整数乘法运算定律推广到分数.doc
(精品)人教版数学六年级上册整数乘法运算定律推广到分数
1 +1 × 53
1 5
乘法分配律
整数乘法的交换律、结合律和分配律,对于
分数乘法也适用。
●直接写得数。
1 2 1 33
2323 5555
1 9 1 10 10
= 1 -( 2 + 1 ) 33
= 1-1 =0
= 2-2+3+3 55 5 5
=6 5
= 1 (9 + 1) 10
=1
应用运算定律,可以使一些计算更简便。
三、运用规律、正确辨析
3 (1 5) 56
3 (5 1) 56
=
35 1 56
1
=2
乘法交换律 乘法结合律
( 5 1 )12 64
5 12 1 12
6
4
乘法分配律
= 10 3
= 13
●
用简便方法计算下面各题,并说一说
运用了什么运算定律。【课本P9做一做】
213 34 23 1 34 1 2
小学人教版六年级上册
1 分数乘法
整数乘法运算定律推广到分数
一、大胆猜想,导入新课
计计算算下时面,各你题运,用怎了样哪简些便运怎算样定算律。?
14×29 =14×(30-1) =14×30-14×1 =406 乘法交换律
24×25×4
(12+25)×4 =12×4+25×4
=48+100 =148 乘法分配律
14 ×
1 14
+
7 × 1 =1 1 2 14 4
1 × 2 + 1 × 1 = 1 ×( 12 3 12 3 12
1 3
+
2 3
)= 1 12
六年级上册数学教案《06整数乘法运算定律推广到分数乘法》人教新课标
六年级上册数学教案《06整数乘法运算定律推广到分数乘法》人教新课标一、教学目标1.理解整数乘法运算定律的推广到分数乘法的意义和作用;2.掌握整数乘法运算定律在分数乘法中的运用方法;3.能够运用所学知识,解决一步到多步、复杂度逐步增加的题目。
二、教学重点1.整数乘法运算定律的推广到分数乘法;2.分数乘法题目的解答方法。
三、教学难点1.整数乘法运算定律在分数乘法中的运用;2.解决复杂度逐步增加的分数乘法题目。
四、教学准备1.课件:整数乘法运算定律推广到分数乘法;2.板书:整数乘法运算定律推广到分数乘法的方法;3.教学辅助工具:计算器、练习题。
五、教学步骤第一步:导入(5分钟)在课堂开始前,设计一个小测验或问题让学生回顾整数乘法运算定律,引入今天的主题:整数乘法运算定律推广到分数乘法。
第二步:概念讲解(15分钟)通过课件和板书,讲解整数乘法运算定律在分数乘法中的运用方法,重点讲解定律推广的原因和意义。
第三步:示例演练(20分钟)展示几个分数乘法实例,引导学生运用整数乘法运算定律解题,鼓励学生积极参与,并解释每一步的解题过程。
第四步:练习巩固(20分钟)学生进行课堂练习,含有难度递增的分数乘法题目,教师适时纠正错题并解释答案。
第五步:拓展应用(10分钟)提出一些拓展问题,让学生运用整数乘法运算定律推广到实际生活中的例子,如商品打折、食物配方的计算等。
第六步:课堂小结(5分钟)回顾今天所学内容,强调整数乘法运算定律在分数乘法中的重要性,并布置课后作业。
六、教学反思整数乘法运算定律推广到分数乘法的教学过程需要设计合理的示例、演练和练习,以提高学生对定律应用的能力。
教师应重点关注学生解题的过程,帮助他们形成逻辑思维,从整体上把握乘法运算。
整数乘法运算定律推广到分数
整数乘法运算定律推广到分数姓名:学习目标:(1)理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
(2)培养学生大胆猜测,勇于实践的思维品质。
学习重难点:运用运算定律进行简便运算。
教学过程:一、复习旧知。
1.运算定律。
我们以前学习过乘法的运算定律,同学们还记得吗?乘法交换律:a ×b=b ×a乘法结合律:(a ×b)×c=a ×(b ×c)乘法分配律:(a +b)×c=a ×c +b ×c二、新授。
1、出示例题6:一个画框,长54米,宽21米,做这个画框要多长的木条?2)2154(⨯+ 或 221254⨯+⨯ = =观察每组的两个算式,看看它们有什么关系?3121⨯○2131⨯ 53)3241(⨯⨯○)5332(41⨯⨯ 51)3121(⨯+○51315121⨯+⨯ 发现:整数乘法的交换律、结合律和分配律,对于分数乘法也适用。
应用乘法的运算定律,可以使一些计算简便。
2、教学例7(1)出示例题7.)561(53⨯⨯ 12)4165(⨯+ = =(2)让学生思考怎样计算比较简便,然后独立完成,如果遇到困难可以在小组里讨论交流。
交流时,让学生汇报自己的想法,分别说一说运用了哪种运算定律使计算简便。
3、小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点想应用什么定律可以使计算简便。
当堂检测:1、用简便方法计算下面各题34132⨯⨯ 27)561(⨯+ 86387⨯92167-92⨯ 43452⨯⨯ 5211675⨯⨯213115121⨯+⨯ 859754⨯⨯ 61959565⨯+⨯2、奶牛场每头奶牛平均日产牛奶501t ,42头奶牛100天可产奶多少吨?3、尼罗河全长6670km ,长江比尼罗河的109还长297km 。
长江全长多少千米?4、有两筐苹果,第一筐重30kg ,如果从第一筐取出21kg 放入第二筐,则两筐苹果同样重。
人教版六年级数学:从整数乘法运算定律推广到分数乘法
人教版六年级数学:从整数乘法运算定律推广到分数乘法教学内容教科书第9~10页的例5、例6,练习三的第6~9题.教学目的1.使先生知道整数乘法的运算定律对分数乘法异样适用.2.使先生可以运用所学的运算定律停止一些简便运算.3.使先生知道在运算时运用了哪些运算定律,以培育先生的思想才干.教学进程一、温习指名说一说在整数乘法中学过哪些运算定律〔乘法交流律、乘法结合律、乘法分配律〕.先生说出字母表达式或用言语表达都可以.对说出字母表达式的先生,最好让他们再说一说每个运算定律是什么意思.二、新课1.整数乘法运算定律推行到分数乘法.出示下面三组算式,让先生说一说每组算式的左右两边有什么样的关系.〔〕○14〔〕先让先生观察每组中的两个算式有什么特点.然后算出左右两边的得数,看看每组的两个算式有什么样的关系,并区分做出结论.如,依据=,可以做出整数乘法的交流律关于分数乘法也适用的结论.最后做出整数乘法的交流律、结合律和分配律,关于分数乘法异样适用的结论.让先生用字母表示每一个运算定律,教员板书:ab=ba〔ab〕c=a〔bc〕〔a+b〕c=ac+bc教员:这三个等式中的字母可以表示什么数?〔整数、小数、分数.〕2.教学例5、例6〔运用乘法运算定律使分数乘法计算简便〕.教员:我们曾经知道运用乘法运算定律可以使一些整数、小数的乘法计算简便,在分数乘法中运用运算定律也可以使一些计算简便.〔1〕教学例5.出例如5,让先生细心观察,题里的数有什么特点.〔和5可以约分,所以可以先乘.〕然后,教员问:这种简便方法是运用了乘法的什么运算定律?〔乘法交流律和乘法结合律.〕〔2〕教学例6.教学方法与例5相似,先让先生观察,再让先生独立计算.算完后,让先生说一说是运用了乘法的什么运算定律.3.做教科书第24页的做一做.先让先生独立计算,教员巡视,了解先生掌握的状况,特别留意87有多少先生能用简便方法停止运算.团体修订时,关于每一道题都指名说一说是运用了什么运算定律.关于87假设先生困难比拟大,教员可以适当提示.的分母是86,把87停止怎样的处置可以使计算简便?启示先生把87看成〔86+1〕,再计算.三、课堂练习1.做练习八的第6题.教员提出要求:先依据运算定律在每题的□里填上适当的数,然后再算出得数.先生独立计算,教员巡视,对学习有困难的先生停止一般辅导.团体修订时,指名说一说每道题是依据哪个运算定律填写的.2.做练习八的第7题.先生独立计算,教员巡视,了解先生掌握的状况.团体修订时,让学习有困难的先生说一说是怎样想的.3.做练习八的第8题.先生独立计算,团体修订.对学缺乏力的先生,可让他们思索练习八的第16*题.四、小结〔略〕五、作业练习三的第9题.。
整数乘法运算定律推广到分数乘法
2 5
3 8
1 3
2 3
2 15
3 7
1 3
1 7
5 12
4 25
6
5 2
1 4
3 7
14
6பைடு நூலகம்
5
4 5
整数乘法运算定律 推广到分数乘法
乘法交换律: a×b
= b×a
乘法结合律: (a×b)×c = a×( b×c)
乘法分配律:
A× C=(a + b)×c = aC + bc
3
( )
( 1 2 1 3 )
=
1 5
=
2 5 3
1
1
1
1 5
结论:整数乘法运算定律在分数乘 法中同样适用。
• 应用乘法运算定律,同样也可以使一些计算简便。
• 例6:应用运算定律,用简便方法进行计算。
3 5
5
1 6
(
1 10
1 4
)
1 4
讲一讲
教你一招
13
1 6
用简便算法计算下面各题,并 说一说运用了什么运算定律。
2 3
1 4
3
(
8 9
4 27
) 27
5 6
5 9
5 9
1 6
87
1 86
应用乘法的运算定律,可以使一些运算简便。
87 3 86 =( 86 +1 )
1
3 86 3 86
=86
3 86
1
+1
=3+ =3 3 86
整数乘法运算定律推广到分数的方法
整数乘法运算定律推广到分数的方法
分数的乘法运算也遵循整数乘法运算定律,即可以把分子和分母分别相乘求出
乘积的结果,这其实也可以从乘法的实义来讲解,即將一个数量乘以另一个数量,就是要把相同的部分重复拼在一起形成一个数量。
因此,如果把一个分数乘以另一个分数,首先要计算每个分数的分子和分母,然后把两个分子拼在一起形成一个新的分子,把两个分母拼在一起形成一个新的分母,这样就可以求出两个分数的乘积。
若要求出分数的乘积,首先需要将分子和分母进行相乘,然后进行化简或约分。
一般来说,质因数分解法是最简单最有效的约分方法。
把分子分解为若干个质因数的乘积,然后将分子中的质因数与分母中的质因数进行比较,筛选出其中相同的质因数(或其中可以相乘抵消的部分),将其从分子和分母中各自抵消掉,即可简化分数,计算出乘积的原始结果,如果乘积的结果是真分数,则乘积的结果就是原始结果。
同时也要注意乘积分数的负号,当表示两个分数的乘积时,如果有奇数个负号,则乘积为正数,反之,乘积为负数。
例如,将(-2)/3 乘以 (-3)/4 之后得到的乘
积是 6/12,乘积是正数。
通过以上阐述,我们可以得出:整数乘法运算定律,也可以推广到分数乘法运算,即可以把分子和分母分别相乘求出乘积结果,同时要关注乘积分数的负号情况,对乘积结果进行简化,以得出最终结果。
六年级数学上册教案《整数乘法运算定律推广到分数》人教版
六年级数学上册教案《整数乘法运算定律推广到分数》人教版一、教学目标1.掌握整数乘法运算定律在分数中的应用。
2.能够正确推导和应用分数的乘法运算定律。
3.提高学生对于分数乘法的理解和运用能力。
二、教学重点1.整数乘法运算定律在分数中的推广。
2.分数的乘法运算规则。
三、教学准备1.教学课件:包含分数乘法运算的示例和练习题。
2.教学教具:黑板、白板、彩色粉笔、教学卡片等。
四、教学过程1. 引入•通过简单的整数乘法运算示例,引出整数乘法运算定律。
•提出问题:“我们能否将整数乘法运算定律推广到分数中呢?”2. 概念讲解•讲解分数的乘法运算规则,例如分子相乘得到新的分子,分母相乘得到新的分母。
•强调分数乘法的简化原则,如约分、化简等。
3. 实例演练•布置练习题,让学生根据所学规则计算分数乘法,并在黑板上讲解答案。
•指导学生独立完成练习,提醒他们注意分子与分母的对应关系。
4. 拓展应用•给学生提供一些实际问题,让他们运用所学规则解决问题,如分数的乘法在日常生活中的运用等。
五、课堂小结•总结本节课学习的内容,强调整数乘法运算定律在分数中的应用。
•鼓励学生积极思考,多加练习,巩固所学知识。
六、作业布置1.完成课后练习册中关于分数乘法的练习题。
2.思考并总结分数乘法运算的规律,写下自己的体会和感悟。
七、教学反思•思考本节课教学的亮点和不足,以便更好地调整教学方法,提高教学效果。
通过本节课的教学,学生对于整数乘法运算定律在分数中的应用有了更深入的理解,提高了他们的分数乘法运算能力,为下节课的教学打下良好基础。
人教版数学六年级上册1.6整数乘法运算定律推广到分数课件(18张PPT)
1
1
动动脑:
分析:如果45是44就好了,可是现在不是,怎么办呢?
乘加乘减混合算,
运算顺序无改变。
要想计算变简单,
运用定律是关键。
具体情况细分析,
灵活运用心花甜。
乘加乘减混合算,运算顺序要注意。要想计算变简单,选好定律是关键。具体情况具体看,灵活运用最重要。
读一读
同学们:今天我们学到了些什么?
整数乘法的运算定律同样适用于分数乘法,但在计算时一定要认真视察,选好运算定律,就能使计算更加简便。
小结:
2
2
乘法结合律:
= (5×2)×17
= 10×17
= 170
(5×17)×2
(a×b)×c = a×(b×c)
2
3
乘法分配律:
这又利用了什么运算定律呢?
3
(10+4)×15
= 10×15+4×15=150+60=210
(a+b)×c = a×c+b×c
复习
乘法交换律:
a×b = b×a
乘法结合律:
(a×b)×c = a×( b×c)
乘法分配律:
(a + b)×c = a×C + b×c
整数乘法运算定律
大家想一想:整数乘法运算定律是否可以推广到分数乘法呢?
=
=
=
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
视察每组的两个算式,看看它们有什么关系?
分数乘法的简便运算
第一单元:分数乘法
整数乘法运算定律 推广到分数
25×7×8
2
1
2
3
(5×17)×2
(10+4)×15
人教版六年级数学上册整数乘法运算定律推广到分数乘法
小结: 乘法交换律: a×b = b×a
乘法结合律:(a×b)×c = a×( b×c)
乘法分配律:(a + b)×c = aC + bc
应用乘法的运算定律,可以使一些运算简便。
6 315
56
=3
1
5
1
56
1
1
=3
1
6
2
=1
2
运用了 乘法交换律 。 为什么要用?
213 34
你也来试试
Hale Waihona Puke 应用乘法的运算定律,可以使一些运算简便。
整数乘法运算定律 推广到 分数乘法
先说出每道题的意义,再完成口算。
21 2 5 3 15 32 1 83 4
31 1 73 7
3 14 6 7
5 65
12
2
4 5 4
25
5
它们相等吗?
①25 × 36 = 36 × 25
乘法交换律
②(17 × 25)× 4 = 17 ×(25× 4)
乘法结合律
6 ( 1 1)4
10 4
=1 42 +141
10 4
5
1
运用了乘法分配律 。 为什么要用?
= 1 +1 5
=1 1 5
(8+4 )27 9 27 你也来试试
应用乘法的运算定律,可以使一些运算简便。
87 3 86
=(86+1) 3 86
1
=86
3+1
3
86 86
1
=3+ 3 86
=3 3 86
练习三
③ 72 × 13+28 × 13 =(72+28)× 13
乘法分配律
整数乘法运算定律 推广到分数
:
那
你
的
第
一
口
罗
没
有
我
和
他
不
同
。
我
是
从
底
层
但
是
当
我
拍
完
但
是
我
年
轻
时
有
一
个
想
法
就
是
如
果
我
告
诉
你
怎
么
弄
■
电
:
“
口
罗
部
爬
一
,
1
戏
有
上
来
的
我
个
5
分
钟
后
你
还
色
其
没
清
镜
没
有
楚 弄
有 怎
完 情
么
头
我
就
胆
怯
,
像
运
作
这
个
东
西
(
,
下
不
耐
烦
像
如
果
我
自
己
弄
费
电
影
一
五
分
钟
男
女
实
里
拍
个
就
弄
尼
摄
)所镜完所以最
是
拍 以
后
通
不
第
一
为
7 8
×25 × 8 7
5 6
×17 +17 × 1
6
14 × 54 53
12×(
2 3
+
1 4
整数乘法运算定律推广到分数乘法
四、巩固练习 1、填空
7 8 ( ) ( ) 25 25 ( 25) () () () 8 7 1 7 1 5 (14 ) ( ) ( ) () () () () () 14 2 14 4
1 2 1 1 1 ( ) ( ) ( ) () 12 3 3 12 12
3 (1 86) 86 3 3 86 86 86 3 3 86
四、巩固练习 3、简算
4 1 2 ( ) 30 5 2 3
4 1 2 30 30 30 5 2 3 24 15 20 29
四、巩固练习 3
在运用运算定律进行简便运算时应注意:
1、正确选择运算定律进行计算。 2、能用运算定律简便计算就用,不能用就不用。
三、反馈练习
2 1 3 3 4
乘法交换 律
1 2 4
8 4 3 27 27 乘法分配 (1 86) 9 27 律 86
8 4 27 27 9 27
二、引导探究,学习新知 1、自探提示:
(1)每组算式中,每个算式的结果是多少?两个算式 可以用什么符号连接? (2)每组算式中,都是什么数在参与运算?应用了什 么运算定律 ?
二、引导探究,学习新知 1、自探提示:
(1)通过计算,每一组算式的左右两端的结果相等。 (2)每组算式中,都是相同的数字参与了运算。 第一组运用了乘法分配律; 第二组运用了乘法交换律和结合律; 第三组运用了乘法分配律。
二、引导探究,学习新知 2、通过以上学习,你发现了什么?
整数乘法交换律、乘法结合律、乘法分配律对分 数乘法同样适用。
二、探究新知 3、教学例7
3 1 ( 5) 5 6
整数乘法运算定律推广到分数
基本训练
乘法结 合律
闯关
乘法分配律
分
合
闯关 闯关
1 2
m
将左边这幅画装上画框, 需要多长的木条?(请用 两种方法解答)
4
5m
方法一:
( ) 4 5
+
1 2
Х2
你发现了 什么?
方法二:
4 5
Х2
+
1 2
Х2
观察每组的两个算式,看看它们有什么关系?
1Х 1 3 4 Х3 Х5
去闯关
2 Х
1
Х 14
79
4 7 5 18 Х ХХ
5 9 8 35
恭喜你!你闯关成功!
继续训练
(65 + 14)Х 12
=
5 6
Х
12
+
1 4
Х 12
=10+3
=13
乘法分配律
恭喜你!你已掌握了 乘法分配律的“分”技能!
去闯关
(87 +172)Х 24
( 3 + 11 4 24
1 6
)Х
48
六(2)班同学
(收)
一经所合三力可 我 起找幸击种大恶 亲 学到,,技增的我爱 习。三才能,巫们的 ,下种能,要婆美小 争面技救并想抓丽勇 取请能出聚打走善士 早所的白合败了良们 点有修雪所她。的: 拯的炼公有,听白 救小方主勇必说雪 白勇法!士须巫公 雪士, 的要婆主 公跟我 力学的, 主我已 量会魔被 !
恭喜你!你闯关成功!
继续训练
4 Х 8+ 4 Х 2 55
= 4 Х(8+2)
5
=8
恭喜你!你已掌握了 乘法分配律的“合”技能!
分数乘法混合运算和整数乘法的运算定律推广到分数乘法
1.口算,并说说你是怎么算的。
14×2+29=57
5×8+6×4=64
25×(24+16)=1000
二、探究新知。
1.分数乘加、乘减运算的运算顺序
(1)猜测:分数乘加、乘减运算的运算顺序是怎样的?
(分数乘加、乘减运算的运算顺序和整数混合运算的运算顺序一样)
(2)出例如6情境图,组织学生根据题意列出算式,并计算。
2.完成教材第9页第1题。
1.学生独立判断,并改正。
2.学生试做,全班交流,并进展评价。
四、总结收获
1.教师总结本课学习内容。
2.布置作业。
学生谈本节课的收获。
教学过程中教师的疑问:
五、教学板书
六、教学反思
课上我主要通过例6、7让学生理解了整数乘法运算定律对于分数乘法同样适用,并能运用这些定律进展一些简单的计算。课堂上,我留给学生充足的空间,让他们独立思考、讨论交流,训练了学生的思维。
学习目标
1.理解整数乘法运算定律对分数乘法同样适用,并能应用运算定律进展简便计算。
2.经历猜测、验证等数学活动,培养推理能力及思维的灵活性。
3.培养合作意识,体验解决问题策略的多样性。
学习重点
运用运算定律对分数乘法的混合运算进展简便计算。
学习难点
熟练掌握运算定律,并能根据题目特征,灵活、合理地运用定律进展简便计算。
(3)师生共同总结发现。
3.应用乘法运算定律简算。
(1)课件出例如7,引导学生说出数据及运算符号的特点。
(2)引导学生进展试做,并组织学生汇报计算过程。
(3)总结收获结果。
(1)学生猜测分数乘加、乘减运算的运算顺序。
①同一级运算从左往右计算。
第7课时 整数乘法运算定律推广到分数
第一单元分数乘法课题第七课时整数乘法运算定律推广到分数课型新授课内容分析本课所要学习的是把整数乘法运算定律推广到分数,需要以整数乘法的三大定律为基础。
因此在学生理解和掌握分数乘法简算的基础上,对分数乘法简便运算进行总结,不但可以使学生对所学内容从感性认识升华到理性认识,并且为学生形成准确的计算能力提供保障。
课时目标知识与能力理解整数乘法运算定律对于分数乘法同样适用,并能应用运算定律进行简便计算。
过程与方法在观察、猜测、推理、计算、验证等数学活动中,培养学生的推理能力及思维的灵活性。
情感态度价值观培养学生探索数学问题的兴趣,使其在自主探究、合作交流中体验成功的喜悦。
教学重难点教学重点理解整数乘法运算定律对于分数乘法同样适用,并能应用运算定律进行简便计算。
教学难点理解分数乘分数的算理。
教学准备能根据算式特点合理灵活地应用运算定律进行简便计算。
教学媒体选择PPT教学活动提问,师生讨论教学过程一、大胆猜想,导入新课1.课件出示习题。
师:下面3道算式,同学们能快速口算吗?说说怎么算的。
14×29= (12+25)×4= 25×24×4=学生能利用整数乘法的交换律、结合律和分配律进行简便计算,得出结果。
师:你能用字母表示这些运算律吗?指名汇报,教师板书。
乘法交换律:a×b=b×a;乘法结合律:(a×b)×c=a×(b×c);乘法分配律:(a+b)×c =a×c+b×c。
2.大胆猜想,导入新课。
师:整数乘法的运算定律可以推广到小数乘法,那对于分数乘法是否适用呢?请大家猜想一下。
鼓励学生大胆猜测并勇于发表自己的意见。
师:有些同学认为整数乘法运算定律适用于分数乘法,而有些同学认为不适用,你们能找到证据证明自己的观点吗?今天这节课我们一起来验证一下。
(板书课题:整数乘法运算定律推广到分数)【设计意图】学生复习回顾了整数乘法运算定律,并在此基础上进行猜想。
六年级上学期整数乘法运算定律推广到分数
整数乘法运算定律推广到分数一.选一选。
1.0.8×(2+12)=1.6+0.4=2,这是根据( )计算的:37×12×143=37×143×12,这 是根据( )计算的。
A.乘法交换律B.乘法分配律C.乘法结合律2.计算器2326×25,最简便的方法是( ). A.按分数乘整数法则计算 B.2326×25=2326×(26-1)=2326×26-2326 C. 2326×25=(1-326)×25=1×25-326×25 3.计算4.8×38时,算式( )最简便。
4.下列能用乘法结合律进行简便计算的是( )。
A. 56×26×413B.( 35-27)×35C. 1114+314×7 二.火眼金睛辩对错,把不对的改正过来。
三.用简便算法计算下面各题。
57-57×59 8×89+19×8 512×14×415 (36+37)×761725×537+825×1737+225×1737四.解决问题。
1.二氧化硫是大气主要污染物之一。
柳杉可以吸收大气中的二氧化硫。
若每公顷 柳杉林每年可吸收1825t 二氧化硫, 56公顷柳杉林6年可以吸收多少吨二氧化硫?2.中国结是中国传统工艺品,可以代表中华民族悠久的历史。
两种中国结各做20 个,红红比强强要多用多少米彩绳?3 从上海到武汉的水路长约1100km 。
一艘客轮从上海港开往武汉港,已经行驶了 全程的25。
一艘货轮从武汉港开往上海港,已经行驶了全程的15. (1)请在图上标出此时客轮的大致位置。
(2)此时两艘轮船相距多少千米?4.希望小学六(1)班的同学设计了一期板报,设计方案如图所示。
本期板报分为4个板块,分别是“作业展览”“学习之星”“阅读花园”“一周天下事”,这4 个板块所占版面大小相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整数乘法运算定律推广到分数教学内容:《整数乘法运算定律推广到分数》义务教育课程标准实验教科书,六年级,数学第二单元第三节。
教材分析:1、已经学习好了分数乘法计算的基础上,把整数乘法运算定律对分数同样适用。
2、充分利用知识间的内在联系,向学生提供充分从事数学活动的机会,让学生在自主探索,合作交流的过程中得到发展。
学情分析:1、初步认识数学与人类生活的密切联系,对人类历史发展的作用,体验数学活动充满着探索与创造2、在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
教学目标:1、让学生在自主探究,合作交流中,认识到整数乘法运算定律对分数乘法同样适用,并能应用运算定律对一些分数计算采用简便算法。
2、引导学生经历猜想,验证等教学活动过程,发展其合情推理的能力,同时提高计算的正确率。
3、对学生进行辨证唯物主义的启蒙教育。
教学理念:1、应用运算定律培养学生进行观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能阐述自己的观点2、在教学理念下,具有初步的创新精神和实践能力,在情感态度和一般能力方向都能得到充分发展。
教学重难:培养学生灵活应用运算定律进行简便计算的能力。
教学难点:提高计算的正确率,结合相关内容,渗透“事物之间的普遍联系”的观点。
教学过程:一、复习引入1、用字母表示乘法的运算定律(指名回答,集体核对)2、用简便方法计算下面各题① 2.5×98×0.4 ② 1.25×2.5×8×4 ③ (8+0.8)×.5 学生独立练习,指名说说计算时应用了什么定律。
二、探究新知1、创设情境,质疑猜想提问:整数乘法运算定律可以推广到小数乘法,那能否推广到分数乘法呢?猜想:让学生自由发表自己的观点进行猜想。
2、合作学习,展开验证小组活动:用1/2、1/3、1/5这三个分数,自行设计验证方案。
汇报交流,乘法交换律因为1/2×1/3=1/6,1/3×1/2=1/6所以1/2×1/3=1/3×1/2我们小组认为乘法交换律在分数中同样适用,同理得出乘法的结合律和分配律在分数中同样适用。
3、实践新知,应用提高独立尝试:教师出示例5,例6,要求学生适用计算定律,用简便方法进行计算。
小组交流:学生分4人小组交流各自的计算讨论:①计算中应用了什么定律?②这样算,简便在哪?例63/5×1/6×5 =3/5×5×1/6(应用了乘法交换律,35和5可直接约分)=1/2 (1/10+1/4)×4 =1/10×4+1/4×4(应用了乘法分配律)=2/5+1 =7/5小结方法:两题都用了乘法的运算定律,使计算简便三、巩固练习1、书上第14页做一做(说用了什么运算定律,写出主要的简便过程)2、练习三节9题3、开放练习:在()中填上适当的数,使计算简便。
①5/9×2/3+5/9×()②(1/5+())×()四、作业:练习三的第6题2020-01-26教学内容:《整数乘法运算定律推广到分数》义务教育课程标准实验教科书,六年级,数学第二单元第三节。
教材分析:1、已经学习好了分数乘法计算的基础上,把整数乘法运算定律对分数同样适用。
2、充分利用知识间的内在联系,向学生提供充分从事数学活动的机会,让学生在自主探索,合作交流的过程中得到发展。
学情分析:1、初步认识数学与人类生活的密切联系,对人类历史发展的作用,体验数学活动充满着探索与创造2、在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
教学目标:1、让学生在自主探究,合作交流中,认识到整数乘法运算定律对分数乘法同样适用,并能应用运算定律对一些分数计算采用简便算法。
2、引导学生经历猜想,验证等教学活动过程,发展其合情推理的能力,同时提高计算的正确率。
3、对学生进行辨证唯物主义的启蒙教育。
教学理念:1、应用运算定律培养学生进行观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能阐述自己的观点2、在教学理念下,具有初步的创新精神和实践能力,在情感态度和一般能力方向都能得到充分发展。
教学重难:培养学生灵活应用运算定律进行简便计算的能力。
教学难点:提高计算的正确率,结合相关内容,渗透“事物之间的普遍联系”的观点。
教学过程:一、复习引入1、用字母表示乘法的运算定律(指名回答,集体核对)2、用简便方法计算下面各题① 2.5×98×0.4 ② 1.25×2.5×8×4 ③ (8+0.8)×.5 学生独立练习,指名说说计算时应用了什么定律。
二、探究新知1、创设情境,质疑猜想提问:整数乘法运算定律可以推广到小数乘法,那能否推广到分数乘法呢?猜想:让学生自由发表自己的观点进行猜想。
2、合作学习,展开验证小组活动:用1/2、1/3、1/5这三个分数,自行设计验证方案。
汇报交流,乘法交换律因为1/2×1/3=1/6,1/3×1/2=1/6所以1/2×1/3=1/3×1/2我们小组认为乘法交换律在分数中同样适用,同理得出乘法的结合律和分配律在分数中同样适用。
3、实践新知,应用提高独立尝试:教师出示例5,例6,要求学生适用计算定律,用简便方法进行计算。
小组交流:学生分4人小组交流各自的计算讨论:①计算中应用了什么定律?②这样算,简便在哪?例63/5×1/6×5 =3/5×5×1/6(应用了乘法交换律,35和5可直接约分)=1/2 (1/10+1/4)×4 =1/10×4+1/4×4(应用了乘法分配律)=2/5+1 =7/5小结方法:两题都用了乘法的运算定律,使计算简便三、巩固练习1、书上第14页做一做(说用了什么运算定律,写出主要的简便过程)2、练习三节9题3、开放练习:在()中填上适当的数,使计算简便。
①5/9×2/3+5/9×()②(1/5+())×()四、作业:练习三的第6题2020-01-26教学内容:《整数乘法运算定律推广到分数》义务教育课程标准实验教科书,六年级,数学第二单元第三节。
教材分析:1、已经学习好了分数乘法计算的基础上,把整数乘法运算定律对分数同样适用。
2、充分利用知识间的内在联系,向学生提供充分从事数学活动的机会,让学生在自主探索,合作交流的过程中得到发展。
学情分析:1、初步认识数学与人类生活的密切联系,对人类历史发展的作用,体验数学活动充满着探索与创造2、在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
教学目标:1、让学生在自主探究,合作交流中,认识到整数乘法运算定律对分数乘法同样适用,并能应用运算定律对一些分数计算采用简便算法。
2、引导学生经历猜想,验证等教学活动过程,发展其合情推理的能力,同时提高计算的正确率。
3、对学生进行辨证唯物主义的启蒙教育。
教学理念:1、应用运算定律培养学生进行观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能阐述自己的观点2、在教学理念下,具有初步的创新精神和实践能力,在情感态度和一般能力方向都能得到充分发展。
教学重难:培养学生灵活应用运算定律进行简便计算的能力。
教学难点:提高计算的正确率,结合相关内容,渗透“事物之间的普遍联系”的观点。
教学过程:一、复习引入1、用字母表示乘法的运算定律(指名回答,集体核对)2、用简便方法计算下面各题① 2.5×98×0.4 ② 1.25×2.5×8×4 ③ (8+0.8)×.5 学生独立练习,指名说说计算时应用了什么定律。
二、探究新知1、创设情境,质疑猜想提问:整数乘法运算定律可以推广到小数乘法,那能否推广到分数乘法呢?猜想:让学生自由发表自己的观点进行猜想。
2、合作学习,展开验证小组活动:用1/2、1/3、1/5这三个分数,自行设计验证方案。
汇报交流,乘法交换律因为1/2×1/3=1/6,1/3×1/2=1/6所以1/2×1/3=1/3×1/2我们小组认为乘法交换律在分数中同样适用,同理得出乘法的结合律和分配律在分数中同样适用。
3、实践新知,应用提高独立尝试:教师出示例5,例6,要求学生适用计算定律,用简便方法进行计算。
小组交流:学生分4人小组交流各自的计算讨论:①计算中应用了什么定律?②这样算,简便在哪?例63/5×1/6×5 =3/5×5×1/6(应用了乘法交换律,35和5可直接约分)=1/2 (1/10+1/4)×4 =1/10×4+1/4×4(应用了乘法分配律)=2/5+1 =7/5小结方法:两题都用了乘法的运算定律,使计算简便三、巩固练习1、书上第14页做一做(说用了什么运算定律,写出主要的简便过程)2、练习三节9题3、开放练习:在()中填上适当的数,使计算简便。
①5/9×2/3+5/9×()②(1/5+())×()四、作业:练习三的第6题2020-01-26教学内容:《整数乘法运算定律推广到分数》义务教育课程标准实验教科书,六年级,数学第二单元第三节。
教材分析:1、已经学习好了分数乘法计算的基础上,把整数乘法运算定律对分数同样适用。
2、充分利用知识间的内在联系,向学生提供充分从事数学活动的机会,让学生在自主探索,合作交流的过程中得到发展。
学情分析:1、初步认识数学与人类生活的密切联系,对人类历史发展的作用,体验数学活动充满着探索与创造2、在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
教学目标:1、让学生在自主探究,合作交流中,认识到整数乘法运算定律对分数乘法同样适用,并能应用运算定律对一些分数计算采用简便算法。
2、引导学生经历猜想,验证等教学活动过程,发展其合情推理的能力,同时提高计算的正确率。
3、对学生进行辨证唯物主义的启蒙教育。
教学理念:1、应用运算定律培养学生进行观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能阐述自己的观点2、在教学理念下,具有初步的创新精神和实践能力,在情感态度和一般能力方向都能得到充分发展。
教学重难:培养学生灵活应用运算定律进行简便计算的能力。
教学难点:提高计算的正确率,结合相关内容,渗透“事物之间的普遍联系”的观点。
教学过程:一、复习引入1、用字母表示乘法的运算定律(指名回答,集体核对)2、用简便方法计算下面各题① 2.5×98×0.4 ② 1.25×2.5×8×4 ③ (8+0.8)×.5 学生独立练习,指名说说计算时应用了什么定律。