数学---河北省曲周县第一中学2016-2017学年高二下学期期末考试(文) (1)
中学2016-2017学年高二下期末考试数学试卷含解析
2016学年第二学期高二数学期末考试一、填空题(本大题满分54分)本大题共有12题,其中第1题至第6题每小题4分,第7题至第12题每小题5分,考生应在答题纸上相应编号的空格内直接填写结果,否则一律得零分.1. 的展开式中项的系数为______.【答案】【解析】的展开式的通项公式为,令,求得,可得展开式中项的系数为,故答案为10.2. 已知直线经过点且方向向量为,则原点到直线的距离为______.【答案】1【解析】直线的方向向量为,所以直线的斜率为,直线方程为,由点到直线的距离可知,故答案为1.3. 已知全集,集合,,若,则实数的值为___________.【答案】2【解析】试题分析:由题意,则,由得,解得.考点:集合的运算.4. 若变量满足约束条件则的最小值为_________.【答案】【解析】由约束条件作出可行域如图,联立,解得,化目标函数,得,由图可知,当直线过点时,直线在y轴上的截距最小,有最小值为,故答案为. 点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5. 直线上与点的距离等于的点的坐标是_____________.【答案】或.【解析】解:因为直线上与点的距离等于的点的坐标是和6. 某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是_______.【答案】【解析】设“这名学生在上学路上到第二个路口首次遇到红灯”为事件,则所求概率为,故答案为.7. 某学校随机抽取名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.则该校学生上学所需时间的均值估计为______________.(精确到分钟).【答案】34................点睛:本题考查频率分布直方图,解题的关键是理解直方图中各个小矩形的面积的意义及各个小矩形的面积和为1,本题考查了识图的能力;根据直方图求平均值的公式,各个小矩形的面积乘以相应组距的中点的值,将它们相加即可得到平均值.8. 一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种________.【答案】186【解析】试题分析:设取红球个,白球个,则考点:古典概型.9. 如图,三棱锥满足:,,,,则该三棱锥的体积V的取值范围是______.【答案】【解析】由于平面,,在中,,要使面积最大,只需,的最大值为,的最大值为,该三棱锥的体积V的取值范围是.10. 是双曲线的右支上一点,分别是圆和上的点,则的最大值等于_________.【答案】9【解析】试题分析:两个圆心正好是双曲线的焦点,,,再根据双曲线的定义得的最大值为.考点:双曲线的定义,距离的最值问题.11. 棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为___________.【答案】【解析】试题分析:.考点:几何体的表面积.12. 在直角坐标平面中,已知两定点与位于动直线的同侧,设集合点与点到直线的距离之差等于,,记,.则由中的所有点所组成的图形的面积是_______________.【答案】【解析】过与分别作直线的垂线,垂足分别为,,则由题意值,即,∴三角形为正三角形,边长为,正三角形的高为,且,∴集合对应的轨迹为线段的上方部分,对应的区域为半径为1的单位圆内部,根据的定义可知,中的所有点所组成的图形为图形阴影部分.∴阴影部分的面积为,故答案为.二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13. 已知为实数,若复数是纯虚数,则的虚部为()A. 2B. 0C. -2D. -2【答案】C【解析】∵复数是纯虚数,∴,化为,解得,∴,∴,∴的虚部为,故选C.14. 已知条件:“直线在两条坐标轴上的截距相等”,条件:“直线的斜率等于”,则是的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】B【解析】当直线过原点时,直线在两条坐标轴上的截距相等,斜率可以为任意数,故不成立;当直线的斜率等于,可设直线方程为,故其在两坐标轴上的截距均为,故可得成立,则是的必要非充分条件,故选B.15. 如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()A. 该三棱柱主视图的投影不发生变化;B. 该三棱柱左视图的投影不发生变化;C. 该三棱柱俯视图的投影不发生变化;D. 该三棱柱三个视图的投影都不发生变化.【答案】B【解析】A、该三棱柱主视图的长度是或者在轴上的投影,随点得运动发生变化,故错误;B、设是z轴上一点,且,则该三棱柱左视图就是矩形,图形不变.故正确;C、该三棱柱俯视图就是,随点得运动发生变化,故错误.D、与矛盾.故错误;故选B.点睛:本题考查几何体的三视图,借助于空间直角坐标系.本题是一个比较好的题目,考查的知识点比较全,但是又是最基础的知识点;从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,根据图中C点对三棱柱的结构影响进一步判断.16. 如图,两个椭圆,内部重叠区域的边界记为曲线,是曲线上任意一点,给出下列三个判断:①到、、、四点的距离之和为定值;②曲线关于直线、均对称;③曲线所围区域面积必小于.上述判断中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】对于①,若点在椭圆上,到、两点的距离之和为定值、到、两点的距离之和不为定值,故错;对于②,两个椭圆,关于直线、均对称,曲线关于直线、均对称,故正确;对于③,曲线所围区域在边长为6的正方形内部,所以面积必小于36,故正确;故选C.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. 已知复数满足,(其中是虚数单位),若,求的取值范围.【答案】或【解析】试题分析:化简复数为分式的形式,利用复数同乘分母的共轭复数,化简为的形式即可得到,根据模长之间的关系,得到关于的不等式,解出的范围.试题解析:,,即,解得或18. 如图,直四棱柱底面直角梯形,,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1)(2)见解析【解析】试题分析:(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,,10分,.又,平面. 12分考点:(1)异面直线所成的角;(2)线面垂直.19. 如图,圆锥的顶点为,底面圆心为,线段和线段都是底面圆的直径,且直线与直线的夹角为,已知,.(1)求该圆锥的体积;(2)求证:直线平行于平面,并求直线到平面的距离.【答案】(1)(2)【解析】试题分析:(1)利用圆锥的体积公式求该圆锥的体积;(2)由对称性得,即可证明直线平行于平面,到平面的距离即直线到平面的距离,由,求出直线到平面的距离.试题解析:(1)设圆锥的高为,底面半径为,则,,∴圆锥的体积;(2)证明:由对称性得,∵不在平面,平面,∴平面,∴C到平面的距离即直线到平面的距离,设到平面的距离为,则由,得,可得,∴,∴直线到平面的距离为.20. 阅读:已知,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数,,求证:.【答案】(1)9(2)18(3)见解析【解析】试题分析:本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2),7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分考点:阅读材料问题,“1”的代换,基本不等式.21. 设椭圆的长半轴长为、短半轴长为,椭圆的长半轴长为、短半轴长为,若,则我们称椭圆与椭圆是相似椭圆.已知椭圆,其左顶点为、右顶点为.(1)设椭圆与椭圆是“相似椭圆”,求常数的值;(2)设椭圆,过作斜率为的直线与椭圆仅有一个公共点,过椭圆的上顶点为作斜率为的直线与椭圆仅有一个公共点,当为何值时取得最小值,并求其最小值;(3)已知椭圆与椭圆是相似椭圆.椭圆上异于的任意一点,求证:的垂心在椭圆上.【答案】(1)或;(2)当时,取得最小值.(3)见解析【解析】试题分析:(1)运用“相似椭圆”的定义,列出等式,解方程可得s;(2)求得的坐标,可得直线与直线的方程,代入椭圆的方程,运用判别式为,求得,再由基本不等式即可得到所求最小值;(3)求得椭圆的方程,设出椭圆上的任意一点,代入椭圆的方程;设的垂心的坐标为,运用垂心的定义,结合两直线垂直的条件:斜率之积为,化简整理,可得的坐标,代入椭圆的方程即可得证.试题解析:(1)由题意得或,分别解得或.(2)由题意知:,,直线,直线,联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ①联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ②由①②得:.所以,此时,即.(3)由题意知:,所以,且.设垂心,则,即. 又点在上,有,. 则,所以的垂心在椭圆上.。
河北省曲周县高二数学下学期第一次月考试题理(扫描版)
河北省曲周县2016—2017学年高二数学下学期第一次月考试题理(扫描
版)
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
河北省曲周县高二数学下学期期末考试试题 理(扫描版)
河北省曲周县2016-2017学年高二数学下学期期末考试试题理(扫描版)试卷答案1.A2.C3.B4.B5.A6.B7.B8.C9.C10.B11.B12.A13.314.15.016.n217.【解答】解:(Ⅰ)由|x+1|﹣|x﹣4|≥4得:①或②或③,综上所述f(x)≥4的解集为.(Ⅱ)∀x∈R,|f(x)|≤2恒成立,可转化为|f(x)|max≤2 分类讨论①当a=4时,f(x)=0≤2显然恒成立.②当a<4时,f(x)=,③当a >4时,f (x )=,由②③知,|f (x )|max =|a ﹣4|≤2, 解得2≤a ≤6且a ≠4, 综上所述:a 的取值范围为. 18.解:(I )记接受甲种心理暗示的志愿者中包含1A 但不包含3B 的事件为M ,则485105().18C P M C ==(II)由题意知X 可取的值为:0,1,2,3,4,则565101(0),42C P X C ===41645105(1),21C C P X C ===326451010(2),21C C P X C ===23645105(3),21C C P X C ===14645101(4),42C C P X C ===因此X 的分布列为X 的数学期望是0(0)1(1)2(2)3(3)4(4)EX P X P X P X P X P X =⨯=+⨯=+⨯=+⨯=+⨯==151******** 2.4221212142⨯+⨯+⨯+⨯+⨯=19.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(1)曲线C的极坐标方程为ρ=2,利用互化公式化为直角坐标方程.直线l的参数方程为(t为参数),相减消去参数t化为普通方程.(2)曲线C经过伸缩变换φ:,即,代入曲线C的方程可得:4(x′)2+(y′)2=4,即得到曲线C′:=1.设M(cosθ,2sinθ),点M到直线l的距离d==,即可得出最小值.【解答】解:(1)曲线C的极坐标方程为ρ=2,化为直角坐标方程:x2+y2=4.直线l的参数方程为(t为参数),消去参数t化为普通方程:y=x+3.(2)曲线C经过伸缩变换φ:,即,代入曲线C的方程可得:4(x′)2+(y′)2=4,即得到曲线C′:=1.若M(x,y)为曲线C′上任意一点,设M(cosθ,2sinθ),点M到直线l的距离d==≥=,当且仅当sin(θ﹣φ)=1时取等号.因此最小距离为:.20.【考点】6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(1)求出函数的导数,根据f′(0)=f′(2)=1,得到关于a,b的方程组,解出即可求出f(x)的解析式,从而求出切线方程即可;(2)求出g(x)的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值即可.【解答】解:(1)因为f′(x)=x2﹣2ax+b,由f′(0)=f′(2)=1即,得,则f(x)的解析式为,即有f(3)=3,f′(3)=4所以所求切线方程为4x﹣y﹣9=0.(2)由(1)f(x)=x3﹣x2+x,∴,∴g′(x)=x2﹣2x﹣3,由g′(x)=x2﹣2x﹣3>0,得x<﹣1或x>3,由g′(x)=x2﹣2x﹣3<0,得﹣1<x<3,∵x∈[﹣3,2],∴g(x)的单调增区间为[﹣3,﹣1],减区间为(﹣1,2],∵,∴g(x)的最小值为﹣9.21.【考点】独立性检验的应用.【专题】综合题;转化思想;综合法;概率与统计.【分析】(1)分层从45份女生问卷中抽取了6份问卷,其中“科学用眼”抽6×=2人,“不科学用眼”抽=4人,若从这6份问卷中随机抽取3份,随机变量X=0,1,2.利用“超几何分布”即可得出分布列及其数学期望;(2)根据“独立性检验的基本思想的应用”计算公式可得K2的观测值k,即可得出.【解答】解:(1)“科学用眼”抽6×=2人,“不科学用眼”抽=4人.…则随机变量X=0,1,2,…∴=;=; =…分布列为…E(X)=0×=1.…(2)K2=≈3,.030 …由表可知2.706<3.030<3.840;∴P=0.10.…【点评】本题考查了组合数的计算公式、古典概率计算公式、“超几何分布”分布列及其数学期望公式、“独立性检验的基本思想的应用”计算公式,考查了推理能力与计算能力,属于中档题.22.【考点】6H:利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出原函数的导函数,通分整理后得到,然后根据二次三项式x2+x ﹣a对应方程根的情况分析导函数的符号,从而得到原函数的单调性,利用原函数的单调性求得使f (x)有最值的实数a的取值范围;(Ⅱ)由曲线y=f(x)在x=x1与x=x2处的导数相等得到,由已知a≥2得到2(x1+x2)≤x1•x2,结合不等式可证得答案.【解答】(Ⅰ)解:∵f(x)=x++lnx,(a∈R),∴,x∈(0,+∞).由x2+x﹣a对应的方程的△=1+4a知,①当时,f′(x)≥0,f(x)在(0,+∞)上递增,无最值;②当时,x2+x﹣a=0的两根均非正,因此,f(x)在(0,+∞)上递增,无最值;③当a>0时,x2+x﹣a=0有一正根,当x∈时,f′(x)<0,f(x)在上递减,当x∈时,f′(x)>0,f(x)在上递增.此时f(x)有最小值.∴实数a的范围为a>0;(Ⅱ)证明:依题意:,整理得:,由于x1>0,x2>0,且x1≠x2,则有,∴∴,则x1+x2>8.。
河北省曲周县第一中学2016-2017学年高二下学期期中考试数学(文)试题
曲周一种16—17学年第二学期期中考试高二文科数学试题第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、全称命题“所有被5整数的整数都是奇数”的否定A .所有被5整除的整数都不是奇数B .所有奇数都不能被5整数C .存在一个被5整除的整数不是奇数D .存在一个奇数,不能被5整除 2、已知二次函数()f x 的图象如图1所示,则其导数()f x '的图象大致形状是3、“0m n >>”是“方程221mx ny +=”表示极爱点在轴上的椭圆的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4、设()ln f x x x =,若()02f x '=,则0x = A .2e B .ln 2 C .ln 22D .e 5、抛物线22y x =的焦点坐标是A .(1,0)B .1(,0)4C .1(0,)8D .1(0,)46、若复数z 满足(3)(2)5,z i i --=为虚数单位),则z 的共轭复数的 A .2i + B .5i - C .5i + D .2i -7、设双曲线的虚轴长为2,焦距为23,则双曲线的渐近线方程为A .2y x =±B .2y x =±C .2y x =±D .12y x =± 8、下图为求135101Sum =++++的程序框图,其中①应为A .101?A =B .101?A ≤C .101?A >D .101?A ≥ 9、已知321(2)33y x bx b x =++++是R 上的单调增函数, 则b 的取值范围是A .1b <-或2b >B .1b ≤-或2b ≥C .12b -<<D .12b -≤≤10、设有一个回归方程为ˆ2 2.5yx =-,变量x 增加一个单位时,则 A .y 平均增加2.5个单位 B .y 平均增加2个单位 C .y 平均减少2.5个单位 D .y 平均减少2个单位11、曲线xy e =在点2(2,)e 处的切线与坐标轴所围三角形的面积为A .22eB .22eC .2eD .294e12、给出命题:①x R ∈,使31x <;②x Q ∃∈,使22x =;③x N ∀∈,有32x x >;④x R ∀∈,有210x +>,其中的真命题是:A .①④B .②③C .①③D .②④第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13、命题“不等式260x x +->的解或”的逆否命题是 14、从11,14(12),149123,14916(1234),=-=-+-+=++-+-=-+++ ,归纳出第n 个式子为15、以下是关于圆锥曲线的四个命题:①设A 、B 为两个顶点,k 为非零常数,若PA PB k -=,则动点的轨迹是双曲线;②方程22520x x -+=的两根可分别作为椭圆和双曲线的离心率;③双曲线221259x y -=与椭圆22135x y +=有相同的焦点; ④以过抛物线的焦点的一条弦AB 为直径作圆,则该圆与抛物线的准线相切.其中真命题为 (写出所有真命题的序号).16、过抛物线22(0)y px p =>的焦点F 作倾斜角为045的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤 17、(本小题满分10分)某种产品的广告费用支出x 与销售额之间有如下的对应数据:(1)求回归直线方程;(2)据此估计广告费用为10销售收入y 的值.18、(本小题满分12分)已知()32f x ax bx cx =++在区间[0,1]上是增函数,在区间(,0),(1,)-∞+∞上是减函数,又13()22f =. (1)求()f x 的解析式;(2)若在区间[0,](0)m m >上恒有()f x x ≤成立,求m 的取值范围.19、(本小题满分12分)电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图.将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性. (1) 根据已知条件完成下面的22⨯列联表,并据此资料判断“体育迷”与性别是否有关?(2)将日均收看该体育节目不低于5分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++20、(本小题满分12分)已知()322f x ax bx x c =+-+在2x =-时有极大值6,在1x =时有极小值,求,,a b c 的值;并求()f x 区间[3,3]-上的最大值和最小值.21、(本小题满分12分)已知直线l 的参数方程为212(22x t y ⎧=-+⎪⎪⎨⎪=⎪⎩为参数),曲线C 的极坐标方程是,以极点为原点,极轴为x 轴正方向建立直角坐标系,点(1,0)M -,直线l 与曲线C 交于A 、B 两点. (1)求直线l 的极坐标方程与曲线C 的普通方程;(2)线段MA 、MB 长度分别记为,MA MB ,求MA MB ⋅的值.22、(本小题满分12分)如图,已知椭圆22221(0)x y a b a b+=>>的离心率6e =,过点(0,)A b -和(,0)B a 的直线与原点3(1)求椭圆的方程;(2)已知定点(1,0)E -,若直线2(0)y kx k =+≠与椭圆交于C 、D 两点,问:是否存在k 的值,使以CD 为直径的圆过E 点?请说明理由.参考答案一、选择题1.C2.B3.C4.D5.D6.B7.C8.B9.D 10.C 11.A 12.A二、填空题13.若x 23≤-≥x 且,则x 2+x-60≤ 14. )321()1()1(16941121n n n n +++-=-++-+-++15. ②③④ 16. 2 三、解答题 17.提示:(1)()12456855x =++++=,()13040605070505y =++++=, 5222262124568145ii x==++++=∑,52222221304060507013500i i y ==++++=∑,511380i i i x y ==∑,∴2138055506.514555b -⨯⨯==-⨯,50 6.5517.5a y bx =-=-⨯=,∴回归直线方程为 6.517.5y x =+.(2)10x =时,预报y 的值为10 6.517.582.5y =⨯+=.18.解:(1)2()32f x ax bx c '=++,由已知(0)(1)0f f ''==,即0320c a b c =⎧⎨++=⎩,,解得032c b a=⎧⎪⎨=-⎪⎩,,∴2()33f x ax ax '=-, ∴13332422a a f ⎛⎫'=-= ⎪⎝⎭,∴2a =-,∴32()23f x x x =-+. (2)令()f x x ≤,即32230x x x -+-≤,∴(21)(1)0x x x --≥,∴102x ≤≤或1x ≥.又()f x x ≤在区间[]0m ,上恒成立,∴102m <≤.19. 【解】 (1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而完成2×2列联表如下:将2×2k =n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100×(30×10-45×15)275×25×45×55=10033≈3.030.因为3.030<3.841,所以我们没有理由认为“体育迷”与性别有关. (2)由频率分布直方图可知,“超级体育迷”为5人,其中女生为2人. 记:从“超级体育迷”中取2人,至少有1名女性为事件A . 则P (A )=710,即从“超级体育迷”中任意选取2人,至少有1名女性观众的概率为71020. 解:(1)2()322'=+-f x ax bx 由条件知.38,21,31.6448)2(,0223)1(,02412)2(===⎪⎩⎪⎨⎧=+++-=-=-+='=--=-'c b a c b a f b a f b a f 解得(2)32118()2=+-+f x x x x ,2()2'=+-f x x x ,由上表知,在区间[3,3]-上,当3x =时,max 106=f ,当1x =时,min 32=f .21. 【解】(1)直线l :⎩⎪⎨⎪⎧x =-1+22t ,y =22t(t 为参数)的直角坐标方程为x -y +1=0,所以极坐标方程为2ρcos ⎝ ⎛⎭⎪⎫θ+π4=-1,曲线C :ρ=sin θ1-sin 2θ即 (ρcos θ)2=ρsin θ, 所以曲线的普通方程为y =x 2. (2)将⎩⎪⎨⎪⎧x =-1+22t ,y =22t(t 为参数)代入y =x 2得t 2-32t +2=0, ∴t 1t 2=2,∴|MA |·|MB |=|t 1t 2|=2..22 解析:(1)直线AB 方程为:bx-ay-ab =0.依题意⎪⎪⎩⎪⎪⎨⎧=+=233622ba ab ac , 解得 ⎩⎨⎧==13b a ,∴ 椭圆方程是1322=+y x . (2)假若存在这样的k 值,由⎩⎨⎧=-++=033222y x kx y ,得)31(2k +09122=++kx x . ∴ 0)31(36)12(22>+-=∆k k ①设1(x C ,)1y 、2(x D ,)2y ,则⎪⎪⎩⎪⎪⎨⎧+=+-=+⋅2212213193112k x x k k x x , ②而4)(2)2)(2(212122121+++=++=⋅x x k x x k kx kx y y .要使以CD 为直径的圆过点E (-1,0),当且仅当CE ⊥DE 时,则1112211-=++⋅x y x y ,即0)1)(1(2121=+++x x y y ∴05))(1(2)1(21212=+++++x x k x x k ③将②式代入③整理解得67=k .经验证,67=k ,使①成立. 综上可知,存在67=k ,使得以CD 为直径的圆过点E .。
2016-2017学年河北省邯郸市曲周一中高二(下)期末数学试卷(文科)(解析版)
2016-2017学年河北省邯郸市曲周一中高二(下)期末数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)下列关于残差的叙述正确的是()A.残差就是随机误差B.残差就是方差C.残差都是正数D.残差可用来判断模型拟合的效果2.(5分)不等式|x﹣2|>x﹣2的解集是()A.(﹣∞,2)B.(﹣∞,+∞)C.(2,+∞)D.(﹣∞,2)∪(2,+∞)3.(5分)“因为对数函数y=log a x是增函数(大前提),而y=是对数函数(小前提),所以y=是增函数(结论).”上面推理的错误是()A.大前提错导致结论错B.小前提错导致结论错C.推理形式错导致结论错D.大前提和小前提都错导致结论错4.(5分)复数,则其共轭复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.(5分)如图是“集合”的知识结构图,如果要加入“子集”,则应该放在()A.“集合的概念”的下位B.“集合的表示”的下位C.“基本关系”的下位D.“基本运算”的下位6.(5分)参数方程(θ为参数)和极坐标方程ρ=﹣6cosθ所表示的图形分别是()A.圆和直线B.直线和直线C.椭圆和直线D.椭圆和圆7.(5分)复数,则|z|=()A.1B.C.2D.8.(5分)用反证法证明命题“在函数f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一个不小于”时,假设正确的是()A.假设|f(1)|,|f(2)|,|f(3)|至多有一个小于B.假设|f(1)|,|f(2)|,|f(3)|至多有两个小于C.假设|f(1)|,|f(2)|,|f(3)|都不小于D.假设|f(1)|,|f(2)|,|f(3)|都小于9.(5分)某医疗研究所为了检验新开发的流感疫苗对甲型H1N1流感的预防作用,把1000名注射了疫苗的人与另外1000名未注射疫苗的人的半年的感冒记录作比较,提出假设H0:“这种疫苗不能起到预防甲型H1N1流感的作用”,并计算出P(Χ2≥6.635)≈0.01,则下列说法正确的是()A.这种疫苗能起到预防甲型H1N1流感的有效率为1%B.若某人未使用该疫苗,则他在半年中有99%的可能性得甲型H1N1C.有1%的把握认为“这种疫苗能起到预防甲型H1N1流感的作用”D.有99%的把握认为“这种疫苗能起到预防甲型H1N1流感的作用”10.(5分)如果关于x的不等式|x+1|+|x+2|≥k,对于∀x∈R恒成立,则实数k的取值范围是()A.[2,+∞]B.(﹣1,+∞)C.(﹣∞,1]D.(3,8)11.(5分)若曲线(t为参数)与曲线ρ=2相交于B,C两点,则|BC|的值为()A.2B.C.7D.12.(5分)在一次国际学术会议上,来自四个国家的五位代表被安排坐在一张圆桌,为了使他们能够自由交谈,事先了解到的情况如下:甲是中国人,还会说英语.乙是法国人,还会说日语.丙是英国人,还会说法语.丁是日本人,还会说汉语.戊是法国人,还会说德语.则这五位代表的座位顺序应为()A.甲丙丁戊乙B.甲丁丙乙戊C.甲乙丙丁戊D.甲丙戊乙丁二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是小时.14.(5分)设Z1=1+i,Z2=﹣1+i,复数Z1和Z2在复平面内对应点分别为A、B,O为原点,则△AOB的面积为.15.(5分)已知a∈R,若关于x的方程x2﹣2x+|a+1|+|a|=0有实根,则a的取值范围是.16.(5分)德国数学家科拉茨1937年提出一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即);如果n是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n(首项)按照上述规则旅行变换后的第9项为1(注:1可以多次出现),则n的所有不同值的个数为.三、解答题(本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)复数,,若是实数,求实数a的值.18.(12分)某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(Ⅰ)求出f(5);(Ⅱ)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.19.(12分)已知在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴,建立极坐标系.曲线C1的极坐标方程为ρ2(3+sin2θ)=12,曲线C2的参数方程为(t 为参数,).(1)求曲线C1的直角坐标方程,并判断该曲线是什么曲线;(2)设曲线C2与曲线C1的交点为A,B,P(1,0),当时,求cosα的值.20.(12分)已知函数f(x)=|x|+|x﹣3|.(1)求不等式f()<6的解集;(2)若k>0且直线y=kx+5k与函数f(x)的图象可以围成一个三角形,求k的取值范围.[选修4-4:坐标系与参数方程]21.(12分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数,0≤α<π),以坐标原点O为极点,x轴的正半轴为极轴,并取相同的长度单位,建立极坐标系.曲线C1:ρ=1.(1)若直线l与曲线C1相交于点A,B,点M(1,1),证明:|MA|•|MB|为定值;(2)将曲线C1上的任意点(x,y)作伸缩变换后,得到曲线C2上的点(x',y'),求曲线C2的内接矩形ABCD周长的最大值.22.(12分)随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.(Ⅰ)若以“年龄”45岁为分界点,由以上统计数据完成下面2×2列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;(Ⅱ)若从年龄在[25,35)和[55,65)的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在[55,65)的概率.参考数据如下:附临界值表:K2的观测值:k=(其中n=a+b+c+d)2016-2017学年河北省邯郸市曲周一中高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:因为残差可用来判断模型拟合的效果,不是随机误差,不是方差,也不一定是正数,故选:D.2.【解答】解:方法一:特殊值法,把x=1代入不等式检验,满足不等式,故x=1在解集内,排除答案C、D.把x=3代入不等式检验,不满足不等式,故x=3 不在解集内,排除答案B,故答案选A.方法二:∵不等式|x﹣2|>x﹣2,∴x﹣2<0,即x<2∴解集为(﹣∞,2),故选:A.3.【解答】解:当a>1时,对数函数y=log a x是增函数,当0<a<1时,对数函数y=log a x 是减函数,故推理的大前提是错误的故选:A.4.【解答】解:∵=,∴,则其共轭复数在复平面内对应的点的坐标为:(,﹣),位于第三象限.故选:C.5.【解答】解:子集是两个集合之间的包含关系,属于集合的关系,故在知识结构图中,子集应该放在集合的关系后面,即它的下位,由此知应选C故选:C.6.【解答】解:极坐标ρ=﹣6cosθ,两边同乘以ρ,得ρ2=﹣6ρcosθ,化为普通方程为x2+y2=﹣6x,即(x+3)2+y2=9.表示以C(﹣3,0)为圆心,半径为3的圆.参数方程(θ为参数),利用同角三角函数关系消去θ,化为普通方程为,表示椭圆.故选:D.7.【解答】解:(1+i)2=2i复数==﹣2(1+i)=﹣2i﹣2i,则|z|==2.故选:D.8.【解答】解:用反证法证明数学命题时,应先假设要证的结论的反面成立,而“|f(1)|,|f(2)|,|f(3)|至少有一个不小于”的否定为:|f(1)|,|f(2)|,|f(3)|都小于,故选:D.9.【解答】解:∵并计算出P(Χ2≥6.635)≈0.01,这说明假设不合理的程度约为99%,即这种疫苗不能起到预防甲型H1N1流感的作用不合理的程度约为99%,∴有99%的把握认为“这种疫苗能起到预防甲型H1N1流感的作用”故选:D.10.【解答】解:令f(x)=|x+1|+|x+2|,而|x+1|+|x+2|的几何意义为数轴上动点X到两个定点﹣1,﹣2的距离的和,如图:由图可知,|x+1|+|x+2|的最小值为1.∴实数k的取值范围是(﹣∞,1].故选:C.11.【解答】解:曲线(t为参数),化为普通方程y=1﹣x,曲线ρ=2的直角坐标为x2+y2=8,y=1﹣x代入x2+y2=8,可得2x2﹣2x﹣7=0,∴|BC|=•=.故选:D.12.【解答】解:根据题干和答案综合考虑,运用排除法来解决,首先,观察每个答案中最后一个人和甲是否能够交流,戊不能和甲交流,因此,B,C不成立,乙不能和甲交流,A错误,因此,D正确.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【解答】解:A到E的时间,为2+4=6小时,A经E到F时间为6+4=10小时,A经C到F的时间为3+4+4=11小时,故A到F的时间就为11小时,则A经F到G的时间为11+2=13小时,即组装该产品所需要的最短时间是13小时,故答案为:1314.【解答】解:Z1=1+i,Z2=﹣1+i,复数Z1和Z2在复平面内对应点分别为A(1,1)、B (﹣1.1),O为原点,则:|OA|=|OB|=,∠AOB=90°,∴.故答案为:1.15.【解答】解:当a<﹣1时,x2﹣2x+|a+1|+|a|=0等价于:x2﹣2x﹣2a﹣1=0,△=4+8a+4≥0,解得a≥1,不成立;当﹣1≤a≤0时,x2﹣2x+|a+1|+|a|=0等价于:x2﹣2x+2a+1=0,△=4﹣8a﹣4≥0,解得a≤0,∴﹣1≤a≤0;当a>0时,x2﹣2x+|a+1|+|a|=0等价于:x2﹣2x+2a+1=0,△=4﹣8a﹣4≥0,解得a≤0,不成立.综上,a的取值范围是[﹣1,0].故答案为:[﹣1,0].16.【解答】解:如果正整数n按照上述规则施行变换后的第9项为1,则变换中的第8项一定是2,则变换中的第7项一定是4,变换中的第6项可能是1,也可能是8;变换中的第5项可能是2,也可是16,变换中的第5项是2时,变换中的第4项是4,变换中的第3项是1或8,变换中的第2项是2或16,变换中的第5项是16时,变换中的第4项是32或5,变换中的第3项是64或10,变换中的第2项是20或3,变换中第2项为2时,第1项为4,变换中第2项为16时,第1项为32或5,变换中第2项为3时,第1项为6,变换中第2项为20时,第1项为40,变换中第2项为21时,第1项为42,变换中第2项为128时,第1项为256,则n的所有可能的取值为4,5,6,32,40,42,256,共7个,故答案为:7.三、解答题(本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【解答】解:∵,,∴===,∵是实数,∴a2+2a﹣15=0,解得a=﹣5或a=3.又分母a+5≠0,∴a≠﹣5,故a=3.18.【解答】解:(Ⅰ)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,∴f(2)﹣f(1)=4=4×1.f(3)﹣f(2)=8=4×2,f(4)﹣f(3)=12=4×3,f(5)﹣f(4)=16=4×4∴f(5)=25+4×4=41.…(4分)(Ⅱ)由上式规律得出f(n+1)﹣f(n)=4n.…(8分)∴f(2)﹣f(1)=4×1,f(3)﹣f(2)=4×2,f(4)﹣f(3)=4×3,…f(n﹣1)﹣f(n﹣2)=4•(n﹣2),f(n)﹣f(n﹣1)=4•(n﹣1)…(10分)∴f(n)﹣f(1)=4[1+2+…+(n﹣2)+(n﹣1)]=2(n﹣1)•n,∴f(n)=2n2﹣2n+1.…(12分)19.【解答】解:(1)由ρ2(3+sin2θ)=12得,该曲线为椭圆.(5分)(2)将代入得t2(4﹣cos2α)+6t cosα﹣9=0,由直线参数方程的几何意义,设|P A|=|t1|,|PB|=|t2|,,,所以,从而,由于,所以.(10分)20.【解答】解:(1)x≤0,不等式可化为﹣x﹣x+3<6,∴x>﹣3,∴﹣3<x≤0;0<x<6,不等式可化为x﹣x+3<6,成立;x≥6,不等式可化为x+x﹣3<6,∴x<9,∴6≤x<9;综上所述,不等式的解集为{x|﹣3<x<9};(2)f(x)=|x|+|x﹣3|.由题意作图如下,k>0且直线y=kx+5k与函数f(x)的图象可以围成一个三角形,由直线过(0,3)可得k=,由直线过(3,3)可得k=,∴.[选修4-4:坐标系与参数方程]21.【解答】证明:(1)∵曲线C1:ρ=1,∴曲线C1:x2+y2=1.联立,得t2+2t(cosα+sinα)+1=0,∴|MA|•|MB|=|t1t2|=1.解:(2)将曲线C1上的任意点(x,y)作伸缩变换,伸缩变换后得C2:.其参数方程为:.不妨设点A(m,n)在第一象限,由对称性知:周长为=,(时取等号),∴曲线C2的内接矩形ABCD周长的最大值为8.22.【解答】(Ⅰ)解:根据条件得2×2列联表:…(3分)根据列联表所给的数据代入公式得到:…(5分)所以有99%的把握认为“使用微信交流”的态度与人的年龄有关;…(6分)(Ⅱ)解:按照分层抽样方法可知:[55,65)抽取:(人);[25,35)抽取:(人)…(8分)在上述抽取的6人中,年龄在[55,65)有2人,年龄[25,35)有4人.年龄在[55,65)记为(A,B);年龄在[25,35)记为(a,b,c,d),则从6人中任取3名的所有情况为:(A,B,a)、(A,B,b)、(A,B,c)、(A,B,d)、(A,a,b)、(A,a,c)、(A,a,d)、(A,b,c)、(A,b,d)、(A,c,d)、(B,a,b)、(B,a,c)、(B,a,d)、(B,b,c)、(B,b,d)、(B,c,d)、(a,b,c)(a,b,d)(a,c,d)(b,c,d)共20种情况,…(9分)其中至少有一人年龄在[55,65)岁情况有:(A,B,a)、(A,B,b)、(A,B,c)、(A,B,d)、(A,a,b)、(A,a,c)、(A,a,d)、(A,b,c)、(A,b,d)、(A,c,d)、(B,a,b)、(B,a,c)、(B,a,d)、(B,b,c)、(B,b,d)、(B,c,d),共16种情况.…(10分)记至少有一人年龄在[55,65)岁为事件A,则…(11分)∴至少有一人年龄在[55,65)岁之间的概率为.…(12分)。
河北省邯郸市曲周县第一中学高二数学下学期期末考试试题 理(扫描版)
河北省邯郸市曲周县第一中学2015-2016学年高二数学下学期期末考试试题理(扫描版)曲周一中高二期末考试【答案】1. C2. C3. A4. B5. A6. D7. C8. A9. A 10. C11. B 12. D13. (1,2).14. 215. (-,)16. [,1)17.解:(1)若设,可得,得在上恒成立.若设,其中,从而可得,即;(2)若命题为真,命题为假,则必然一真一假.当为真命题时,即在上恒成立时,则,得.又真时,所以一真一假时或,可得或,所以.18. 解:(1)当a=-时,B={x|(x-a)(x-a-4)<0}={x|<x<},A={x|<0}={x|2<x<3},则A∩B={x|2<x<}.(2)B={x|(x-a)(x-a-4)<0}={x|a<x<a+4}.因为¬p是¬q的必要不充分条件,即q是p的必要不充分条件,则A⊆B,则,即,解得-1≤a≤2.19. 解:(Ⅰ)当a=0时,,∴由f(x)≥6,解得x≤-1,x≥2,∴不等式的解集是(-∞,-1]∪[2,+∞);(Ⅱ)∵|2x+1|+|2x-3|≥|2x+1-(2x-3)|=4,当且仅当2x+1=3-2x,即取等号,∴要使不等式f(x)≥a2恒成立,则4+3a≥a2,解得:-1≤a≤4.20. 解:(1)∵是R上的奇函数,f(0)=0,即,解得a=1.∴,又f(-1)=-f(1),∴,∴b=2,经检验符合题意.∴a=1,b=2.(2)由(1)可知,设x1<x2,,∵y=2x在R单调递增,∴,∴f(x1)>f(x2),即f(x)在(-∞,+∞)上为减函数.(3)∵f(x)在(-∞,+∞)上为减函数,且为奇函数,∴原不等式等价为f(mx2+x-3)>-f(x2-mx+3m)=f(-x2+mx-3m),∴(m+1)x2+(1-m)x+3(m-1)<0①m=-1时,不等式2x-6<0,即x<3,不符合题意.②m≠-1时,要使不等式恒成立,则,解得.综上,.21. 解:(1)当a=1时,f(x)=|x+1|+2|x-1|-1,不等式f(x)>x+2,即|x+1|+2|x-1|>x+3.∴①或②或③.解①求得x<-1,解②求得-1≤x<0,解③求得x>2,综上可得,原不等式的解集为{x|x<0,或x>2}.(2)由题意可得f(x)≤a(x+2)有解,化简f(x)≤a(x+2)可得|x+1|+2|x-1|≤a(x+3).设g(x)=|x+1|+2|x-1|=,由于直线y=a(x+3)经过定点P(-3,0),如图:由题意可得f(x)的图象有一部分位于直线线y=a(x+3)的下方.由于PA的斜率K PA==,直线BC的斜率K BC=-3,故a的范围为(-∞,-3)∪(,+∞).22. 解:(Ⅰ)当b=3时,f(x)=x2-abx+2a2=x2-3ax+2a2,(ⅰ)∵不等式f(x)≤0的解集为[1,2]时,∴1,2是方程x2-3ax+2a2=0的两根.∴,解得a=1.(ⅱ)∵x2-3ax+2a2<0,∴(x-a)(x-2a)<0,∴若a>0时,此不等式解集为(a,2a),若a=0时,此不等式解集为空集,若a<0时,此不等式解集为(2a,a).(Ⅲ)f(2)=4-2ab+2a2>0在a∈[1,2]上恒成立即b<a+在a∈[1,2]上恒成立;又∵a+,当且仅当a=,即a=时上式取等号.∴b,实数b的取值范围是(-∞,)【解析】1.解:由题意:M={x|-1<x<1},N={x|log2x<1}={x|0<x<2},则M∩N={x|0<x<1},故选:C.求出N中不等式的解集确定出N,找出M与N的交集即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.解:∵f(x)=,∴f(x)+f(-x)=+=,∵f(a)=,∴f(a)+f(-a)=2,即f(-a)=2-f(a)=2-,故选:C根据函数表达式,证明f(x)+f(-x)=2即可得到结论.本题主要考查函数值的计算,根据条件证明f(x)+f(-x)=2是解决本题的根据.3.【分析】本题考查充要条件的判断,先求出不等式的等价条件,根据充分必要条件的定义进行判断即可.【解析】解:由得,要使“0<x<1”是“(”的充分不必要条件,故选A.4.解:∵f(1+x)=f(1-x),∴函数f(x)关于x=1对称,∵任意的x1,x2>1(x1≠x2),有,∴函数在x>1时单调递增,∵f()=f(1-)=f (1+)=f (),∴f(2)<f()<f(3),即b<a<c,故选:B.由条件f(1+x)=f(1-x),可知函数f(x)关于x=1对称,由,可知函数在x>1时单调递增,然后根据单调性和对称性即可得到a,b,c的大小.本题主要考查函数值的大小比较,利用条件求出函数的单调性和对称性,利用单调性和对称性之间的关系是解决本题的关键.5.解:偶函数f (x)在[0,2]上是减函数,∴其在(-2,0)上是增函数,由此可以得出,自变量的绝对值越小,函数值越大∴不等式f(1-m)<f(m)可以变为解得m∈[-1,)故选A.由题设条件知,偶函数f(x)在[0,2]上是减函数,在[-2,0]是增函数,由此可以得出函数在[-2,2]上具有这样的一个特征--自变量的绝对值越小,其函数值就越小,由此抽象不等式f(1-m)<f(m)可以转化为,解此不等式组即为所求.本题考查偶函数与单调性,二者结合研究出函图象的变化趋势,用此结论转化不等式,这是解本题的最合适的办法,中档题.6.解:由题意得:,解得:≤a≤,故选:D.结合二次函数,指数函数的性质,得到不等式组,解出即可.本题考查了二次函数的性质,指数函数的性质,考查了函数的单调性,是一道中档题.7.解:yw 函数f(x)是奇函数,所以f(-x)=-f(x),对于A,f(-x)•sin(-x)=-f(x)(-sinx)=f(x)•sinx,是偶函数;对于B,f(-x)+cos(-x)=-f(x)+cosx≠f(x)+cosx,-f(x)+cosx≠-[f(x)+cosx],是非奇非偶的函数;对于C,f((-x)2)•sin(-x)=-f(x2)•sinx是奇函数;对于D,f((-x)2)+sin(-x)=f(x2)-sinx≠f(x2)+sinx,f(x2)-sinx≠f(x2)+sinx 是非奇非偶的函数;故选C.四个函数定义域都是R,所以只要利用奇偶函数的定义,判断-x与x的函数值的关系即可.本题考查了函数奇偶性的判断;在定义域关于原点对称的前提下,只要判断-x与x的函数值的关系即可.8.解:根据函数cosx在x∈(0,2π),令t=cosx>0,在x∈(0,2π)时函数t=cosx>0的减区间为(0,),则由复合函数同增异减的性质可得,函数cosx在x∈(0,2π)时的单调递增区间是(0,),故选:A.令t=cosx>0,则由题意可得f(x)=,且函数t单调递减,从而求得函数t的减区间.本题主要考查余弦函数的单调性,余弦函数的在各个象限中的符号,属于中档题.9.解:∵f(x)==+,∴f(x)≥2,(当且仅当=,即x2=1-c有解时,等号成立),故1-c≥0,解得,c≤1;故选:A.化简f(x)==+,从而利用基本不等式可得1-c≥0,从而解得.本题考查了基本不等式的应用及函数的最值的求法.10.解:x2+ax+1≥0对于一切x∈(0,〕成立⇔a≥对于一切x∈(0,〕成立⇔a对于一切x∈(0,〕成立。
河北省邯郸市曲周一中2016-2017学年高二下学期期中数
2016-2017学年河北省邯郸市曲周一中高二(下)期中数学试卷(文科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.全称命题“所有被5整除的整数都是奇数”的否定()A.所有被5整除的整数都不是奇数B.所有奇数都不能被5整除C.存在一个被5整除的整数不是奇数D.存在一个奇数,不能被5整除2.已知二次函数f(x)的图象如图所示,则其导函数f′(x)的图象大致形状是()A. B. C.D.3.”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.设f(x)=xlnx,若f′(x0)=2,则x0=()A.e2B.ln2 C. D.e5.抛物线y=2x2的焦点坐标为()A.(1,0)B.(,0)C.(0,)D.(0,)6.复数z满足(z﹣3)(2﹣i)=5(i为虚数单位),则z的共轭复数为()A.2+i B.2﹣i C.5+i D.5﹣i7.设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为()A.B.y=±2xC.或y=D.8.求S=1+3+5+…+101的程序框图如图所示,其中①应为()A.A=101 B.A≥101 C.A≤101 D.A>1019.已知y=x3+bx2+(b+2)x+3是R上的单调增函数,则b的取值是()A.b<﹣1或b>2 B.b≤﹣2或b≥2 C.﹣1<b<2 D.﹣1≤b≤210.设有一个回归方程为=2﹣2.5x,则变量x增加一个单位时()A.y平均增加2.5个单位B.y平均增加2个单位C.y平均减少2.5个单位D.y平均减少2个单位11.曲线y=e x在点(2,e2)处的切线与坐标轴所围三角形的面积为()A.e2B.2e2C.e2D.e212.给出命题:①∃x∈R,使x3<1;②∃x∈Q,使x2=2;③∀x∈N,有x3>x2;④∀x∈R,有x2+1>0,其中的真命题是()A.①④B.②③C.①③D.②④二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.命题“不等式x2+x﹣6>0的解为x<﹣3或x>2”的逆否命题是.14.从1=1,1﹣4=﹣(1+2),1﹣4+9=1+2+3,1﹣4+9﹣16=﹣(1+2+3+4),…,概括出第n个式子为.15.以下是关于圆锥曲线的四个命题:①设A、B为两个定点,k为非零常数,若PA﹣PB=k,则动点P的轨迹是双曲线;②方程2x2﹣5x+2=0的两根可分别作为椭圆和双曲线的离心率;③双曲线与椭圆有相同的焦点;④以过抛物线的焦点的一条弦AB为直径作圆,则该圆与抛物线的准线相切.其中真命题为(写出所以真命题的序号).16.过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A、B 两点,若线段AB的长为8,则p=.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17.(10分)某种产品的广告费用支出X与销售额之间有如下的对应数据:(1)画出散点图;(2)求回归直线方程;(3)据此估计广告费用为10销售收入y的值.18.(12分)已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(﹣∞,0),(1,+∞)上是减函数,又.(Ⅰ)求f(x)的解析式;(Ⅱ)若在区间[0,m](m>0)上恒有f(x)≤x成立,求m的取值范围.19.(12分)电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.20.(12分)已知函数f (x )=ax 3+bx 2﹣2x +c 在x=﹣2时有极大值6,在x=1时有极小值,(1)求a ,b ,c 的值;(2)求f (x )在区间[﹣3,3]上的最大值和最小值.21.(12分)已知直线l 的参数方程为(t 为参数),曲线C 的极坐标方程是ρcos 2θ=sinθ,以极点为原点,极轴为x 轴正方向建立直角坐标系,点M (﹣1,0),直线l 与曲线C 交于A 、B 两点. (1)写出直线l 的极坐标方程与曲线C 普通方程;(2)线段MA ,MB 长度分别记为|MA |,|MB |,求|MA |•|MB |的值. 22.(12分)已知椭圆的离心率,过点A (0,﹣b )和B(a,0)的直线与原点的距离为.(1)求椭圆的方程;(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.2016-2017学年河北省邯郸市曲周一中高二(下)期中数学试卷(文科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.全称命题“所有被5整除的整数都是奇数”的否定()A.所有被5整除的整数都不是奇数B.所有奇数都不能被5整除C.存在一个被5整除的整数不是奇数D.存在一个奇数,不能被5整除【考点】2J:命题的否定.【分析】本题中所给的命题是一个全称命题,书写其否定要注意它的格式的变化,即量词的变化,写出它的否定命题,再对比四个选项得出正确选项【解答】解:∵全称命题“所有被5整除的整数都是奇数”∴全称命题“所有被5整除的整数都是奇数”的否定是“存在一个被5整除的整数不是奇数”,对比四个选项知,C选项是正确的故选C【点评】本题考查命题的否定,解答本题关键是正解全称命题的否定命题的书写格式,结论要否定,还要把全称量词变为存在量词.2.已知二次函数f(x)的图象如图所示,则其导函数f′(x)的图象大致形状是()A. B. C.D.【考点】3O:函数的图象;62:导数的几何意义.【分析】先根据图象可知二次函数的二次项系数为负,由于对称轴为y轴可知一次项系数为0,然后写出它的导函数即可直接判断.【解答】解:∵二次函数的图象开口向下∴二次函数的二次项系数为负,∵对称轴为y轴∴一次项系数为0,设其为y=ax2+c,且a<0,∴y′=﹣2ax,且a<0,过原点与第二四象限;故答案为B.【点评】本题考查了根据图象写出函数式的知识和导函数的写法.3.”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【考点】K5:椭圆的应用.【分析】将方程mx2+ny2=1转化为,然后根据椭圆的定义判断.【解答】解:将方程mx2+ny2=1转化为,根据椭圆的定义,要使焦点在y轴上必须满足,且,即m>n>0反之,当m>n>0,可得出>0,此时方程对应的轨迹是椭圆综上证之,”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的充要条件故选C.【点评】本题考查椭圆的定义,难度不大,解题认真推导.4.设f(x)=xlnx,若f′(x0)=2,则x0=()A.e2B.ln2 C. D.e【考点】63:导数的运算;51:函数的零点.【分析】由题意求导f′(x)=lnx+1,从而得lnx0+1=2;从而解得.【解答】解:∵f′(x)=lnx+1;故f′(x0)=2可化为lnx0+1=2;故x0=e;故选D.【点评】本题考查了导数的求法及应用,属于基础题.5.抛物线y=2x2的焦点坐标为()A.(1,0)B.(,0)C.(0,)D.(0,)【考点】K8:抛物线的简单性质.【分析】先把抛物线整理标准方程,进而可判断出焦点所在的坐标轴和p,进而求得焦点坐标.【解答】解:整理抛物线方程得x2=y∴焦点在y轴,p=∴焦点坐标为(0,)故选D.【点评】本题主要考查了抛物线的简单性质.求抛物线的焦点时,注意抛物线焦点所在的位置,以及抛物线的开口方向.6.复数z满足(z﹣3)(2﹣i)=5(i为虚数单位),则z的共轭复数为()A.2+i B.2﹣i C.5+i D.5﹣i【考点】A2:复数的基本概念.【分析】利用复数的运算法则求得z,即可求得z的共轭复数.【解答】解:∵(z﹣3)(2﹣i)=5,∴z﹣3==2+i∴z=5+i,∴=5﹣i.故选D.【点评】本题考查复数的基本概念与基本运算,求得复数z是关键,属于基础题.7.设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为()A.B.y=±2xC.或y=D.【考点】KC:双曲线的简单性质.【分析】利用双曲线的虚轴长以及焦距求出a,然后求解双曲线的渐近线方程.【解答】解:双曲线的虚轴长为2,焦距为,可得b=1,c=,则a=,双曲线方程为:或,可得双曲线的渐近线方程为:y=或y=.故选:C.【点评】本题考查双曲线的简单性质的应用,考查计算能力.8.求S=1+3+5+…+101的程序框图如图所示,其中①应为()A.A=101 B.A≥101 C.A≤101 D.A>101【考点】EF:程序框图.【分析】根据已知中程序的功能是求S=1+3+5+…+101的值,由于满足条件进入循环,每次累加的是A的值,当A≤101应满足条件进入循环,进而得到答案.【解答】解:∵程序的功能是求S=1+3+5+…+101的值,且在循环体中,S=S+A表示,每次累加的是A的值,故当A≤101应满足条件进入循环,A>101时就不满足条件故条件为:A≤101故选C【点评】本题考查的知识点是程序框图,利用当型循环结构进行累加运算时,如果每次累加的值为循环变量值时,一般条件为循环条件小于等于终值.9.已知y=x3+bx2+(b+2)x+3是R上的单调增函数,则b的取值是()A.b<﹣1或b>2 B.b≤﹣2或b≥2 C.﹣1<b<2 D.﹣1≤b≤2【考点】3D:函数的单调性及单调区间;3F:函数单调性的性质.【分析】三次函数y=x3+bx2+(b+2)x+3的单调性,通过其导数进行研究,故先求出导数,利用其导数恒大于0即可解决问题.【解答】解:∵已知y=x3+bx2+(b+2)x+3∴y′=x2+2bx+b+2,∵y=x3+bx2+(b+2)x+3是R上的单调增函数,∴x2+2bx+b+2≥0恒成立,∴△≤0,即b2﹣b﹣2≤0,则b的取值是﹣1≤b≤2.故选D.【点评】本题考查函数的单调性及单调区间、利用导数解决含有参数的单调性问题,属于基础题.10.设有一个回归方程为=2﹣2.5x,则变量x增加一个单位时()A.y平均增加2.5个单位B.y平均增加2个单位C.y平均减少2.5个单位D.y平均减少2个单位【考点】BK:线性回归方程.【分析】回归方程y=2﹣2.5x,变量x增加一个单位时,变量y平均变化[2﹣2.5(x+1)]﹣(2﹣2.5x),及变量y平均减少2.5个单位,得到结果.【解答】解:回归方程y=2﹣2.5x,变量x增加一个单位时,变量y平均变化[2﹣2.5(x+1)]﹣(2﹣2.5x)=﹣2.5,∴变量y平均减少2.5个单位,故选C.【点评】本题考查线性回归方程的应用,考查线性回归方程自变量变化一个单位,对应的预报值是一个平均变化,这是容易出错的知识点.属于基础题.11.曲线y=e x在点(2,e2)处的切线与坐标轴所围三角形的面积为()A.e2B.2e2C.e2D.e2【考点】6H:利用导数研究曲线上某点切线方程.【分析】欲切线与坐标轴所围成的三角形的面积,只须求出切线在坐标轴上的截距即可,故先利用导数求出在x=2处的导函数值,再结合导数的几何意义即可求出切线的斜率.最后求出切线的方程,从而问题解决.【解答】解析:依题意得y′=e x,因此曲线y=e x在点A(2,e2)处的切线的斜率等于e2,相应的切线方程是y﹣e2=e2(x﹣2),当x=0时,y=﹣e2即y=0时,x=1,∴切线与坐标轴所围成的三角形的面积为:S=×e2×1=.故选D.【点评】本小题主要考查直线的方程、三角形的面积、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.12.给出命题:①∃x∈R,使x3<1;②∃x∈Q,使x2=2;③∀x∈N,有x3>x2;④∀x∈R,有x2+1>0,其中的真命题是()A.①④B.②③C.①③D.②④【考点】2K:命题的真假判断与应用.【分析】根据存在和任意的函数,通过举反例的方法逐个判断即可.【解答】解:①∃x∈R,使x3<1,显然成立;②∃x∈Q,使x2=2,显然不成立,x为无理数;③∀x∈N,有x3>x2,x=1时不成立,故错误;④∀x∈R,有x2+1>0,显然成立.故选A.【点评】考查了存在和任意的理解.属于基础题型,应牢记.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.命题“不等式x2+x﹣6>0的解为x<﹣3或x>2”的逆否命题是若x≥﹣3且x≤2,则x2+x﹣6≤0.【考点】25:四种命题间的逆否关系.【分析】根据一个命题的条件和结论,分别是另一个命题的结论的否定和条件的否定,可得结论【解答】解:“不等式x2+x﹣6>0的解为x<﹣3或x>2”即为:“若x2+x﹣6>0,则x<﹣3或x>2“根据逆否命题的定义可得:若x≥﹣3且x≤2,则x2+x﹣6≤0,故答案为:若x≥﹣3且x≤2,则x2+x﹣6≤0.【点评】如果一个命题的条件和结论,分别是另一个命题的结论和条件,那么称这两个命题为互逆命题;如果一个命题的条件和结论,分别是另一个命题的条件的否定和结论的否定,那么称这两个命题为互否命题;如果一个命题的条件和结论,分别是另一个命题的结论的否定和条件的否定,那么称这两个命题为互为逆否命题14.从1=1,1﹣4=﹣(1+2),1﹣4+9=1+2+3,1﹣4+9﹣16=﹣(1+2+3+4),…,概括出第n个式子为1﹣4+9﹣16+…+(﹣1)n+1•n2=(﹣1)n+1•(1+2+3+…+n).【考点】F1:归纳推理.【分析】本题考查的知识点是归纳推理,解题的步骤为,由1=1,1﹣4=﹣(1+2),1﹣4+9=1+2+3,1﹣4+9﹣16=﹣(1+2+3+4),…,中找出各式运算量之间的关系,归纳其中的规律,并大胆猜想,给出答案.【解答】解:∵1=1=(﹣1)1+1•11﹣4=﹣(1+2)=(﹣1)2+1•(1+2)1﹣4+9=1+2+3=(﹣1)3+1•(1+2+3)1﹣4+9﹣16=﹣(1+2+3+4)=(﹣1)4+1•(1+2+3+4)…所以猜想:1﹣4+9﹣16+…+(﹣1)n+1•n2=(﹣1)n+1•(1+2+3+…+n)故答案为:1﹣4+9﹣16+…+(﹣1)n+1•n2=(﹣1)n+1•(1+2+3+…+n).【点评】归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).15.以下是关于圆锥曲线的四个命题:①设A、B为两个定点,k为非零常数,若PA﹣PB=k,则动点P的轨迹是双曲线;②方程2x2﹣5x+2=0的两根可分别作为椭圆和双曲线的离心率;③双曲线与椭圆有相同的焦点;④以过抛物线的焦点的一条弦AB为直径作圆,则该圆与抛物线的准线相切.其中真命题为②③④(写出所以真命题的序号).【考点】KB:双曲线的标准方程;K4:椭圆的简单性质;KC:双曲线的简单性质;KJ:圆与圆锥曲线的综合.【分析】①不正确.若动点P的轨迹为双曲线,则|k|要小于A、B为两个定点间的距离;②正确.方程2x2﹣5x+2=0的两根和2可分别作为椭圆和双曲线的离心率;③正确,焦点在x轴上,焦点坐标为(±,0).④通过抛物线的性质即可说明正误.【解答】解:①不正确.若动点P的轨迹为双曲线,则|k|要小于A、B为两个定点间的距离.当|k|大于A、B为两个定点间的距离时动点P的轨迹不是双曲线.②正确.方程2x2﹣5x+2=0的两根分别为和2,和2可分别作为椭圆和双曲线的离心率.③正确,双曲线有相同的焦点,焦点在x轴上,焦点坐标为(±,0);④正确;不妨设抛物线为标准抛物线:y2=2px (p>0 ),即抛物线位于Y轴的右侧,以X轴为对称轴.设过焦点的弦为PQ,PQ的中点是M,M到准线的距离是d.而P到准线的距离d1=|PF|,Q到准线的距离d2=|QF|.又M到准线的距离d是梯形的中位线,故有d=,由抛物线的定义可得:=半径.所以圆心M到准线的距离等于半径,所以圆与准线是相切.故答案为:②③④【点评】本题主要考查了圆锥曲线的共同特征,考查椭圆和双曲线的基本性质,解题时要准确理解概念,基本知识的理解与应用,属于中档题.16.过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A、B 两点,若线段AB的长为8,则p=2.【考点】K8:抛物线的简单性质.【分析】抛物线的方程可求得焦点坐标,进而根据斜率表示出直线的方程,与抛物线的方程联立消去y,进而根据韦达定理表示出x1+x2和x1x2,进而利用配方法求得|x1﹣x2|,利用弦长公式表示出段AB的长求得p.【解答】解:由题意可知过焦点的直线方程为,联立有,∴x1+x2=3p,x1x2=∴|x1﹣x2|==又求得p=2故答案为2【点评】本题主要考查了抛物线的简单性质.涉及直线与抛物线的关系时,往往是利用韦达定理设而不求.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17.(10分)(2015•重庆模拟)某种产品的广告费用支出X与销售额之间有如下的对应数据:(1)画出散点图;(2)求回归直线方程;(3)据此估计广告费用为10销售收入y的值.【考点】BK:线性回归方程.【分析】(1)根据表中所给的五对数据,得到五个有序数对,在平面直角坐标系中画出点,得到散点图.(2)先做出横标和纵标的平均数,得到这组数据的样本中心点,利用最小二乘法做出线性回归方程的系数,再求出a的值,即可得到线性回归方程.(3)把所给的x的值代入线性回归方程,求出y的值,这里的y的值是一个预报值,或者说是一个估计值.【解答】解:(1)根据表中所给的五对数据,得到五个有序数对,在平面直角坐标系中画出点,得到散点图.(2)∵=,=50∴b==6.5∴a==17.5∴回归直线方程为y=6.5x+17.5(3)当x=10时,预报y的值为y=10×6.5+17.5=82.5.【点评】本题考查线性回归方程的求法和应用,本题解题的关键是看出这组变量是线性相关的,进而正确运算求出线性回归方程的系数,本题是一个基础题.18.(12分)(2007•陕西)已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(﹣∞,0),(1,+∞)上是减函数,又.(Ⅰ)求f(x)的解析式;(Ⅱ)若在区间[0,m](m>0)上恒有f(x)≤x成立,求m的取值范围.【考点】6B:利用导数研究函数的单调性;36:函数解析式的求解及常用方法;3R:函数恒成立问题.【分析】(Ⅰ)由“f(x)在区间[0,1]上是增函数,在区间(﹣∞,0),(1,+∞)上是减函数”,则有f'(0)=f'(1)=0,再由.求解.(Ⅱ)首先将“f(x)≤x,x∈[0,m]成立”转化为“x(2x﹣1)(x﹣1)≥0,x ∈[0,m]成立”求解.【解答】解:(Ⅰ)f'(x)=3ax2+2bx+c,由已知f'(0)=f'(1)=0,即解得∴f'(x)=3ax2﹣3ax,∴,∴a=﹣2,∴f(x)=﹣2x3+3x2.(Ⅱ)令f(x)≤x,即﹣2x3+3x2﹣x≤0,∴x(2x﹣1)(x﹣1)≥0,∴或x≥1.又f(x)≤x在区间[0,m]上恒成立,∴.【点评】本题主要考查利用函数的极值点和导数值来求函数解析式及不等式恒成立问题.19.(12分)(2017春•曲周县校级期中)电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.【考点】BO:独立性检验的应用.【分析】(1)由频率分布直方图中可知:抽取的100名观众中,“体育迷”共有(0.020+0.005)×10×100=25名.可得2×2列联表,将2×2列联表中的数据代入公式计算可得K2的观测值为:k≈3.030.由“独立性检验基本原理”即可判断出;(2)由频率分布直方图中可知:“超级体育迷”有5名,从而一切可能结果所组成的基本事件空间Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},其中a i (i=1,2,3)表示男性,b j(j=1,2)表示女性.设A表示事件“从“超级体育迷”中任意选取2名,至少有1名女性观众”,可得事件A包括7个基本事件,利用古典概率计算公式即可得出.【解答】解:(1)由频率分布直方图中可知:抽取的100名观众中,“体育迷”共有(0.020+0.005)×10×100=25名.可得2×2列联表:将2×2列联表中的数据代入公式计算可得K2的观测值为:k==≈3.030.∵3.030<3.841,∴我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图中可知:“超级体育迷”有5名,从而一切可能结果所组成的基本事件空间Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},其中a i (i=1,2,3)表示男性,b j(j=1,2)表示女性.设A表示事件“从“超级体育迷”中任意选取2名,至少有1名女性观众”,则事件A包括7个基本事件:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2).∴P(A)=.【点评】本题考查了“独立性检验基本原理”、古典概率计算公式、频率分布直方图及其性质,考查了推理能力与计算能力,属于中档题.20.(12分)(2013秋•白城期末)已知函数f(x)=ax3+bx2﹣2x+c在x=﹣2时有极大值6,在x=1时有极小值,(1)求a,b,c的值;(2)求f(x)在区间[﹣3,3]上的最大值和最小值.【考点】6D:利用导数研究函数的极值;6E:利用导数求闭区间上函数的最值.【分析】(1)因为函数f(x)=ax3+bx2﹣2x+c在x=﹣2时有极大值6,在x=1时有极小值得到三个方程求出a、b、c;(2)令f′(x)=x2+x﹣2=0解得x=﹣2,x=1,在区间[﹣3,3]上讨论函数的增减性,得到函数的最值.【解答】解:(1)f′(x)=3ax2+2bx﹣2由条件知解得a=,b=,c=(2)f(x)=,f′(x)=x2+x﹣2=0解得x=﹣2,x=1由上表知,在区间[﹣3,3]上,当x=3时,f max=;当x=1,f min=.【点评】考查函数利用导数研究函数极值的能力,利用导数研究函数增减性的能力.21.(12分)(2015秋•宁夏期末)已知直线l的参数方程为(t为参数),曲线C的极坐标方程是ρcos2θ=sinθ,以极点为原点,极轴为x轴正方向建立直角坐标系,点M(﹣1,0),直线l与曲线C交于A、B两点.(1)写出直线l的极坐标方程与曲线C普通方程;(2)线段MA,MB长度分别记为|MA|,|MB|,求|MA|•|MB|的值.【考点】Q4:简单曲线的极坐标方程;5B:分段函数的应用.【分析】(1)先求出直线l的普通方程,再求出直线l的极坐标方程,曲线C的极坐标方程是ρ2cos2θ=ρsinθ,由此能求出曲线C普通方程.(2)将代入y=x2,能求出|MA|•|MB|的值.【解答】解:(1)∵直线l的参数方程为(t为参数),∴直线l的普通方程为:x﹣y+1=0,∴直线l的极坐标方程为:ρcosθ﹣ρsinθ+1=0,即,…(3分)∵曲线C的极坐标方程是ρcos2θ=sinθ,∴ρ2cos2θ=ρsinθ,∴曲线C普通方程为:y=x2…(2)将代入y=x2,得,…8分∴|MA|•|MB|=|t1t2|=2.…(10分)【点评】本题考查直线l的极坐标方程与曲线C普通方程的求法|,考查|MA|•|MB|的值的求法,是中档题,解题时要认真审题,注意极坐标和直角坐标互化公式的合理运用.22.(12分)(2016•西宁模拟)已知椭圆的离心率,过点A(0,﹣b)和B(a,0)的直线与原点的距离为.(1)求椭圆的方程;(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.【考点】KJ:圆与圆锥曲线的综合;K3:椭圆的标准方程.【分析】(1)直线AB方程为bx﹣ay﹣ab=0,依题意可得:,由此能求出椭圆的方程.(2)假设存在这样的值.,得(1+3k2)x2+12kx+9=0,再由根的判别式和根与系数的关系进行求解.【解答】解:(1)直线AB方程为bx﹣ay﹣ab=0,依题意可得:,解得:a2=3,b=1,∴椭圆的方程为.(2)假设存在这样的值.,得(1+3k2)x2+12kx+9=0,∴△=(12k)2﹣36(1+3k2)>0…①,设C(x1,y1),D(x2,y2),则而y1•y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,要使以CD为直径的圆过点E(﹣1,0),当且仅当CE⊥DE时,则y1y2+(x1+1)(x2+1)=0,∴(k2+1)x1x2+(2k+1)(x1+x2)+5=0…③将②代入③整理得k=,经验证k=使得①成立综上可知,存在k=使得以CD为直径的圆过点E.【点评】本题考查圆与圆锥曲线的综合性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.。
2017-2018学年河北省邯郸市曲周县高二(下)期末数学试卷(文科)(解析版)
2017-2018学年河北省邯郸市曲周县高二(下)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分1.(5分)设全集U={x∈N|x≤6},A={1,3,5},B={4,5,6},则(∁U A)∩B等于()A.{4,6}B.{5}C.{1,3}D.{0,2}2.(5分)已知复数z满足z﹣i=iz+3,则=()A.1+2i B.1﹣2i C.2+2i D.2﹣2i3.(5分)设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)函数f(x)=e x﹣+2的零点所在的一个区间是()A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)5.(5分)若x,y满足,则z=x+y的最大值为()A.B.3C.D.46.(5分)已知sinθ=,θ∈(,π),则tan(θ+)=()A.﹣7B.7C.D.7.(5分)已知函数f(x)=sin(2x﹣),下列结论错误的是()A.f(x)的最小正周期为πB.f(x)在区间上是增函数C.f(x)的图象关于点对称D.f(x)的图象关于直线对称8.(5分)某三棱锥的三视图如图所示,则其体积为()A.B.C.D.9.(5分)如图中的程序框图表示求三个实数a,b,c中最大数的算法,那么在空白的判断框中,应该填入()A.a>x B.b>x C.c<x D.c>x10.(5分)边长为2的两个等边△ABD,△CBD所在的平面互相垂直,则四面体ABCD的外接球的表面积为()A.B.6πC.D.16π11.(5分)已知抛物线y2=4x的焦点到双曲线的一条渐近线的距离为,则该双曲线的离心率为()A .B .C .D .12.(5分)已知方程ln|x|﹣ax2+=0有4个不同的实数根,则实数a的取值范围是()A .B .C .D .二、填空题(共4小题,每小题3分,满分12分)13.(3分)某单位有420名职工,现采用系统抽样方法抽取21人做问卷调查,将420人按1,2,…,420随机编号,则抽取的21人中,编号落入区间[281,420]的人数为.14.(3分)在△ABC中,AB=3,AC=4,M是边BC 的中点,则=.15.(3分)若点A(a,b)(a>0,b>0)在直线2x+y﹣1=0上,则+的最小值是.16.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,A=2C,c=2,a2=4b﹣4,则a=.三、解答题:解答须写出文字说明、证明过程和演算步骤.17.(12分)已知数列{a n}是等比数列,其前n项和为S n,满足S2+a1=0,a3=12.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数n,使得S n>2016?若存在,求出符合条件的n的最小值;若不存在,说明理由.18.(12分)某校为了解本校学生在校小卖部的月消费情况,随机抽取了60名学生进行统计.得到如表样本频数分布表:记月消费金额不低于300元为“高消费”,已知在样本中随机抽取1人,抽到是男生“高消费”的概率为.(Ⅰ)从月消费金额不低于400元的学生中随机抽取2人,求至少有1人月消费金额不低于500元的概率;(Ⅱ)请将下面的2×2列联表补充完整,并判断是否有90%的把握认为“高消费”与“男女性别”有关,说明理由.下面的临界值表仅供参考:(参考公式:,其中n=a+b+c+d)19.(12分)如图,四边形ABCD为梯形,AB∥CD,PD⊥平面ABCD,∠BAD=∠ADC=90°,DC=2AB=2a,,E为BC中点.(1)求证:平面PBC⊥平面PDE;(2)线段PC上是否存在一点F,使P A∥平面BDF?若有,请找出具体位置,并进行证明:若无,请分析说明理由.20.(12分)已知椭圆C:+=1(a>b>0)的离心率为,椭圆C与y轴交于A、B两点,|AB|=2.(Ⅰ)求椭圆C的方程;(Ⅱ)已知点P是椭圆C上的动点,且直线P A,PB与直线x=4分别交于M、N两点,是否存在点P,使得以MN为直径的圆经过点(2,0)?若存在,求出点P的横坐标;若不存在,说明理由.21.(10分)已知函数f(x)=.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的零点和极值;(3)若对任意x1,x2∈[a,+∞),都有f(x1)﹣f(x2)≥﹣成立,求实数a的最小值.选做题22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),若以原点O为极点,x轴正半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4cosθ,设M是圆C上任一点,连结OM并延长到Q,使|OM|=|MQ|.(Ⅰ)求点Q轨迹的直角坐标方程;(Ⅱ)若直线l与点Q轨迹相交于A,B两点,点P的直角坐标为(0,2),求|P A|+|PB|的值.23.(10分)设函数f(x)=a|x﹣2|+x.(1)若函数f(x)有最大值,求a的取值范围;(2)若a=1,求不等式f(x)>|2x﹣3|的解集.2017-2018学年河北省邯郸市曲周县高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分1.(5分)设全集U={x∈N|x≤6},A={1,3,5},B={4,5,6},则(∁U A)∩B等于()A.{4,6}B.{5}C.{1,3}D.{0,2}【解答】解:∵全集U={x∈N|x≤6}={0,1,2,3,4,5,6 },A={1,3,5},B={4,5,6},∴∁U A={0,2,4,6},∴(∁U A)∩B═{0,2,4,6}∩{4,5,6}={4,6}.故选:A.2.(5分)已知复数z满足z﹣i=iz+3,则=()A.1+2i B.1﹣2i C.2+2i D.2﹣2i【解答】解:复数z满足z﹣i=iz+3,可得z====1+2i.则=1﹣2i.故选:B.3.(5分)设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:因为a,b都是实数,由a>b,不一定有a2>b2,如﹣2>﹣3,但(﹣2)2<(﹣3)2,所以“a>b”是“a2>b2”的不充分条件;反之,由a2>b2也不一定得a>b,如(﹣3)2>(﹣2)2,但﹣3<﹣2,所以“a>b”是“a2>b2”的不必要条件.故选:D.4.(5分)函数f(x)=e x﹣+2的零点所在的一个区间是()A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)【解答】解:∵函数f(x)=e x﹣+2,可知:x→0+时,f(x)→﹣∞;f(1)=e﹣1+2=e+1>0.∴函数f(x)=e x﹣+2的零点所在的一个区间是(0,1).故选:B.5.(5分)若x,y满足,则z=x+y的最大值为()A.B.3C.D.4【解答】解:作出不等式组对应的平面区域如图由z=x+y得y=﹣x+y,平移y=﹣x+y,由图象知当直线y=﹣x+y经过点A直线的截距最大,此时z最大,由得,即A(1,3),则z=+3=,故选:C.6.(5分)已知sinθ=,θ∈(,π),则tan(θ+)=()A.﹣7B.7C.D.【解答】解:∵sinθ=,θ∈(,π),∴cosθ=﹣=﹣,tanθ==﹣,则tan(θ+)===,故选:D.7.(5分)已知函数f(x)=sin(2x﹣),下列结论错误的是()A.f(x)的最小正周期为πB.f(x)在区间上是增函数C.f(x)的图象关于点对称D.f(x)的图象关于直线对称【解答】解:对于知函数f(x)=sin(2x﹣),它的周期为=π,故A正确;在区间上,2x﹣∈[﹣,],函数f(x)为增函数,故B正确;当x=﹣,f(x)=sin(﹣2π)=0,故f(x)的图象关于点对称,故C 正确;当时,f(x)=sin2π=0,故f(x)的图象不关于直线对称,故D错误,故选:D.8.(5分)某三棱锥的三视图如图所示,则其体积为()A.B.C.D.【解答】解:根据三视图可知几何体是一个三棱锥,底面是一个三角形:即俯视图:底是2、高是侧视图的底边,三棱锥的高是侧视图和正视图的高1,∴几何体的体积V==,故选:A.9.(5分)如图中的程序框图表示求三个实数a,b,c中最大数的算法,那么在空白的判断框中,应该填入()A.a>x B.b>x C.c<x D.c>x【解答】解:由流程图可知a、b、c中的最大数用变量x表示并输出,第一个判断框是判断x与b的大小,则第二个判断框一定是判断最大值x与c的大小,并将最大数赋给变量x,故第二个判断框应填入:c>x.故选:D.10.(5分)边长为2的两个等边△ABD,△CBD所在的平面互相垂直,则四面体ABCD的外接球的表面积为()A.B.6πC.D.16π【解答】解:由题意,正三角形的高为,外接圆的半径为,内切圆的半径为,设球心到平面CBD的距离为d,则R2=d2+()2=()2+(﹣d)2,∴d=,∴R2=,∴四面体ABCD的外接球的表面积为4πR2=.故选:C.11.(5分)已知抛物线y2=4x的焦点到双曲线的一条渐近线的距离为,则该双曲线的离心率为()A.B.C.D.【解答】解:抛物线y2=4x的焦点为(1,0),双曲线的一条渐近线为y=x,由题意可得d==,即有a=b,c==a,可得e==.故选:C.12.(5分)已知方程ln|x|﹣ax2+=0有4个不同的实数根,则实数a的取值范围是()A.B.C.D.【解答】解:由ln|x|﹣ax2+=0得ax2=ln|x|+,∵x≠0,∴方程等价为a=,设f(x)=,则函数f(x)是偶函数,当x>0时,f(x)=,则f′(x)===,由f′(x)>0得﹣2x(1+lnx)>0,得1+lnx<0,即lnx<﹣1,得0<x<,此时函数单调递增,由f′(x)<0得﹣2x(1+lnx)<0,得1+lnx>0,即lnx>﹣1,得x>,此时函数单调递减,即当x>0时,x=时,函数f(x)取得极大值f()==(﹣1+)e2=e2,作出函数f(x)的图象如图:要使a=,有4个不同的交点,则满足0<a<e2,故选:A.二、填空题(共4小题,每小题3分,满分12分)13.(3分)某单位有420名职工,现采用系统抽样方法抽取21人做问卷调查,将420人按1,2,…,420随机编号,则抽取的21人中,编号落入区间[281,420]的人数为7.【解答】解:∵从420人中抽取21人,∴抽取的间距为420÷21=20,区间[281,420]内的人数为420﹣281+1=140,则抽取人数为140÷20=7故答案为:7.14.(3分)在△ABC中,AB=3,AC=4,M是边BC的中点,则=.【解答】解:∵AB=3,AC=4,M是边BC的中点,∴||=3,||=4,∴•===(42﹣32)=.故答案为:.15.(3分)若点A(a,b)(a>0,b>0)在直线2x+y﹣1=0上,则+的最小值是8.【解答】解:若点A(a,b)(a>0,b>0)在直线2x+y﹣1=0上,则2a+b=1,则(+)(2a+b)=4++≥4+2=8,当且仅当=即b=2a=时“=”成立,故答案为:8.16.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,A=2C,c=2,a2=4b﹣4,则a=.【解答】解:在△ABC中,∵A=2C,c=2,∴由正弦定理得,,则,即a=4cos C,由余弦定理得,a=4×=2×,化简得a2(b﹣2)=2(b2﹣4),①又a2=4b﹣4,②,联立①②解得,或,∵A=2C,c=2,∴a>c=2,∴a =,故答案为:.三、解答题:解答须写出文字说明、证明过程和演算步骤.17.(12分)已知数列{a n}是等比数列,其前n项和为S n,满足S2+a1=0,a3=12.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数n,使得S n>2016?若存在,求出符合条件的n的最小值;若不存在,说明理由.【解答】解:(Ⅰ)设数列{a n}的公比为q,因为S2+a1=0,所以2a1+a1q=0,因为a1≠0,所以q=﹣2,又因为,所以a1=3,所以;(Ⅱ)结论:符合条件的n的最小值为11.理由如下:由(I )可知,令S n>2016,即1﹣(﹣2)n>2016,整理得(﹣2)n<﹣2015,当n为偶数时,原不等式无解;当n为奇数时,原不等式等价于2n>2015,解得n≥11;综上所述,所以满足S n>2016的正整数n的最小值为11.18.(12分)某校为了解本校学生在校小卖部的月消费情况,随机抽取了60名学生进行统计.得到如表样本频数分布表:记月消费金额不低于300元为“高消费”,已知在样本中随机抽取1人,抽到是男生“高消费”的概率为.(Ⅰ)从月消费金额不低于400元的学生中随机抽取2人,求至少有1人月消费金额不低于500元的概率;(Ⅱ)请将下面的2×2列联表补充完整,并判断是否有90%的把握认为“高消费”与“男女性别”有关,说明理由.下面的临界值表仅供参考:(参考公式:,其中n=a+b+c+d)【解答】解:(Ⅰ)样本中,月消费金额在[400,500)的3人分别记为A1,A2,A3.月消费金额在大于或等于500的2人分别记为B1,B2.(1分)从月消费金额不低于400元的5个中,随机选取两个,其所有的基本事件如下:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),共10个.(3分)记“至少有1个月消费金额不低于500元”为事件A则事件A包含的基本事件有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),共7个.(5分)所以至少有1个月消费金额不低于500元的概率为.(6分)(Ⅱ)依题意,样本中男生“高消费”人数.(7分)(9分)∴=.(11分)所以没有90%的把握认为“高消费”与“男女性别”有关.(12分)19.(12分)如图,四边形ABCD为梯形,AB∥CD,PD⊥平面ABCD,∠BAD=∠ADC=90°,DC=2AB=2a,,E为BC中点.(1)求证:平面PBC⊥平面PDE;(2)线段PC上是否存在一点F,使P A∥平面BDF?若有,请找出具体位置,并进行证明:若无,请分析说明理由.【解答】(1)证明:连结BD,∵∠BAD=∠ADC=90°,AB=a,,∴BD=DC=2a,∵E为BC中点,∴BC⊥DE,又∵PD⊥平面ABCD,∴BC⊥PD,∵DE∩PD=D,∴BC⊥平面PDE,∵BC⊂平面PBC,∴平面PBC⊥平面PDE;(2)解:当点F位于PC三分之一分点(靠近P点)时,P A∥平面BDF.证明如下:连结AC,BD交于O点,∵AB∥CD,∴△AOB∽△COD,又∵,∴,从而在△CP A中,,而,∴OF∥P A,而OF⊂平面BDF,P A⊄平面BDF,∴P A∥平面BDF.20.(12分)已知椭圆C:+=1(a>b>0)的离心率为,椭圆C与y轴交于A、B两点,|AB|=2.(Ⅰ)求椭圆C的方程;(Ⅱ)已知点P是椭圆C上的动点,且直线P A,PB与直线x=4分别交于M、N两点,是否存在点P,使得以MN为直径的圆经过点(2,0)?若存在,求出点P的横坐标;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,2b=2,即b=1,又a2﹣c2=1,解得a=2,c=,即有椭圆的方程为+y2=1;(Ⅱ)设P(m,n),可得+n2=1,即有n2=1﹣,由题意可得A(0,1),B(0,﹣1),设M(4,s),N(4,t),由P,A,M共线可得,k P A=k MA,即为=,可得s=1+,由P,B,N共线可得,k PB=k NB,即为=,可得s=﹣1.假设存在点P,使得以MN为直径的圆经过点Q(2,0).可得QM⊥QN,即有•=﹣1,即st=﹣4.即有[1+][﹣1]=﹣4,化为﹣4m2=16n2﹣(4﹣m)2=16﹣4m2﹣(4﹣m)2,解得m=0或8,由P,A,B不重合,以及|m|<2,可得P不存在.21.(10分)已知函数f(x)=.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的零点和极值;(3)若对任意x1,x2∈[a,+∞),都有f(x1)﹣f(x2)≥﹣成立,求实数a的最小值.【解答】解:(1)函数f(x)=的导数为f′(x)=,可得在点(0,f(0))处的切线斜率为﹣2,切点为(0,1),即有切线的方程为y=﹣2x+1;(2)由f(x)=0,可得x=1,即零点为1;由x>2时,f′(x)>0,f(x)递增;当x<2时,f′(x)<0,f(x)递减.可得x=2处,f(x)取得极小值,且为﹣,无极大值;(3)由(2)可得f(2)取得极小值﹣,且为最小值,当a≥1时,f(x)在[a,+∞)先递减后递增,即有f(x)≥f(2)=﹣,由﹣≤f(x1)<0,0<﹣f(x2)<,可得>f(x1)﹣f(x2)≥﹣恒成立.即有a的最小值为1.选做题22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),若以原点O为极点,x轴正半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4cosθ,设M是圆C上任一点,连结OM并延长到Q,使|OM|=|MQ|.(Ⅰ)求点Q轨迹的直角坐标方程;(Ⅱ)若直线l与点Q轨迹相交于A,B两点,点P的直角坐标为(0,2),求|P A|+|PB|的值.【解答】解:(Ⅰ)圆C的极坐标方程为ρ=4cosθ,化为ρ2=4ρcosθ,可得直角坐标方程:x2+y2=4x,配方为(x﹣2)2+y2=4,设Q(x,y),则,代入圆的方程可得,化为(x﹣4)2+y2=16.即为点Q的直角坐标方程.(Ⅱ)把直线l的参数方程(t为参数)代入(x﹣4)2+y2=16.得令A,B对应参数分别为t 1,t2,则,t1t2>0.∴.23.(10分)设函数f(x)=a|x﹣2|+x.(1)若函数f(x)有最大值,求a的取值范围;(2)若a=1,求不等式f(x)>|2x﹣3|的解集.【解答】解:(1),∵f(x)有最大值,∴1﹣a≥0且1+a≤0,解得a≤﹣1,最大值为f(2)=2.(2)即|x﹣2|﹣|2x﹣3|+x>0,设,由g(x)>0解得,原不等式的解集为.。
河北省邯郸市曲周县第一中学2017届高三下学期2月模拟考试数学(文)试题 Word版含答案
2017届2月模拟考试 数学试卷(文)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合2{|16},{}A x x B m =≥=,若A B A = ,则实数m 的取值范围是 A .(,4)-∞- B .[4,)+∞ C .[4,4]- D .(,4][4,)-∞-+∞2、下列函数中,周期为π 的奇函数是A .2sin y x =B .tan 2y x =C .sin 2cos 2y x x =+D .sin cos y x x = 3、“1a = ”是“10ax y ++=与直线(2)320a x y +--=垂直”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4、已知i 为虚数单位,复数()1a i z a R i -=∈-,若01(sin )z x dx ππ=-⎰,则a = A .1± B .1 C .1- D .12±5、设,m n 为两条不同的直线,,αβ为两个不同的平面,给出下列命题: ①若,m m αβ⊥⊥,则//αβ ②若//,//m m αβ,则//αβ ③若//,//m n αα,则//m n ④若,m n αα⊥⊥,则//m n 上述命题中,所有真命题的序号是A .①④B .②③C .①③D .②④6、已知235xyz==,且,,x y z 均为正数,则2,3,5x y z 的大小关系为A .235x y z <<B .325y x z <<C .532z y x <<D .523z x y << 7、ABC ∆的角,,A B C 所对的边分别是,,a b c ,若7cos ,2,38A c a b =-==,则a = A .2B .52 C .3 D .728、已知直线y x =和椭圆22221(0)x y a b a b +=>>交于不同的两点,M N ,若,M N 在x 轴上的射影恰好为椭圆的两个焦点,则椭圆的离心率为A .2 B C .39、函数()sin cos f x a x b x =-的一条对称轴为4x π=,则直线0ax by c -+=的倾斜角为A .45B .60C .120D .13510、已知,x y 为正实数,且115x y x y+++=,则x y +的最大值是 A .3 B .72 C .4 D .9211、过双曲线22115y x -=的右支上一点P ,分别向圆221:(4)4C x y ++= 和圆222:(4)4C x y -+=作切线,切点分别为,M N ,则22PM PN -的最小值为A .10B .13C .16D .1912、已知函数()2ln(1)f x a x x =+-,在区间(0,1)内任取两个不相等的实数,p q , 若不等式()()111f p f q p q+-+>-恒成立,则实数a 的取值范围是A .[15,)+∞B .[6,)+∞C .(,15]-∞D .(,6]-∞第Ⅱ卷本卷包括必考题和选考两部分,第13题-第21题为必考题,每个试题考生都必须作答,第22题-第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分, 13、抛物线24y x =-的准线方程是14、如图为某几何体的三视图,则该几何体的体积为15、已知,x y 满足2420x x y x y m ≥⎧⎪+≤⎨⎪--≤⎩,若目标函数3z x y =+的最大值为10,则m 的值为16、已知等腰OAB∆中,2O A O B ==且OA OB +≥ ,那么OA OB ⋅ 的取值范围是三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17、(本小题满分12分)在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,且ssin sin()3a Bb A π=-+.(1)求A 的值;(2)若ABC ∆的面积为24S =,求sin C 的值.18、(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,非常数等比数列{}n b 的公比是q , 且满足1122232,1,3,a b S b a b ====(1)求n a 与n b ;(2)设223na n n cb λ=-⋅,若数列{}nc 是递减数列,求实数λ的取值范围.19、(本小题满分12分)已知在边长为4的等边ABC ∆(如图1所示)中,//,MN BC E 为BC 的中点,连接AE 交MN 于点F ,现将AMN ∆沿MN 折起,使得平面AMN ⊥平面MNCB (如图2所示). (1)求证:平面ABC ⊥平面AEF ;(2)若3BCNM AMN S S ∆=,求直线AB 与平面ANC 所成角的正弦值.20、(本小题满分12分)在平面直角坐标系xOy 中,已知椭圆22122:1(0)x y C a b a b +=>>的离心率2e =,且椭圆1C 的短轴长为2,.(1)求椭圆1C 的方程; (2)设1(0,),16A N 为抛物线22:C y x -上一动点,过点N 作抛物线2C 的切线交椭圆1C 于,BC 两点,求ABC ∆面积的最大值.21、(本小题满分12分) 已知函数()ln xx kf x e+=(其中, 2.71828k R e ∈=是自然对数的底数),()f x '为()f x 的导函数. (1)当2k =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)若(0,1]x ∈时,()0f x '=都有解,求k 的取值范围;(3)若()10f '=,试证明:对于任意()2210,e x f x x x-+'><+恒成立.请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号. 22、(本小题满分10分) 选修4-4 坐标系与参数方程在极坐标系中,已知圆C 的圆心)4C π,半径r =(1)求圆C 的极坐标方程;(2)若[0,)4a π∈,直线l 的参数方程2cos (2sin x t t y t αα=+⎧⎨=+⎩为为参数),直线l 交圆C 于,A B 两点,求弦长AB 的取值范围.23、(本小题满分10分)选修4-5 不等式选讲 设函数()212f x x x =--+. (1)解不等式()0f x >;(2)若0x R ∃∈,使得20()24f x m m +<,求实数m 的取值范围.数学(理科)参考答案13.161=y 14.π 15.5 16.[)42,- 17.(12分)【解】(1))3sin(sin π+-=A b B a , ∴由正弦定理,得)34sin(sin π+-=A ,即A A A cos 23sin 21sin ---=,化简得33tan -=A ,),(π0∈A ,65π=∴A (2)21sin 65=∴=A A ,π ,由c b bc A bc c S 3,41sin 21432====得, 2227cos 2c A b c b a =-+=∴,则c a 7=,由正弦定理,得147sin sin ==a A c C 。
河北省邯郸市曲周县第一中学高二数学下学期第二次月考试题 文
曲周一中高二下学期第二次月考文科数学 2016.4本试卷分第I卷和第Ⅱ卷两部分。
满分150分。
考试时间120分钟。
第I卷(选择题)一、选择题(每小题5分,共60分。
每小题所给选项只有一项符合题意,请将正确答案的选项填涂在答题卡上)1. 若集合,,则()A.B.C.D.或2. 集合A={a,b},B={-1,0,1},从A到B的映射f:A→B满足f(a)+f(b)=0,那么这样的映射f:A→B的个数是()A.2B.3C.5D.83. 函数定义域为()A.B.C.D.4. 设为向量,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5. 命题:“若,则”的逆否命题是()A.若,则 B.若,则C.若,则 D.若,则6. 已知命题,命题,若命题“” 是真命题,则实数的取值范围是()A. C. B. D.7. 下列说法正确的是()A.命题“若,则”的逆否命题为真命题B .“”是“”的必要不充分条件 C .命题“”的否定是“”D .命题“若,则”的否命题为“若,则”8. 如果我们定义一种运算: ,已知函数,那么函数y=的大致图象是( )9.命题:若整系数一元二次方程ax 2+bx+c=0(a≠0)有有理数根,那么a 、b 、c 中至少有一个偶数。
用反证法证明时,下列假设正确的是( ) A .假设a 、b 、c 都是偶数 B .假设a 、b 、c 都不是偶数 C .假设a 、b 、c 至多有一个偶数D .假设a 、b 、c 至多有两个偶数10. 图中阴影表示的集合为( )A .(P∪Q)∩C U SB .(P∩Q)∪C U S C .(P∩Q)∩C U SD .(P∪Q)∪C U S 11. 如果,则当且时,( ) A .(且) B .(且) C .(且)D .(且)12. 下列结论:(1)函数和是同一函数;(2)函数的定义域为,则函数的定义域为;(3)函数的递增区间为;其中正确的个数为()A.0个B.1个C.2个D.3个第II卷(非选择题)二、填空题: (每小题5分,共20分,把答案填写在答题纸的相应位置上)13. 设=,则=__________14.若是的充分不必要条件,则是的条件.15.若集合A={x|kx2+4x+4=0},x∈R中只有一个元素,则实数k的值为_________16. 已知A=B={(x,y)|x∈R,y∈R},从A到B的映射f:(x,y)→(x+y,xy),A中元素(m,n)与B中元素(4,-5)对应,则此元素为.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合,.(1)若,求;(2)若,求实数的取值范围.18. (本小题满分12分)求下列函数解析式.(1)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);(2)已知f(x)满足2f(x)+f()=3x,求f(x).19.(本小题满分12分)已知a≥b>0,求证:2a3-b3≥2ab2-a2b.20.(本小题满分12分)已知.(1)解不等式;(2)若关于的不等式对任意的恒成立,求的取值范围.21.(本小题满分12分)已知命题:“,使等式成立”是真命题.(1)求实数的取值集合;(2)设不等式的解集为,若是的必要条件,求的取值范围.22.(本小题满分12分)已知a≥1,求证:-<-.曲周一中高二下学期第二次月考文科数学答案BBBCD ADBBC BA13、14、.必要不充分15、0或1 16、(5,-1)或(-1,5)详细解答:1.考点:集合的运算试题解析:因为所以,故答案为:B2.考点:1.2 函数及其表示试题解析:由f(a)=0,f(b)=0得f(a)+f(b)=0;f(a)=1,f(b)=-1得f(a)+f(b)=0;由f(a)=-1,f(b)=得f(a)+f(b)=0.共3个.故选B.3.考点:1.2 函数及其表示试题解析:函数有意义应满足,∴-≤x≤,故选B.4.考点:充分条件与必要条件试题解析:因为,所以所以,,反之也成立,故答案为:C5.考点:命题及其关系试题解析:因为原命题:“若,则”所以,逆否命题为若,则故答案为:D6.考点:简单的逻辑联结词试题解析:因为由命题得,,由命题,得得或,因为命题“” 是真命题,所以p、q均为真命题,所以,实数的取值范围是故答案为:A7.考点:命题及其关系试题解析:因为A原命题是假命题,逆否命题也假,B应为充分不必要条件,C是假命题,只有D 正确故答案为:D8.考点:1.2 函数及其表示试题解析:由已知,其图像为函数y=得图像是将纵坐标不变,横坐标向右平移一个单位得到的,故选B.9.考点:三反证法试题解析:本题考查反证法的概念,逻辑用语,否命题与命题的否定的概念,逻辑词语的否定.根据反证法的步骤,假设是对原命题结论的否定,故只须对“b、c中至少有一个偶数”写出否定即可.解:根据反证法的步骤,假设是对原命题结论的否定“至少有一个”的否定“都不是”.即假设正确的是:假设a、b、c都不是偶数故选:B.点评:一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个”的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个”;“任意两个”的否定:“某两个”;“所有的”的否定:“某些”.答案:B10.考点:1.1 集合S,故选C。
2016-2017学年河北省曲周县第一中学高二下学期期末考试数学(文)试题(解析版)
河北省曲周县第一中学2016-2017学年高二下学期期末考试数学(文)试题一、选择题1.下列关于残差的叙述正确的是( ) A. 残差就是随机误差 B. 残差就是方差 C. 残差都是正数D. 残差可用来判断模型拟合的效果 【答案】D【解析】试题分析:残差可用来判断模型拟合的效果,故选D. 【考点】残差.2.不等式22x x ->-的解集是( )A. (),2-∞B. (),-∞+∞C. ()2,+∞D. ()(),22,-∞⋃+∞ 【答案】A【解析】因为22x x ->-,所以202x x -<∴< ,选A.3.“因为对数函数log a y x =是增函数,而是13log y x =对数函数,所以13log y x =是增函数”,上面推理错误的是( )A. 大前提错导致结论错误B. 小前提错导致结论错误C. 推理形式错导致结论错误D. 大前提和小前提都错导致结论错误 【答案】A【解析】试题分析:大前提错误,只有a>1时 ,对数函数log a y x =是增函数。
故选A 。
【考点】本题主要考查演绎推理的意义,“三段论”推理一般形式。
点评:“三段论”是演绎推理的一般形式,包括:大前提——已知的一般原理;小前提,所研究的特殊情况;结论——根据一般原理,对特殊情况做出的判断。
4.复数3i i 1z =-,则其共轭复数z 在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】C 【解析】∵i 1i i 12z --+==-,其共轭复数为1i 2z --=,对应点为1122⎛⎫-- ⎪⎝⎭,在第三象限,故选C .5.如图是“集合”的知识结构图,如果要加入“子集”,则应该放在( )A. “集合的概念”的下位B. “集合的表示”的下位C. “基本关系”的下位D. “基本运算”的下位 【答案】C 【解析】试题分析:子集表示的是集合与集合之间的关系,所以应放在基本关系的下面. 【考点】集合的概念 6.参数方程2{x cos y sin θθ==(θ为参数)和极坐标方程6cos ρθ=-所表示的图形分别是( )A. 圆和直线B. 直线和直线C. 椭圆和直线D. 椭圆和圆 【答案】D【解析】2{ x cos y sin θθ==2214x y ⇒+= 为椭圆;6cos ρθ=-2226cos 6x y x ρρθ⇒=-⇒+=- 为圆,所以选D.7.复数()51i 2z +=,则z =( )A. 1B.C. 2D. 【答案】D【解析】因为()51i 2z +=,所以z =55|1|22i +==,选D.8.用反证法证明命题:“若()2f x x px q =++,那么()1f , ()2f , ()3f 中至少有一个不小于12”时,反设正确的是( ) A. 假设()1f , ()2f , ()3f 至多有两个小于12 B. 假设()1f , ()2f , ()3f 至多有一个小于12C. 假设()1f , ()2f , ()3f 都不小于12D. 假设()1f , ()2f , ()3f 都小于12【答案】D【解析】()1f , ()2f , ()3f 中至少有一个不小于()f x 的反面为: ()1f ,()2f , ()3f 都小于12,所以选D. 9.某医疗研究所为了检验新开发的流感疫苗对甲型H1N1流感的预防作用,把1000名注射了疫苗的人与另外1000名未注射疫苗的人的半年的感冒记录作比较,提出假设0H :“这种疫苗不能起到预防甲型H1N1流感的作用”,并计算出()2 6.6350.01P X ≥≈,则下列说法正确的是( )A. 这种疫苗能起到预防甲型H1N1流感的有效率为1%B. 若某人未使用该疫苗,则他在半年中有99%的可能性得甲型H1N1C. 有1%的把握认为“这种疫苗能起到预防甲型H1N1流感的作用”D. 有99%的把握认为“这种疫苗能起到预防甲型H1N1流感的作用” 【答案】D【解析】试题分析:根据线性回归和线性相关系数的知识可知答案A ,B ,D 都是错误的,应选C.【考点】线性相关系数的知识及运用.10.如果关于x 的不等式12x x k +++≥,对于x R ∀∈恒成立,则实数k 的取值范围是( )A. [)2,+∞B. ()1,-+∞C. (],1-∞ D. ()3,8 【答案】C【解析】由题意得12min x x k +++≥(),因为12x x +++ 121x x ≥+--= ,所以1k ≤ ,选C.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.11.若曲线230{130x tsin y tsin =-︒=-+︒(t 为参数)与曲线ρ=B , C 两点,则BC 的值为( )A. B. C. D. 【答案】D【解析】由230{130x tsin y tsin =-︒=-+︒得()12,10y x x y +=--+-= ,由ρ=得228x y +=,因此BC =,选D.点睛:1.将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换法. 2.把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响.3.直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可12.在一次国际学术会议上,来自四个国家的五位代表被安排坐在一张圆桌,为了使他们能够自由交谈,事先了解到的情况如下: 甲是中国人,还会说英语. 乙是法国人,还会说日语. 丙是英国人,还会说法语. 丁是日本人,还会说汉语. 戊是法国人,还会说德语.则这五位代表的座位顺序应为( ) A. 甲丙丁戊乙 B. 甲丁丙乙戊C. 甲乙丙丁戊D. 甲丙戊乙丁【答案】D【解析】试题分析:这道题实际上是一个逻辑游戏,首先要明确解题要点:甲乙丙丁戊5个人首尾相接,而且每一个人和相邻的两个人都能通过语言交流,而且4个备选答案都是从甲开始的,因此,我们从甲开始推理.思路一:正常的思路,根据题干来作答.甲会说中文和英语,那么甲的下一邻居一定是会说英语或者中文的,以此类推,得出答案.思路二:根据题干和答案综合考虑,运用排除法来解决,首先,观察每个答案中最后一个人和甲是否能够交流,戊不能和甲交流,因此,B,C不成立,乙不能和甲交流,A错误,因此,D正确.【考点】演绎推理.二、填空题13.某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是__________小时.【答案】11【解析】A 到E 的时间,为2+4=6小时,或5小时, A 经C 到D 的时间为3+4=7小时, 故A 到F 的最短时间就为9小时, 则A 经F 到G 的时间为9+2=11小时, 即组装该产品所需要的最短时间是11小时14.设11Z i =+, 21Z i =-+,复数1Z 和2Z 在复平面内对应点分别为A 、B , O 为原点,则AOB ∆的面积为__________. 【答案】略 【解析】略15.已知R a ∈,若关于x 的方程2210x x a a -+++=有实根,则a 的取值范围是__________. 【答案】【解析】试题分析:由已知得, ()()22410a a ∆=--++≥,即11a a ++≤,所以2111,10a a a a +≤++≤-≤≤,故答案为[]1,0-.【考点】不等式选讲.16.德国数学家科拉茨1937年提出一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n );如果n 是奇数,则将它乘3加1(即31n +),不断重复这样的运算,经过有限步后,一定可以得到 1.对于科拉茨猜想,目前谁也不能证明。
河北省曲周县高二数学下学期期末考试试题 文(扫描版)
河北省曲周县2016-2017学年高二数学下学期期末考试试题文(扫描版)答案1.D2.A3.A4.C5.C6.D7.B 8.D9.D10.C11.D12.D,因此,B,C不成立,乙不能和甲交流,A错误,因此,D正确.13.14.115.[1,0]16.7【解答】解:如果正整数n按照上述规则施行变换后的第9项为1,则变换中的第8项一定是2,则变换中的第7项一定是4,变换中的第6项可能是1,也可能是8;变换中的第5项可能是2,也可是16,变换中的第5项是2时,变换中的第4项是4,变换中的第3项是1或8,变换中的第2项是2或16,变换中的第5项是16时,变换中的第4项是32或5,变换中的第3项是64或10,变换中的第2项是20或3,变换中第2项为2时,第1项为4,变换中第2项为16时,第1项为32或5,变换中第2项为3时,第1项为6,变换中第2项为20时,第1项为40,变换中第2项为21时,第1项为42,变换中第2项为128时,第1项为256,则n的所有可能的取值为4,5,6,32,40,42,256,共7个,故答案为:7.17.【考点】A2:复数的基本概念.【分析】可求得+z2=+(a2+2a﹣15)i,利用其虚部为0即可求得实数a的值.【解答】解:∵z1=+(10﹣a2)i,z2=+(2a﹣5)i,∴+z2是=[+(a2﹣10)i]+[ +(2a﹣5)i]=(+)+(a2﹣10+2a﹣5)i=+(a2+2a﹣15)i,∵+z2是实数,∴a2+2a﹣15=0,解得a=﹣5或a=3.又分母a+5≠0,∴a≠﹣5,故a=3.18.【考点】F1:归纳推理;F4:进行简单的合情推理.【分析】(I)先分别观察给出正方体的个数为:1,1+4,1+4+8,…从而得出f(5);(II)将(I)总结一般性的规律:f(n+1)与f(n)的关系式,再从总结出来的一般性的规律转化为特殊的数列再求解即得.【解答】解:(Ⅰ)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,∴f(2)﹣f(1)=4=4×1.f(3)﹣f(2)=8=4×2,f(4)﹣f(3)=12=4×3,f(5)﹣f(4)=16=4×4∴f(5)=25+4×4=41.…(Ⅱ)由上式规律得出f(n+1)﹣f(n)=4n.…∴f(2)﹣f(1)=4×1,f(3)﹣f(2)=4×2,f(4)﹣f(3)=4×3,…f(n﹣1)﹣f(n﹣2)=4•(n﹣2),f(n)﹣f(n﹣1)=4•(n﹣1)…∴f(n)﹣f(1)=4[1+2+…+(n﹣2)+(n﹣1)]=2(n﹣1)•n,∴f(n)=2n2﹣2n+1.…19.(Ⅰ)错误!未找到引用源。
2016-2017年河北省邯郸市曲周一中高二(下)第一次月考数学试卷(文科)(解析版)
第 3 页(共 14 页)
数学 成绩 物理 成绩
95
75
80
94
92
65
67
84
98
71
90
63
72
87
91
71
58
82
92
81
若单科成绩 85 以上(含 85 分) ,则该科成绩优秀. 序号 数学 成绩 物理 成绩 (1)根据上表完成下面的 2×2 的列联表(单位:人) 数学成绩优秀 数学成绩不优秀 物理成绩优秀 物理成绩不优秀 合计 (2)能否判断是否有 99%的把握性认为,学生的数学成绩与物理成绩有关系? 22. (12 分)已知函数 f(x)=lnx,g(x)= ax +bx,a≠0. (1)若 b=2,且函数 h(x)=f(x)﹣g(x)存在单调递减区间,求 a 的取值范围; (2)当 a=3,b=2 时,求函数 h(x)=f(x)﹣g(x)的取值范围.
2 2
19. (12 分)用适当方法证明:已知:a>0,b>0,求证:
20. (12 分)已知函数
(x∈R) ,
(Ⅰ)求函数 f(x)的最小值; (Ⅱ)已知 m∈R,命题 p:关于 x 的不等式 f(x)≥m +2m﹣2 对任意 x∈R 恒成立;命题 q: 函数 y=(m ﹣1) 是增函数.若“p 或 q”为真, “p 且 q”为假,求实数 m 的取值范围. 21. (12 分)某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二 年级 20 名学生某次考试成绩如表所示: 序号 1 2 3 4 5 6 7 8 9 10
2
11 67
12 93
13 64
14 78
15 77
2017-2018学年河北省曲周县第一中学高二下学期期末考试数学试题-解析版
1绝密★启用前河北省曲周县第一中学2018学年高二下学期期末考试数学试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人 得分一、单选题1.已知集合,,则( )A.B.C.D.【答案】D【解析】分析:先求集合B ,再根据交集定义求结果. 详解:因为,所以,所以=,选D.点睛:集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 2.若命题,是真命题,则实数的取值范围是( ) A.B.C.D.【答案】B【解析】分析:先整理不等式,根据二次项系数是否为零分类讨论,最后根据二次函数图像确定实数的取值范围. 详解:因为,所以当时,,不合题意,当时,因此选B.点睛:研究形如恒成立问题,注意先讨论的情况,再研究时,开口方向,判别式正负,对称轴与定义区间位置关系,列不等式解得结果.3.存在实数,使成立的一个必要不充分条件是( )A.B.C.D.【答案】D【解析】分析:先求成立充要条件,即的最小值,再根据条件之间包含关系确定选择.详解:因为存在实数,使成立,所以的最小值,因为,所以,因为,因此选D.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.4.下列有关命题的说法正确的是( )A. “”是“”的充分不必要条件B. “时,”的否命题为真命题C. 直线,,的充要条件是D. 命题“若,则”的逆否命题为真命题2【答案】D【解析】A选项不正确,由于可得,故“”是“”的必要不充分条件;B 选项不正确,“时,”的逆命题为“当时,”,是假命题,故其否命题也为假;C 选项不正确,若两直线平行,则,解得;D选项正确,角相等时函数值一定相等,原命题为真命题,故其逆否命题为真,故选:D.5.设函数是定义在上的奇函数,且当时,,记,,,则的大小关系为( )A.B.C.D.【答案】A【解析】分析:根据x>0时f(x)解析式即可知f(x)在(0,+∞)上单调递增,由f(x )为奇函数即可得出,然后比较的大小关系,根据f (x)在(0,+∞)上单调递增即可比较出a,b,c的大小关系.详解:x>0时,f(x)=lnx;∴f(x)在(0,+∞)上单调递增;∵f(x)是定义在R上的奇函数;=;,;∴;∴;∴a<b<c;即c>b>a.故选:A.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增3减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小.6.已知定义在上的偶函数在上单调递增,则函数的解析式不可能是( )A.B.C.D.【答案】B【解析】分析:根据函数为偶函数,得,得到在上单调递增,即可作出判断,得到结论.详解:因为为偶函数,则,解得,所以在上单调递增,函数在上单调递增,只有在上单调递减,故选B.点睛:本题考查了函数的基本性质的应用,解答中涉及到利用函数奇偶性,求得值,进而得到函数的单调性,利用基本初等函数的性质是解答的关键,着重考查分析问题和解答问题的能力.7.已知,若为奇函数,且在上单调递增,则实数的值是( )A.B.C.D.【答案】B【解析】分析:根据幂函数性质确定实数的值.详解:因为为奇函数,所以因为,所以因此选B.点睛:幂函数的性质决定于幂指数,当时,幂函数在上单调递增,当4时,幂函数在上单调递减.令,则奇偶性确定幂函数奇偶性.8.设实数,,,则有( )A.B.C.D.【答案】A【解析】分析:利用指数函数、对数函数的单调性及中间量比较大小.详解:∵a=log23>log22=1,0<b=<()0=1,c=<=0,∴a>b>c.故选:A.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小.9.已知,则的大小关系为( )A.B.C.D.【答案】A【解析】分析:由,,,可得,,则,利用做差法结合基本不等式可得结果.详解:,,则,即,综上,故选A.56点睛:本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.10.已知,,则是的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】A【解析】分析:首先根据指数函数的单调性,结合幂的大小,得到指数的大小关系,即,从而求得,利用集合间的关系,确定出p,q 的关系.详解:由得,解得,因为是的真子集,故p 是q 的充分不必要条件,故选A.点睛:该题考查的是有关充分必要条件的判断,在求解的过程中,首先需要判断命题q 为真命题时对应的a 的取值范围,之后借助于具备真包含关系时满足充分非必要性得到结果. 11.设函数,满足,若函数存在零点,则下列一定错误的是( )A.B.C.D.【答案】C【解析】分析:先根据确定符号取法,再根据零点存在定理确定与可能关系.详解:单调递增,因为,所以或,根据零点存在定理得或或,因此选C.点睛:确定零点往往需将零点存在定理与函数单调性结合起来应用,一个说明至少有一个,一个说明至多有一个,两者结合就能确定零点的个数.12.设,均为实数,且,,,则( )A.B.C.D.【答案】B【解析】分析:将题目中方程的根转化为两个函数图像的交点的横坐标的值,作出函数图像,根据图像可得出的大小关系.详解:在同一平面直角坐标系中,分别作出函数的图像由图可知,故选B.点睛:解决本题,要注意①方程有实数根②函数图像与轴有交点③函数有零点三者之间的等价关系,解决此类问题时,有时候采用“数形结合”的策略往往能起到意想不到的效果.78第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人 得分二、填空题13.已知命题,是假命题,则实数的取值范围是__________.【答案】.【解析】命题是假命题,即“ “是真命题①. 当时,①不成立,当时,要使①成立,必须 ,解得 ,故实数的取值范围为 .故答案为.14.若函数()()2ln f x x x a x =++为偶函数,则a = . 【答案】1【解析】试题分析:由函数()()2ln f x x x a x =++为偶函数⇒函数()()2ln g x x a x =++为奇函数,()0ln 01g a a ==⇒=.考点:函数的奇偶性.【方法点晴】本题考查导函数的奇偶性以及逻辑思维能力、等价转化能力、运算求解能力、特殊与一般思想、数形结合思想与转化思想,具有一定的综合性和灵活性,属于较难题型.首先利用转化思想,将函数()()2ln f x x x a x =++为偶函数转化为 函数()()2ln g x x a x =++为奇函数,然后再利用特殊与一般思想,取()0ln 01g a a ==⇒=.15.已知集合,,则__________.【答案】 (或用区间表示为.【解析】分析:先根据真数大于零得集合A,再解一元二次不等式得集合B,最后根据交集定义求结果.详解:因为,所以因为,所以因此.点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.16.已知实数且,函数在上单调递增,则实数的取值范围构成的集合为__________.【答案】.【解析】分析:先确定各段单调递增,再考虑结合点处也单调递增,解得实数的取值范围.详解:因为在上单调递增,所以因此实数的取值范围构成的集合为.点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.910评卷人 得分三、解答题17.已知函数(1)若不等式的解集为,求实数的值;(2)若不等式对一切实数恒成立,求实数的取值范围.【答案】(1).(2) .【解析】分析:(1)根据二次不等式的解集与二次方程的根的关系可得参数; (2)这个不等式恒成立,首先讨论时,能不能恒成立,其次在时,这是二次不等式,结合二次函数的性质可求解.详解:(1)的解集为,则的解为和2,且,∴,解得. (2)由,得,若a=0,不等式不对一切实数x 恒成立,舍去,若a≠0,由题意得,解得:,故a 的范围是:点睛:三个二次(一元二次方程、一元二次不等式、二次函数)之间的关系是我们必须掌握的知识:判别式 Δ=b 2-4acΔ>0 Δ=0 Δ<011二次函数y =ax 2+bx +c (a>0)的图象一元二次方程ax 2+bx +c=0 (a >0)的根有两相异实根 x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-没有实数根ax 2+bx +c >0(a >0)的解集{x |x <x 1或x >x 2} {x |x ≠x 1} Rax 2+bx +c <0(a >0)的解集{x |x 1<x <x 2} ∅ ∅18.已知命题:函数在上是减函数,命题,.(1)若为假命题,求实数的取值范围; (2)若“或”为假命题,求实数的取值范围.【答案】(1) .(2).【解析】分析:第一问利用命题的否定和命题本身是一真一假的,根据命题q 是假命题,得到命题的否定是真命题,结合二次函数图像,得到相应的参数的取值范围;第二问利用“或”为假命题,则有两个命题都是假命题,所以先求命题p 为真命题时参数的范围,之后求其补集,得到m 的范围,之后将两个命题都假时参数的范围取交集,求得结果.详解:(1)因为命题,所以:,,当为假命题时,等价于为真命题,即在上恒成立,故,解得所以为假命题时,实数的取值范围为. (2)函数的对称轴方程为,当函数在上是减函数时,则有即为真时,实数的取值范围为“或”为假命题,故与同时为假,则,综上可知,当“或”为假命题时,实数的取值范围为点睛:该题考查的是有关利用命题的真假判断来求有关参数的取值范围,在解题的过程中,需要明确复合命题的真值表,以及二次函数的图像和性质要非常熟悉.19.已知函数.(1)判断的奇偶性并予以证明;(2)求不等式的解集.【答案】(1)奇函数,证明见解析.(2).【解析】分析:(1)先求定义域,判断是否关于原点对称,再研究与关系,根据奇偶性定义判断,(2)先根据对数函数单调性化简不等式,再解分式不等式得结果.详解:(1)要使函数有意义.则,解得.故所求函数的定义域为.由(1)知的定义域为,设,则.12且,故为奇函数.(2)因为在定义域内是增函数,因为,所以,解得.所以不等式的解集是.点睛:判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数)是否成立.20.在平面直角坐标系中,已知直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线与曲线交于两点.(1)求直线的普通方程和曲线的直角坐标方程;(2)已知点的极坐标为,的值.【答案】(1),.(2).【解析】分析:(1)先根据加减消元法得直线的普通方程,再根据将曲线的极坐标方程化为直角坐标方程;(2)先求P直角坐标,再设直线的参数方程标准式,代入曲线的直角坐标方程,根据参数几何意义以及利用韦达定理得结果.详解:(1)的普通方程为: ;又,即曲线的直角坐标方程为:13(2)解法一: 在直线上,直线的参数方程为(为参数),代入曲线的直角坐标方程得,即,.解法二:,,,.点睛:直线的参数方程的标准形式的应用过点M0(x0,y0),倾斜角为α的直线l 的参数方程是.(t是参数,t可正、可负、可为0)若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0+t2cos α,y0+t2sin α).(2)|M1M2|=|t1-t2|.(3)若线段M1M2的中点M所对应的参数为t,则t =,中点M到定点M0的距离|MM0|=|t|=.(4)若M0为线段M1M2的中点,则t1+t2=0.21.已知在上有意义,单调递增且满足.(1)求证:;(2)求的值;(3)求不等式的的解集14【答案】(1)证明见解析;(2)0;(3).【解析】分析:(1)令y=x,得,(2)令y=x=1,得的值;(3)先探求,再根据函数单调性转化不等式组,解得结果.详解:(1)∵(大前提)∴2)==.(结论)(2)∵=12)=2,(小前提)∴.(结论)(3)∵,(小前提)且函数在(0,+∞)上单调递增,(大前提)∴解得(结论)点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.22.在平面直角坐标系中,直线经过点,其倾斜角为,以原点为极点,以轴为非负半轴为极轴,与坐标系取相同的长度单位,建立极坐标系,设曲线的极坐标方程为.(1)若直线与曲线有公共点,求倾斜角的取值范围;(2)设为曲线上任意一点,求的取值范围.【答案】(1).15(2).【解析】分析:(1)利用互化公式即可把曲线C的极坐标方程ρ2﹣2ρcosθ﹣3=0化为直角坐标方程.直线l 的参数方程为(t为参数),代入曲线C的直角坐标方程可得t2﹣8tcosα+12=0,根据直线l与曲线C有公共点,可得△≥0,利用三角函数的单调性即可得出.(2)曲线C的方程x2+y2﹣2x﹣3=0可化为(x﹣1)2+y2=4,参数方程为,(θ为参数),设M(x,y)为曲线上任意一点,可得x+y=1+2cosθ+2sinθ,利用和差公式化简即可得出取值范围.详解:(1)将曲线的极坐标方程化为直角坐标方程为,直线的参数方程为(为参数),将参数方程代入,整理,∵直线与曲线有公共点,∴,∴,或,∵,∴的取值范围是(2)曲线的方程可化为,其参数方程为(为参数),∵为曲线上任意一点,∴,∴的取值范围是点睛:解答解析几何中的最值问题时,对于一些特殊的问题,可根据几何法求解,以增加形象性、减少运算量.16。
河北省邯郸市曲周县第一中学2015-2016学年高二下学期
曲周一中高二期末考试英语答案【答案】1—5 ACBCA 6—10 CBACC 11—15 ABACA 16—20 CCBCB 21----23 B C A 24----27 C A D D 28-----32 C A B A D 33----35 C A D36----40 GBEDF41----45 C B A A A 46---50 D D A C A 51---55 B C A C A 56---60 B D B D C61 to improve 62 less 63 difficulties 64 finding 65 are66 properly 67 concerned 68 that 69 for 70 the短文改错As we all know, travelling can be an experience. Let me give you some that you have to pay attention. You can find out more about yourdestination by the Internet before you set out. You needn’t take too cash.it can be very convenient to pay in cash, using cheques is much more reliable. In, it will be wise of you to take an umbrella in case it should rain. And if you are to travel abroad, you’d better understand the cultural diversity. Keep in mind that being polite in foreign countries can help you a wonderful trip.书面表达范文Dear Sir/Madam,My name is Li Hua. I would like to work as a volunteer for the 2016 Summer Olympic Games in Brazil.I am a boy/girl of 17 and I am studying at high school now. I have a good commandof English and I can talk with foreign tourists in English freely. Besides, I havedeep love for sports and I can always get along with others easily, which is especially essential for a volunteer. In addition, I’m ready to give help whenever it is needed.My promise is to offer the best service possible to the people at the Games.I believe I can do a good job for the G ames. Please consider my request, and I’m looking forward to your early reply.Yours faithfully,Li Hua答案解析A篇试题分析: 本文是布告类阅读,讲述的是莎士比亚故居和他的作品;21.B 考查细节理解题。
河北省邯郸市曲周县第一中学2015-2016学年高二下学期
曲周一中高二期末考试【答案】1. C2. C3. A4. B5. A6. D7. C8. A9. A 10. C 11. B 12. D13. (1,2).14. 215. (-,)16. [,1)17.解:(1)若设,可得,得在上恒成立.若设,其中,从而可得,即;(2)若命题为真,命题为假,则必然一真一假.当为真命题时,即在上恒成立时,则,得.又真时,所以一真一假时或,可得或,所以.18. 解:(1)当a=-时,B={x|(x-a)(x-a-4)<0}={x|<x<},A={x|<0}={x|2<x<3},则A∩B={x|2<x<}.(2)B={x|(x-a)(x-a-4)<0}={x|a<x<a+4}.因为¬p是¬q的必要不充分条件,即q是p的必要不充分条件,则A⊆B,则,即,解得-1≤a≤2.19. 解:(Ⅰ)当a=0时,,∴由f(x)≥6,解得x≤-1,x≥2,∴不等式的解集是(-∞,-1]∪时,∴1,2是方程x2-3ax+2a2=0的两根.∴,解得a=1.(ⅱ)∵x2-3ax+2a2<0,∴(x-a)(x-2a)<0,∴若a>0时,此不等式解集为(a,2a),若a=0时,此不等式解集为空集,若a<0时,此不等式解集为(2a,a).(Ⅲ)f(2)=4-2ab+2a2>0在a∈上恒成立即b<a+在a∈上恒成立;又∵a+,当且仅当a=,即a=时上式取等号.∴b,实数b的取值范围是(-∞,)【解析】1.解:由题意:M={x|-1<x<1},N={x|log2x<1}={x|0<x<2},则M∩N={x|0<x<1},故选:C.求出N中不等式的解集确定出N,找出M与N的交集即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.解:∵f(x)=,∴f(x)+f(-x)=+=,∵f(a)=,∴f(a)+f(-a)=2,即f(-a)=2-f(a)=2-,故选:C根据函数表达式,证明f(x)+f(-x)=2即可得到结论.本题主要考查函数值的计算,根据条件证明f(x)+f(-x)=2是解决本题的根据.3.【分析】本题考查充要条件的判断,先求出不等式的等价条件,根据充分必要条件的定义进行判断即可.【解析】解:由得,要使“0<x<1”是“(”的充分不必要条件,故选A.4.解:∵f(1+x)=f(1-x),∴函数f(x)关于x=1对称,∵任意的x1,x2>1(x1≠x2),有,∴函数在x>1时单调递增,∵f()=f(1-)=f(1+)=f(),∴f(2)<f()<f(3),即b<a<c,故选:B.由条件f(1+x)=f(1-x),可知函数f(x)关于x=1对称,由,可知函数在x>1时单调递增,然后根据单调性和对称性即可得到a,b,c的大小.本题主要考查函数值的大小比较,利用条件求出函数的单调性和对称性,利用单调性和对称性之间的关系是解决本题的关键.5.解:偶函数f (x)在上是减函数,∴其在(-2,0)上是增函数,由此可以得出,自变量的绝对值越小,函数值越大∴不等式f(1-m)<f(m)可以变为解得m∈上是减函数,在是增函数,由此可以得出函数在上具有这样的一个特征--自变量的绝对值越小,其函数值就越小,由此抽象不等式f(1-m)<f(m)可以转化为,解此不等式组即为所求.本题考查偶函数与单调性,二者结合研究出函图象的变化趋势,用此结论转化不等式,这是解本题的最合适的办法,中档题.6.解:由题意得:,解得:≤a≤,故选:D.结合二次函数,指数函数的性质,得到不等式组,解出即可.本题考查了二次函数的性质,指数函数的性质,考查了函数的单调性,是一道中档题.7.解:yw 函数f(x)是奇函数,所以f(-x)=-f(x),对于A,f(-x)•sin(-x)=-f(x)(-sinx)=f(x)•sinx,是偶函数;对于B,f(-x)+cos(-x)=-f(x)+cosx≠f(x)+cosx,-f(x)+cosx≠-,是非奇非偶的函数;对于C,f((-x)2)•sin(-x)=-f(x2)•sinx是奇函数;对于D,f((-x)2)+sin(-x)=f(x2)-sinx≠f(x2)+sinx,f(x2)-sinx≠f(x2)+sinx 是非奇非偶的函数;故选C.四个函数定义域都是R,所以只要利用奇偶函数的定义,判断-x与x的函数值的关系即可.本题考查了函数奇偶性的判断;在定义域关于原点对称的前提下,只要判断-x与x的函数值的关系即可.8.解:根据函数cosx在x∈(0,2π),令t=cosx>0,在x∈(0,2π)时函数t=cosx>0的减区间为(0,),则由复合函数同增异减的性质可得,函数cosx在x∈(0,2π)时的单调递增区间是(0,),故选:A.令t=cosx>0,则由题意可得f(x)=,且函数t单调递减,从而求得函数t的减区间.本题主要考查余弦函数的单调性,余弦函数的在各个象限中的符号,属于中档题.9.解:∵f(x)==+,∴f(x)≥2,(当且仅当=,即x2=1-c有解时,等号成立),故1-c≥0,解得,c≤1;故选:A.化简f(x)==+,从而利用基本不等式可得1-c≥0,从而解得.本题考查了基本不等式的应用及函数的最值的求法.10.解:x2+ax+1≥0对于一切x∈(0,〕成立⇔a≥对于一切x∈(0,〕成立⇔a对于一切x∈(0,〕成立∵y=在区间(0,〕上是增函数∴<--2=-∴a≥故选C将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,这是解决恒成立问题的常用解法本题综合考查了不等式的应用,特别考查了恒成立问题的解法,解题时要思路开阔,认真细致11.解:若函数f(x)是圆O的“和谐函数”,则函数的图象经过圆心且关于圆心对称,由圆O:x2+y2=16的圆心为坐标原点,故函数f(x)是奇函数,由于A中f(x)=x+4x3,C中f(x)=tan,D中f(x)=1n都为奇函数,而f(x)=e x+e-x 为偶函数,不满足要求.故选B由“和谐函数”的定义及选项知,该函数若为“和谐函数”,其函数须为过原点的奇函数,由此逐项判断即可得到答案本题考查的知识点是函数的奇偶性,其中根据新定义圆O的“和谐函数”判断出满足条件的函数为奇函数是解答的关键.12.解:结合函数的草图易知a≤-1,∵f(a)=e a,f(b)=2b-1,且f(a)=f(b),∴e a=2b-1,得b=,∴2a+b=+2a,又∵函数y=+2x,(x≤-1)单调递减,∴y<f(-1)=,∴实数2a+b的范围是(-∞,),故选:D.结合函数的草图易知a≤-1,2a+b=+2a,由函数y=+2x的单调性,从而求出实数2a+b的范围.本题考查了函数的单调性,考查换元思想,本题属于中档题.13.解:函数的定义域为(0,+∞)∵f′(x)=+2x ln2>0,∴f(x)在(0,+∞)上是增函数,∵f(x2+2)<f(3x),∴x2+2<3x,∴1<x<2,∴实数X的取值范围是(1,2).故答案为:(1,2).求导确定函数在定义域上是单调的,再将不等式转化为关于x的一元二次不等式,解之得实数x的取值范围.此题是知函数值的大小来求自变量的取值范围,就需知函数的单调性,用导数来判断.14.解∵函数f(x)=的图象关于原点对称,∴函数f(x)是奇函数.f(-x)=-f(x)∵f(-x)=,-f(x)=∴a=-1,b=3,∴a+b=-1+3=2故答案为:2.根据奇函数的性质,问题得以解决.本题考查了奇函数的性质,奇函数的图象关于原点对称,属于基础题.15.解:不等式>m2+1恒成立,即为()min>m2+1恒成立,令x-1=t(t>0),则x=t+1,即有==t++2≥2+2=6,当且仅当t=2,即x=3,取得最小值6,则m2+1<6,解得-<m<.故答案为:(-,).由题意可得()min>m2+1恒成立,运用换元法和基本不等式,求得最小值,解不等式即可得到m的范围.本题考查不等式恒成立问题的解法,考查函数的最值的求法,注意运用换元法和基本不等式,考查运算能力,属于中档题.16.解:由x2-log m x<0,得x2<log m x,在同一坐标系中作y=x2和y=log m x的草图,如图所示要使x2<log m x在(0,)内恒成立,只要y=log m x在(0,)内的图象在y=x2的上方,于是0<m<1∵时,∴只要时,,∴,即.又0<m<1,∴.即实数m的取值范围是.把已知的不等式变形,转化为一个二次函数和一个对数函数的图象高低问题,然后列出不等式求解m的取值范围.本题考查了恒成立问题,考查了数形结合的解题思想方法和数学转化思想方法,正确画出图象是解答该题的关键,是中档题.17.(1)相当于恒成立问题,转化为找最小值;(2)题意等价于“p、q一真一假”,分“p真q假”和“p假q真”两种情况讨论.18.(1)当a=-时求出集合A,B,根据集合的基本运算即可.(2)然后利用¬p是¬q的必要不充分条件,即q是p的必要不充分条件,进行确定范围.本题主要考查充分条件和必要条件的应用,将¬p是¬q的必要不充分条件转化为q是p的必要不充分条件,是解决本题的关键.19.(Ⅰ)把a=0代入函数解析式,写出分段函数,求解不等式f(x)≥6得答案;(Ⅱ)利用绝对值的不等式变形,得到|2x+1|+|2x-3|≥|2x+1-(2x-3)|=4,进一步得到不等式4+3a≥a2求得a的范围.本题考查了恒成立问题,考查了分类讨论的数学思想方法,训练了绝对值不等式的解法,是中档题.20.(1)利用函数是奇函数,建立方程关系解a,b.(2)利用定义法证明函数的单调性.(3)利用函数的奇偶性将不等式转化为f(mx2+x-3)>-f(x2-mx+3m)=f(-x2+mx-3m),然后利用单调性解不等式.本题主要考查函数奇偶性的应用,利用定义法证明函数的单调性,以及函数单调性和奇偶性的综合应用,利用函数的奇偶性将不等式进行转化是解决本题的关键.21.(1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)由题意可得|x+1|+2|x-1|≤a(x+3)能成立.设g(x)=|x+1|+2|x-1|,由题意可得f (x)的图象有一部分位于直线线y=a(x+3)的下方.求得PA、BC的斜率,数形结合求得a 的范围.本题主要考查绝对值不等式的解法,函数的能成立问题,体现了转化、分类讨论、数形结合的数学思想,属于中档题.22.(Ⅰ)根据一元二次不等式的解法即可得到结论.(Ⅱ)将不等式恒成立进行转化,利用基本不等式求出最值即可.本题主要考查一元二次不等式的解法以及不等式恒成立问题,利用基本不等式将参数进行分类,求出函数的最值是解决本题的关键.。
河北省曲周县高二数学下学期第一次月考试题文(扫描版)
河北省曲周县2016—2017学年高二数学下学期第一次月考试题文(扫
描版)
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考答案
1.D
2.A
3.A
4.C
5.C
6.D
7.B
8.D
9.D
10.C
11.D
12.D
13.
14.1
15.
16.7
17.【考点】复数的基本概念.
【分析】可求得
+z 2=+(a 2+2a ﹣15)i ,利用其虚部为0即可求得实数a 的值.
解:∵z 1=
+(10﹣a 2)i ,z 2=+(2a ﹣5)i , ∴
+z 2是=[+(a 2﹣10)i]+[ +(2a ﹣5)i] =(
+)+(a 2﹣10+2a ﹣5)i =
+(a 2+2a ﹣15)i , ∵+z 2是实数,
∴a 2+2a ﹣15=0,解得a=﹣5或a=3.
[1,0]
又分母a+5≠0,
∴a≠﹣5,
故a=3.
18.【考点】归纳推理;进行简单的合情推理.
【分析】(I)先分别观察给出正方体的个数为:1,1+4,1+4+8,…从而得出f(5);(II)将(I)总结一般性的规律:f(n+1)与f(n)的关系式,再从总结出来的一般性的规律转化为特殊的数列再求解即得.
解:(Ⅰ)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,
∴f(2)﹣f(1)=4=4×1.
f(3)﹣f(2)=8=4×2,
f(4)﹣f(3)=12=4×3,
f(5)﹣f(4)=16=4×4
∴f(5)=25+4×4=41.…
(Ⅱ)由上式规律得出f(n+1)﹣f(n)=4n.…
∴f(2)﹣f(1)=4×1,
f(3)﹣f(2)=4×2,
f(4)﹣f(3)=4×3,
…
f(n﹣1)﹣f(n﹣2)=4•(n﹣2),
f(n)﹣f(n﹣1)=4•(n﹣1)…
∴f(n)﹣f(1)=4[1+2+…+(n﹣2)+(n﹣1)]=2(n﹣1)•n,
∴f(n)=2n2﹣2n+1.…
19.(Ⅰ)由得该曲线为椭圆;(Ⅱ)
20.【考点】绝对值不等式的解法.
【分析】(Ⅰ)分类讨论以去掉绝对值号,即可解关于x的不等式f()<6;(Ⅱ)作出函数的图象,结合图象求解.
解:(1)x≤0,不等式可化为﹣x﹣x+3<6,
∴x>﹣3,∴﹣3<x≤0;
0<x<6,不等式可化为x﹣x+3<6,成立;
x≥6,不等式可化为x+x﹣3<6,∴x<9,
∴6≤x<9;
综上所述,不等式的解集为{x|﹣3<x<9};
(2)f(x)=|x|+|x﹣3|.
由题意作图如下,
k>0且直线y=kx+5k与函数f(x)的图象可以围成一个三角形,
由直线过(0,3)可得k=,由直线过(3,3)可得k=,
∴.
21.【考点】简单曲线的极坐标方程;参数方程化成普通方程.
【分析】(1)求出曲线C1:x2+y2=1.直线l的参数方程代入,得t2+2t(cosα+sinα)+1=0,由此能证明|MA|•|MB|为定值.
(2)将曲线C1上的任意点(x,y)伸缩变换后得C2:.由此能求出曲线C2的
内接矩形ABCD周长的最大值.
【解答】证明:(1)∵曲线C1:p=1,∴曲线C1:x2+y2=1.
联立,得t2+2t(cosα+sinα)+1=0,
∴|MA|•|MB|=|t1t2|=1.
解:(2)将曲线C1上的任意点(x,y)作伸缩变换,
伸缩变换后得C2:.
其参数方程为:.
不妨设点A(m,n)在第一象限,
由对称性知:周长为=,(时取等号),
∴曲线C2的内接矩形ABCD周长的最大值为8.
22.【考点】独立性检验.
【分析】(Ⅰ)根据条件得2×2列联表,求出K2,与临界值比较,即可得出结论;
(Ⅱ)利用列举法确定基本事件,即可得出结论.
【解答】(Ⅰ)解:根据条件得2×2列联表:
年龄不低于45岁的人数年龄低于45岁的人数合计
赞成10 27 37
不赞成10 3 13
合计20 30 50
…
根据列联表所给的数据代入公式得到:…所以有99%的把握认为“使用微信交流”的态度与人的年龄有关;…
(Ⅱ)解:按照分层抽样方法可知:[55,65)抽取:(人);
[25,35)抽取:(人)…
在上述抽取的6人中,年龄在[55,65)有2人,年龄[25,35)有4人.
年龄在[55,65)记为(A,B);年龄在[25,35)记为(a,b,c,d),则从6人中任取3名的所有情况为:(A,B,a)、(A,B,b)、(A,B,c)、(A,B,d)、(A,a,b)、(A,a,c)、(A,a,d)、(A,b,c)、(A,b,d)、(A,c,d)、(B,a,b)、(B,a,c)、(B,a,d)、(B,b,c)、(B,b,d)、(B,c,d)、(a,b,c)(a,b,d)(a,c,d)(b,c,d)共20种情况,…
其中至少有一人年龄在[55,65)岁情况有:(A,B,a)、(A,B,b)、(A,B,c)、(A,B,d)、(A,a,b)、(A,a,c)、(A,a,d)、(A,b,c)、(A,b,d)、(A,c,d)、(B,a,b)、(B,a,c)、(B,a,d)、(B,b,c)、(B,b,d)、(B,c,d),共16种情况.…记至少有一人年龄在[55,65)岁为事件A,则…
∴至少有一人年龄在[55,65)岁之间的概率为.…。