我们不需准确的作图,或严格的理论证明,可以结合条件画出草图判断出结果即可.14.已知:定义在R 上的函数()f x ,对于任意实数a, b 都满足()()()f a b f a f b +=,且(1)0f ≠,当0,()1x f x >>时.(Ⅰ)求(0)f 的值;(Ⅱ)证明()f x 在(),-∞+∞上是增函数; (Ⅲ)求不等式21()(24)f x x f x +<-的解集.【答案】(Ⅰ)1 (Ⅱ)详见解析 (Ⅲ)(4,1)- 【解析】试题分析:(Ⅰ)求(0)f 的值只需将已知关系式中1,0a b ==代入即可求解;(Ⅱ)抽象函数单调性的判定采用定义法;任取12x x <,借助于()()()f a b f a f b +=判定()()12,f x f x 的大小关系,当满足()()12f x f x <时函数为增函数;(Ⅲ)将不等式右侧1(24)f x -转化为(24)f x -+,借助于函数为增函数得到关于x 的不等式,解不等式即可得到解集试题解析:(Ⅰ)解:令1,0(1)(10)(1)(0)a b f f f f ===+=则(1)0(0)1f f ≠∴=Q(Ⅱ)证明:当0-x>0x <时由()()()(0)1,()0f x f x f x x f f x -=-==-> 得()0f x >()0x f x ∴>对于任意实数,设1221210()1x x x x f x x <->->则21211211()(())()()()f x f x x x f x f x x f x =+-=->Q()(,)y f x ∴=-∞+∞函数在上是增函数。

专题1-集合、函数、导数、不等式-数学-大纲人教版

专题1-集合、函数、导数、不等式-数学-大纲人教版

第1讲 │ 教师备用习题
【解析】 B 若△ABC 为等边三角形,即 a=b=c,则 a b c a b c max , , =1=min , , ,则 l=1;若△ABC 为等腰 b c a b c a 三角形,如 a=2,b=2,c=3 时,则
a b c 2 min , , = ,此时 b c a 3 a b max , , b c
第1讲 │ 教师备用习题
教师备用习题
(备选理由:1.为易错题,其中 x∈Z 易忽视;2.是含字母的运算, 需要重点掌握;3.为新定义问题,是近几年高考的常见问题,需充分 结合推理归纳,理解题意后解答)
1. 集合 P={x∈Z|0≤x<3}, M={x∈Z|x2≤9}, P∩M=( 则 A.[0,3) B.{0,1,2} C.{1,2,3} D.{0,1,2,3} )
)
【解析】 D A={x|a-1<x<a+1},B={x|x<b-2 或 x>b+2},因为 A⊆B,所以 a+1≤b-2 或 a-1≥b+2,即 a-b≤-3 或 a-b≥3,即|a-b|≥3.
第1讲 │ 教师备用习题
3.[2010· 湖北卷] 记实数 x1,x2,„,xn,中的最大数为 max{x1,x2,„,xn},最小数为 min{x1,x2,„,xn}.已知 △ABC 的三边边长为 a、b、c(a≤b≤c),定义它的倾斜度为 a b c a b c l=maxb, c ,a· b, c ,a, min 则“l=1”是“△ABC 为等边三角形”的( ) A.充分而不必要的条件 B.必要而不充分的条件 C.充要条件 D.既不充分也不必要的条件
第1讲 │ 集合与简易逻辑
第1讲 集合与简易逻辑

专题一集合函数导数不等式

专题一集合函数导数不等式

【解析】显然①正确,而②的逆命题为若a<b,则am2<bm2,当 m2=0时不成立,故②不正确,③中f′(x)=1-cosx≥0, ∴f(x)在R上为单调增函数. ∴在R上有且仅有一个零点,故③不正确;对于④由已知f(x)为 奇函数,又在(0,+∞)时f′(x)>0, ∴f(x)在(0,+∞)上为增函数. ∴在x<0时亦为增函数, ∴f′(x)>0,同理g(x)在(-∞,0)上为减函数, ∴x<0时g′(x)<0,因此f′(x)>g′(x),故④正确. 答案:①④
【解析】选A.由已知得f(x)是 以4为周期且关于直线x=2对称 的函数.
14.已知实数x,y满足约束条件
若目标函数z=y-ax
仅在点(5,3)处取得最小值,则实数a的取值范围为______. 【解析】作出线性可行域如图阴影部分. 观察知,要使其满足要求如图示 只须直线斜率a∈(1,+∞)方可. 答案:(1,+∞)
(B)(1,2)
(C)(2,3)
(D)(2,4)
【解析】选B.考查函数的零点问题.判断函数在哪个区间上有无
零点,只需要判断该区间上端点值的符号是否相异.
f(x)=(x-1)(x-2)g(x)+3x-4,∴f(1)=-1<0,f(2)=2>0, 即 函 数 在
(1,2)上必有实数根.
11.(2009·芜湖模拟)已知定义在R上的函数y=f(x)满足以下 三个条件:①对于任意的x∈R,都有f(x+4)=f(x);②对于任意 的 x1,x2∈R , 且 0≤x1<x2≤2, 都 有 f(x1)<f(x2);③ 函 数 y=f(x+2) 的图象关于y轴对称.则下列结论中正确的是( ) (A)f(4.5)<f(7)<f(6.5) (B)f(7)<f(4.5)<f(6.5) (C)f(7)<f(6.5)<f(4.5) (D)f(4.5)<f(6.5)<f(7)

集合、函数与导数知识点

集合、函数与导数知识点

第一篇 集合与简易逻辑 第1讲 集合及其运算1.元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示. 2.集合间的基本关系 表示 关系文字语言符号语言 集合间的 基本关系相等集合A 与集合B 中的所有元素都相同 A =B 子集A 中任意一个元素均为B 中的元素A ⊆B真子集 A 中任意一个元素均为B 中的元素,且B 中至少有一个元素不是A 中的元素空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算 集合的并集集合的交集集合的补集图形语言符号语言A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }第2讲 命题及其关系、充分条件与必要条件1.四种命题及其关系 (1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系.2.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q pp是q的必要不充分条件p q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p q且q p第3讲简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词(1)逻辑联结词命题中的“且”、“或”、“非”叫做逻辑联结词.(2)命题p∧q,p∨q,綈p的真假判断p q p∧q p∨q 綈p真真真真假真假假真假假真假真真假假假假真2.全称量词与存在量词(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.(3)全称量词用符号“∀”表示;存在量词用符号“∃”表示.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题.(2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定为:非p且非q;p且q的否定为:非p或非q.第二篇函数与导数第1讲函数的概念及其表示1.函数的基本概念(1)函数的定义一般地,设A,B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应;那么就称:f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合叫做函数的值域.(3)函数的三要素是:定义域、值域和对应关系.(4)表示函数的常用方法有:解析法、列表法和图象法.(5)分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.2.函数定义域的求法类型x满足的条件2nf(x),n∈N*f(x)≥01与[f(x)]0f(x)≠0f(x)log a f(x)f(x)>0 四则运算组成的函数各个函数定义域的交集实际问题使实际问题有意义3.函数值域的求法方法 示例 示例答案 配方法 y =x 2+x -2 y ∈⎣⎢⎡⎭⎪⎫-94,+∞ 性质法 y =e x y ∈(0,+∞) 单调性法 y =x +x -2 y ∈[2,+∞) 换元法 y =sin 2 x +sin x +1y ∈⎣⎢⎡⎦⎥⎤34,3 分离常数法y =x x +1y ∈(-∞,1)∪ (1,+∞)第2讲 函数的单调性与最值1.函数的单调性 (1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数续表图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间. 2.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件(1)对于任意x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M.(3)对于任意x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M.结论M为最大值M为最小值第3讲函数的奇偶性与周期性1.函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数关于原点对称2.奇(偶)函数的性质(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(填“相同”、“相反”).(2)在公共定义域内①两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数.②两个偶函数的和函数、积函数是偶函数.③一个奇函数,一个偶函数的积函数是奇函数.(3)若函数f(x)是奇函数且在x=0处有定义,则f(0)=0.3.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.第4讲幂函数与二次函数1.幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α为常数. (2)常见的5种幂函数的图象(3)常见的5种幂函数的性质 函数 特征 性质 y =xy =x 2y =x 3y =x 12y =x -1定义域RRR[0,+∞){x |x ∈R ,且x ≠0} 值域 R [0,+∞)R [0,+∞) {y |y ∈R ,且y ≠0} 奇偶性奇偶 奇非奇非偶奇 单调性 增 (-∞,0]减,[0,+∞)增增 增(-∞,0)减,(0,+∞)减 定点 (0,0),(1,1)(1,1)2.二次函数 (1)二次函数的定义形如f (x )=ax 2+bx +c (a ≠0)的函数叫做二次函数. (2)二次函数的三种常见解析式 ①一般式:f (x )=ax 2+bx +c (a ≠0);②顶点式:f (x )=a (x -m )2+n (a ≠0),(m ,n )为顶点坐标;③两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0)其中x 1,x 2分别是f (x )=0的两实根. (3)二次函数的图象和性质函数二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)图象a >0a <0定义域 RR值域 y ∈⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞y ∈⎝⎛⎦⎥⎤-∞,4ac -b 24a 对称轴 x =-b2a 顶点 坐标 ⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a奇偶性 b =0⇔y =ax 2+bx +c (a ≠0)是偶函数 递增 区间 ⎝ ⎛⎭⎪⎫-b 2a ,+∞ ⎝ ⎛⎭⎪⎫-∞,-b 2a 递减 区间⎝ ⎛⎭⎪⎫-∞,-b 2a ⎝ ⎛⎭⎪⎫-b 2a ,+∞ 最值当x =-b2a 时,y 有最小值y min=4ac -b 24a当x =-b2a 时,y 有最大值y max =4ac -b 24a第5讲 指数与指数函数1.根式 (1)根式的概念根式的概念符号表示备注 如果x n =a ,那么x 叫做a 的n 次方根 n >1且n ∈N * 当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数n a零的n 次方根是零 当n 为偶数时,正数的n 次方根有两个,它们互为相反数±na负数没有偶次方根(2)两个重要公式①n a n =⎩⎪⎨⎪⎧a ,n 为奇数,|a |=⎩⎨⎧a ,a ≥0,-a ,a <0,n 为偶数.②(na )n =a . 2.有理数指数幂 (1)幂的有关概念①零指数幂:a 0=1(a ≠0).②负整数指数幂:a -p =1a p (a ≠0,p ∈N *);③正分数指数幂:a nm =na m (a >0,m ,n ∈ N *,且n >1);④负分数指数幂:anm -=anm 1=1na m(a >0,m ,n ∈N *,且n >1);⑤0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的性质 ①a r a s =a r +s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q ); ③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质 y =a x a >10<a <1图象定义域 R 值域(0,+∞) 性质过定点(0,1)当x >0时,y >1;x <0时,0<y <1当x >0时,0<y <1;x <0时,y>1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数第6讲对数与对数函数1.对数的概念如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质与运算法则(1)对数的性质几个恒等式(M,N,a,b都是正数,且a,b≠1)①=N;②log a a N=N;③log b N=log a Nlog a b ;④=nm log a b;⑤log a b=1log b a,推广log a b·log b c·log c d=log a d.(2)对数的运算法则(a>0,且a≠1,M>0,N>0)①log a(M·N)=log a M+log a N;②log a MN=log a M-log a N;③log a Mn=n logaM(n∈R);④log a nM=1n log a M.3.对数函数的图象与性质a>10<a<1 图象性质(1)定义域:(0,+∞)(2)值域:R(3)过点(1,0),即x=1时,y=0(4)当x>1时,y>0当0<x<1时,y<0(5)当x>1时,y<0当0<x<1时,y>0(6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数第7讲函数的图象1.函数的图象及作法2.图象变换 (1)平移变换(2)对称变换①y =f (x )――→关于x 轴对称y =-f (x ); ②y =f (x )――→关于y 轴对称y =f (-x ); ③y =f (x )――→关于原点对称y =-f (-x );④y =a x(a >0且a ≠1)――→关于y =x 对称y =log a x (a >0且a ≠1).(3)翻折变换①y =f (x )―――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|.②y =f (x )――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |).(4)伸缩变换①y =f (x )――→纵坐标伸长(a >1)或缩短(0<a <1)为原来的a 倍,横坐标不变y =af (x )(a >0)②y =f (x )――→横坐标伸长(0<a <1)或缩短(a >1)为原来的1a 倍,纵坐标不变y =f (ax )(a >0) 第8讲 函数与方程1.函数的零点 (1)函数的零点的概念对于函数y =f (x ),把使f (x )=0的实数x 叫做函数y =f (x )的零点. (2)函数的零点与方程的根的关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)零点存在性定理如果函数y =f (x )满足:①在闭区间[a ,b ]上连续;②f (a )·f (b )<0;则函数y =f (x )在(a ,b )上存在零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根. 2.二分法对于在区间[a ,b ]上连续不断且f (a )·f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.第9讲 函数模型及其应用1.函数模型及其性质比较 (1)几种常见的函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 二次函数模型 f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0) 与指数函数相关模型f (x )=ba x +c (a ,b ,c 为常数,a >0且a ≠1,b ≠0) 与对数函数相关模f (x )=b log a x +c (a ,b ,c 为常数,a >0且a ≠1,b ≠0)型与幂函数相关模型f(x)=ax n+b(a,b,n为常数,a≠0,n≠0) (2)三种函数模型性质比较函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞)上的单调性单调增函数单调增函数单调增函数增长速度越来越快越来越慢相对平稳2.“f(x)=x+ax”型函数模型形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型,在现实生活中有着广泛的应用,常利用基本不等式、导数、函数单调性求解最值.第10讲变化率与导数、导数的计算1.导数的概念(1)函数y=f(x)在x=x0处的导数①定义:称函数y=f(x)在x=x0处的瞬时变化率ΔyΔx=f(x0+Δx)-f(x0)Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或.②几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-f(x0)=f′(x0)(x-x0).(2)称函数f′(x)=f(x+Δx)-f(x)Δx为f(x)的导函数.2.基本初等函数的导数公式原函数导函数f(x)=xα(α∈Q*)f′(x)=αxα-1 f(x)=sin x f′(x)=cos_xf(x)=cos x f′(x)=-sin_xf (x )=a x f ′(x )=a x ln_a (a >0)f (x )=e x f ′(x )=e x f (x )=log a x f ′(x )=1x ln a f (x )=ln xf ′(x )=1x3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).4.复合函数的导数设u =v (x )在点x 处可导,y =f (u )在点u 处可导,则复合函数f [v (x )]在点x 处可导,且f ′(x )=f ′(u )·v ′(x ).第11讲 导数在研究函数中的应用1.函数的导数与单调性的关系 函数y =f (x )在某个区间内可导,则(1)若f ′(x )>0,则f (x )在这个区间内单调递增. (2)若f ′(x )<0,则f (x )在这个区间内单调递减. (3)若f ′(x )=0,则f (x )在这个区间内是常数函数. 2.函数的极值与导数 极大值函数y =f (x )在点x 0处连续且f ′(x 0)=0,若在点x 0附近左侧f ′(x )>0,右侧f ′(x )<0,则x 0为函数的极大值点,f (x 0)叫函数的极大值 极小值函数y =f (x )在点x 0处连续且f ′(x 0)=0,若在点x 0附近左侧f ′(x )<0,右侧f ′(x )>0,则x 0为函数的极小值点,f (x 0)叫函数的极小值3.函数的最值与导数(1)函数f (x )在[a ,b ]上有最值的条件如果在区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y =f (x )在[a ,b ]上的最大(小)值的步骤 ①求函数y =f (x )在(a ,b )内的极值.②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.第12讲 导数的综合应用1.生活中的优化问题通常求利润最大、用料最省、效率最高等问题称为优化问题,一般地,对于实际问题,若函数在给定的定义域内只有一个极值点,那么该点也是最值点. 2.利用导数解决生活中的优化问题的一般步骤3.导数在研究方程(不等式)中的应用研究函数的单调性和极(最)值等离不开方程与不等式;反过来方程的根的个数、不等式的证明、不等式恒成立求参数等,又可转化为函数的单调性、极值与最值的问题,利用导数进行研究.第13讲 定积分与微积分基本定理1.定积分的概念与几何意义 (1)定积分的定义如果函数f (x )在区间[a ,b ]上连续,用分点将区间[a ,b ]等分成n 个小区间,在每个小区间上任取一点ξi (i =1,2,…,n ),作和式11()()nnn i i i i b aS f x f nξξ==-=∆=∑∑,当n →∞时,上述和式无限接近于某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作()baS f x dx =⎰,即()1()lim nbi an i b af x dx f nξ→∞=-=∑⎰(2)定积分的几何意义①当f (x )≥0时,定积分()ba f x dx ⎰表示由直线x =a ,x =b (a ≠b ),y =0和曲线y=f (x )所围成的曲边梯形的面积.(图1)②当f (x )在区间[a ,b ]上有正有负时,如图2所示,则定积分()ba f x dx ⎰表示介于x 轴.曲线y =f (x )以及直线x =a ,x =b (a ≠b )之间各部分曲边梯形面积的代数和,即()ba f x dx ⎰=A 1+A 3-A 2.2.定积分的性质 (1)⎰⎰=babadx x f k dx x kf )()((2)1212[()()]()()b b baaaf x f x dx f x dx f x dx ±=±⎰⎰⎰(3)()()()()bcbaacf x dx f x dx f x dx a c b =+<<⎰⎰⎰其中3.微积分基本定理一般地,如果f (x )是在区间[a ,b ]上的连续函数,且F ′(x )=f (x ).那么()ba f x dx ⎰=F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一 集合、函数与导数及应用考纲解读1.集合(1)集合的含义与表示①了解集合的含义、元素与集合的“属于”关系.②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集. ②在具体情境中,了解全集与空集的含义. (3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. ②理解在给定集合中一个子集的补集的含义,会求给定子集的补集. ③能使用韦恩图(Venn )表达集合的关系及运算.2.函数概念与基本初等函数I (指数函数、对数函数、幂函数) (1)函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念. ②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.③了解简单的分段函数,并能简单应用.④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.⑤会运用函数图像理解和研究函数的性质. (2)指数函数①了解指数函数模型的实际背景.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数的概念,理解指数函数的单调性,掌握函数图像通过的特殊点. (3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.②理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点. ③了解指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1). (4)幂函数①了解幂函数的概念.②结合函数21321x y x y x y x y x y =====,,,,的图象,了解它们的变化情况.(5)函数与方程①结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.②根据具体函数的图像,能够用二分法求相应方程的近似解.(6)函数模型及其应用①了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用. 16.导数及其应用(1)导数概念及其几何意义 ①了解导数概念的实际背景. ②理解导数的几何意义. (2)导数的运算①能根据导数定义,求函数xy x y x y c y 12====,,,的导数.②能利用下面给出的基本初等函数公式和导数的四则运算法则求简单函数的导数.·常见基本初等函数的导数公式和常用导数运算公式:()0()c c '=为常数 ()sin cos x x '=;x x sin )(cos -=' ;x x e e =')(;1)0(ln )(≠>='a a a a a x x 且; x x 1)(ln =';1)0(log 1)(log ≠>='a a e xx a a 且 ·常用的导数运算法则:·法则1 [])()()()(x v x u x v x u '±'='± ·法则2 [])()()()()()(x v x u x v x u x v x u '+'='·法则3 )0)(()()()()()()()(2≠'-'='⎥⎦⎤⎢⎣⎡x v x v x v x u x v x u x v x u (3)导数在研究函数中的应用①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数一般不超过三次).②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数一般不超过三次). (4)生活中的优化问题会利用导数解决某些实际问题.一、知识网络结构1、元素与集合之间是“属于”或“不属于”关系;集合与集合之间是“包含”或“包含于”关系.集合知识作为整个数学知识的基础,在高考中重点考查的是集合的化简,以及利用集合与简易逻辑的知识来指导我们思维,寻求解决其他问题的方法,同时 集合作为中学数学工具,主要用来表示函数的定义域、值域以及不等式的解集.2、四种命题之间的相互关系原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互一个命题的真假与其他三个命题的真假有如下三条关系:(原命题⇔逆否命题)①、原命题为真,它的逆命题不一定为真. ②、原命题为真,它的否命题不一定为真. ③、原命题为真,它的逆否命题一定为真. 3、全称命题与特称命题全称命题的一般形式:,()x M p x ∀∈特称命题的一般形式:00,()x M P x ∃∈全称命题的否定形式:00,()x M P x ∃∈⌝特称命题的否定形式:,()x M P x ∀∈⌝4、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法.5.常见的基本初等函数有:一次函数:(),, 0.f x kx b b k =+≠是常数其中 二次函数:2(),0.f x ax bx c a =++≠其中 对数函数:()log ,0 1.a f x x a a =>≠且指数函数:(),00.xf x a a a =>≠且幂函数:(),0.f x x αα=≠其中 6.常见函数与抽象函数的图象和性质会求函数的定义域、值域、单调性、周期性、奇偶性等,并会处理它们之间的内在原则,同时注意函数本身的限制条件:定义域优先的原则.函数图象的三大基本问题:作图、识图、用图. 7.函数图象变换的四种形式 (1)平移变换 (2)对称变换 ①1()(),()(),()(),()(),y f x y f x y f x y f x y f x y f x y f x y f x y x -=-==-==--===与与与与每组中两个函数图象分别关于轴、轴、原点、直线y=x 对称.②若对定义域内的一切x 均有()(),f x m f m x +=-则()y f x =图象关于直线x m =对称;(3)伸缩变换 (4)翻转变换①(),y f x =作出()y f x =的图象,将图象位于x 轴下方的部分以x 轴为对称轴翻折到x 轴上方.②(),y f x =作出()y f x =在y 轴右边的图象部分,以y 轴为对称轴将其翻折到左边得到()y f x =在y 轴左边部分的图象.8.导数及其应用导数:若函数f(x)在x 0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若存在,则称f(x)在x 0处可导,此极限值称为f(x)在点x 0处的导数(或变化率),记作(x 0)或或,即.由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件.若f(x)在区间I 上有定义,且在每一点可导,则称它在此敬意上可导.导数的几何意义是:f(x)在点x 0处导数(x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率.函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为导数的定义:函数()y f x =在0x x =处的导数/0000()()()limx f x x f x f x x∆→+∆-=∆.导数的几何意义:曲线()y f x =上点00(,())x f x 处的切线的斜率为/0()f x .因此曲线()y f x =在点()(,00x f x )处的切线方程为/000()()()y f x f x x x -=-. 导数的物理意义:若质点运动的位移函数为S =s (t ),则0t t =时质点运动的瞬时速度是0'()s t . 复合函数求导法:设函数y=f(u),u=(x),已知(x)在x 处可导,f(u)在对应的点u(u=(x))处可导,则复合函数y=f[(x)]在点x 处可导,且(f[(x)]=.函数单调性:⑴函数单调性的判定方法:设函数在某个区间内可导, 如果>0,则为增函数; 如果<0,则为减函数.xy x ∆∆→∆0lim'f 0'x x y =0x dxdy 000)()(lim)('0x x x f x f x f x x --=→'f )(x f y =0x )(x f y =))(,(0x f x )(x f y =))(,(0x f x )(0'x f ).)((0'0x x x f y y -=-ϕϕϕϕϕ)')(')](['x x f ϕϕ)(x f y =)('x f )(x f y =)('x f )(x f y =⑵常数的判定方法;如果函数在区间内恒有=0,则为常数.极值的判别方法:(极值是在附近所有的点,都有<,则是函数的极大值,极小值同理) 当函数在点处连续时,①如果在附近的左侧>0,右侧<0,那么是极大值; ②如果在附近的左侧<0,右侧>0,那么是极小值.也就是说是极值点的充分条件是点两侧导数异号,而不是=0①. 此外,函数不可导的点也可能是函数的极值点②.当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同). 注①:若点是可导函数的极值点,则=0. 但反过来不一定成立. 对于可导函数,其一点是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数,使=0,但不是极值点.②例如:函数,在点处不可导,但点是函数的极小值点.极值与最值区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较. 几种常见的函数导数:(为常数)()9.函数与导数的综合应用导数作为中学数学中的工具,主要用来判断函数的单调性、求函数的极值、最值.二、考题方向分析)(x f y =I )('x f )(x f y =0x )(x f )(0x f )(0x f )(x f )(x f 0x 0x )('x f )('x f )(0x f 0x )('x f )('x f )(0x f 0x 0x )('x f 0x )(x f )('x f 0x 3)(x x f y ==0=x )('x f 0=x ||)(x x f y ==0=x 0=x 0'=C C x x cos )(sin'=1')(-=n n nx x R n ∈x x sin )(cos '-=x x 1)(ln '=e xx a a log 1)(log '=x x e e =')(a a a x x ln )('=函数与导数既是高中数学最重要的基础知识,又是高中数学的主干知识,还是高中数学的主要工具,在高考中占有举足轻重的地位,其考查的内容和形式也是丰富多彩的.对于函数,高中数学在各章节的知识渗透有函数的思想与方法,函数的影子几乎闪现与每个问题之中,对于函数内容的备考,首先要掌握基本概念和基本运算,牢记基本函数的图像与性质,重视函数与方程、数形结合、转化与化归、分类讨论等数学思想与方法在解题中的应用.导数属于新课程改革后增加的内容,是高中数学知识的一个重要的交汇点,命题范围非常广泛,为函数的考查提供了广阔天地,处于一种特殊的地位.三、经典例题讲解例1(2010全国)(4)(理)函数的反函数是 (A )(B ) (C ) (D )【答案】D【命题意图】本题主要考察反函数的求法及指数函数与对数函数的互化. 【解析】由原函数解析式解得,即,又;∴在反函数中,故选D.例2(2011全国)(5)(理)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9【答案】C【命题意图】本题主要考查三角函数的图像变换中的平移和图像重合问题,同时考查三角函数的周期性. 【解析】由题意得()cos[()]cos()cos 33f x x x xππωωωω=-=-=所以,2,3k k zπωπ=∈,6,.k k z ω=∈故ω的最小值为6.例3 (2014全国新课标)(理) (1)设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=A. {1}B. {2}C. {0,1}D. {1,2} 【答案】D【命题意图】本题主要考查集合的运算和一元二次不等式的解法.1ln(1)(1)2x y x +-=>211(0)x y e x +=->211(0)x y e x +=+>211(R)x y e x +=-∈211(R)x y e x +=+∈【解析】把M={0,1,2}中的数,代入不等式2-320,x x +≤经检验x=1,2满足. 例4 (2014全国新课标)(理)(8)设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x,则a =A. 0B. 1C. 2D. 3 【答案】 D【命题意图】本题主要考查导数的几何意义. 【解析】..3.2)0(,0)0(.11-)(),1ln(-)(D a f f x a x f x ax x f 故选联立解得且==′=∴+=′∴+= 例5.函数f (x )=1+log 2x 与g (x )=21-x 在同一直角坐标系下的图像大致是( )【答案】 C【命题意图】本题主要考查函数的图像问题.【解析】f (x )=1+log 2x 的图像可由f (x )=log 2x 的图像上移1个单位得到,且过点(1/2,0),(1,1),由指数函数性质可知g (x )=21-x 为减函数,且过点(0,2),故选C.例6(2011全国文)(21)已知函数32()331f x x ax x =-++ (Ⅰ)设2a =,求()f x 的单调区间;(Ⅱ)设()f x 在区间(2,3)中至少有一个极值点,求a 的取值范围. 【命题意图】本题主要考查利用导数求函数的单调性和极值问题.【解析】(Ⅰ)当2a =时,2()3123f x x x '=-+. 令()0,f x '>,22x x <>解得或则函数32()331f x x ax x =-++的单调增区间是(,2(2)-∞++∞和.令()0f x '<,解得,22x -<<+则函数32()331f x x ax x =-++的单调减区间是(2.(Ⅱ)(省略)例7(2014全国新课标)(理)(21) 已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间;(2)若21()2f x x ax b ≥++,求(1)a b +的最大值. 【命题意图】本题主要考查函数、不等式、方程与导数的综合应用.【解析】(1)1211()(1)(0)()(1)(0)2x x f x f e f x x f x f e f x --'''=-+⇒=-+令1x =得:(0)1f =1211()(1)(0)(1)1(1)2x f x f e x x f f e f e --'''=-+⇒==⇔= 得:21()()()12x x f x e x x g x f x e x '=-+⇒==-+()10()x g x e y g x '=+>⇒=在x R ∈上单调递增()0(0)0,()0(0)0f x f x f x f x ''''>=⇔><=⇔<得:()f x 的解析式为21()2x f x e x x =-+且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ (2)21()()(1)02x f x x ax b h x e a x b ≥++⇔=-+-≥得()(1)x h x e a '=-+ ①当10a +≤时,()0()h x y h x '>⇒=在x R ∈上单调递增x →-∞时,()h x →-∞与()0h x ≥矛盾②当10a +>时,()0ln(1),()0ln(1)h x x a h x x a ''>⇔>+<⇔<+ 得:当ln(1)x a =+时,min ()(1)(1)ln(1)0h x a a a b =+-++-≥22(1)(1)(1)ln(1)(10)a b a a a a +≤+-+++>令22()ln (0)F x x x x x =->;则()(12ln )F x x x '=-()00()0F x x F x x ''>⇔<<<⇔>当x =,max ()2e F x =当1,a b =-=时,(1)a b +的最大值为2e 四、经典预测训练试题一、选择题1. 已知集合}0)3(|{<-=x x x P ,}2|||{<=x x Q ,则=Q P ( ) A .)0,2(-B .)2,0(C .)3,2( D .)3,2(- 2.下列命题中,真命题是( )B .∀x ∈R,2x >x 2C .a +b =0的充要条件是ab =-1D .a >1,b >1是ab >1的充分条件3.已知A ={0,1},B ={-1,0,1},f 是从A 到B 的映射,则满足f (0)>f (1)的映射有( )A .3个B .4个C .5个D .2个4.下列函数中既是奇函数,又在区间[-1,1]上单调递减的是( ) A .f (x )=sin x B .f (x )=-|x +1| C .f (x )=12(a x +a -x )D .f (x )=-x5.函数f (x )=1nx -6+2x 的零点一定位于区间( ) A .(3,4) B .(2,3) C .(1,2) D .(5,6)二、填空题6.函数y =-x 2-2ax (0≤x ≤1)的最大值是a 2,则实数a 的取值范围是_____.7.已知函数31()()log 5x f x x=-,若x 0是方程f (x )=0的解,且0<x 1<x 0,则f (x 1)的值为__________(正负情况).8.已知函数f (x )的定义域为[-1,5],部分对应值如下表,f (x )的导函数y =f ′(x )的图像如图所示.x -104 5下列关于函数f(x)的命题:①函数f(x)的值域为[1,2];②函数f(x)在[0,2]上是减函数;③如果当x∈[-1,t]时,f(x)的最大值2,那么t的最大值为4;④当1<a<2时,函数y=f(x)-a有4个零点.其中是真命题的是________.三、解答题9.(2008年全国)(理)(22)设函数sin()2cosxf xx=+.求()f x的单调区间.10.(文科)已知函数f(x)=x3+2x2-ax+1.(1)若函数f(x)在点(1,f(1))处的切线的斜率为4,求实数a的值;(2)若函数g(x)=f′(x)在区间(-1,1)上存在零点,求实数a的取值范围.(理科)(2014·郑州质检)已知函数f(x)=x-ln(x+a)在x=1处取得极值.(1)求实数a的值;(2)若关于x的方程f(x)+2x=x2+b在[1/2,2]上恰有两个不相等的实数根,求实数b的取值范围.答案1、答案D2、答案 D解析∵a>1>0,b>1>0,∴由不等式的性质,得ab>1.即a>1,b>1⇒ab>1.3、答案 A解析当f(0)=-1时,f(1)可以是0或1,则有2个映射.当f(0)=0时,f(1)=1,则有1个映射.4、答案 D5、答案 B解析f(1)=-3<0,f(2)=-32<0,f(3)=13>0,故选B.6、答案-1≤a≤0解析 f (x )=-x 2-2ax =-(x +a )2+a 2,若f (x )在[0,1]上最大值是a 2,则0≤-a ≤1,即-1≤a ≤0.7、答案:正值解析:分别作y =(1/5)x 与y =log 3x 的图象,如图可知,当0<x 1<x 0时,(1/5)x1>log 3x 1,∴f (x 1)>0.8、答案 ②解析 根据导函数f ′(x )的图像可知f (x )的三个极值点为0,2,4,其中0,4是极大值点,2是极小值点,再结合f (x )的部分对应值表可得f (x )的大致图像如下:①由于f (2)的值不确定,因此①错;②显然正确;③由于f (0)=2,因此对于0≤t ≤5,均满足条件,故③错;④与①的道理相同,y =f (x )-a 有4个零点,即y =a 与y =f (x )的图像有4个交点,此时a 的取值范围依然与f (2)的大小有关,因此④错误.故正确的只有②.9、解析:22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+¢==++ 当2π2π2π-2π33k x k <<+(k ÎZ )时,1cos 2x >-,即()0f x ¢>; 当2π4π2π2π+33k x k +<<(k ÎZ )时,1cos 2x <-,即()0f x ¢<. 因此()f x 在每一个区间2π2π2π,2π33k k 骣琪-+琪桫(k ÎZ )是增函数, ()f x 在每一个区间2π4π2π,2π33k k 骣琪++琪桫(k ÎZ )是减函数. 10、(文科)答案 (1)a =3 (2)[-4/3,7)解析 由题意得g (x )=f ′(x )=3x 2+4x -a .(1)f ′(1)=3+4-a =4,∴a =3.(2)g (x )=f ′(x )在区间(-1,1)上存在零点,等价于3x 2+4x =a 在区间(-1,1)上有解,也等价于直线y =a 与曲线y =3x 2+4x ,x ∈(-1,1)有公共点,作图得a ∈[-4/3,7).(理科)答案 (1)0 (2)54+ln2≤b <2。

相关文档
最新文档