第三章 刚体力学测试题
2021大学物理B-第3章刚体力学练习题 (1)
第三章 刚体力学一、 选择题1、一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1 和m 2 的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力[ ](A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断.2、将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将[ ](A) 小于β . (B) 大于β,小于2β. (C) 大于2β. (D) 等于2β.3、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统[ ](A) 只有机械能守恒. (B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒.4、如图所示,一根匀质细杆可绕通过其一端O 的水平轴在竖直平面内自由转动,杆长5/3m 。
今使杆从与竖直方向成︒60角由静止释放(g 取10m/s 2),则杆的最大角速度为 [ ] (A )3rad/s ; (B)πrad/s ; 3.0rad/s ; (D)3/2rad/s 。
5、对一个绕固定水平轴O 匀速转动的转盘,沿图示的同一水平直线从相反方向射入两颗质量相同、速率相等的子弹,并停留在盘中,则子弹射入后转盘的角速度应[ ](A) 增大;(B) 减小;(C) 不变;(D) 无法确定。
6、一根长为l 、质量为M 的匀质棒自由悬挂于通过其上端的光滑水平轴上。
现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以v 0/2的水平速度穿出棒,此后棒的最大偏转角恰为90°,则v 0的大小为 [ ] (A)34gl m M ; (B)2gl ; (C)gl m M 2; (D)22316mgl M 。
《大学物理》刚体力学练习题及答案解析
《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
大学物理试题库刚体力学 Word 文档
大学物理试题库刚体力学 Word 文档大学物理试题库刚体力学word文档第三章刚体力学一、刚体运动学(定轴转动)---角位移、角速度、角加速度、线量与角量的关系1、刚体做定轴转动,下列表述错误的是:【】a;各质元具备相同的角速度;b:各质元具备相同的角加速度;c:各质元具备相同的线速度;d:各质元具备相同的角位移。
2、半径为0.2m的飞轮,从静止开始以20rad/s2的角加速度做定轴转动,则t=2s时,飞轮边缘上一点的切向加速度a?=____________,法向加速度an=____________,飞轮转过的角位移为_________________。
3、刚体任何复杂的运动均可理解为_____________和______________两种运动形式的合成。
二、转动惯量1、刚体的转动惯量与______________和___________________有关。
2、长度为l,质量为m的光滑木棒,顾其一端a点旋转时的转动惯量ja=_____________,拖其中心o点旋转时的转动惯量jo=_____________________。
3、半径为r、质量为m的光滑圆盘拖其中心轴(旋转轴盘面)旋转的转动惯量j=___________。
4、【】两个匀质圆盘a和b的密度分别就是?a和?b,若?a??b,但两圆盘的质量和厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为ja和jb则:(a)ja?jb;(b)ja?jb(c)ja?jb(d)不能确定三、刚体动力学----旋转定理、动能定理、角动量定理、角动量动量1、一短为l的轻质细杆,两端分别紧固质量为m和2m的小球,此系统在直角平面内可以绕开中点o且与杆横向的水平扁平紧固轴(o轴)旋转.已经开始时杆与水平成60°角,处在静止状态.无初输出功率地释放出来以后,杆球这一刚体系统拖o轴旋转.系统拖o轴的转动惯量j=___________.释放出来后,当杆转至水平边线时,刚体受的合外力矩m=______;角加速度______.2、一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩mr外,还受到恒定外力矩m的作用.若m=20nm,轮子对固定轴的转动惯量为j=15kgm2.在t=10s内,轮子的角速度由??=0增大到?=10rad/s,则mr=_______.3、【】银河系有一可以视作物的天体,由于引力汇聚,体积不断膨胀。
第3章例题_刚体力学基础
第7页 共9页
刚体力学基础
解 (1)选小球和棒作为系统 碰撞瞬间角动量守恒
mv0l mvl J
弹性碰撞, 系统碰撞前后动能不变
1 2 1 1 2 mv0 mv J 2 2 2 2
机械能守恒 解得
1 l l 2 J Mg ( cos 60) 2 2 2
3 30 30 1 v0 m s ,v m s 1 4 4
2
第5页 共9页
刚体力学基础
例3-6 有一根长为 l , 质量为m 的均匀细直棒, 棒可绕上端光 滑水平轴在竖直平面内转动. 最初棒静止在水平位置, 求它 由此下摆θ 角时的角速度。
解 选细棒和地球作为系统,机械能守恒
1 1 1 2 Ek J ml 2 2 2 2 3
l E p mghc mg sin 2
第1页 共9页
3g sin l
刚体力学基础
例3-2 质量均为m 的两物体A 和B , A 放在倾角为α 的光滑斜 面上, 通过滑轮由不可伸长的轻绳与B 相连. 定滑轮是半径 为R 的圆盘, 其质量也为m . 物体运动时, 绳与滑轮无相对滑 动. 求绳中张力FT1 和FT2 及物体的加速度a(设轮轴光滑,滑 1 轮转动惯量为 J mR 2
2
' F 解 T 1 mgsin maA mg FT' 2 maB M FT 2 R FT 1R J a A aB R
FT'1 FT1 , FT' 2 FT 2
第2页 共9页
2 3 sin FT 1 mg 5 3 2sin FT 2 mg 5 2(1 sin )
J R dm R
2 2
普通物理学第三章 刚体的运动试题
第一章刚体的运动一、选择题:()1、一质量为m 的均质圆盘绕其中心作匀角速度的圆周运动,则:(A)动量不为零(B)角动量一定守恒(C)动量和角动量都守恒(D)动量和角动量都不守恒()2、刚体角动量守恒的充分而必要的条件是(A )刚体不受外力矩的作用(B )刚体所受合外力矩为零(C )刚体所受的合外力和合外力矩均为零(D )刚体的转动惯量和角速度均保持不变()3、刚体的转动惯量与下列哪种因素无关A 、刚体的质量B 、刚体所受的力C 、刚体转动的位置D 、刚体质量的分布情况()4、用细绳系一小球使之在竖直平面内作圆周运动,则A、小球在任意位置都有切向加速度B、小球在任意位置都有法向加速度C、小球在任意位置绳子的拉力和重力是惯性离心力的反作用力D、当小球运动到最高点时,它将受到重力、绳的拉力和向心力的作用()5、两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若r A >r B ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则A、J A >J BB、J B >J AC、J A =J BD、J A 、J B 哪个大,不能确定()6、两物体的转动惯量相等,当其转动角速度ω1︰ω2=2︰1时,两物体的转动动能(E 1︰E 2)之比为A、4︰1B、2︰1D、1:()7、一电动机以1800转/分的角速度转动,在电动机的轴上装有三个转轮,直径分别为5、10、15cm,三个转轮边缘上的线速度之比为A、1︰1︰1B、1︰2︰3C、1︰4︰9D、9︰4︰1()8、下列物体哪种是刚体A、固体B、液体C、气体D、都不是()9、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A )角速度从小到大,角加速度从小到大。
(B )角速度从小到大,角加速度从大到小。
(C )角速度从大到小,角加速度从大到小。
大学物理刚体习题
大学物理刚体习题(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习 题第三章 刚体的转动刚体的定轴转动47. 一定滑轮半径为R ,质量为M ,用一质量不计的绳绕在滑轮上,另一端系一质量为m 的物体并由静止释放,这时滑轮的角加速度为1β,若不系物体而用一力F = mg 拉绳子使滑轮转动,这时角加速度为2β,这时有()1β2β()1β2β (C )1β2β(D )无法判断 分析由转动定律M I β=本题中I 不变β的大小完全取决于M 的大小而 M TR =系物体m 时 : T mg <不系物体而用一力F = mg 时: TF mg ==因此力矩变大所以有12ββ<mF选49.一飞轮的转动惯量为J ,t = 0时角速度为0ω,轮子在转动过程中受到一力矩2ωk M-=,则当转动角速度为0/3ω时的角加速度β = 从0ω到0/3ω飞轮转动经过的时间t ∆= 解: (1) 求β当0/3ω时, 20()3M k ω=-由 M J β=, 可得此时 209k MJ J ωβ==-(2) d M J J dt ωβ== 2d k J dt ωω-=分离变量,两边积分32td kdt Jωωωω-=⎰⎰解得: 02J t k ω∆=50.长为l 的均匀直棒可绕其下端与棒垂直的水平光滑轴在竖直平面内转动。
抬起一端使与水平夹角为60=θ,棒对轴的转动惯量为231ml J =,由静止释放直棒,则t = 0时棒的β=?;水平位置时的β=?这时的ω=(1)求β 据转动定律M J β=, MJβ= 0t =时, cos 602lM mg =︒水平位置时, 2lM mg =代入MJβ=,可别解得034glβ= 和 32g l β= (2)求ωd d d d M J J J J dt d dt d ωωθωβωθθ====将cos 2l M mg θ=和213J ml =代入化简并积分得, 0033cos 2g d d l ωπθθωω=⎰⎰ 60可求得332g l ω=(本题还可用动能定律机械能守恒方便求解ω)2211sin 60223l mg ml ω︒=⋅ 332g lω⇒=51.一飞轮以min /600rev 的转速转动,其转动惯量为25.2m kg J ⋅=,以恒定力矩使飞轮在一分钟内停止转动,求该力矩M 。
大学物理刚体力学测试题答案
2
3 1 1 J mi ri m l m l m l 2 2 2 5 2 ml 4
2
对OX轴(垂直纸面向外)的转动惯量为 2 2 2 l
2
l 3
对OZ轴的转动惯量为
1
l O
y
2 2 1 1 1 2 x 2 J mi ri m l m l 0 ml 2 2 2
0 240 转动,则飞轮边缘上一点在飞轮转过 时的切向加速度 at
=
0.15m s
2
,法向加速度 a n =
0.4 m s2
。
4 角度需变为弧度计算 240 rad 3 4 2 1 2 4 2 16 2 3 t t 2 3 0.5 3
1.如图所示,一均匀圆盘,半径为 R,质量为 m,其中心轴装在光 滑的固定轴上,并与圆盘垂直。在圆盘边上绕一轻绳,绳的下端挂 ' 一质量为 m 的物体,求圆盘的角加速度和圆盘边缘各点切向加速度
4.长为 l 的均匀细棒可绕通过其一端并与之垂直的水平光滑轮转动。 0 3g 设棒从水平位置开始释放,转过 30 时棒的角速度为___________,角 2l 3 3g 。 加速度为__________ 1 4l
h
(1)质心下落高度为 1 h l sin 30 2 重力的功
30
2
l sin 30
1 A mg l sin 30 2
由刚体的动能定理, 1 1 1 1 2 2 mg l sin 30 J 0 ml 2 2 2 3
mg
3g 3g sin 30 l 2l
重力的力矩
1 重力力臂 d 2 l cos 30
3 刚体力学习题详解
恒定,匀变速,所以有 ,,
3.一个转动惯量为J的圆盘绕一固定轴转动,初角速度为。设它所受阻 力矩与转动角速度成正比 (k为正常数)。
(1)它的角速度从变为所需时间是 [ ] (A); (B); (C); (D)。 (2)在上述过程中阻力矩所做的功为 [ ] (A); (B); (C); (D) 。 答案:C;B。 解:已知 ,, (1),, ,,所以 (2)
答案:
解: ,,
又,,所以 ,,两边积分得:,
所以
3. 在自由旋转的水平圆盘上,站一质量为m的人。圆盘半径为R,转动
惯量为J,角速度为。如果这人由盘边走到盘心,则角速度的变化
=
;系统动能的变化Ek =
。
答案:;。
解:应用角动量守恒定律
解得 ,角速度的变化
系统动能的变化 ,即
4. 如图所示,转台绕中心竖直轴以角速度作匀速转动,转台对该轴的
滑轮之间绳的张力为
。
2m
R
m 答案: 解:列出方程组 其中,, 由(1)、(2)两式得: 可先求出a,解得
将, 代入,得:
, ,,
三.计算题 1.在半径为R1、质量为M的静止水平圆盘上,站一静止的质量为m的 人。圆盘可无摩擦地绕过盘中心的竖直轴转动。当这人沿着与圆盘同 心,半径为R2(< R1)的圆周相对于圆盘走一周时,问圆盘和人相对于 地面转动的角度各为多少? 答案:(1);(2)。 解:设人相对圆盘的角速度为,圆盘相对地面的角速度为。 则人相对地面的角速度为 应用角动量守恒定律 得, 解得 圆盘相对地面转过的角度为 人相对地面转过的角度为
大学物理第三章刚体力学基础习题答案 ppt课件
12
3
联立可得: v M 3mu
M 3m
6mu
M 3m
l
3-18 MkJJd
dt
t
0
k J
dt
0
2
0
d
t J ln 2 k
3-19 设子弹射入后圆盘的角速度为ω,由角动量守恒得
mv0R(mR2大1 2学m 物理0R 第三2)章刚体力学基础习题
2mv0 2mRm0R
6
答案
质点运动与刚体定轴转动对照表
转速,此时相应的角速度为 0。当关闭电源后,经
过t2时间风扇停转。已知风扇转子的转动惯量为 J, 并假定摩擦力矩和电机的电磁力矩均为常量,试根据 已知量推算电机的电磁力矩。
解: 设电机的电磁力矩为M,摩擦力矩为Mf
MMf J1 Mf J2
1
0 t1
2
0 t2
MJ(12)
J0
(1 t1
1 t2
)
大学物理第三章刚体力学基础习题
(1)物体自静止下落,5s内下降的距离; (2)绳中的张力。
解:
mgTma
TRJ 1 MR2 a
2R a 2mg5.0m 6s2
M2m
T 1 Ma 2
h1at2 63.2m 2
Tm (ga)3.9 7 N
大学物理第三章刚体力学基础习题
14
答案
3-8 长为l,质量为M的匀质杆可绕通过杆一端O的 水平光滑固定轴转动,转动惯量为 1 M l 2 ,开始时杆
16
答案
质点运动
刚体定轴转动
质量
m
力 第二定律
F
Fma
F dp
转动惯量 J r2dm m
大学基础物理学(韩可芳)习题参考-第3章(刚体力学基础)-0425
第三章 刚体力学基础思考题3-1 一个绕定轴转动着的刚体有非零的角速度和角加速度。
刚体中的质点A 离转轴的距离是质点B 的两倍,对质点A 和质点B ,以下各量的比值是多少?(1)角速率;(2)线速率;(3)角加速度的大小;(4)加速度的切向分量;(5)加速度的法向分量;(6)加速度的大小。
3-2 以下说法是否正确?并加以分析: (1)一个确定的刚体有确定的转动惯量。
(2)定轴转动的刚体,当角速度大时,作用的力矩也大。
(3)使一根均匀的铁棍保持水平,如握住棍子的中点要比握住它的一端容易。
(4)一个有固定轴的刚体,受到两个力的作用。
当这两个力的合力为零时,它们对轴的合力矩也一定为零;当这两个力对轴的合力矩为零时,它们的合力也一定为零。
3-3 指出下弄表达式哪些是正确的,哪些是错误的,并说明理由。
,,,,2122c c ccp cK v M r L MrJ MghE vM E ⨯====E K 、E P 、J 、L分别表示绕定轴转动刚体的动能、重力势能、转动惯量、角动量。
式中:M为刚体的质量,c v为质心速度,h c 为质心距零势能面的高度,r c 为质心到转轴的距离。
3-4 已知银河系中有一天体是均匀球体,现在半径为R ,绕对称轴自转的周期为T ,由于引力凝聚,它的体积不断收缩。
假定一万年后它的半径缩小为r ,试问一万年后此天体绕对称轴自转的周期比现在大还是小?它的动能是增加还是减少?3-5 一圆形平台,可绕中心轴无摩擦地转动,有一辆玩具汽车相对台面由静止启动,绕轴做圆周运动,问平台如何运动?当小车突然刹车,平台又如何运动?运动过程中小车—平台系统的机械能、动量和角动量是否守恒?习题解答3-1 一汽车发动机曲轴的车速在12s 内由每分钟1200转均匀地增加到每分钟2700转,求:(1)角加速度;(2)在此时间内,曲轴转了多少转?3-2 某机器上的飞轮运动学方程程为:θ=at +bt 2-ct 3,求t 时刻的角速度和角加速度。
大学物理第3章刚体和流体试题及答案.docx
第3章刚体和流体一、选择题1. 飞轮绕定轴作匀速转动吋,飞轮边缘上任一点的[](A)切向加速度为零,法向 加速度不为零(B) 切向加速度不为零,法向加速度为零 (C) 切向加速度和法向加速度均为零 (D) 切向加速度和法向加速度均不为零2. 刚体绕一定轴作匀变速转动时,刚体上距转轴为r 的任一点 的[](A)切向加速度和法向加速度均不随时间变化(B) 切向加速度和法向加速度均随时间变化 (C) 切向加速度恒定,法向加速度随时间变化 (D) 切向加速度随时间变化,法向加速度恒定T3-1-2 图3. 一飞轮从静止开始作匀加速转动吋,飞轮边缘上一点的法向加速度禺和切向加速 度a f -的值怎样? [](A) a n 不变,a,为 0(C) a n 增尢a,为04. 当飞轮作加速转动时,飞轮上到轮心距离不等的二点的切向加速度a,和法向加速度偽是否相同?[](A) a,相同,a n 相同(C)e •不同,禺相同(C) 刚体的质量对给定转轴的空间分布(D)转轴的位置6. 关于刚体的转动惯量丿,下列说法中正确的是 [](A)轮子静止时其转动惯量为零(B)若加A >〃B ,则4>J B(C) 只要m 不变,则J 一定不变(D)以上说法都不正确7. 下列各因素中,不影响刚体转动惯量的是 I](A)外力矩(B)刚体的质量(B) a n 不变,a,不变(D) 增大,a,不变(B) a,相同,a n 不同(D) a,不同,a n 不同5.刚体的转动惯量只决定于[](A)刚体的质量(B)刚体的质量的空I'可分布(C) 刚体的质量分布(D)转轴的位置& 关于刚体的转动惯量,以下说法中错误的是[](A)转动惯量是刚体转动惯性大小的量度(B)转动惯量是刚体的固有属性,具有不变的量值(C)转动惯量是标量,对于给定的转轴,刚体顺时针转动和反时针转动时,其转动惯量的数值相同(D)转动惯量是相对量,随转轴的选取不同而不同9.两个质量分布均匀的圆盘A和B的密度分别为厂八和厂B,如果有厂A >金,但两圆盘的总质量和厚度相同.设两圆盘对通过盘心垂直于盘面的轴的转动惯量分别为丿A和儿, 则有:[1(A)丿A>J B(B)J A<J B(C) %=J B(D)不能确定丿A、丿B哪个大10.M个半径相同、质量相等的细圆坏A和B, A环的质量均匀分布,B环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分別为厶和丿B,则有:[ ](A) A>J B(B)J A<J B(C) 几=几(D)不能确定J八、哪个大11.一均匀圆环质量为内半径为R\,外半径为心,圆环绕过12. 一正方形均匀薄板,已知它对通过中心并与板面乖直的轴的转动惯量为J ・如果以1(B) _2 J(C)J(D)不能确定13•地球的质量为g 太阳的质量为地心与太阳中心的距离为&引力常数为G 地球绕太阳转动的轨道角动量的大小为14•冰上芭蕾舞运动员以一只脚为轴旋转吋将两臂收拢,则 [](A)转动惯量减小(B)转动动能不变(C)转动角速度减小(D)角动量增大速度为15. 一滑冰者,开始自转吋其角必,转动惯量为丿°当他将手臂收回时,其转动惯量减少为3 j,则它的角速度将变为11[1 (A) -K4)(B)_ 必 (C) 3144)3V316. 绳的一端系一质量为m 的小球,在光滑的水平桌面上作匀速圆周运动.若从桌面中心孔向下拉绳子,则小球的I ] (A)角动量不变 (B)角动量增加中心且乖直 暈是11](A) 3M R(22- /?!2)(B) 21 122(C) M R( 2 -T3-1-11 图M/?(22+ /?!2) /?! )2 (D) MR (2+ /?! )2其一条对角线为轴,它的转动惯量为2](A) _3 J (D)必丁圆环面的转轴的转动惯 T3-1-12 图T3-1-16 图(D)动量减少(C) 动量不变17. 刚体角动量守恒的充分而必耍的条件是 r 1(A )刚体不受外力矩作用 (B )刚体所受的合外力和合外力矩均为零(C)刚体所受合外力矩为零(D)刚体的转动惯量和角速度均保持不变18. 绕定轴转动的刚体转动时,如果它的角速度很大,则 [](A)作用在刚体上的力一定很大 (B)作用在刚体上的外力矩一定很大(C) 作用在刚体上的力和力矩都很大(D)难以判断外力和力矩的大小19. 一个可绕定轴转动的刚体,若受到两个大小相等、方向相反但不在一条直线上的恒力作用,而且力所在的平面不与转轴平行,刚体将怎样运动? [](A)静止(B)匀速转动(C) 匀加速转动(D)变加速转动20. 儿个力同时作用在一个具有固定转轴的刚体上.如果这儿个力的矢量和为零,则 物体 [](A)必然不会转动 (B)转速必然不变(C) 转速必然改变 (D)转速可能不变,也可能变 21. 两个质量相同、飞行速度相同的球A 和B,其中A 球无转动,B 球转动,假设要 把它们接住,所作的功分别为內和金,则: [1(A) 4>人2 (B)A }<A 2(C)A )= A 2(D)无法判定22. 一个半径为R 的水平圆盘恒以角速度"作匀速转动.一质量为m 的人要从圆盘 边 缘走到圆盘中心,圆盘2 I J (A) _L mR w2T3-1-22 图23. 在外力矩为零的情况下,将一个绕定轴转动的物体的转动惯量减小一半,则物体的 [1(A)角速度将增加三倍(B)角速度不变,转动动能增大二倍(C) 转动动能增大一倍(D)转动动能不变,角速度增大二倍24. 银河系中一均匀球体天体,其半径为R,绕其对称轴自转的周期为T.由于引力凝 聚作用,其体积在不断收缩.则一万年以后应有:对他所作的功为(B)2(C)mR 1 W-(D) -mBrw 2[](A)自转周期变小,动能也变小(B)自转周期变小,动能增大(C)自转周期变大,动能增大(D)自转周期变大,动能减小25. 人造地球卫星绕地球作椭圆轨道运动.卫星轨道近地点和远地点分别为A 和B, 用厶和瓦分别表示卫星对地心的角动量及其动能的瞬时值,则应有 r ] (A) L A > L B , E^A > E RB(B) L A =厶〃,E^A < E 匕B(C) L A = L B ,E U > E RB(D) L A < L B ,Eg < E RB26. 一运动小球与另一质量相等的静止小球发生对心弹性碰撞,则碰撞后两球运动方 向间的夹角 [](A)小于 90° (B)等于 90°(C) 大于90°(D)条件不足无法判定27. 一质量为M 的木块静止在光滑水平面上,质量为M 的子弹射入木块后又穿出來.子弹在射入和穿出的过程中, M[ ](A)子弹的动量守恒o —[(C ) 子弹的角动量守恒(D) 子弹的机械能守恒T3-1-27 图(B)子弹和木块系统的动fi:守恒,机械能不守恒这一过程的分析是 [](A)子弹的动能守恒止于光滑水平面上的木块后随木块一起运动.对于(B) 子弹、木块系统的机械能守恒 (C) 子弹、木块系统水平方向的动量守恒 (D) 子弹动能的减少等于木块动能的增加T3-1-28图29. 一块长方形板可以其一个边为轴自由转动,最初板自由下垂•现有一小团粘土垂 直于板面撞击板,并粘在板上.对粘土和板系统,如果不计空气阻力, 在碰撞过程中守恒的塑是 I ](A)动能(B)绕长方形板转轴的角动量(C) 机械能(D)动量30. 在下列四个实例中,物体机械能不守恒的实例是 I J(A)质点作圆锥摆运动(B) 物体在光滑斜面上自由滑下(C) 抛出的铁饼作斜抛运动(不计空气阻力) (D) 物体在拉力作用下沿光滑斜面匀速运动31. 在系统不受外力作用的非弹性碰撞过程屮 [](A)动能和动量都守恒(B)动能和动量都不守恒(C) 动能不守恒,动量守恒(D)动能守恒,动量不守恒32. 下面说法屮正确的是 [](A)物体的动量不变,动能也不变(B) 物体的动量不变,角动量也不变(C) 物体的动量变化,角动量也一定变化 (D) 物体的动能变化,动量却不一定变化33. 人造地球卫星绕地球作椭圆轨道运动.若忽略空气阻力和其他星球的作用,在卫星 的运行过程中[](A)卫星的动量守恒,动能守恒(B) 卫星的动能守恒,但动量不守恒(C) 卫星的动能不守恒,但卫星对地心的角动量守恒 (D) 卫星的动量守恒,但动能不守恒2& — 子弹以水 M平速度v 射入一静T3-1-29 图34.人站在摩擦可忽略不计的转动平台上,双臂水平地举起二哑铃,当人在把此二哑铃水平地收缩到胸前的过程中,人与哑铃组成的系统有[](A)机械能守恒,角动量守恒(B)机械能守恒,角动量不守恒(C) 机械能不守恒,角动量守恒(D)机械能不守恒,角动量不守恒35.—人手拿两个哑铃,两臂平伸并绕右足尖旋转,转动惯量几角速度为若此人2突然将两臂收冋,转动惯量变为亍丿.如忽略摩擦力,则此人收臂后的动能与收臂前的动能之比为[ ](A) 1 : 9 (B) 1 : 3 (C)9:l (D) 3 : 136.将唱片放在绕定轴转的电唱机转盘上时,若忽略转轴摩擦,则以唱片和转盘为体系的[](A)总动能守恒(B)总动能和角动量都守恒(C) 角动量守恒(D)总动能和角动量都不守恒37.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如T3-1-37图所示.今使棒从水平位置由静止开始白由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?[ ](A)角速度从小到大,角加速度从大到小(B)角速度从小到大,角加速度从小到大(C)角速度从大到小,角加速度从大到小(D)角速度从大到小,角加速度从小到大T3-I-37图38.有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中:J(A)只有⑴是正确的(B)(1)、(2)正确,(3)、(4)错误(C)(1)、(2)、(3)都正确,(4)错误(D)(1)、(2)、(3)、(4)都正确39.一圆盘正绕垂直于盘而的水平光滑固定轴0转动,如图射来两个质量相同、速度大小相同,方向相反并在一条直线m上的子弹,子弹射入圆盘并II留在盘内,则子弹射入后的瞬间,圆盘的角速度M/[ ](A)增大(C)减小(B)不变(D)不能确泄T3-1-39 图40. 光滑的水平血上有长为2/、质量为m 的匀质细杆,可绕过其中点O 且垂直]_于桌面的竖直固定轴自由转动,转动惯量为3mZ 2 .起初杆静止.有一质量为m 的小 球沿桌面正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如右图所示.当小球与杆端发生 碰撞后,就与杆粘在一起随杆转动,则这一系统碰撞后的转动角速度是lv 2vT3-2-3 图[](A) I2_ (B) _3/3v(C )一4/T3-1-40图二、填空题3V(D) 一1. 半径为r 的圆环平放在光滑水平面上,环上有一甲虫,环和甲虫的质量相等,并且原先都是静止的.以后甲虫相对于圆环以等速率T3-2-1 图爬行,当甲虫沿圆环爬完一周时,圆环绕其中心转过的角度是 __________ •2. 一质量为60 kg 的人站在一质量为60 kg 、半径为1米的均 匀圆盘的边缘,圆盘可绕与盘面相乖直的中心竖直轴无摩擦地转动.系统 原来是静止的,后来人沿圆盘边缘走动,当他相对于圆盘的走动速 圆盘的角速度大小为 ______________ •度为2m.s"时,T3-2-2 图3. 一匀质杆质量为税、长为I,通过一端并与杆成q 角的轴的转动惯量为 ___________T3-2-5 图T3-2-4 图4. 两个完全一样的飞轮,当用98N 的拉力作用时,产生角加速度5;当挂一重98N的重物时,产生角加速度b 2.则b 、和b 2的关系为 ____________ .5. 两人各持一均匀直棒的一端,棒重w, —人突然放手,在此瞬间,另一人感到手上承受的力变为 __________ •一 一 - 一 =(4L - 3J ) m,则该力对坐标原点的6. 一力F = (3z + 5;) N,其作用点的矢径为r力矩为 ___________ .7. 一质量为m 的质点沿着一条空间曲线运动,该曲线在直角坐标系下的定义式为 F =^zcos wtL + hsinwt^j ,其屮a 、b 、"皆为常数.则此质点所受的对原点的力矩-M= ___________ ;该质点对原点的角动量厶二 ______________8. 一转动惯量为丿的圆盘绕一固定轴转动,起初角速度为必,设它所受阻力矩与转动角速度成正比M 二-kw 伙为正常数).则在它的角速度从%)变为_1 %)过程中阻力矩2所作的功为 __________ .9. 质量为32 kg 、半径为0.25 m 的均质飞轮,其外观为圆盘形状.当飞轮作角速度为12rad.s-'的匀速率转动时,它的转动动能为 ____________ .10. 一「氏为I 、质量可以忽略的直杆,两端分别固定有质量为2m 和m 的小球,杆可绕通过其小心o 且与杆垂直的水平光滑固定轴在铅直平而内 转Im 图所示.释放后,杆绕0轴转动,则当杆转到水平位置时,该系统所受的合外力矩的 大小M 二 ,此吋该系统角加速度的大小b= _________ .11. 在一水平放置的质量为加、长度为I 的均匀细杆上, 套着一个质量也为m 的套管(可看作质点),套管用细线拉住, 它到竖直的光滑固定轴00'的距离为亍/ ,杆和套管所组成的 速度 系统以角 %绕OO'轴转 动,如图所 示.若在转动过程屮细线被拉断,套管将 沿着杆滑1动.在套管滑动过程屮,该系统转动的角3动.开始杆与水平方向成某一角度g,处于静止状态, T3-2-9 图3速度iv 与套管轴的距离x 的函数关系为 ________________ ・(已知杆本身对OO ,轴的转 动惯量为ml 2)12. 长为/、质量为M 的匀质杆可绕通过杆一端0的水平光滑 固定轴转动,转动惯量为3M/2,开始时杆竖直下垂,如右图所示•现 v 有一质量为m 的子弹以水平速度一。
大学物理刚体力学测试题答案
选择题答案及解析
• 答案:D
• 解析:根据刚体的转动惯量公式,对于一个质量均匀分布的细杆,其转动惯量与质量、长度和质心到转轴的距离有关。故 D选项正确。
选择题答案及解析
• 答案:A • 解析:根据刚体的动能定理,当刚
体受到的合外力矩不为零时,刚体 的角速度会发生变化。故A选项正 确。
填空题答案及解析
有挑战性
部分题目难度较大,需要学生具备较强的分 析问题和解决问题的能力。
测试题答案解析总结
要点一
详细解析
每道题目都附有详细的答案解析,帮助学生理解解题思路 和方法。
要点二
举一反三
答案解析中还提供了相关题型的解题技巧,有助于学生触 类旁通。
THANKS
感谢观看
难题
考查学生的综合运用能力和创新思维,难度较大,需要较高的解题技巧。
测试题目的目标
01
检验学生对刚体力学基本概念和公式的掌握程度。
02
评估学生对刚体力学知识的应用能力。
提高学生的综合运用能力和创新思维。
03
02
测试题内容选Leabharlann 题选择题1答案:C1
选择题2答案:B
2
选择题3答案:D
3
填空题
填空题1答案
• 答案
10 N·m
• 解析
根据刚体的转动动能公式,当刚体的转动惯量为1 kg·m²,角速度为10 rad/s时,其转 动动能为0.5×1×10²=50 J。由于题目中要求的是力矩,因此需要将动能转换为力矩,
即50 J=10 N·m。故填空题1的答案是10 N·m。
填空题答案及解析
• 答案
2 kg·m²
04
测试题总结
测试题特点总结
第三章 刚体力学基础 课后作业
第三章 刚体力学基础 课后作业班级 姓名 学号一、选择题1、一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为2A , 且向x 轴正方向移动,代表此简谐振动的旋转矢量为( )1、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.对上述说法下述判断正确的是( )(A ) 只有(1)是正确的 (B )(1)、(2)正确,(3)、(4)错误(C ) (1)、(2)、(3)都正确,(4)错误 (D )(1)、(2)、(3)、(4)都正确2、关于力矩有以下几种说法:(1) 对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;(2) 一对作用力和反作用力对同一轴的力矩之和必为零;(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同.对上述说法下述判断正确的是( )(A ) 只有(2)是正确的 (B ) (1)、(2)是正确的(C )(2)、(3)是正确的 (D ) (1)、(2)、(3)都是正确的3、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )(A ) 角速度从小到大,角加速度不变(B ) 角速度从小到大,角加速度从小到大(C ) 角速度从小到大,角加速度从大到小(D ) 角速度不变,角加速度为零4、 一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为( ) (A) L 不变,ω增大 (B) 两者均不变(C) L不变,ω减小 (D) 两者均不确定5、假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( )(A) 角动量守恒,动能守恒 (B) 角动量守恒,机械能守恒(C) 角动量不守恒,机械能守恒 (D) 角动量不守恒,动量也不守恒(E) 角动量守恒,动量也守恒二、填空题1、有甲、乙两个飞轮,甲是木制的,周围镶上铁制的轮缘。
大学物理学-刚体-习题
第三章刚体习题1、如右图所示,求一质量为m,长为L的均匀细棒的转动惯量。
(1)轴通过棒的中心并与棒垂直;(2)轴通过棒的一端并与棒垂直。
L L2、求质量为m、半径为R的细圆环和均匀薄圆盘分别绕通过各自中心并与圆面垂直的轴的转动惯量。
3、如图所示,在边长为a的正方形顶点上,分别有质量为m的4个质点,质点之间用轻质杆连接,求此系统绕下列转轴的转动惯量。
(1)通过其中一个质点A,并平行于对角线BD的转轴。
(2)通过质点A,并垂直于质点所在平面的转轴。
4、一质量为m的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示,轴水平放置且垂直于轮轴面,其半径为r,整个装置架在光滑的固定轴承之上。
当物体从静止释放后,在时间t内下降了一段距离s。
求整个轮轴的转动惯量(用tr、和s表示)。
m、5、一轴承光滑的定滑轮,质量为kg M 2=,半径为m R 0.100=,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为kg m 5=的物块。
已知滑轮对轴心的转动惯量为221MR J =,且滑轮初始角速度为rad/s 0ω10.0=,方向垂直纸面向外。
(2m/s g 9.8取) 求:(1)定滑轮的角加速度的大小和方向;(2)定滑轮的角速度变化到时,物体上升的高度;(3)当物体回到原来位置时,定滑轮角速度的大小和方向。
6、质量为kg m 1=物体与绕在质量为M 的定滑轮上的轻绳相连,设定滑轮质量M 2m =,半径为R ,转轴光滑,设t 0=时v 0=,求:(1)下落速度v 与时间t 的关系;(2)s t 4=时,m 下落的距离;(3)绳中的张力T 。
O。
第三章 刚体力学习题
4-3
第三章
刚体力学
图7
图8
3、 一细棒长为 l,质量为 m1 均匀分布。静止平放在滑动摩擦系数为 µ 的水平桌面上。它可 绕通过其端点 O 且与桌面垂直的固定光滑轴转动。另有一水平运动的小滑块,质量为 m2,以水平速度 υ1,从左侧垂直于棒与棒的另一端 A 相碰撞,碰撞时间极短。小滑块 在碰撞后的速度为 υ2,方向与 υ1 相反,如图 8 所示。求从细棒在碰后开始转动到停止 转动的过程中所经过的时间。 4、 设有一均匀圆盘, 质量为 m, 半径为 R, 可绕过盘中心的光滑竖直轴在水平桌面上转动, 圆盘与桌面间的滑动摩擦系数为 µ。若用外力推动它使其速度达到 ω0 时,撤去外力, 求: (1)其后圆盘还能继续转动多少时间? (2)上述过程中摩擦力矩所做的 5、 长为 L 的均匀细杆可绕过端点 O 的固定水平光滑轴转动。把杆抬平后无初速地释放, 杆摆至竖直位置时刚好和光滑水平桌面上的小球 m 相碰。如图 9 所示。球的质量和杆 相同。设碰撞是弹性的,求碰后小球获得的速度。
3 B、2 m r0 2 w 02
1 C、3 m r02 w 02
2 D、3 m r02 w02
图4
图5
6、如图 5,框架 AA 可绕铅直轴 OO 自由转动,转动惯量为 J1。在框架中间支承一个转子 B, 其对 OO 轴的转动惯量为 J2,开始时框架不动,转子有一角速度 ω0,由于支承处有摩擦,于 是框架也被带着转动起来,若经过时间 t 以后,转子相对于框架的角速度变为零,则支承处 的摩擦力矩(设为常量)M= .
3、如图 3 所示,对完全同样的两定滑轮(半径 R, 转动惯量 I 均相同) ,现分别用 FN 的力和加重物重力 P=FN,设所产生的角加速度为 β1 和 β2,则( ) A、β1 >β2 ; B、β1 = β2 ; C、β1 <β2 ; D、不能确定 。 图3 4、一转动惯量为 J 的圆盘绕一固定轴转动,起初角速度为 ω0,设它所受的阻力矩与转动角 ω0 速度成正比,即 M= -kω(k 为正的常数) ,若它的角速度从 ω0 变为 2 ,则所需的时间 t = 。
第三章 刚体力学 自学辅导习题
第三章 刚体力学自学辅导习题(2012年使用)一、单项选择题.1.质量分别为1m 、2m 的两个质点,用长度为a 的无质量刚性杆相连,并在平面上自由运动。
则此质点系对垂直于该平面并通过质心的轴的转动惯量为:[ ]A.221a m m ;B.22121a m m m m +; C.221a 2m m ; D.221a 2m m +。
1.B2.质量为m 的物体,其转动惯量的大小决定于: [ ]A.转动的快慢;B.质量的分布情况和转轴的选取;C.质量的分布情况;D.转轴的选取。
2.B3.已知一均质棒,其质量为m ,长为A 。
当它绕过其一端并垂直于棒的轴转动时,其转动惯量为2m 31A ,问此棒绕过离棒中心为A 41且与上述轴线平行的另一轴线转动时的转动惯量为: [ ] A.22m 41m 31A A +; B.22m 161m 31A A +; C.22m 161m 121A A +; D.22m 41m 121A A +。
3.C4.质量为M,半径为a 的实心圆柱体对圆柱表面、平行于圆柱体轴的直线的转动惯量为:[ ] A.2Ma 23; B.2Ma 25; C.2Ma 21; D.2Ma 。
4.A5.质量为M,边长为a 和b 的矩形板对垂直于此板并通过一顶点的轴的转动惯量为:[ ]A.)b a (M 22+;B.)b a (M 3122+;C.)b a (M 2122+;D.)b a (M 3222+。
5.B6.在力系的简化中,下列各量与简化中心的位置有关的是:[ ]A.主矢;B.力偶矩;C.主矩;D.合力。
6.C7.质量分别为1m 、2m 的两个质点,用长度为a 的无质量刚性杆相连,并在平面上自由运动。
则此质点系对垂直于该平面并通过质点1m 的轴的转动惯量为:[ ]A.221a m m ;B.21a m ;C. 22a m ;D.221a 2m m +。
7.C8.质量分别为1m 、2m 的两个质点,用长度为a 的无质量刚性杆相连,并在平面上自由运动。
第3章 刚体力学练习题
班级 学号 姓名第3-1 刚体定轴转动的角动量及转动定律1、地球到太阳的距离11R=1.510m ⨯,地球绕太阳公转速度4310/v m s =⨯,地球的质量为24M=610kg ⨯,则地球对太阳中心的角动量 21kg m s -⋅⋅。
2、质量为0.1kg 的质点,绕半径为0.2m 的圆周运动,其线速度为5m/s ,则角动量为21kg m s -⋅⋅。
3、如图所示,一根长为L 质量为m 的棒的一端连着一个质量为M 半径为R 的圆盘,求对过悬点O 且垂直摆面对轴的转动惯量 ;若圆盘是半径可以忽略只具有质量M 的小球,则系统相对于悬点O 的转动惯量 。
4、对于刚体对轴的转动惯量,下列说法正确的是( )(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关(B )取决于刚体的质量和质量的空间分布,与轴的位置无关(C )取决于刚体的质量、质量的空间分布和轴的位置(D )只取决于轴的位置,与刚体的质量和质量的空间分布无关5、如图所示,一根米尺可以绕标以20(代表20cm )的位置处的点转动,所有作用在尺子上的5个力具有同样的大小,根据它们产生的力矩大小由大到小对这些力距进行排序 。
6、如图所示, A 、B 为两个相同的定滑轮, A 滑轮挂一质量为m 的物体, B 滑轮受力F= mg, 设A 、B 两滑轮的角加速度分别为A α和B α ,不计滑轮的摩擦,这两个滑轮的角加速度的大小关系为( )(A )A B αα> (B )A B αα<(C )A B αα= (D )无法确定7、一个砂轮直径为0.4m ,质量为20kg ,以每分钟900转的转速转动,撤去动力后,一个工件以100N 的正压力作用在砂轮边缘上,使砂轮在11.3s 内停止。
则砂轮和工件的摩擦因数为 (忽略砂轮轴的摩擦)。
8、一长为L ,质量为m 的均质细杆,两端附着质量分别为1m 和2m 的小球,且1m >2m ,两小球直径1d 、2d 都远小于L ,此杆可绕通过中心并垂直于细杆的轴在竖直平面内转动,问:1)它对该轴的转动惯量为多少?2)若将它由水平位置自静止释放,则它在开始时刻的角加速度为多少?9、质量为1M 24kg =的圆轮,可绕水平光滑固定轴转动,一轻绳缠绕于轮上,另一端通过质量为2M 5kg =的圆盘形定滑轮悬有m=10kg 的物体。
第三章-----刚体力学习题答案
第三章 刚体力学习题答案3-1 如图3-1示,一轻杆长度为2l ,两端各固定一小球,A 球质量为2m ,B 球质量为m ,杆可绕过中心的水平轴O 在铅垂面内自由转动,求杆与竖直方向成θ角时的角加速度.解:系统受外力有三个,即A ,B 受到的重力和轴的支撑作用力,轴的作用力对轴的力臂为零,故力矩为零,系统只受两个重力矩作用. 以顺时针方向作为运动的正方向,则A 球受力矩为正,B 球受力矩为负,两个重力的力臂相等为sin d l θ=,故合力矩为2sin sin sin M mgl mgl mgl θθθ=-=系统的转动惯量为两个小球(可视为质点)的转动惯量之和22223J ml ml ml =+=应用转动定律 M J β=有:2sin 3mgl ml θβ= 解得sin 3g lθβ=3-2 计算题3-2图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮边缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg,2m =200kg,M =15kg,r =0.1m.解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对 1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有图3-1 图3-2β)21(212Mr r T r T =- ③又, βr a = ④ 联立以上4个方程,得2212s m 6.721520058.92002-⋅=++⨯=++=M m m g m a3-3 飞轮质量为60kg,半径为0.25m,当转速为1000r/min 时,要在5s 内令其制动,求制动力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图所示.解:以飞轮为研究对象,飞轮的转动惯量212J mR =,制动前角速度为1000260ωπ=⨯rad/s ,制动时角加速度为tωβ-=- 制动时闸瓦对飞轮的压力为N F ,闸瓦与飞轮间的摩擦力f N F F μ=,运用转动定律,得 212f F R J mR ββ-== 则 2N mR F tωμ=以闸杆为研究对象,在制动力F 和飞轮对闸瓦的压力N F -的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为(0.500.75)l =+m 和1l =0-50m ,则有10N Fl F l -=110.50600.252100015720.500.7520.4560N l l mR F F l l t ωπμ⨯⨯⨯===⨯=+⨯⨯⨯N 图3-33-4 设有一均匀圆盘,质量为m ,半径为R ,可绕过盘中心的光滑竖直轴在水平桌面上转动. 圆盘与桌面间的滑动摩擦系数为μ,若用外力推动它使其角速度达到0ω时,撤去外力,求:(1) 此后圆盘还能继续转动多少时间? (2) 上述过程中摩擦力矩所做的功.解:(1)撤去外力后,盘在摩擦力矩f M 作用下停止转动- 设盘质量密度为2mRσπ=,则有20223Rf Mg r dr mgR μπσμ==⎰ 根据转动定律 21,2f M J mR Jα-==43g Rμα-= 034R t gωωαμ-==(2)根据动能定理有 摩擦力的功2220011024f W J mR ωω=-=-3-5 如题3-6图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度.解: (1)由转动定律,有β)31(212ml mg= ∴ lg23=β(2)由机械能守恒定律,有图3-622)31(21sin 2ωθml l mg =∴ lg θωsin 3=3-6 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O '转动.设大小圆柱体的半径分别为R 和r ,质量分别为M 和m .绕在两柱体上的细绳分别与物体1m 和2m 相连,1m 和2m 则挂在圆柱体的两侧,如3-8图所示.设R =0.20m, r =0.10m,m =4 kg,M =10 kg,1m =2m =2 kg,且开始时1m ,2m 离地均为h =2m .求:(1)柱体转动时的角加速度; (2)两侧细绳的张力.解: 设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度,方向如图(如图b).(a)图 (b)图(1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ① 1111a m T g m =- ②βI r T R T ='-'21 ③式中 ββR a r a T T T T ==='='122211,,,而 222121mr MR I += 由上式求得22222222121s rad 13.68.910.0220.0210.042120.0102121.022.0-⋅=⨯⨯+⨯+⨯⨯+⨯⨯⨯-⨯=++-=gr m R m I rm Rm β(2)由①式8.208.9213.610.02222=⨯+⨯⨯=+=g m r m T βN由②式1.1713.6.2.028.92111=⨯⨯-⨯=-=βR m g m T N3-7 一风扇转速为900r/min,当马达关闭后,风扇均匀减速,止动前它转过了75转,在此过程中制动力做的功为44.4J,求风扇的转动惯量和摩擦力矩.解:设制动摩擦力矩为M ,风扇转动惯量为J ,止动前风扇的角位移2N θπ=,摩擦力矩所做的功为2A M M N θπ=-=-摩擦力所做的功应等于风扇转动动能的增量,即2102A J ω=-2222(44.4)0.01(9002/60)AJ ωπ⨯-=-=-=⨯kg ⋅m 2 44.40.09422275A M N ππ-=-=-=⨯N ⋅m 3-8 一质量为M 、半径为r 的圆柱体,在倾斜θ角的粗糙斜面上从距地面h 高处只滚不滑而下,试求圆柱体滚止地面时的瞬时角速度ω.解: 在滚动过程中,圆柱体受重力Mg 和斜面的摩擦力F 作用,设 圆柱体滚止地面时,质心在瞬时速率为v ,则此时质心的平动动能为212Mv ,与此同时,圆柱体以角速度ω绕几何中心轴转动,其转动动能为212J ω.将势能零点取在地面上,初始时刻圆柱体的势能为Mgh ,由于圆柱体只滚不滑而下,摩擦力为静摩擦力,对物体不做功,只有重力做功,机械能守恒,于是有221122Mgh Mv J ω=+ 式中 21,2J Mr v r ω==,代入上式得 22211()22Mgh Mr Mr ω=+即 23gh r ω=3-9 一个轻质弹簧的倔强系数 2.0k =N/m,它的一端固定,另一端通过一条细绳绕过一个定滑轮和一个质量为m =80g 的物体相连,如图所示. 定滑轮可看作均匀圆盘,它的质量为M =100g,半径r =0.05m. 先用手托住物体m ,使弹簧处于其自然长度,然后松手.求物体m 下降h =0.5m 时的速度为多大?忽略滑轮轴上的摩擦,并认为绳在滑轮边缘上不打滑.解:由于只有保守力(弹性力、重力)做功,所以由弹簧、滑轮和物体m 组成的系统机械能守恒,故有222111222mgh kh I mv ω=++21,2v r I Mr ω==所以 22 1.4812mgh kh v M m -==+m/s3-10 有一质量为1m 、长为l 的均匀细棒, 静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动. 另有一水平运动的质量为2m 的小滑块, 从侧面垂直于棒与棒的另一端A 相碰撞, 设碰撞时间极短. 已知小滑块在碰撞前后的速度分别为1V 和2V ,如图示,求碰撞后从细棒开始转动到停止转动的过程所需的时间(已知棒绕O点的转动惯量2113J m l =).图3-11图3-12解:对棒和滑块组成的系统,因为碰撞时间极短,所以棒和滑块所受的摩擦力矩远小于相互间的冲量矩,故可认为合外力矩为零,所以系统的角动量守恒,且碰撞阶段棒的角位移忽略不计,由角动量守恒得22122113m v l m v l m l ω=-+碰撞后在在转动过程中棒受到的摩擦力矩为 11012tf m M gdx m gl l μμ=-=-⎰由角动量定理得转动过程中210103tfM dt m l ω=-⎰ 联立以上三式解得:12212V V t m m gμ+= 3-11 哈雷彗星绕太阳运动的轨道是一个椭圆.它离太阳最近距离为1r =8.75×1010m 时的速率是1v =5.46×104m ·s -1,它离太阳最远时的速率是2v =9.08×102m ·s -1,这时它离太阳的距离2r 为多少?(太阳位于椭圆的一个焦点.)解: 哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有 2211mv r mv r =∴ m 1026.51008.91046.51075.81224102112⨯=⨯⨯⨯⨯==v v r r 3-12 平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物.小球做匀速圆周运动,当半径为0r 时重物达到平衡.今在1M 的下方再挂一质量为2M 的物体,如3-14图.试问这时小球做匀速圆周运动的角速度ω'和半径r '为多少?图3-14解: 在只挂重物时1M ,小球作圆周运动的向心力为g M 1,即201ωmr g M =①挂上2M 后,则有221)(ω''=+r m g M M②重力对圆心的力矩为零,故小球对圆心的角动量守恒. 即 v m r mv r ''=00ωω''=⇒2020r r ③联立①、②、③得10021123011213212()M g mr M g M M mr M M M M r g r m M M ωωω=+'=+'==⋅'+3-13 如图示, 长为l 的轻杆, 两端各固定质量分别为m 和2m 的小球, 杆可绕水平光滑轴在竖直平面内转动, 转轴O 距两端的距离分别为/3l 或2/3l . 原来静止在竖直位置. 今有一质量为m 的小球, 以水平速度0v 与杆下端的小球m 做对心碰撞, 碰后以0/2v 的速度返回, 试求碰撞后轻杆所获得的角速度ω.解:将杆与两端的小球视为一刚体,水平飞来的小球m 与刚体视为一系统,在碰撞过程中,外力包括轴O 处的作用力和重力,均不产生力矩,故合外力矩为零,系统角动量守恒- 选逆时针转动为正方向,则由角动量守恒得 0022323v ll mv m J ω=-+ 222()2()33l l J m m =+图3-13解得 032v lω=3-14 圆盘形飞轮A 质量为m , 半径为r , 最初以角速度0ω转动, 与A 共轴的圆盘形飞轮B质量为4m ,半径为2r , 最初静止, 如图所示, 两飞轮啮合后, 以同一速度ω转动, 求ω及啮合过程中机械能的损失.解:以两飞轮组成的系统为研究对象,由于运动过程中系统无外力矩作用,角动量守恒,有22201114(2)222mr mr m r ωωω=+ 得 0117ωω=初始机械能为 2222100111224W mr mr ωω==啮合后机械能为222222201111114(2)2222174W mr m r mr ωωω=+=则机械能损失为 221201611617417W W W mr W ω∆=-==3-15 如图示,一匀质圆盘半径为r ,质量为1m ,可绕过中心的垂轴O 转动.初时盘静止,一质量为2m 的子弹一速度v 沿与盘半径成160θ︒=的方向击中盘边缘后以速度/2v 沿与半径方向成230θ︒=的方向反弹,求盘获得的角速度.解:对于盘和子弹组成的系统,撞击过程中轴O 的支撑力的力臂为零,不提供力矩,其他外力矩的冲量矩可忽略不计,故系统对轴O 的角动量守恒,即12L L =,初时盘的角动量为零,只有子弹有角动量,故图3-14 图3-1512sin 60L m vr ︒=末态中盘和子弹都有角动量,设盘的角速度为ω,则22211sin 3022v L m r m r ω︒=+ 故有 22211sin 60sin 3022v m vr m r m r ω︒︒=+可解得:1ω=3-16 一人站在一匀质圆板状水平转台的边缘,转台的轴承处的摩擦可忽略不计,人的质量为'm ,转台的质量为10'm ,半径为R .最初整个系统是静止的,这人把一质量为m 的石子水平地沿转台的边缘的切线方向投出,石子的速率为v (相对于地面).求石子投出后转台的角速度与人的线速度.解:以人、转台和石子组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,设转台角速度ω的转向与投出的石子速度v 方向一致,初始时系统角动量为零,得0J mRv ω+= 人和转台的转动惯量'2'21102J m R m R =+,代入上式后得 '6mvm Rω=-人的线速度为'6mvv R mω==-其中负号表示转台角速度转向和人的线速度方向与假设方向相反-3-17 一人站在转台上,两臂平举,两手各握一个4m =kg,哑铃距转台轴00.8r =m,起初转台以02ωπ=rad/s 的角速度转动,然后此人放下两臂,使哑铃与轴相距r =0.2m,设人与转台的转动惯量不变,且5J =kg ⋅m 2,转台与轴间摩擦忽略不计,求转台角速度变为多大?整个系统的动能改变了多少?解:以人、转台和哑铃组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,有2200(2)(2)J mr J mr ωω+=+22002225240.8212.025240.2J mr J mr ωωπ++⨯⨯==⨯=++⨯⨯rad/s 动能的增量为222200011(2)(2)22W W W J mr J mr ωω∆=-=+-+222211(5240.2)12(5240.8)(2)22π=⨯+⨯⨯⨯-⨯+⨯⨯⨯ =183J3-18 如3-20图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ30°处.(1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量?解: (1)设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒做弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mv I mv +=ω ② 上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③ 由③式得2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=lg I Mgl ω由①式mlI v v ω-=0 ④ 由②式mI v v 2202ω-= ⑤所以22001)(2ωωmv ml I v -=-图18求得glmM m m M l ml I l v +-=+=+=31232(6)311(2)1(220ωω(2)相碰时小球受到的冲量为⎰-=∆=0d mvmv mv t F由①式求得ωωMl l I mv mv t F 31d 0-=-=-=⎰ gl M 6)32(6--=负号说明所受冲量的方向与初速度方向相反.3-19如图示,一个转动惯量为I ,半径为R 的定滑轮上面绕有细绳,并沿水平方向拉着一个质量为M 的物体 A. 现有一质量为m 的子弹在距转轴2R 的水平方向以速度0v 射入并固定在定滑轮的边缘,使滑轮拖住A 在水平面上滑轮.求(1)子弹射入并固定在滑轮边缘后,滑轮开始转动时的角速度ω.(2)若定滑轮拖着物体A 刚好转一圈而停止,求物体A 与水平面间的摩擦系数μ(轴上摩擦力忽略不计).解:(1)子弹射入定滑轮前后,子弹、定滑轮及物体A 构成的系统角动量守恒220[]2Rmv mR I MR ω=++ 解得 0222()mv RmR I MR ω=++(2)定滑轮转动过程中物体A 受的摩擦力所做的功等于系统动能的增量 2221()22I mR MR Mg R ωμπ-++=-⨯ 解得 202216()m v RMg mR MR I μπ=++ 3-20 行星在椭圆轨道上绕太阳运动,太阳质量为1m ,行星质量为2m ,行星在近日点和远日点时离太阳中心的距离分别为1r 和2r ,求行星在轨道上运动的总能量.解:将行星和太阳视为一个系统,由于只有引力做功,系统机械能守恒,设行星在近日点图3-19和远日点时的速率分别为1v 和2v ,有2212121122121122m m m m m v G m v G r r -=- 行星在轨道上运动时,受太阳的万有引力作用,引力的方向始终指向太阳,以太阳为参考点,行星所受力矩为零,故行星对太阳的角动量守恒 111222m rv m r v =行星在轨道上运动时的总能量为2212121122121122m m m m E m v G m v G r r =-=- 联立以上三式得:1212Gm m E r r =-+3-21 半径为R 质量为'm 的匀质圆盘水平放置,可绕通过圆盘中心的竖直轴转动. 圆盘边缘及/2R 处设置了两条圆形轨道,质量都为m 的两个玩具小车分别沿两轨道反向运行,相对于圆盘的线速度值同为v . 若圆盘最初静止,求两小车开始转动后圆盘的角速度.解: 设两小车和圆盘运动方向如图所示,以圆盘转动方向为正向,外轨道上小车相对于地面的角动量为()mR R v ω-,内轨道上小车相对于地面的角动量为11()22m R R v ω+,圆盘的角动量为'212J m R ωω=,由于两小车和圆盘组成的系统,外力对转轴的力矩为零,角动量守恒,得 '2111()()0222mR R v m R R v m R ωωω-+++= '2(52)mvm m Rω=+ 3-22 如图示,一匀质圆盘A 作为定滑轮绕有轻绳,绳上挂两物体B 和C,轮A 的质量为1m ,半径为r ,物体B 、C 的质量分别为2m 、3m ,且2m >3m . 忽略轴的摩擦,求物体B 由静止下落到t 时刻时的速度.图3-21图3-22解:把滑轮和两个物体作为一个系统,其运动从整体上看对定轴O 是顺时针方向的,即轮A 沿顺时针方向转动物体B 向下运动物体C 向上运动,故以顺时针方向的运动作为系统运动的正方向,根据角动量定理,得00tMdt L L =-⎰(1)(1)式左边为系统受到的合外力矩对轴O 的冲量矩,由于轮A 所受重力和轴的作用力对轴O 的力矩为零,故只有两物体所受重力提供力矩,注意到两个重力矩的方向相反,故合力矩为2121()M m gr m gr m m gr =-=- (2)(1)式右边为系统对轴O 的角动量的增量- 0t =时系统静止,角动量00L = (3)到t 时刻,A 、B 、C 三个物体均沿顺时针方向运动,角动量均为正- 设此时轮A 的角速度ω,B 、C 两物体速率相同设为v ,则有212312A B C L L L L m r m vr m vr ω=++=++ (4)把(2)、(3)、(4)式代入(1)式有2211231()2m m grt m r m vr m vr ω-=++由于系统为一连接体,两物体的速率与轮边缘的速率相同,即有v r ω= 把此式代入(5)式即可求得物体下落t 时的速度 211232()23m m gtv m m m -=++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级: 姓名: 一、选择题
1、一质点作匀速率圆周运动时,则质点的(C )
(A)动量不变,对圆心的角动量也不变. (B)动量不变,对圆心的角动量不断改变. (C)动量不断改变,对圆心的角动量不变. (D)动量不断改变,对圆心的角动量也不断改变. 2、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 (C)
(A) 只有机械能守恒.
(B) 只有动量守恒.
(C) 只有对转轴O 的角动量守恒.
(D) 机械能、动量和角动量均守恒.
3、刚体角动量守恒的充分而必要的条件是 (B )
(A) 刚体不受外力矩的作用.
(B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变.
4、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系
统 (B )
(A) 动量和机械能守恒. (B) 对转轴的角动量守恒. (C) 动量、机械能和角动量都守恒. (D) 动量、机械能和角动量都不守恒. 二、填空题:
1. 一质量为m 的质点沿着一条曲线运动,其位置矢量在空间直角座标系中的表达式为
cos sin r a ti b tj ωω=+,其中a 、b 、ω皆为常量,则此质点对原点的角动量为 m abk ω ;此
质点所受对原点的力矩 0 .
2、一正方形abcd 边长为L ,它的四个顶点各有
一个质量为m 的质点,此系统对下面三种转轴的
转动惯量:
(1)Z 1轴: 2mL 2
(2)Z 2轴: mL 2
(3)Z 3轴(方向垂直纸面向外): 2mL 2 3、一人造地球卫星绕地球做椭圆轨道运动,则卫星的动量 不守恒 ,动能不守恒,机械能 守恒 ,对地心的角动量 守恒 。
(填“守恒”或“不守恒”)
4、刚体的转动惯量与 刚体的质量 、 刚体的质量对于转轴的分布及 转轴的位置 有关。
5、一质量为2kg 的质点在某一时刻的位置矢量为
23r i j
=+(m ),该时刻的速度为32i j υ=+ (m/s ),则质点此时刻的动量p = 64i j + ,相对于坐标原点的角动量L = 10k - 。
三、简答题:
1、力学中常见三大守恒定律是什么?
答:动量守恒定律、能量转换与守恒定律和角动量守恒定律
2、试用所学知识说明(1)芭蕾舞演员、花样滑冰运动员在原地快速旋转动作;(2)为什么体操和跳水运动中直体的空翻要比屈体、团体的空翻难度大。
答:(1)由于所受的外力矩可以忽略,因而角动量守恒,他们总是先把两臂张开,以一定的角速度绕通关脚尖的竖直轴旋转,然后再迅速地将两臂收拢,
这时,转动惯量变小了,于是就得到很高的角速度。
(2)根据角动量守恒,直体的空翻的转动惯量大,角速度难以提高。
3、一质点做直线运动,在直线外任选一点O为参考点,若该质点做匀速直线运动,则它相对于点O的角动量是常量吗?若该质点做匀加速直线运动,则它相对于点O的角动量是常量吗?角动量的变化率是常量吗?分别说明原因。
答:(1)是;相对于直线外一点O点的角动量大小为rmvsinθ=dmv其中式中d为点O到直线的距离。
(2)不是;因为匀加速直线运动过程中速度在变化。
(3)是。
因为角动量的变化率等于dma而匀加速直线运动加速度是不变的。
4、当刚体转动的角速度很大时,作用在它上面的力及力矩是否一定很大?
答:不一定。
在角动量守恒时,运动员旋转的角速度很大,但合外力矩为零。
给刚体一个很大的顺时力让刚体获得很大的角速度,然后把力撤去。
四、计算题:
1、一长为L、质量为M的均匀直杆,一端O悬
挂于一水平光滑轴上(如图),并处于铅直静止
状态。
一质量为m的子弹以水平速度v0射入杆
的下端而随杆运动。
求它们开始运动时的角速
度。
解:将杆和子弹作为系统分析,它们
所受的合外力矩(它们所受的重力、)
轴对杆的支持力)皆为零,所以系统角动量守恒,
于是有:mL v0= mL v+Jw
其中v、w分别表示子弹和杆开始运动时的下端
速度和角速度,而杆的转动惯量J=ML2/3,又由
运动学关系有:v=Lw
/[(3m+M)L]
2、一轻绳两端分别拴有质量为m1和m2(m1≠m2)
的物体,并跨过质量为m、半径为r的均匀圆盘状
的滑轮。
设绳在轮上无滑动,并忽略轮与轴间、m2
与支撑面见的摩擦,求m1
、m2的加速度a以及两段
m1g-T1
(T1- T2
T2=m2a
a=rβ
得a=m1g/(m1+m2+m/2);T2=m1m2g/(m1+m2+m/2)
T1=(2m1m2g+m1mg)/(2m1+2m2+m)
3、人造地球卫星,绕地球作椭圆轨道运动,地球在
椭圆的一个焦点上,人造地球卫星的近地点高度为
h1,速率为v1;远地点的高度为h2,已知地球的半
径为R。
求卫星在远地点时的速率v2.
解:因为卫星所受地球引力的作用线通过地球中心,
所以卫星对地球中心的角动量守恒,设卫星的质量
为m,根据角动量守恒定律得:(R+ h1)m v1=(R+ h2)
m v2求得v2=(R+ h1)v1 /(R+ h2)
4、如图,一轻绳跨过两个质量为m、半径为r的均
v
m1
a
匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和
m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,
两个定滑轮的转动惯量均为2/2
m r ,将由两个定滑轮以及质量为m 2和m 的重物组成的系统从静止释放,求重物的加速度和两滑轮之间绳内的张力。
解:受力分析如图
ma T mg 222=- (1) ma mg T =-1 (2)
22()/2T T r mr β-= (3) 21()/2T T r mr β-= (4)
βr a = (5)
联立 g a 41=
, mg T 8
11
=。