高中数学2-2-1综合法和分析法
2.2.1综合法和分析法(一)
因为;( a b )2 0 成立
a+b 所以 2
a+b ab 成立 所以 2 ab成立
思考:上述两种证法有什么异同?
相同
不同
都是直接证明 证法1 从已知条件出发,以已知的定义、公理、 定理为依据,逐步下推,直到推出要证明的结论 为止 综合法 证法2 从问题的结论出发,追溯导致结论成立的 条件,逐步上溯,直到使结论成立的条件和已知 条件吻合为止 分析法
引例:四边形ABCD是平行四边形, A
D
3 2
1 4
求证:AB=CD,BC=DA
B
证明 连结AC,因为四边形ABCD是平行四边形
所以AB//CD,BC//DA 故1 2,3 4 故 AB=CD,BC=DA 所以 ABC CDA 又AC=CA 从已知条件出发,以已知定义、公理、定理等 为依据,逐步下推,直到推出要证明的结论为 止,这种证明方法叫做综合法(顺推证法) 本题条件 已知定义 … 本题结论 已知公理 已知定理
证法一:为了证明
2 7 3 6
因为
2 7和 3 6都是正数 ,
9 2 14 9 2 18 2 14 2 18 14 18 14 18
第一高考不会估 算也不用计算器。 同学们你觉得可 以是依葫芦画瓢, 但我希望同学们 成立 你对自己提高要 求那就是心算出 开头。
因为EF⊥SC
只需证:AE⊥平面SBC 只需证:AE⊥BC
因为AE⊥SB
只需证:BC⊥平面SAB 只需证:BC⊥SA 因为AB⊥BC 只需证:SA⊥平面ABC 因为:SA⊥平面ABC成立 所以. AF⊥SC成立
分析:本题条件较多,而 且垂直关系较多,我们不 容易发现如何使用这些垂 直条件,因此利用综合法 比较困难,我们采用分析 法,
2.2.1综合法与分析法
∴ b(c2+a2) ≥ 2abc. ∴ a(b2+c2)+b(c2+a2) ≥ 4abc.
探究
思考…
这些证明过程有什么相似点?
这些证明过程都是从已知 条件和某些数学定义、公理、 定理等出发,通过推理推导出 所要的结论.
知识要 点
一般地,利用已知条件和某 些数学定义、公理、定理等,经过 一系列的推理论证,最后推导出所 要证明的结论成立,这种证明方法 叫做综合法.其特点是“由因导 果”.
2
2
2
2
2
a + c - ac = ac,
即 因此 从而
2
2
(a - c) = 0.
a=c.
A=C. ⑤
2
由 ② ③ ⑤ ,得
π A=B=C= . 3 所以△ABC为等边三角形.
注意
解决数学问题时,往往要先做语言的转 换,如把文字语言转换成符号语言,或把符 号语言转换成图形语言等.还要通过细致的分 析,把其中的隐含条件明确表示出来.
1 1 1 = + + . a b c
1 1 1 a + b + c < + + 成立. a b c
2.如图,SA⊥平面ABC,AB⊥BC,过A作SB的 垂线,垂足为E,过E作SC的垂线,垂足为F,求 证 AF⊥SC.
S
提示
此题采用分析法.
A
E
F
C B
证明:要证AF⊥SC 只需证:SC⊥平面AEF S 只需证:AE⊥SC 只需证:AE⊥平面SBC 只需证:AE⊥BC 只需证:BC⊥平面SAB A 只需证:BC⊥SA 只需证:SA⊥平面ABC 因为:SA⊥平面ABC成立 所以. AF⊥SC成立
高二数学综合法和分析法
高二数学综合法和分析法
综合法与分析法
一、教材分析
综合法与分析法作为高中数学中常用的两种基本方法,一直被学生所熟悉和应用,通过这节课的学习,学生将对这两种方法的掌握更加系统。
同时也复习了有关的其他数学知识。
二、教学目标
知识目标:让学生理解分析法与综合法的概念并能够应用。
能力目标:提高证明问题的能力。
情感、态度、价值观:养成言之有理论证有据的习惯。
三、教学重点难点
教学重点:让学生理解分析法与综合法的概念并能够应用。
教学难点:提高证明问题的能力。
四、教学方法:探究法
五、课时安排:1课时
六、教学过程
例1.已知a,b∈R+,求证:
例2.已知a,b∈R+,求证:
例3.已知a,b,c∈R,求证
课后练习与提高
.函数,若
则的所有可能值为
A.B.c.D.
.函数在下列哪个区间内是增函数
A.B.
c.D.
.设的最小值是
A.B.c.-3D.
.下列函数中,在上为增函数的是
A.B.
c.D.
.设三数成等比数列,而分别为和的等差中项,则A.B.c.D.不确定
.已知实数,且函数有最小值,则=__________。
.已知是不相等的正数,,则的大小关系是_________。
.若正整数满足,则
.设图像的一条对称轴是.
求的值;
求的增区间;
证明直线与函数的图象不相切。
0.的三个内角成等差数列,求证:
七、板书设计
八、教学反思。
2、2-2-1综合法与分析法
C.B≤C≤AD.C≤B≤A
[答案]A
[解析]≥≥,又函数f(x)=()x在(-∞,+∞)上是单调减函数,∴f()≤f()≤f().
8.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”过程应用了()
2.已知x>0,y>0,lg2x+lg8y=lg2,则+的最小值是()
A.2B.2C.4D.2
[答案]C
[解析]依题意得lg(2x·8y)=lg2,即2x+3y=2,所以x+3y=1.所以+=·(x+3y)=2++≥2+2=2+2=4,当且仅当=,即x=3y=时,等号成立.故选C.
3.设a,b∈R,且a≠b,a+b=2,则必有()
(1)证明:EF∥平面PAD;
14.设a=,b=-,c=-,则a,b,c的大小关系为________.
[答案]a>c>b
[解析]b=,c=,显然b<c,
而a2=2,c2=8-2=8-<8-=2=a2,
所以a>c.
也可用a-c=2-=->0显然成立,即a>c.
三、解答题
15.(2010·陕西文,18)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.
2.2.1综合法与分析法
一、选择题
1.设α,β,γ为平面,a,b为直线,给出下列条件:
①a⊂α,b⊂β,a∥β,b∥α;②α∥γ,β∥γ;③α⊥γ,β⊥γ;④a⊥α,b⊥β,a∥b.
其中能使α∥β一定成立的条件是()
2.2.1 综合法和分析法(人教版选修2-2)
例1:已知a>0,b>0,求证a(b2+c2)+b(c2+a2)≥4abc 1:已知a>0,b>0,求证a(b 已知a>0,b>0,求证
证明:因为b 证明:因为b2+c2
≥2bc,a>0
所以a(b2+c2)≥2abc. 所以a(b 又因为c 又因为c2+b2
≥2bc,b>0
所以b(c 所以b(c2+a2)≥ 2abc. 因此a(b 因此a(b2+c2)+b(c2+a2)≥4abc.
2
sinθ cosθ = sin β
2 2
1 - tan α 1 - tan β 求 证: = . 2 2 1 + tan α 2(1 + tan β )
11
练习. P89 EX1,EX2,EX3
12
则综合
Q2 ⇒Q3
…
Qn ⇒Q
5
例2:在△ABC中,三个内角A、B、C ABC中 三个内角A、B、C 对应的边分别为a A、B、C成 对应的边分别为a、b、c,且A、B、C成 等差数列, 成等比数列,求证△ 等差数列,a、b、c成等比数列,求证△A BC为等边三角形 为等边三角形. BC为等边三角形.
所以 a + b − 2 ab ≥ 0 所以 a + b ≥ 2 ab
a+b ≥ ab 成立 所以 2
只需证;a + b − 2 ab ≥ 0 只需证;
( a − b )2 ≥ 0 只需证; 只需证;
因为; 因为;( a − b )2 ≥ 0 成立
a+b 所以 ≥ 2
a b成立
8
北师大版高中数学选修(2-2)-1.2分析法与综合法的区别和联系
分析法与综合法的区别和联系一、知识要点:综合法与分析法是中学数学解题思想中最基本的两种方法.所谓综合法,是指“由因导果”的思想方法,即从已知条件或某些已经证明过的结论出发,不断地展开思考,去探索结论的方法.综合法的思维过程的全貌可概括为下面形式:“已知…可知1…可知2…结论”.所谓分析法,是指“执果索因”的思想方法,即从结论出发,不断地去寻找须知,直至达到已知事实为止的方法.分析法的思维过程的全貌可概括为下面形式:“结论须知1须知2…已知”;基本步骤:要证……只需证……,只需证……①“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件②“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达⑴用分析法和综合法证明不等式常要用等价转化的数学思想的换元的基本方法⑵用分析法探索证明的途径,然后用综合法的形式写出证明过程,这是解决数学问题的一种重要的数学思想方法⑶“分析法”证明不等式就是“执果索因”,从所证的不等式出发,不断利用充分条件或者充要条件替换前面的不等式,直至找到显然成立的不等式,书写方法习惯上用“ ”来表达分析法是数学解题的两个重要策略原则的具体运用,两个重要策略原则是:正难则反原则:若从正面考虑问题比较难入手时,则可考虑从相反方向去探索解决问题的方法,即我们常说的逆向思维,由结论向条件追溯简单化原则:寻求解题思路与途径,常把较复杂的问题转化为较简单的问题,在证明较复杂的不等式时,可以考虑将这个不等式不断地进行变换转化,得到一个较易证明的不等式。
二、综合应用(2)综合证明表述如下:∵ AF是直线,且∠1=∠2(已知),∴∠3=∠4(等量减等量其差相等).又∵ BE=CD(已知),BC=BC(公共边),∴△EBC≌△DCB(边角边).∴ BD=CE(全等三角形对应边相等).例1 已知AD是∠BAC的平分线,DE∥CA,且交AB于E(如图).求证:DE=AE.思路分析(1)用综合法探求,其思路如下: (2)用分析法探求,其思路如下:至此,恰好是题设条件,问题得到解决.评述:由于分析是执果索因,立足于寻找欲证结论的合适的充分条件,利于思考;而综合法是由因导果,立足于寻找已知条件合适的必要条件,适宜于表述.因此,对于一个新的问题,多半采取先用分析法寻求解法,后用综合法有条理地表述.例如对下面这道数学问题:例2 已知AF是直线,∠1=∠2,BE=CD,如图4-4.求证:BD=CE.思路分析 (1)分析思路如下:至此步骤,均为题设中提供的条件,问题获得解决.。
2.2.1综合法和分析法
分析法 又叫逆推证法或执果索 . , 因法
用Q表示要证明的结论 则分析法可用框图表示 : , 为
Q P1
P1 P2
P2 P3
得到一个明显 成立的条件
例 2 如图 2.2 1 所示 , SA 平面ABC, AB BC, 过A作SB 的垂线, 垂足为E , 过E作SC的 垂线, 垂足为F.求证 AF SC.
a,b, c成等比数列转化为符号语言就是 ac. , b 此时,如果能把角和边统一起 ,那么就可以进一 来 步寻找角和边之间的关 , 进而判断三角形的形 系 状, 余弦定理正好满足要求 .于是,可以用余弦定理 为工具进行证明 .
2
证明 由A,B, C成等差数列有2B A C. , 因为A,B, C为ΔABC的内角 所以A B C π. , π 由 ① ②, 得B . 3 2 由a,b, c成等比数列有b ac. ,
1 即证 cos α sin α cos2 β sin2 β , 2 1 2 即证1 2 sin α 1 2 sin2 β , 2 即证4 sin2 α 2 sin2 β 1.
2 2
由于上式与③ 相同,于是问题得证.
用P表示已知条件定义、定 理、公理 等 , 用Q 表示要证明的结论 则上述过 , 程可用框图表示为:
π 例3 已知α, β kπ k Z , 且 2 sin θ cos θ 2 sin α , ① sin θ cos θ sin β ,
2 2 2
②
1 tan α 1 tan β 求证 : . 2 2 1 tan α 2 1 tan β
高中数学2.2.1 综合法和分析法
-16-
2.2.1 综合法与分析法
探究一
探究二
探究三
课前篇自主预习 课课堂堂篇篇探探究究学学习习 规范解答 当堂检测
综合法与分析法的综合应用 例3已知a、b、c是不全相等的正数,且0<x<1.
求证:logx������+2������+logx������+2 ������+logx������+2 ������<logxa+logxb+logxc. 分析:解答本题的关键是利用对数运算法则和对数函数性质将题 目转化成整式不等式证明.
①综合法的特点是从“已知”看“未知”,其逐步推理实际上是寻找
已知条件的必要条件.
②综合法从命题的条件出发,利用定义、公理、定理和运算法则,
通过演绎推理,一步一步完成命题的证明.
-3-
2.2.1 综合法与分析法
课前篇自主预习 课堂篇探究学习
【做一做 1】 命题“求证:tan θ+ta1n������ = sin22������”的证明过程“tan
-17-
2.2.1 综合法与分析法
课前篇自主预习 课课堂堂篇篇探探究究学学习习
探究一
探究二
探究三
规范解答 当堂检测
解:要证明 logx������+2������+logx������+2 ������+logx������+2 ������<logxa+logxb+logxc,
只需要证明 logx
①分析法的特点是从“未知”看“需知”,逐步靠拢“已知”,其逐步推
理实际上是寻找使结论成立的充分条件.
②分析法从命题的结论入手,寻求结论成立的条件,直至归结为
2-2-1 综合法与分析法
基础巩固强化一、选择题1.关于综合法和分析法的说法错误的是( )A .综合法和分析法是直接证明中最基本的两种证明方法B .综合法又叫顺推证法或由因导果法C .综合法和分析法都是因果分别互推的“两头凑”法D .分析法又叫逆推证法或执果索因法 [答案] C[解析] 综合法是由因导果,分析法是执果索因,故选项C 错误. 2.“对任意角θ,都有cos 4θ-sin 4θ=cos2θ”的证明过程:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos2θ”应用了( )A .分析法B .综合法C .综合法与分析法结合使用D .间接证法 [答案] B[解析] 证明过程是利用已有的公式顺推得到要证明的等式,因此是综合法.3.设a 、b ∈R ,且a ≠b ,a +b =2,则必有( ) A .1≤ab ≤a 2+b 22 B .ab <1<a 2+b 22 C .ab <a 2+b 22<1D.a 2+b 22<1<ab[答案] B[解析] ab <⎝⎛⎭⎪⎫a +b 22<a 2+b 22(a ≠b ). 4.设0<x <1,则a =2x ,b =1+x ,c =11-x 中最大的一个是( )A .aB .bC .cD .不能确定[答案] C[解析] 因为b -c =(1+x )-11-x =1-x 2-11-x =-x 21-x <0,所以b <c .又因为(1+x )2>2x >0,所以b =1+x >2x =a ,所以a <b <c .5.p =ab +cd ,q =ma +nc ·b m +dn (m 、n 、a 、b 、c 、d 均为正数),则p 、q 的大小为( )A .p ≥qB .p ≤qC .p >qD .不确定[答案] B [解析] q =ab +mad n +nbcm +cd ≥ab +2abcd +cd =ab +cd =p .6.已知函数f (x )=⎝ ⎛⎭⎪⎫12x ,a 、b ∈R +,A =f ⎝⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A 、B 、C 的大小关系为( ) A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤A D .C ≤B ≤A[答案] A[解析] a +b 2≥ab ≥2ab a +b ,又函数f (x )=(12)x在(-∞,+∞)上是单调减函数,∴f (a +b 2)≤f (ab )≤f (2aba +b).二、填空题7.已知a >0,b >0,m =lg a +b 2,n =lg a +b2,则m 与n 的大小关系为________.[答案] m >n[解析] 因为(a +b )2=a +b +2ab >a +b >0,所以a +b 2>a +b2,所以m >n .8.如果a a +b b >a b +b a ,则实数a 、b 应满足的条件是________.[答案] a ≠b 且a ≥0,b ≥0[解析] a a +b b >a b +b a ⇔a a +b b -a b -b a >0⇔a (a -b )+b (b -a )>0⇔(a -b )(a -b )>0⇔(a +b )(a -b )2>0只需a ≠b 且a 、b 都不小于零即可. 三、解答题9.设a ≥b >0,求证:3a 3+2b 3≥3a 2b +2ab 2.[解析] 3a 3+2b 3-(3a 2b +2ab 2)=3a 2(a -b )+2b 2(b -a )=(3a 2-2b 2)(a -b ).因为a ≥b >0,所以a -b ≥0,3a 2-2b 2>0, 从而(3a 2-2b 2)(a -b )≥0, 即3a 3+2b 3≥3a 2b +2ab 2.。
北师大版高中数学选修2-2第一章第2节《综合法与分析法》课件(灵璧一中 裴恒永)
明格式为:因为×××,所以×××,所以××ׄ„
所以×××成立. 2.分析法证明问题时,是从“未知”看“需知”,执 果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立 的充分条件.它的证明格式:要证×××,只需证
×××,只需证×××……因为×××成立,所以
×××成立.
[例 1]
1 1 已知 a,b 是正数,且 a+b=1,求证:a+b≥4.
2 0 ≤ ( a b ) 只要证
a b 2 ab ≥ 0 a b ≥ 2 ab ab ≥ 2 ab
因为最后一个不等式成 立,故结论成立。
综合法
分析法
表达简洁!
目的性强,易于探索!
1.综合法是从“已知”看“可知”逐步推向未知,由 因导果通过逐步推理寻找问题成立的必要条件.它的证
已知
1 1 x>0,y>0,x+y=1,求证:1+x 1+y ≥9.
【精彩点拨】 证明.
解答本题可由已知条件出发,结合基本不等式利用综合法
【自主解答】 1 所以 xy≤ . 4
法一:因为 x>0,y>0,1=x+y≥2 xy,
1 1 1 1 1 所以 1+x 1+y =1+x +y +xy
8 7 5 10.
8 7 5 10,
( 8 7 )2 ( 5 10)2 .
8 7 2 56 5 10 2 50.
.
只需证 2 56 2 50,即56 50. 故不等式成立. 注:从求证的结论出发,逐步寻求使结论成立的条件。
分析法
(1)含义:从求证的 结论 出发,一步一步地探索保证 前一个结论成立的 充分条件 ,直到归结为这个命题的 条件 ,或者归结为 定义、公理、定理 等.这种证明问 题的思维方法称为分析法(又称倒推证法).
高中数学第二讲证明不等式的基本方法综合法与分析法
2。
2.1 综合法课堂导学三点剖析一,利用综合法证明不等式【例1】 (1)若a>0,b 〉0,求证:ab b a 22+≥a+b.思路分析:主要利用不等式2ba +≥ab 和a 2+b 2≥2ab。
证明:由a 2+b 2≥2ab,∴2(a 2+b 2)≥a 2+b 2+2ab,即2(a 2+b 2)≥(a+b)2。
∴ab b a 22+≥b a b a b a b a ++≥++222)()(2=a+b.(2)设a ,b ,c 都是正数,求证:2222222≥+++++a c c b b a (a+b+c ).思路分析:主要利用不等式2)(2222y x y x +≥+。
证明:由不等式a 2+b 2≥2)(22222b a ab b a +=++. ∴22b a +≥2ba +. 同理,2,22222ac a c cb c b +≥++≥+2)222(2222222=+++++=+++++∴ca cb ba a c cb b a (a+b+c )各个击破类题演练1已知a,b,c∈(0,+∞),且a ,b ,c 成等比数列,求证:a 2+b 2+c 2≥(a—b+c)2。
证明:左边-右边=2(ab+bc-ac)。
∵a,b ,c 成等比数列,∴b 2=ac.又∵a,b,c∈(0,+∞),∴0〈b=ac ≤2ca +〈a+c 。
∴a+c—b 〉0。
∴2(ab+bc —ac )=2(ab+bc —b 2)=2b(a+c —b )〉0,∴a 2+b 2+c 2>(a —b+c )2.变式提升1若a,b,c 是正数,能确定b a c c a b c b a +++++222与2c b a ++的大小吗? 解析:∵cb a +24+(b+c )≥4a, ac b +24+(c+a)≥4b, ba c +24+(a+b)≥4c , ∴c b a +24+a c b +24+ba c +24≥2(a+b+c ), 即b a c a c b c b a +++++222≥2c b a ++. 二、用综合法证明条件不等式【例2】 已知a,b ,c 〉0,且abc=1,求证:c b a ++≤a 1+b 1+c 1。
(完整版)数学:2..2..1《综合法和分析法》教案(新人教A版选修2-2)
数学:2.2.1《综合法和分析法》教案教学目标:<一)知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。
<二)过程与方法:培养学生的辨析能力和分析问题和解决问题的能力;<三)情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
第一课时 2.2.1 综合法和分析法<一)教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.tFAx82mkCG教学重点:会用综合法证明问题;了解综合法的思考过程.教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.教学过程:一、复习准备:1. 已知“若,且,则”,试请此结论推广猜想.<答案:若,且,则)2. 已知,,求证:.先完成证明→ 讨论:证明过程有什么特点?二、讲授新课:1. 教学例题:① 出示例1:已知a, b, c是不全相等的正数,求证:a(b2 + c2> + b(c2 + a2> + c(a2 + b2> > 6abc.tFAx82mkCG分析:运用什么知识来解决?<基本不等式)→ 板演证明过程<注意等号的处理)→ 讨论:证明形式的特点② 提出综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.tFAx82mkCG框图表示:要点:顺推证法;由因导果.③ 练习:已知a,b,c是全不相等的正实数,求证.④ 出示例2:在△ABC中,三个内角A、B、C的对边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列. 求证:为△ABC 等边三角形.tFAx82mkCG分析:从哪些已知,可以得到什么结论?如何转化三角形中边角关系?→ 板演证明过程→ 讨论:证明过程的特点.→ 小结:文字语言转化为符号语言;边角关系的转化;挖掘题中的隐含条件<内角和)2. 练习:①为锐角,且,求证:. <提示:算)② 已知求证:3. 小结:综合法是从已知的P出发,得到一系列的结论,直到最后的结论是Q. 运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题.tFAx82mkCG三、巩固练习:1. 求证:对于任意角θ,. <教材P100 练习 1题)<两人板演→ 订正→ 小结:运用三角公式进行三角变换、思维过程)2. 的三个内角成等差数列,求证:.3. 作业:教材P102 A组 2、3题.第二课时 2.2.1 综合法和分析法<二)教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.tFAx82mkCG教学重点:会用分析法证明问题;了解分析法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学过程:一、复习准备:1. 提问:基本不等式的形式?2. 讨论:如何证明基本不等式.<讨论→ 板演→ 分析思维特点:从结论出发,一步步探求结论成立的充分条件)二、讲授新课:1. 教学例题:① 出示例1:求证.讨论:能用综合法证明吗?→ 如何从结论出发,寻找结论成立的充分条件?→ 板演证明过程 <注意格式)→ 再讨论:能用综合法证明吗?→ 比较:两种证法② 提出分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件<已知条件、定理、定义、公理等)为止.tFAx82mkCG框图表示:要点:逆推证法;执果索因.③ 练习:设x > 0,y > 0,证明不等式:.先讨论方法→ 分别运用分析法、综合法证明.④ 出示例2:见教材P97. 讨论:如何寻找证明思路?<从结论出发,逐步反推)⑤ 出示例3:见教材P99. 讨论:如何寻找证明思路?<从结论与已知出发,逐步探求)2. 练习:证明:通过水管放水,当流速相等时,如果水管截面<指横截面)的周长相等,那么截面的圆的水管比截面是正方形的水管流量大.tFAx82mkCG提示:设截面周长为l,则周长为l的圆的半径为,截面积为,周长为l的正方形边长为,截面积为,问题只需证:> .tFAx82mkCG3. 小结:分析法由要证明的结论Q思考,一步步探求得到Q所需要的已知,直到所有的已知P都成立;比较好的证法是:用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”(分析>,从“已知”推“可知”<综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径. <框图示意)tFAx82mkCG三、巩固练习:1. 设a, b, c是的△ABC三边,S是三角形的面积,求证:.略证:正弦、余弦定理代入得:,即证:,即:,即证:<成立).2. 作业:教材P100 练习 2、3题.第三课时 2.2.2 反证法教学要求:结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.教学重点:会用反证法证明问题;了解反证法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学过程:一、复习准备:1. 讨论:三枚正面朝上的硬币,每次翻转2枚,你能使三枚反面都朝上吗?<原因:偶次)2. 提出问题:平面几何中,我们知道这样一个命题:“过在同一直线上的三点A、B、C不能作圆”. 讨论如何证明这个命题?tFAx82mkCG3. 给出证法:先假设可以作一个⊙O过A、B、C三点,则O在AB的中垂线l上,O又在BC的中垂线m上,即O是l与m的交点。
数学教案 北师大版选修2-2 同步备课-第1章 推理与证明学案第2节综合法与分析法
§2 综合法与分析法2.1 综合法学习目标核心素养1.了解综合法的思考过程、特点.(重点) 2.会用综合法证明数学命题.(难点) 1.通过对综合法概念和思维过程的理解的学习,培养逻辑推理的核心素养.2.通过对综合法应用的学习,提升逻辑推理和数学建模的核心素养.1.综合法的定义从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明,这种思维方法称为综合法.2.综合法证明的思维过程用P表示已知条件、已知的定义、公理、定理等,Q表示所要证明的结论,则综合法的思维过程可用框图表示为:P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Q n⇒Q思考:综合法的证明过程属于什么思维方式?[提示]综合法是由因导果的顺推思维.1.综合法是从已知条件、定义、定理、公理出发,寻求命题成立的( )A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件[答案] B2.在△ABC中,若sin Asin B<cos Acos B,则△ABC一定是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形C[由条件可知cos Acos B-sin Asin B=cos(A+B)=-cos C>0,即cos C<0,∴C为钝角,故△ABC 一定是钝角三角形.]3.命题“函数f(x)=x-xln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-xln x求导,得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”,应用了________的证明方法.综合法[证明过程符合综合法的证题特点,故为综合法.]用综合法证明三角问题【例1】 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asin A =(2b -c)sin B +(2c -b)sin C.(1)求证:A 的大小为60°;(2)若sin B +sin C = 3.证明:△ABC 为等边三角形.思路探究:(1)利用正弦定理将角与边互化,然后利用余弦定理求A. (2)结合(1)中A 的大小利用三角恒等变形证明A =B =C =60°. [证明] (1)由2asin A =(2b -c)sin B +(2c -b)sin C , 得2a 2=(2b -c)b +(2c -b)c , 即bc =b 2+c 2-a 2, 所以cos A =b 2+c 2-a 22bc =12,所以A =60°.(2)由A +B +C =180°,得B +C =120°,由sin B +sin C =3,得sin B +sin(120°-B)=3, sin B +(sin 120°cos B-cos 120°sin B)=3, 32sin B +32cos B =3, 即sin(B +30°)=1. 因为0°<B<120°, 所以30°<B+30°<150°, 所以B +30°=90°,即B =60°, 所以A =B =C =60°, 即△ABC 为等边三角形.证明三角等式的主要依据1.三角函数的定义、诱导公式及同角基本关系式. 2.和、差、倍角的三角函数公式.3.三角形中的三角函数及三角形内角和定理. 4.正弦定理、余弦定理和三角形的面积公式.1.若sin θ,sin α,cos θ成等差数列,sin θ,sin β,cos θ成等比数列,求证:2cos 2α=cos 2β.[证明] ∵sin θ,sin α,cos θ成等差数列, ∴sin θ+cos θ=2sin α①又∵sin θ,sin β,cos θ成等比数列, ∴sin 2β=sin θcos θ②将②代入①2,得1+2sin 2β=4sin 2α, 又sin 2 β=1-cos 2β2,sin 2α=1-cos 2α2,∴1+1-cos 2β=2-2cos 2α, 即2cos 2α=cos 2β.用综合法证明几何问题【例2】 如图,在四面体BACD 中,CB =CD ,AD⊥BD,E ,F 分别是AB ,BD 的中点.求证: (1)直线EF∥平面ACD ; (2)平面EFC⊥平面BCD.思路探究:(1)依据线面平行的判定定理,欲证明直线EF∥平面ACD ,只需在平面ACD 内找出一条直线和直线EF 平行即可;(2)根据面面垂直的判定定理,欲证明平面EFC⊥平面BCD ,只需在其中一个平面内找出一条另一个面的垂线即可.[证明] (1)因为E ,F 分别是AB ,BD 的中点,所以EF 是△ABD 的中位线,所以EF∥AD,又EF 平面ACD ,AD平面ACD ,所以直线EF∥平面ACD.(2)因为AD⊥BD,EF∥AD,所以EF⊥BD.因为CB =CD ,F 是BD 的中点,所以CF⊥BD.又EF∩CF=F ,所以BD⊥平面EFC. 因为BD平面BCD ,所以平面EFC⊥平面BCD.证明空间位置关系的一般模式本题是综合运用已知条件和相关的空间位置关系的判定定理来证明的,故证明空间位置关系问题,也是综合法的一个典型应用.在证明过程中,语言转化是主旋律,转化途径为把符号语言转化为图形语言或文字语言转化为符号语言.这也是证明空间位置关系问题的一般模式.2.如图,在长方体ABCDA 1B 1C 1D 1中,AA 1=AD =a ,AB =2a ,E ,F 分别为C 1D 1,A 1D 1的中点.(1)求证:DE⊥平面BCE ; (2)求证:AF∥平面BDE. [证明](1)∵BC⊥侧面CDD 1C 1,DE侧面CDD 1C 1,∴DE⊥BC.在△CDE 中,CD =2a ,CE =DE =2a ,则有CD 2=DE 2+CE 2,∴∠D EC =90°,∴DE⊥EC. 又∵BC∩EC=C ,∴DE⊥平面BCE.(2)连接EF ,A 1C 1,设AC 交BD 于点O ,连接EO , ∵EF 12A 1C 1,AO 12A 1C 1, ∴EFAO ,∴四边形AOEF 是平行四边形, ∴AF∥OE. 又∵OE平面BDE ,AF平面BDE ,∴AF∥平面BDE.用综合法证明不等式[探究问题]1.综合法证明不等式的主要依据有哪些? [提示] (1)a 2≥0(a∈R).(2)a 2+b 2≥2ab,⎝ ⎛⎭⎪⎫a +b 22≥ab,a 2+b 2≥(a +b )22.(3)a ,b∈(0,+∞),则a +b 2≥ab ,特别地,b a +ab ≥2.(4)a -b≥0⇔a≥b;a -b≤0⇔a≤b. (5)a 2+b 2+c 2≥ab+bc +ca. (6)b a +ab≥2(a,b 同号,即ab>0).(7)||a|-|b||≤|a+b|≤|a|+|b|(a ,b∈R).左边等号成立的条件是ab≤0,右边等号成立的条件是ab≥0. 2.使用基本不等式证明不等式时,应该注意什么?请举例说明.[提示] 使用基本不等式时,要注意①“一正、二定、三相等”;②不等式的方向性;③不等式的适度,如下例.[题] 已知,a ,b∈(0,+∞),求证:a b +b a≥a + b.若直接使用基本不等式,a b +b a≥2ab ·b a=24ab ,而a +b ≥24ab.从而达不到证明的目的,没掌握好“度”,正确的证法应该是这样的:[证明] ∵a>0,b>0, ∴ab +b ≥2a ,ba +a ≥2b , ∴a b +b +ba +a ≥2a +2b , 即ab +ba≥a + b. 【例3】 已知x>0,y>0,x +y =1,求证:⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y ≥9.思路探究:解答本题可由已知条件出发,结合基本不等式利用综合法证明. [证明] 法一:因为x>0,y>0,1=x +y≥2xy , 所以xy≤14.所以⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y =1+1x +1y +1xy =1+x +y xy +1xy =1+2xy ≥1+8=9.法二:因为1=x +y ,所以⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y =⎝ ⎛⎭⎪⎫1+x +y x ⎝ ⎛⎭⎪⎫1+x +y y =⎝ ⎛⎭⎪⎫2+y x ⎝ ⎛⎭⎪⎫2+x y =5+2⎝ ⎛⎭⎪⎫x y +y x . 又因为x>0,y>0,所以x y +yx ≥2,当且仅当x =y 时,取“=”. 所以⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y ≥5+2×2=9.1.本例条件不变,求证:1x +1y≥4.[证明] 法一:因为x ,y∈(0,+∞),且x +y =1, 所以x +y≥2xy ,当且仅当x =y 时,取“=”, 所以xy ≤12,即xy≤14,所以1x +1y =x +y xy =1xy ≥4.法二:因为x ,y∈(0,+∞),所以x +y≥2xy>0,当且仅当x =y 时,取“=”, 1x +1y≥21xy>0, 当且仅当1x =1y时,取“=”,所以(x +y)⎝ ⎛⎭⎪⎫1x +1y ≥4. 又x +y =1,所以1x +1y≥4.法三:因为x ,y∈(0,+∞),所以1x +1y =x +y x +x +yy=1+y x +xy+1≥2+2x y ·yx=4, 当且仅当x =y 时,取“=”.2.把本例条件改为“a>0,b>0,c>0”且a +b +c =1,求证:ab +bc +ac≤13.[证明] ∵a>0,b>0,c>0, ∴a 2+b 2≥2ab, b 2+c 2≥2bc, a 2+c 2≥2ac.∴a 2+b 2+c 2≥ab+bc +ca.∴(a+b +c)2=a 2+b 2+c 2+2ab +2bc +2ca ≥3(ab+bc +ac). 又∵a+b +c =1, ∴ab+bc +ac≤13.综合法的证明步骤1.分析条件,选择方向:确定已知条件和结论间的联系,合理选择相关定义、定理等.2.转化条件,组织过程:将条件合理转化,书写出严密的证明过程.特别地,根据题目特点选取合适的证法可以简化解题过程.1.综合法的基本思路综合法的基本思路是“由因导果”,由已知走向求证,即从数学命题的已知条件出发,经过逐步的逻辑推理,最后得到待证结论.其逻辑依据是三段论式的演绎推理方法.2.综合法的特点(1)从“已知”看“可知”,逐步推向“未知”,由因导果,逐步推理,寻找它的必要条件.(2)证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,易于表达推理的思维轨迹.(3)由综合法证明命题“若A,则D”的思考过程如图所示:1.判断(正确的打“√”,错误的打“×”)(1)综合法是由因导果的顺推证法.( )(2)综合法证明的依据是三段论.( )(3)综合法的推理过程实际上是寻找它的必要条件.( )(1)√(2)√(3)√[(1)正确.由综合法的定义可知该说法正确.(2)正确.综合法的逻辑依据是三段论.(3)正确.综合法从“已知”看“可知”,逐步推出“未知”,其逐步推理实际上是寻找它的必要条件.]2.已知直线l,m,平面α,β,且l⊥α,mβ,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l⊥m;④若l∥m,则α⊥β.其中正确的命题的个数是( )A.1 B.2C.3 D.4B[若l⊥α,α∥β,则l⊥β,又mβ,所以l⊥m,①正确;若l⊥α,m β,l⊥m,α与β可能相交,②不正确; 若l⊥α,mβ,α⊥β,l 与m 可能平行,③不正确;若l⊥α,l∥m,则m⊥α,又m β,所以α⊥β,④正确.]3.已知p =a +1a -2(a>2),q =2-a 2+4a -2(a>2),则p 与q 的大小关系是________. p>q [p =a -2+1a -2+2≥2(a -2)·1a -2+2=4,-a 2+4a -2=2-(a -2)2<2,∴q<22=4≤p.]4.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n =1,2,3,…).求证:(1)数列⎩⎨⎧⎭⎬⎫S n n 为等比数列;(2)S n +1=4a n .[证明] (1)∵a n +1=n +2n S n ,而a n +1=S n +1-S n ,∴n +2nS n =S n +1-S n , ∴S n +1=2(n +1)n S n ,∴S n +1n +1S n n =2,又∵a 1=1, ∴S 1=1,∴S 11=1,∴数列⎩⎨⎧⎭⎬⎫S n n 是首项为1,公比为2的等比数列.(2)由(1)知⎩⎨⎧⎭⎬⎫S n n 的公比为2,而a n =n +1n -1S n -1(n≥2),∴S n +1n +1=4S n -1n -1=4n -1·a n (n -1)n +1, ∴S n +1=4a n .2.2 分析法学 习 目 标核 心 素 养1.了解分析法的思考过程、特点.(重点) 2.会用分析法证明数学命题.(难点)1.通过对分析法概念和思维过程的理解的学习,培养逻辑推理的核心素养. 2.通过对分析法应用的学习,提升逻辑推理和数学建模的核心素养.1.分析法的定义从求证的结论出发,一步一步地探索保证前一个结论成立的充分条件,直到归结为这个命题的条件,或者归结为定义、公理、定理等,这种思维方法称为分析法.2.分析法证明的思维过程用Q 表示要证明的结论,则分析法的思维过程可用框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件1.用分析法证明:要使①A>B,只需使②C<D.这里①是②的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件B [根据分析法的特点,寻找的是充分条件,∴②是①的充分条件,①是②的必要条件.] 2.欲证2-3<6-7,只需证( ) A .(2+7)2<(3+6)2B .(2-6)2<(3-7)2C .(2-3)2<(6-7)2D .(2-3-6)2<(-7)2A [欲证2-3<6-7,只需证2+7<3+6,只需证(2+7)2<(3+6)2.]3.将下面用分析法证明a 2+b 22≥ab 的步骤补充完整:要证a 2+b 22≥ab,只需证a 2+b 2≥2ab,也就是证________,即证________,由于________显然成立,因此原不等式成立.[答案] a 2+b 2-2ab≥0 (a -b)2≥0 (a -b)2≥0应用分析法证明不等式【例1】 已知a>b>0,求证:(a -b )28a <a +b 2-ab<(a -b )28b.思路探究:本题用综合法不易解决,由于变形后均为平方式,因此要先将式子两边同时开方,再找出使式子成立的充分条件.[证明] 要证(a -b )28a <a +b 2-ab<(a -b )28b ,只需证(a -b )28a <(a -b )22<(a -b )28b .∵a>b >0,∴同时除以(a -b )22,得(a +b )24a <1<(a +b )24b ,同时开方,得a +b 2a<1<a +b 2b,只需证a +b<2a ,且a +b>2b , 即证b<a ,即证b<a. ∵a>b>0,∴原不等式成立, 即(a -b )28a <a +b 2-ab<(a -b )28b.分析法证题思维过程1.分析法证明不等式的思维是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件为已知(或已证)的不等式.2.分析法证明数学命题的过程是逆向思维,即结论⇐…⇐…⇐…已知,因此,在叙述过程中,“要证”“只需证”“即证”等词语必不可少,否则会出现错误.1.已知a>0,求证:a 2+1a 2-2≥a+1a-2.[证明] 要证a 2+1a 2-2≥a+1a-2,只需证a 2+1a 2+2≥a+1a +2,即证⎝⎛⎭⎪⎫a 2+1a 2+22≥⎝ ⎛⎭⎪⎫a +1a+22,即a 2+1a 2+4a 2+1a 2+4≥a 2+1a 2+2 2⎝ ⎛⎭⎪⎫a +1a +4,只需证2a 2+1a 2≥ 2⎝ ⎛⎭⎪⎫a +1a ,只需证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2,即a 2+1a2≥2.上述不等式显然成立,故原不等式成立.用分析法证明其他问题【例2】 设函数f(x)=ax 2+bx +c(a≠0),若函数y =f(x +1)的图象与f(x)的图象关于y 轴对称,求证:f ⎝ ⎛⎭⎪⎫x +12为偶函数. 思路探究:由于已知条件较为复杂,且不易与要证明的结论联系,故可从要证明的结论出发,利用分析法,从函数图象的对称轴找到证明的突破口.[证明] 要证函数f ⎝ ⎛⎭⎪⎫x +12为偶函数,只需证明其对称轴为直线x =0, 而f ⎝ ⎛⎭⎪⎫x +12=ax 2+(a +b)x +14a +12b +c ,其对称轴为x =-a +b 2a ,因此只需证-a +b2a =0,即只需证a =-b ,又f(x +1)=ax 2+(2a +b)x +a +b +c ,其对称轴为x =-2a +b 2a ,f(x)的对称轴为x =-b 2a ,由已知得x =-2a +b 2a 与x =-b2a 关于y 轴对称,所以-2a +b 2a =-⎝ ⎛⎭⎪⎫-b 2a ,得a =-b 成立,故f ⎝ ⎛⎭⎪⎫x +12为偶函数.分析法证题思路1.分析法是逆向思维,当已知条件与结论之间的联系不够明显、直接或证明过程中所需要用的知识不太明确、具体时,往往采用分析法.2.分析法的思路与综合法正好相反,它是从要求证的结论出发,倒着分析,由未知想需知,由需知逐渐地靠近已知,即已知条件、已经学过的定义、定理、公理、公式、法则等.2.已知1-tan α2+tan α=1,求证:cos α-sin α=3(cos α+sin α).[证明] 要证cos α-sin α=3(cos α+sin α), 只需证cos α-sin αcos α+sin α=3,只需证1-tan α1+tan α=3,只需证1-tan α=3(1+tan α),只需证tan α=-12.∵1-tan α2+tan α=1,∴1-tan α=2+tan α,即2tan α=-1.∴tan α=-12显然成立,∴结论得证.综合法与分析法的综合应用1.综合法与分析法的推理过程是合情推理还是演绎推理?[提示] 综合法与分析法的推理过程是演绎推理,它们的每一步推理都是严密的逻辑推理,从而得到的每一个结论都是正确的,不同于合情推理中的“猜想”.2.综合法与分析法有什么区别?[提示] 综合法是从已知条件出发,逐步寻找的是必要条件,即由因导果;分析法是从待求结论出发,逐步寻找的是充分条件,即执果索因.【例3】 在某两个正数x ,y 之间,若插入一个数a ,则能使x ,a ,y 成等差数列;若插入两个数b ,c ,则能使x ,b ,c ,y 成等比数列,求证:(a +1)2≥(b +1)(c +1).思路探究:可用分析法找途径,用综合法由条件顺次推理,易于使条件与结论联系起来. [证明] 由已知条件得⎩⎪⎨⎪⎧2a =x +y ,b 2=cx ,c 2=by ,消去x ,y 得2a =b 2c +c2b ,且a>0,b>0,c>0.要证(a +1)2≥(b+1)(c +1), 只需证a +1≥(b +1)(c +1), 因(b +1)(c +1)≤(b +1)+(c +1)2,只需证a +1≥b +1+c +12,即证2a≥b+c.由于2a =b 2c +c2b ,故只需证b 2c +c2b≥b+c ,只需证b 3+c 3=(b +c)(b 2+c 2-bc)≥(b+c)bc , 即证b 2+c 2-bc≥bc,即证(b -c)2≥0.因为上式显然成立,所以(a +1)2≥(b+1)(c +1).分析综合法特点综合法推理清晰,易于书写,分析法从结论入手,易于寻找解题思路,在实际证明命题时,常把分析法与综合法结合起来使用,称为分析综合法,其结构特点是根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P ;若由P 可推出Q ,即可得证.3.已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,且三个内角A ,B ,C 构成等差数列.求证:1a +b +1b +c =3a +b +c.[证明] 要证1a +b +1b +c =3a +b +c ,即证a +b +c a +b +a +b +c b +c =3,即证c a +b +a b +c=1,只需证c(b +c)+a(a +b)=(a +b)(b +c), 只需证c 2+a 2=ac +b 2. ∵A,B ,C 成等差数列, ∴2B=A +C ,又A +B +C =180°,∴B=60°. ∵c 2+a 2-b 2=2accos B , ∴c 2+a 2-b 2=ac , ∴c 2+a 2=ac +b 2, ∴1a +b +1b +c =3a +b +c成立.1.综合法与分析法的区别与联系区别:综合法 分析法 推理方向 顺推,由因导果 逆推,执果索因 解题思路 探路较难,易生枝节 容易探路, 利于思考(优点) 表述形式 形式简洁,条理清晰(优点)叙述烦琐,易出错 思考的 侧重点侧重于已知条 件提供的信息侧重于结论 提供的信息联系:分析法便于我们去寻找证明思路,而综合法便于证明过程的叙述,两种方法各有所长,因而在解决问题时,常先用分析法寻找解题思路,再用综合法有条理地表达证明过程,将两种方法结合起来运用2.分析综合法常采用同时从已知和结论出发,用综合法拓展条件,用分析法转化结论,找出已知与结论的连结点,从而构建出证明的有效路径.上面的思维模式可概括为下图:1.判断(正确的打“√”,错误的打“×”) (1)分析法就是从结论推向已知.( )(2)分析法的推理过程要比综合法优越. ( ) (3)并不是所有证明的题目都可使用分析法证明.( )(1)× (2)× (3)√ [(1)错误.分析法又叫逆推证法,但不是从结论推向已知,而是寻找使结论成立的充分条件的过程.(2)错误.分析法和综合法各有优缺点.(3)正确.一般用综合法证明的题目均可用分析法证明,但并不是所有的证明题都可使用分析法证明.] 2.若P =a +a +7,Q =a +3+a +4(a≥0),则P ,Q 的大小关系是( ) A .P>Q B .P =QC .P<QD .由a 的取值决定C [当a =1时,P =1+22,Q =2+5,P<Q ,故猜想当a≥0时,P<Q.证明如下:要证P<Q ,只需证P 2<Q 2,只需证2a +7+2a (a +7)<2a +7+2(a +3)(a +4),即证a 2+7a<a 2+7a +12,只需证0<12.∵0<12成立,∴P<Q 成立.]3.设a>0,b>0,c>0,若a +b +c =1,则1a +1b +1c 的最小值为________.9 [因为a +b +c =1,且a>0,b>0,c>0,所以1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +a b +c b +b c +a c +ca ≥3+2b a ·a b+2c a ·a c+2c b ·b c=3+6=9.当且仅当a =b =c 时等号成立.]4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan A cos B +tan Bcos A .证明:a +b =2c. [证明] 由题意知2⎝ ⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos Acos B +sin B cos Acos B,化简得2(sin Acos B +sin Bcos A)=sin A +sin B ,即2sin(A +B)=sin A +sin B , 因为A +B +C =π,所以sin(A +B)=sin(π-C)=sin C. 从而sin A +sin B =2sin C. 由正弦定理得a +b =2c. 命题得证.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为“执果索因”,即从未知看需知,逐步靠拢已知.分析法的
书写形式一般为“因为……,为了证明……,只需证明……, 即……,因此,只需证明……,因为……成立,所以……,结 论成立”. 分 析 法 的 证 明 步 骤 用 符 号 表 示 是 : P0( 已 知 )⇐…⇐Pn - 2⇐Pn -
1⇐Pn(结论)
Hale Waihona Puke 证明因为(sin θ+cos θ )2-2sin θcos θ=1,所以将①②代入,可 ③
得 4sin2α-2sin2β=1 1-tan2α 1-tan2β 另一方面,要证 2 = 2 , 1+tan α 21+tan β sin2α sin2β 1-cos2α 1-cos2β 即证 sin2α = sin2β , 1+ 1+ 2 cos α 2 cos2β
课前探究学习
课堂讲练互动
1 即证 cos α-sin α=2(cos2β-sin2β),
2 2
1 即证 1-2sin α= (1-2sin2β), 2
2
即证 4sin2α-2sin2β=1. 由于上式与③相同,于是问题得证.
课前探究学习
课堂讲练互动
误区警示
因逻辑混乱而出错
【示例】 设向量 a=(4cos α, sin α), b=(sin β, 4cos β), 若 tan αtan β=16,求证:a∥b. [ 错解] ∵a∥b,且 a=(4cos α,sin α),b=(sin β,4cos β); ∴(4cos α)· (4cos β)=sin αsin β, sin α sin β 即 sin αsin β=16cos αcos β,∴cos α· cos β=16, ∴tan αtan β=16,即结论正确.
1 1,公差为 的等差数列. 3
课前探究学习
课堂讲练互动
利用综合法证明问题的步骤:
(1) 分析条件选择方向:仔细分析题目的已知条件 ( 包括隐含条件 ) , 分析已知与结论之间的联系与区别,选择相关的公理、定理、公
式、结论,确定恰当的解题方法.
(2)转化条件组织过程:把题目的已知条件,转化成解题所需要的 语言,主要是文字、符号、图形三种语言之间的转化,组织过程 时要有严密的逻辑,简洁的语言,清晰的思路. (3)适当调整回顾反思:解题后回顾解题过程,可对部分步骤进行
课前探究学习
课堂讲练互动
a+b b+c a+c ∴ 2 · 2 · 2 > a2b2c2=abc.(10 分) a+b b+c a+c 即 2 · 2 · 2 >abc 成立. a+b b+c a+c ∴logx 2 +logx 2 +logx 2 <logxa+logxb+logxc 成立.(12 分)
从题设到结论的逻辑推理方法,即从题设中的已知条件或已证 的真实判断出发,经过一系列的中间推理,最后导出所要求证 的命题.综合法是一种由因导果的证明方法. 综合法的证明步骤用符号表示是:
P0(已知)⇒P1⇒P2⇒…⇒Pn(结论)
课前探究学习
课堂讲练互动
课前探究学习
课堂讲练互动
2.分析法是指从需证的问题出发,分析出使这个问题成立的充分 条件,使问题转化为判定那些条件是否具备,其特点可以描述
课前探究学习
课堂讲练互动
2m (2)b1=a1=1,q=f(m)= ,∴n∈N*,n≥2 时, m+3 3 3 2bn-1 1 1 1 bn=2f(bn-1)=2· ⇒b b - +3bn=3bn-1⇒b - =3. bn-1+3 n n 1 b - n n 1
1 ∴数列 b 为首项为 n
课前探究学习
课堂讲练互动
3.分析法
(1)定义:一般地,从要证明的 结论出发 ,逐步寻求使它成立
的 充分条件 ,直至最后,把要证明的结论归结为判定一个明显 成立的条件( 已知条件 、 定理 、 定义 、 公理 等)为止,这种 证明方法叫做分析法. (2) 框图表示:用Q表示要证明的结论,则分析法可用框图表示
a+b b+c a+c logx 2 · 2 · 2 <logx(abc).(2
分)
a+b b+c a+c 由已知 0<x<1,只需证明 2 · 2 · 2 >abc.(4 分) a+b b+c a+c 由公式 ≥ ab>0, ≥ bc>0, ≥ ac>0.(8 分) 2 2 2 又∵a,b,c 是不全相等的正数,
(2)分析法证明不等式的思维是从要证不等式出发,逐步寻求使它
成立的充分条件,最后得到的充分条件是已知(或已证)的不等式; (3) 用分析法证明数学命题时,一定要恰当地用好 “ 要证明 ” 、 “只需证明”、“即证明”等词语.
课前探究学习
课堂讲练互动
a b 【变式 2】 已知 a,b 是正实数,求证: + ≥ b a a b 证明 要证 + ≥ a+ b, b a 只要证 a a+b b≥ ab· ( a+ b). 即证(a+b- ab)( a+ b)≥ ab( a+ b), 因为 a,b 是正实数, 即证 a+b- ab≥ ab, 也就是要证 a+b≥2 ab, 即( a- b)2≥0. a b 该式显然成立,所以 + ≥ a+ b. b a
课前探究学习
a+ b.
课堂讲练互动
题型三
综合法和分析法的综合应用
【例 3】 已知 a、b、c 是不全相等的正数,且 0<x<1. a+b b+c a+c 求证:logx 2 +logx 2 +logx 2 <logxa+logxb+logxc
课前探究学习
课堂讲练互动
[规范解答] 要证明: a+b b+c a+c logx 2 +logx 2 +logx 2 <logxa+logxb+logxc, 只需要证明
-1
)(n∈N
*
1 ,n≥2),求证: b 为等差数列. n
课前探究学习
课堂讲练互动
[思路探索] 通过变形利用等差、等比数列的定义证明即可,在证 明过程中,恰当处理递推关系是本题证明的关键. 证明 (1)由(3-m)Sn+2man=m+3 得 (3-m)Sn+1+2man+1=m+3. 两式相减得(3+m)an+1=2man,(m≠-3), an+1 2m ∴ a = ,∴{an}是等比数列. m + 3 n
课前探究学习 课堂讲练互动
sin α sin β (综合法):∵tan αtan β=16,∴ · =16, cos α cos β 即 sin αsin β=16cos αcos β,∴(4cos α)· (4cos β)=sin αsin β, 即 a=(4cos α,sin α)与 b=(sin β,4cos β)共线,∴a∥b. 分析法的优点是方向明确,思路自然,故利于思考, 但表述易错;综合法的优点是易于表达,条理清晰,形式简捷, 故我们一般用分析法寻求解题思路,用综合法书写解题过程.
2 2
2
2 2
≥
2 2 a + b , 2
1 2 即证 a +b ≥2(a +b2+2ab),即证 a2+b2≥2ab. ∵a2+b2≥2ab 对一切实数恒成立, 2 ∴ a +b ≥ 2 (a+b)成立.综上所述,不等式得证.
2 2
课前探究学习 课堂讲练互动
用分析法证明不等式时应注意 (1)分析法证明不等式的依据是不等式的基本性质、已知的重要不 等式和逻辑推理的基本理论;
的,又是统一的.严格地讲,分析是为了综合,综合又需根据
分析,因而有时在一个命题的论证中,往往同时应用两种方法, 有时甚至交错使用.
课前探究学习 课堂讲练互动
题型一
综合法的应用
【例 1】 设数列{an}的前 n 项和为 Sn, 且(3-m)Sn+2man=m+3(n ∈N*),其中 m 为常数,且 m≠-3. (1)求证:{an}是等比数列; 3 (2)若数列{an}的公比 q=f(m), 数列{bn}满足 b1=a1, bn=2f(bn
课前探究学习
课堂讲练互动
以上证明混淆了已知和结论, 把头脑中的分析过程当 成了证明过程,如果按分析法书写就正确了;当然,本题用综合 法书写证明过程更简洁. [正解] (分析法):要证明 a∥b,而 a=(4cos α,sin α),b=(sin β, 4cos β); ∴即要证明(4cos α)· (4cos β)=sin αsin β,即要证 sin αsin β=16cos αcos β, sin α sin β 即要证cos α· cos β=16,即要证 tan αtan β=16, 而 tan αtan β=16 已知,所以结论正确.
课前探究学习
课堂讲练互动
【题后反思】 综合法推理清晰,易于书写,分析法从结论入手,
易于寻找解题思路,在实际证明命题时,常把分析法与综合法结
合起来使用,称为分析综合法,其结构特点是:根据条件的结构 特点去转化结论,得到中间结论Q;根据结论的结构特点去转化条 件,得到中间结论P;若由P可推出Q,即可得证.
为:
课前探究学习
课堂讲练互动
想一想:综合法的推理过程是合情推理还是演绎推理? 提示 综合法的推理过程是演绎推理,因为综合法的每一步推
理都是严密的逻辑推理,从而得到的每一个结论都是正确的, 不同于合情推理中的“猜想”.
课前探究学习
课堂讲练互动
名师点睛
1.综合法是中学数学证明中最常用的方法,它是从已知到未知,
1 1 ∴(a+b)a+b≥4.
1 1 又 a+b=1,∴a+b≥4.
课前探究学习 课堂讲练互动
法三
1 1 a+b a+b b a a+b= a + b =1+a+b+1≥2+2
ba a· b=4.当且仅
当 a=b 时,取“=”号.
课前探究学习
课堂讲练互动
题型二 分析法的应用 2 【例 2】 设 a,b 为实数,求证: a +b ≥ 2 (a+b).