液化石油气储罐设计

合集下载

液化石油气储罐设计

液化石油气储罐设计

第一章 工艺设计参数的确定液化石油气的主要组成部分由于石油产地的不同,各地石油气组成成分也不同。

取其大致比例如下:表一 组成成分 异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 乙炔 各成分百分比0.012.2549.323.4821.963.791.190.02对于设计温度下各成分的饱和蒸气压力如下:表二,各温度下各组分的饱和蒸气压力 温度,℃ 饱和蒸汽压力,MPa异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 乙炔 -25 0 1.3 0.2 0.06 0.04 0.025 0.007 0 -20 0 1.38 0.27 0.075 0.048 0.03 0.009 0 0 0 2.355 0.466 0.153 0.102 0.034 0.024 0 20 0 3.721 0.833 0.294 0.205 0.076 0.058 0 5071.7440.670.50.20.160.00111、设计温度根据本设计工艺要求,使用地点为太原市的室外,用途为液化石油气储配站工作温度为-20—48℃,介质为易燃易爆的气体。

从表中我们可以明显看出,温度从50℃降到-25℃时,各种成分的饱和蒸气压力下降的很厉害,可以推断,在低温状态下,由饱和蒸气压力引起的应力水平不会很高。

由上述条件选择危险温度为设计温度。

为保证正常工作,对设计温度留一定的富裕量。

所以,取最高设计温度t=50℃,最低设计温度t=﹣25℃。

根据储罐所处环境,最高温度为危险温度,所以选t=50℃为设计温度。

1、设计压力该储罐用于液化石油气储配供气站,因此属于常温压力储存。

工作压力为相应温度下的饱和蒸气压。

因此,不需要设保温层。

根据道尔顿分压定律,我们不难计算出各种温度下液化石油气中各种成分的饱和蒸气分压,如表三:表三,各种成分在相应温度下的饱和蒸气分压温度, ℃饱和蒸气分压, MPa异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戍烷 正戍烷乙烯 -25 0 0.029 0.0946 0.014 0.0088 0.00095 0.000083 0 -20 0 0.031 0.127 0.0176 0.0105 0.00114 0.000109 0 0 0 0.053 0.2204 0.0359 0.0224 0.00129 0.000256 0 20 0 0.084 0.394 0.069 0.045 0.00288 0.00063 0 500 0.158 0.0825 0.1573 0.1098 0.007580.0019 0有上述分压可计算再设计温度t=50℃时,总的高和蒸汽压力P=in i i py ∑81===0.01%×0+2.25%×7+47.3%×1.744+23.48%×0.67+21.96%×0.5+3.79%×0.2+1.19%×0.16+0.02%×0.0011=1.25901 MPa因为:P异丁烷(0.2)<P液化气(1.25901)<P丙烷(1.744)当液化石油气在50℃时的饱和蒸汽压力高于异丁烷在50℃时的饱和蒸汽压力时,若无保冷设施,则取50℃时丙烷的饱和蒸汽压力作为设计压力。

30M3液化石油气储罐设计

30M3液化石油气储罐设计

30M3液化石油气储罐设计液化石油气储罐是一种用于储存和运输液化石油气的设备。

下面是一个关于30M3液化石油气储罐的设计方案,总字数超过1200字。

请注意,这仅仅是一个设计方案的概述,实际的设计需要详细考虑诸如材料选择、结构强度、安全措施等方面的因素。

设计方案概述:1.储罐容量:储罐的容量为30立方米,可以满足一般商业和家用液化石油气需求。

2.材料选择:储罐主要由碳钢构成,碳钢具有良好的强度和耐蚀性,适用于储存液化石油气的环境。

3.结构设计:储罐采用圆筒形结构,底部为圆锥形,底部设计合理,以便于方便排放液体和气体。

储罐顶部设有适当的进气孔和排气孔,可以实现气体的进出。

4.安全措施:a.储罐设有过压保护装置,可以及时释放过高的压力以防止储罐爆炸。

b.储罐底部设有液位传感器,用于监测液体的高度,以确保不会超过设计容量。

c.储罐设有温度传感器,用于监测储罐内部气体的温度,以防止过高温度引发事故。

d.储罐设有火灾探测器和灭火系统,以应对火灾风险。

5.排放和填充:储罐底部设有排放阀门,用于排放液体和气体。

储罐顶部设有填充阀门,用于向储罐注入液化石油气。

6.运输和安装:储罐设计合理,可以方便地运输和安装。

储罐具有适当的固定装置,以确保在运输和操作过程中的稳定性和安全性。

7.维护和保养:储罐需要定期维护和保养,以确保其正常运行和安全性。

维护包括检查和更换阀门、传感器以及涂层的重新涂覆等。

8.泄漏和环境保护:储罐设有泄漏探测系统和泄漏收集装置,能够及时检测和收集泄漏的液体或气体,以减少对环境的影响。

以上是关于30M3液化石油气储罐设计的一个简要概述。

实际的设计将需要考虑更多细节和具体要求,包括压力容器标准、安全要求和环保法规等。

设计师应该与相关专业人员和当地政府机构合作,并参考现有的规范和标准,以确保储罐的设计符合要求并能够安全地运行。

100立方液化石油气储罐参数

100立方液化石油气储罐参数

100立方液化石油气储罐参数
一个100立方液化石油气储罐包括以下主要参数:
1. 储罐容量:100立方为该储罐的容量,单位为立方米。

这是指储罐可以容纳的最大液化石油气体积。

2. 储罐设计压力:指储罐的设计压力,单位为千帕。

通常情况下,储罐的设计压力为2.5MPa,这是指储罐可以承受的最大压力。

在实际使用中,储罐的工作压力应该低于设计压力。

3. 储罐直径:指储罐的直径,单位为米。

储罐直径的大小通常决定了储罐的体积和重量。

4. 储罐长度:指储罐的长度,单位为米。

长度也是储罐体积和重量的重要决定因素之一。

5. 储罐壁厚:指储罐壁的厚度,单位为毫米。

储罐壁厚的大小通常决定了储罐的耐用性和安全性。

6. 储罐重量:指储罐的重量,单位为吨。

储罐重量通常包括储罐本身和其中储存的液化石油气的重量。

7. 储罐材质:储罐的材质通常是碳钢,不锈钢等钢材,具有良好的耐腐蚀性和耐高压性能。

8. 储罐附件:储罐通常包括很多附件,如进气管、排气管、压力表、温度计、安全阀、液位计等,这些附件可以监控和控制储罐内石油气的压力、温度和液位等参数。

对于液化石油气储罐来说,其容量、设计压力、直径、长度、壁厚、重量、材质和附件等参数都是非常重要的,这些参数的合理设计和使用可以保证储罐的正常运行和安全性。

新50M3液化石油气储罐设计

新50M3液化石油气储罐设计

目录封面 (1)目录 (2)封皮 (3)任务说明 (4)封面 (6)第一章、工艺设计 (7)1.压力容器存储量 (7)2.压力计算 (8)第二章、机械设计 (8)1、结构设计 (8)⑴、筒体和封头的设计 (8)⑵、接管与接管法兰设计 (8)⑶、人孔、补强、液面计及安全阀的设计 (11)⑷、鞍座的设计 (12)⑸、焊接头设计 (14)第三章、强度计算校核 (15)1、内压圆筒校核 (16)2、左封头计算校核 (17)3、右封头计算校核 (18)4、鞍座校核 (19)5、各种接口补强校核 (20)6、各种法兰校核 (21)参考资料 (22)设计感想 (23)中北大学课程设计任务书2009/2010 学年第二学期学院:机械工程与自动化学院专业:过程装备与控制工程学生姓名:学号:课程设计题目:55M3液化石油气储罐设计起迄日期:06 月13 日~06月24日课程设计地点:校内指导教师:系主任:下达任务书日期: 2010年06月13日课程设计任务书1.设计目的:1)使用国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。

2)掌握查阅、综合分析文献资料的能力,进行设计方法和方案的可行性研究和论证。

3)掌握电算设计计算,要求设计思路清晰,计算数据准确、可靠,且正确掌握计算机操作和专业软件的使用。

4)掌握工程图纸的计算机绘图。

2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):1.原始数据设计条件表序号项目数值单位备注1 名称液化石油气储罐2 用途液化石油气储配站3 最高工作压力 1.61 MPa 由介质温度确定4 工作温度-20~48 ℃5 公称容积(V g)10/20/25/40/50 M36 工作压力波动情况可不考虑7 装量系数(φV) 0.98 工作介质液化石油气(易燃)9 使用地点室外10 安装与地基要求储罐底壁坡度0.01~0.0211 其它要求管口表公称尺寸连接尺寸标准连接面形式用途或名称g 1-4 DN50 HG20595—97 MFM 液位计接口c DN50 HG20595—97 MFM 放气管b DN50 MFM 人孔n DN50 HG20595—97 MFM 安全阀接口h DN50 HG20595—97 MFM 排污管i DN50 HG20595—97 MFM 液相出口管f DN50 HG20595—97 MFM 液相回流管a DN50 HG20595—97 MFM 液相进口管c DN50 HG20595—97 MFM 气相管d DN50 HG20595—97 MFM 压力表接口e DN50 HG20595—97 MFM 温度计接口课程设计任务书2.设计内容1)设备工艺、结构设计;2)设备强度计算与校核;3)技术条件编制;4)绘制设备总装配图;5)编制设计说明书。

液化石油气储罐的几个设计问题

液化石油气储罐的几个设计问题

输 、 存 和分 配 , 常采 用常 温加 压条件 以保 持液 贮 通
化 石 油 气 的 液体 状 态 , 用 于贮 存 液化 石 油 气 的 故
容器 为 压力 容器 , 习惯 上称 之为 液化石 油 气储罐 。
气 态 的 液 化 石 油 气 比 空 气 重 , 为 空 气 的 约
1 5 , 罐 内液体 一旦 泄漏 就 迅速 降 压 , .倍 储 由液 态 转 为气 态 , 并易 在低 洼 、 沟槽处 聚 积 。又 因 液化石 油 气爆 炸下 限很 低 ( 左 右 ) 极 易与周 围空 气混 2 ,
1 0n。 上 的 液 罐 应 设 置 2个 或 2个 以 上 的 安 0 1 以
终 在起 作用 。 数 值最 高可 达到材 料 的屈服 强度 , 其
严重 影 响设备 的安 全使 用 。 此外 , 国的液化 石油 我
全阀 ; 安全 阀应装 设放 散管 , 管径 不小 于 安全 阀 其
气来 源 广 . H s的浓 度较 高 , 动范 围大 , 不 含 波 很
表 1 设 计 压 力取 值 参 考 表
2 材 质 的 确 定
有 :0 1 Mn 1 Mn 2 R、6 R、 5 VR。综 合 考 虑经 济 性 、 运 输 能 力 和 供 材 情 况 , 式 液 罐 主要 用 1 Mn 制 卧 6 R 作。
3 焊 后 整 体 热 处 理
常 温下 , 钢对 丙 烷 、 烷 、 烯 、 丁 丙 丁二烯 等碳 氢
化 合 物 有 较 好 的 耐 腐 蚀 作 用 , 般 年 腐 蚀 量 在 一 0 0 . 5mm 以下 , 因此 , 化 石 油 气 储 罐 可 选 用 碳 液
钢或低 合 金钢 制作 。 GB 5 1 0—1 9 ( 制 压 力 容器 》 98 钢 ( 中规 定 : 3 Q2 5

压力容器卧式储罐设计

压力容器卧式储罐设计
设计压力取最大工作压力的倍,即
工作温度为 ,设计温度取
主要元件材料的选择
筒体、封头材料的选择
根据GB150-1998表4-1,选用筒体、封头材料为低合金钢Q345R(钢材标准为GB-6654) 。Q345R适用范围:用于介质含有少量硫化物,具有一定腐蚀性,壁厚较大( )的压力容器,取腐蚀余量 ,钢板负偏差C1=。
Q345R
在下列温度(℃)下的许用应力(MPa)
100
150
200
250
185
185
153
143
130
鞍座材料的选择
根据JB/T4731,鞍座选用材料为Q235-A,其许用应力
地脚螺栓的材料选择
地脚螺栓选用符合GB/T 700规定的Q235,Q235的许用应力
第三章设备的结构设计
圆筒、封头厚度的设计
液化石油气具有易燃易爆的特点,液化石油气储罐属于具有较大危险的储存容器。针对液化石油气储罐的危险特性,结合本专业《过程设备与压力容器设计》所学的知识,在设计上充分考虑液化石油气储罐各项参数,确保液化石油气储罐能安全运行,对化工行业具有重要的现实意义。
本次设计的主要标准有:《固定式压力容器》、《压力容器安全技术监察规程》、JB4731-2005《钢制卧式容器》。各零部件标准主要有:JB/T 4736-2002《补强圈》、HG 20592-20614《钢制管法兰、垫片、紧固件》、JB/T《鞍式支座》、HG205《钢制人孔和手孔》等。
液化石油气特点
气态的液化石油比空气重约倍,该气体的空气混合物爆炸范围是%~%,遇明火即发生爆炸。所以使用时一定要防止泄漏,不可麻痹大意,以免造成危害。因此,往槽车、贮罐以及钢瓶充灌时要严格控制灌装量,以确保安全。因为液化石油气是由多种碳氢化合物组成的,所以液化石油气的液态比重即为各组成成份的平均比重,如在常温20℃时,液态丙烷的比重为,液态丁烷的比重为~,因此,液化石油气的液态比重大体可认为在左右,即为水的一半。

液化石油气储罐设计

液化石油气储罐设计

液化石油气储罐设计
1.储罐材料选择:
2.结构设计:
3.安全阀和泄压装置:
储罐设计需要考虑到可能发生的过压和过温情况。

为了确保储罐内部压力在可接受范围内,应安装安全阀和泄压装置。

这些装置将会在压力过高或温度过高时自动释放气体。

4.罐体绝热:
由于液化石油气的低温特性,储罐设计需要确保罐体具有良好的绝热特性。

这可以通过采用绝热材料来实现,其中包括内部绝热层、外部绝热层和真空层等。

5.地震设计:
储罐的地震设计是非常重要的,特别是对于经常发生地震的地区。

储罐的结构应具备足够的抗震能力,以确保在地震发生时储罐不会受到严重损坏。

6.罐体检测和监测系统:
储罐应配备完备的检测和监测系统,以实时监测储罐内的压力、温度和液位等参数。

这有助于及时发现潜在的故障,并采取相应的措施进行修复和保养。

7.罐体密封系统:
储罐的密封系统对于防止气体泄漏和液体挥发至关重要。

密封系统应设计为可靠的,并在罐体发生压力变化时能够保持稳定的密封效果。

综上所述,液化石油气储罐设计应综合考虑储罐的材料选择、结构设计、安全阀和泄压装置、罐体绝热、地震设计、检测和监测系统以及罐体密封系统等关键要素。

通过合理的设计和建造,可以确保液化石油气储罐的安全运行,防止事故发生,保护人员和环境的安全。

50立方液化石油气储罐设计方案(50立方液化气储罐-50立方石油液化气储罐)

50立方液化石油气储罐设计方案(50立方液化气储罐-50立方石油液化气储罐)

50立方液化石油气储罐一.设计背景该储罐由菏泽锅炉厂有限公司设计,是用来盛装生产用的液化石油气的容器。

设计压力为1.77Mpa,温度在-19~52摄氏度范围内,设备空重约为10812Kg,体积为50立方米,属于中压容器。

石油液化气为易燃易爆介质,且有毒,因此选材基本采用Q345R。

此液化石油气卧式储罐是典型的重要焊接结构,焊接接头是其最重要的连接结构,焊接接头的性能会直接影响储存液化石油气的质量和安全。

二.总的技术特性:技术特性表容器类别类三设计压力 MPa 1.77-19~52设计温度℃最高工作压力 MPa 1.77水压试验压力 MPa 2.25气密性试验压力 MPa 1.77焊接接头系数 1尺寸 mm DN2400*10200厚度 mm 14/16操作介质液化石油气充装系数0.9设备容积立方米50三.储气罐基本构成储气罐是一个承受内压的钢制焊接压力容器。

在规定的使用温度和对应的工作压力下,应保证安全可靠,罐体的基本结构部件应包括人孔、封头、筒体、法兰、支座。

图1储气罐的结构简图1.1筒体本产品的简体是用钢板卷焊成筒节后组焊而成,这时的简体有纵环焊缝。

1.2封头按几何形状不同,有椭圆形封头,球形封头,蝶形封头,锥形封头和平盖等各种形式。

封头和简体组合在一起构成一台容器壳体的主要部分,也是最主要的受压元件之一。

此储气罐选择的是椭圆形封头。

从制造方法分,封头有整体成形和分片成形后组焊成一体的两种。

当封头直径较大,超出生产能力时,多采用分片成形方法制造,分片成形控制难度大,易出现不合格产品。

对整体成形的封头尺寸、形状,虽然易控制但一般需要有大型冲压模具的压力机或大型旋压设备,工艺设备庞大,制造成本高。

从封头成形方式讲,有冷压成形、热压成形和旋压成形。

对于壁厚较薄的封头,一般采用冷压成形。

采用调质钢板制造的封头或封头瓣片,为不破坏钢板调质状态的力学性能,节省模具制造费用,往往采用多点冷压成形法制造。

当封头厚度较大时,均采用热压成形法,即将封头坯料加热至900℃~1000℃。

110立方米液化石油气储罐设计

110立方米液化石油气储罐设计

110立方米液化石油气储罐设计液化石油气(LPG)是一种重要的燃料资源,广泛应用于工业、农业和生活领域。

为了方便储存和运输LPG,110立方米液化石油气储罐成为了一种常见的设备。

本文将探讨110立方米液化石油气储罐的设计特点和应用领域。

110立方米液化石油气储罐通常采用钢制结构,具有良好的耐腐蚀性和密封性能。

其设计考虑到了LPG的特性,确保储存和运输过程中不会发生泄漏或安全事故。

同时,110立方米的储罐容量适中,既能满足一定规模的需求,又不会造成过度浪费。

在工业领域,110立方米液化石油气储罐常用于燃料供应系统。

工厂或企业可以将LPG储存在储罐中,以备不时之需。

这种储罐设计紧凑,占地面积小,适合各种规模的工厂使用。

同时,110立方米的容量足以满足一定时间的生产需求,不需要频繁补充LPG,提高了生产效率。

在农业领域,110立方米液化石油气储罐常用于农业灌溉系统或温室加热。

农业生产对燃料的需求量较大,110立方米的储罐可以满足农民长时间的使用需求,无需频繁更换燃料。

此外,储罐的设计使得燃料供应稳定可靠,保障了农作物的正常生长。

在生活领域,110立方米液化石油气储罐被广泛应用于城市居民区或商业建筑。

LPG作为清洁高效的燃料,受到了越来越多家庭和企业的青睐。

110立方米的储罐设计考虑到了城市空间的限制,可以灵活安装在建筑物的地下或屋顶,不占用过多空间。

总的来说,110立方米液化石油气储罐的设计充分考虑了LPG的特性和应用需求,适用于工业、农业和生活领域。

其安全可靠的性能和适中的容量使其成为一种理想的储存设备。

希望未来能有更多创新设计出现,进一步提升液化石油气储罐的性能和效率,为社会的发展做出贡献。

液化石油气储罐的设计

液化石油气储罐的设计
1
过程设备设计课程设计说明书
绪论
液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计 这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其是安全与防火, 还要注意在制造、安装等方 面的特点。 目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。球形贮罐 和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂, 焊接工作量大, 故安装费用较高。一般贮存总量大于 500m 3 或单罐容积大于 200m 3 时选用球 形贮罐比较经济; 而圆筒形贮罐具有加工制造安装简单, 安装费用少等优点, 但金属耗量大占 地面积大, 所以在总贮量小于 500m 3, 单罐容积小于 100m 3 时选用卧式贮罐比较经济。圆筒形 贮罐按安装方式可分为卧式和立式两种。在一般中、小型液化石油气站内大多选用卧式圆筒形 贮罐, 只有某些特殊情况下(站内地方受限制等) 才选用立式。本文主要讨论卧式圆筒形液化石 油气贮罐的设计。
查标准 HG20580-1998《钢制化工容器设计基础规定》表 7-1 知,钢板厚度负偏差为 0.25mm, 而有 GB150-1998 中 3.5.5.1 知,当钢材的厚度负偏差不大于 0.25mm,且不超过名义厚度的 6%
mm
M3
液化石油气(易燃) 100%探伤
备注
1.3、设计压力:
设计压力取工作压力的 1.1 倍,即 P 1.12.16 2.38MPa
1.4、设计温度:
设计温度取 55。C 。
1.5、主要元件材料的选择:
1.5.1 筒体材料的选择: 根据 GB150-1998 表 4-1,选用筒体材料为 16MnR(钢材标准为 GB6654)。 1.5.2 鞍座材料的选择:

15立方米液化石油气储罐设计

15立方米液化石油气储罐设计

15立方米液化石油气储罐设计设计:15立方米液化石油气储罐概述:液化石油气(LPG)是一种清洁能源,广泛用于民用、商业和工业领域。

为了储存和运输LPG,液化石油气储罐是必不可少的设备之一、本设计旨在设计一个容量为15立方米的液化石油气储罐,以满足日常使用需求。

设计要求:1.容量:15立方米2.材料:耐腐蚀的钢材3.安全:符合储罐设计和操作的安全要求4.维护:容易进行检修和维护5.运输:可安全运输和搬运设计细节:1.设计容量:15立方米的液化石油气储罐,具有充足的储存空间,以满足日常用气需求。

2.材料选择:选用高强度耐腐蚀的钢材作为储罐的主要材料。

钢材具有良好的强度和稳定性,能够承受高压和外部环境的影响。

3.结构设计:储罐采用立式结构,具有稳定的基础和支撑设备,以确保储罐的稳定性和安全性。

4.安全设计:储罐采用双层结构,内部是LPG液体存储区,外面是绝缘层,以防止液体泄漏和减少热量传递。

在储罐的顶部和底部设置了安全阀、压力传感器和温度传感器,以确保储罐的运行安全。

5.维护设计:储罐设计考虑了维修和检修的便利性。

安装步骤和关键部件的拆卸和更换方式应明确和简化,便于维护人员进行操作和维护。

6.运输设计:储罐的设计应考虑到其可运输性。

适当的尺寸和重量限制应根据实际需要进行确定,以确保储罐在运输过程中的稳定性和安全性。

安全注意事项:1.储罐应远离火源和易燃物。

气体泄漏可能会引发火灾和爆炸。

2.遵守LPG储罐操作和维护的安全规范。

3.定期检查储罐的安全凸起和压力传感器,确保其正常运行。

4.确保储罐周围区域干燥并保持良好的通风。

结论:通过本设计,可以满足15立方米液化石油气的储存需求,并确保储罐在设计和操作方面符合安全要求。

储罐的维护和运输设计以及安全注意事项将有助于确保使用液化石油气的安全性和可靠性。

液化石油气储罐设计

液化石油气储罐设计

液化石油气储罐设计
液化石油气(LPG)储罐是用来存储液化石油气的设施,它是石油气
工业的重要组成部分。

在设计液化石油气储罐时,需要考虑多个因素,包
括容量和尺寸、结构强度、安全性、环境保护等。

本文将从这些方面详细
阐述液化石油气储罐的设计。

其次,结构强度对液化石油气储罐设计至关重要。

由于液化石油气的
压力较高,储罐必须能够承受内外压力的差异。

因此,储罐的壁厚和支撑
结构需要足够强度和刚性,以防止变形或破裂。

常用的结构材料包括碳钢
和低合金钢,可以选择合适的强度等级和厚度。

第三,安全性是设计中最重要的考虑因素之一、液化石油气是易燃易
爆的物质,必须采取适当的安全措施来保护储罐。

要确保防火和爆炸的安全,储罐应配备适当的防爆装置,如安全阀、疏水阀等。

此外,储罐周围
应设有火灾自动报警系统和灭火装置,以防止火灾蔓延。

储罐还应具备良
好的防泄漏措施和紧急切断装置,以减少事故发生的风险。

最后,液化石油气储罐设计应考虑环境保护。

在储罐的设计中,应该
采用环保材料,如防腐蚀涂层和隔热材料,以减少对环境的污染。

此外,
储罐的泄漏控制和废气处理系统也要考虑到环境影响,并采取相应的措施,如安装泄漏报警装置和废气处理设备。

总之,液化石油气储罐的设计需要综合考虑容量和尺寸、结构强度、
安全性和环境保护等因素。

通过合理选择材料和设备,以及采取相应的安
全措施,可以确保储罐安全运行,并为石油气工业提供可靠的储存设施。

以上是对液化石油气储罐设计的简要阐述,涵盖了其基本设计要点。

10立方米液化石油气储罐设计

10立方米液化石油气储罐设计

10立方米液化石油气储罐设计液化石油气(Liquefied Petroleum Gas,简称LPG)是一种非常重要的能源,广泛应用于家庭用途、商业用途以及工业用途。

在储存和运输LPG时,安全是最重要的问题之一、因此,设计一个10立方米的液化石油气储罐需要仔细考虑各种因素,以确保其安全可靠。

首先,液化石油气储罐的选材非常关键。

LPG是一种能够在常温下液化的气体,对材料有一定的腐蚀性。

因此,储罐的内层必须采用耐腐蚀材料,例如不锈钢,以确保其长期使用的安全性。

其次,液化石油气储罐需要具备良好的结构设计。

由于LPG具有较高的蒸汽压力,在储罐内部会产生一定的压力。

因此,储罐需要具备足够的强度和刚度,以抵抗内压的作用。

另外,在设计储罐时还需要考虑到外力的作用,例如地震和风力的影响。

液化石油气储罐还需要具备一系列的安全设施。

例如,储罐的顶部应该安装安全阀门,以便在储罐内部压力超过设定值时释放气体。

此外,还应该安装压力传感器和温度传感器,以监测储罐内部的压力和温度变化。

当储罐内部发生异常时,系统应该能够及时发出警报,并采取相应的措施保护储罐和周围环境的安全。

另外,储罐的放置位置也需要谨慎选择。

基本原则是确保储罐远离火源和易燃物品,以防止发生火灾和爆炸。

另外,储罐周围应该设置防火墙和安全通道,以确保在紧急情况下能够快速疏散人员和防止火势蔓延。

此外,储罐的维护和检修也非常重要。

储罐应定期进行检查,包括外观检查、内部检漏和压力测试。

对于损坏的储罐部件,必须及时更换和修复,以确保储罐的功能性和安全性。

综上所述,设计一个10立方米的液化石油气储罐需要综合考虑材料的选用、结构的设计、安全设施的设置、储罐的放置位置以及维护和检修等方面。

只有在各个方面都充分考虑和采取措施的情况下,才能设计出一个安全可靠的液化石油气储罐。

30M3液化石油气储罐设计

30M3液化石油气储罐设计

30M3液化石油气储罐设计
30M3液化石油气(LPG)储罐是一种用于存储液化石油气的设备,通
常用于加油站、工业用途或家庭使用。

设计一个符合安全标准和效率要求
的30M3液化石油气储罐是非常重要的。

本文将介绍30M3液化石油气储罐
的设计过程,并探讨一些关键设计考虑因素。

储罐的主要设计考虑因素包括结构强度、安全性、防腐性、密封性和
使用寿命。

在设计30M3液化石油气储罐时,首先需要确定所需的存储容
量和工作压力,以及罐体的材料和厚度。

通常,30M3液化石油气储罐会
采用碳钢或不锈钢材料,具有足够的强度和耐腐蚀性能。

为了确保储罐的安全性,设计中必须考虑到气体的蒸汽和液体压力,
并且必须安装压力释放阀和监测系统。

同时,也需要考虑到储罐的地基和
支撑结构,以及其稳定性和抗风能力。

在防腐方面,30M3液化石油气储罐通常会进行防锈处理和外部涂层
保护,以延长使用寿命并降低维护成本。

此外,还需要确保储罐的密封性,以防止气体泄漏和安全事故。

在设计30M3液化石油气储罐时,还需要考虑到其操作和维护便利性。

可以考虑添加检修孔和检测设备,以便定期检查储罐的状态和性能。

同时,设计应考虑到储罐的负载和地势条件,以确保其稳定性和安全性。

总的来说,设计30M3液化石油气储罐是一个复杂的过程,需要综合
考虑多种因素。

只有在符合安全标准和效率要求的前提下,才能设计出一
种优质的30M3液化石油气储罐。

希望这篇文章可以帮助你更好地了解
30M3液化石油气储罐的设计原理和关键考虑因素。

110立方米液化石油气储罐设计

110立方米液化石油气储罐设计

110立方米液化石油气储罐设计随着能源需求的不断增长,液化石油气作为一种清洁、高效的能源供应方式,被广泛应用于家庭、工业和商业领域。

为了满足市场需求,110立方米液化石油气储罐设计成为了研究的重点。

本文将从结构设计、安全性能和运营管理等方面对110立方米液化石油气储罐进行详细探讨。

一、结构设计110立方米液化石油气储罐的结构设计需要兼顾储罐的强度和稳定性。

采用钢结构,并进行合理的加强和连接,以确保储罐能够承受内外部压力和荷载。

此外,根据液化石油气的特性,储罐内部还应设置隔热层,以减少能量损失。

二、安全性能液化石油气储罐在设计过程中,安全性是最重要的考虑因素之一。

储罐的设计应满足相关的安全标准和规范,包括承压容器设计规范、防爆设计规范等。

同时,储罐应具备防火、防雷、防腐蚀等功能,以确保储存的液化石油气不会发生泄漏、爆炸等事故。

三、运营管理110立方米液化石油气储罐的运营管理对于保证储罐的安全运行至关重要。

首先,需要建立完善的运营管理制度,包括巡检、维护、保养等各项工作。

其次,需要配备专业的运营管理人员,对储罐进行定期检修和维护,确保储罐的设备和管道处于良好的状态。

此外,还需要建立健全的应急预案,以应对突发事故。

总结起来,110立方米液化石油气储罐的设计需要考虑结构设计、安全性能和运营管理等多个方面。

只有在这些方面都得到合理的考虑和实施,才能保证储罐的安全运行。

为了满足市场需求,储罐制造商应不断优化设计方案,并加强与相关部门的合作,提高储罐的质量和安全性能。

通过合理的设计和运营管理,110立方米液化石油气储罐将为人们提供更加安全、高效的能源供应。

液化石油气储罐设计

液化石油气储罐设计

液化石油气储罐设计液化石油气储罐是一种用于储存液化石油气(LPG)的设备,其设计是为了确保安全、高效地储存和输送石油气至最终用户。

液化石油气储罐的设计需要考虑罐体结构、安全措施以及运输和使用的方便性等因素。

下面将对液化石油气储罐的设计进行详细说明。

首先,液化石油气储罐的罐体结构需要具备足够的强度和耐久性。

罐体通常由高强度低合金钢制成,以承受内部压力和外部环境的荷载。

罐体的结构应采用圆柱形设计,有利于承受内部压力和降低应力集中。

此外,罐体需要具备良好的防腐蚀性能,可通过涂覆耐腐蚀涂层或使用不锈钢等材料来实现。

为了确保罐体的安全性,液化石油气储罐的设计还需要包括多种防爆和泄漏措施。

首先,罐体应设计成双壁结构,内外壁之间的空间可用于泄漏检测和泄漏液体的收集。

罐体还应配备安全阀,以保证内部压力不超过设计压力,从而避免爆炸的危险。

此外,罐体应设置泄漏报警装置和自动灭火系统,及时检测并处理泄漏情况,确保现场安全。

液化石油气储罐的设计还应考虑运输和使用的便利性。

罐体应具有一定的可移动性,方便在不同地点进行储气和输送。

此外,罐体应设置便于连接输送管道的接口,以便快速且安全地将石油气输送至用户。

为了方便用户使用,储罐的设计还应包括方便的计量和计量系统,确保用户能够准确地测量和购买所需的石油气量。

在液化石油气储罐的设计中,还需要综合考虑地震、超压、温度变化等外部条件的影响。

罐体应具备一定的抗震能力,以防止在地震发生时发生破坏。

此外,储罐的设计应考虑到不同环境温度对石油气的影响,采取隔热措施以保持石油气的低温状态。

总之,液化石油气储罐的设计是一个涉及多个因素的复杂过程。

它需要考虑罐体结构、安全措施、便利性以及外部条件等多个方面的要求,以确保储罐的安全、高效运行。

通过综合考虑这些因素,可以设计出适应不同环境和用途要求的液化石油气储罐。

液化石油气储罐设计说明书

液化石油气储罐设计说明书

液化石油气储罐设计说明书目录一.设计条件及任务1.1设计条件1.2设计任务二.设计计算2.1设计温度及压力2.2筒体设计及封头选择2.3筒体和封头的厚度2.4校核计算2.5开孔及补强三.材料选择3.1压力容器主体材料3.2压力容器零部件材料四.结构设计4.1筒体和封头设计4.2支座设计4.3法兰设计4.4液面计设计4.5人孔结构设计4.6焊接接头设计及焊条选择五.水压及气密性试验六.结束语七.参考资料一.设计条件及任务1.1设计条件储罐经常置于室外,罐内液氨的温度和压力直接受到大气温度的影响,在夏季储罐经常受太阳暴晒,随着气温的变化,储罐的操作压力也不断变化。

但大多数地区夏季最高气温也达不到50℃,因此储罐的操作温度为常温,设计温度为50℃。

1.2设计任务学习械设计的一般方法,独立完成简单化工设备储罐的设计任务,达到对复杂的化工设备施工图的识图能力的要求以及具有使用CAD绘制工程设计图的能力。

二.设计计算2.1设计温度及压力2.1.1设计温度储罐的工作压力压力随外界环境的变化而变化,大多数地区夏季最高气温也达不到50℃,因此储罐的操作温度为常温,设计温度取50℃。

2.1.2设计压力常温储存液化石油气压力容器的工作压力按照不低于50℃时液化石油气主要组分丙烯的饱和蒸汽压确定,50℃时丙烯的饱和蒸汽压为1.999(绝压).故Pw=1.899(表压),安全阀开启压力Pz=(1.05—1.1)Pw,Pz=2.0889MPa,取设计压力P≥Pz,取P=2.1MPa。

(忽略液体静压力则计算压力Pc=P=2.1MPa)2.2筒体设计及封头选择① V=30m ³,由4π=V ×2Di ×L ’(折算长度L ’=3Di)得,Di=2335㎜,取DN=2300㎜.。

② DN=2300时,查表得标准椭圆形封头V1=1.7588m ³,由V=4π×2Di ×L(L 为筒体环焊缝之间距离)得L=6380 ㎜③ 由筒体实际体积V ’=4π× 2D × L 得V ’=30.0249m ³,又V ’=4π2D × L ’得L ’=7227㎜.。

0236-2010 液化石油气球形储罐及附属设施设计规定

0236-2010 液化石油气球形储罐及附属设施设计规定

Q/SY 中国石油天然气股份有限公司企业标准Q/SY TZ 0236—2010液化石油气球形储罐及附属设施设计规定Design Specification ofLiquefied Petroleum Gas Spherical Tanks and Auxiliary Facilities2010-07-01发布2010-08-01实施目次前言 (III)引言 (IV)1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 球罐的设计 (2)4.1 基本规定 (2)4.2 球壳及其受压元件的材料 (2)4.3 球罐的结构 (2)4.4 球罐的开口 (3)4.5 球罐的制造与组焊 (3)5 安全附件 (4)5.1 总体要求 (4)5.2 安全阀 (4)5.3 压力检测仪表 (4)5.4 液位检测仪表 (4)5.5 温度计 (4)5.6 梯子平台 (5)6 阀门及工艺管线 (5)6.1 设计原则 (5)6.2 进口工艺管线 (5)6.3 出口工艺管线 (5)6.4 切水工艺管线 (5)6.5 注水工艺管线 (5)6.6 气相平衡工艺管线 (5)6.7 放空工艺管线 (6)6.8 取样口 (6)6.9 其它 (6)7 控制系统 (6)8 厂区布置及消防系统 (6)8.1 设计依据 (6)8.2 厂区布置 (6)8.3 球罐区布置 (7)8.4 防护墙 (7)8.5 消防系统 (8)8.6 检测系统和静电释放 (8)9 装卸栈台的要求 (8)附录A(资料性附录)液化石油气球罐及附件流程图 (9)前言本标准依据GB/T 1.1-2009规定的起草规则编制。

本标准由塔里木油田公司标准化技术委员会提出。

本标准由质量安全环保处归口。

本标准起草单位:中国石油塔里木油田公司、兰州石油机械研究所。

本标准主要起草人:李循迹、陈东风、邹应勇、雷霆、任天树、寇国、宣培传、赵现如、刘福录、朱保国、王万磊。

引言为规范中国石油天然气股份有限公司塔里木油田分公司液化石油气球罐及附属设施的设计,提高液化石油气球罐及附属设施的使用安全性,避免或减少事故的发生,特制定本标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计任务书1.设计目的:1)使用国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。

2)掌握查阅、综合分析文献资料的能力,进行设计方法和方案的可行性研究和论证。

3)掌握电算设计计算,要求设计思路清晰,计算数据准确、可靠,且正确掌握计算机操作和专业软件的使用。

4)掌握工程图纸的计算机绘图。

2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):1.原始数据设计条件表序号项目数值单位备注1 名称液化石油气储罐2 用途液化石油气储配站3 最高工作压力 1.947 MPa 由介质温度确定4 工作温度-20~48 ℃5 公称容积(V g)10/20/25/40/50 M36 工作压力波动情况可不考虑7 装量系数(φV) 0.98 工作介质液化石油气(易燃)9 使用地点室外10 安装与地基要求储罐底壁坡度0.01~0.0211 其它要求管口表接管代号公称尺寸连接尺寸标准连接面形式用途或名称a 32 HG20592-1997 MFM 液位计接口b 80 HG20592-1997 MFM 放气管c 500 HG/T21514-2005 MFM 人孔d 80 HG20592-1997 MFM 安全阀接口e 80 HG20592-1997 MFM 排污管f 80 HG20592-1997 MFM 液相出口管g 80 HG20592-1997 MFM 液相回流管h 80 HG20592-1997 MFM 液相进口管i 80 HG20592-1997 MFM 气相管j 20 HG20592-1997 MFM 压力表接口k 20 HG20592-1997 MFM 温度计接口2.设计内容1)设备工艺、结构设计;2)设备强度计算与校核;3)技术条件编制;4)绘制设备总装配图;5)编制设计说明书。

3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕:1)设计说明书:主要内容包括:封面、设计任务书、目录、设计方案的分析和拟定、各部分结构尺寸的设计计算和确定、设计总结、参考文献等;2)总装配图设计图纸应遵循国家机械制图标准和化工设备图样技术要求有关规定,图面布置要合理,结构表达要清楚、正确,图面要整洁,文字书写采用仿宋体、内容要详尽,图纸采用计算机绘制。

4.主要参考文献:[1] 国家质量技术监督局,GB150-1998《钢制压力容器》,中国标准出版社,1998[2] 国家质量技术监督局,《压力容器安全技术监察规程》,中国劳动社会保障出版社,1999[3] 全国化工设备设计技术中心站,《化工设备图样技术要求》,2000,11[4] 郑津洋、董其伍、桑芝富,《过程设备设计》,化学工业出版社,2001[5] 黄振仁、魏新利,《过程装备成套技术设计指南》,化学工业出版社,2002[6] 国家医药管理局上海医药设计院,《化工工艺设计手册》,化学工业出版社,1996[7] 蔡纪宁主编,《化工设备机械基础课程设计指导书》,化学工业出版社,2003年5.设计成果形式及要求:1)完成课程设计说明书一份;2)草图一张(A1图纸一张)3)总装配图一张 (A1图纸一张);6.工作计划及进度:2014年09月15日:布置任务、查阅资料并确定设计方法和步骤09月16日~09月17日:机械设计计算(强度计算与校核)及技术条件编制09月 17日~09月22日:设计图纸绘制(草图和装配图)09月22日~09月24日:撰写设计说明书09月25日:答辩及成绩评定系主任审查意见:签字:年月日第一章 工艺设计1、液化石油气参数的确定液化石油气的主要组成部分由于石油产地的不同,各地石油气组成成分也不同。

取其大致比例如下:表1-1液化石油气组成成分 组成成分 异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 乙炔 各成分百分比0.012.2549.323.4821.963.791.190.02对于设计温度下各成分的饱和蒸气压力如下:表1-2各温度下各组分的饱和蒸气压力 温度,℃ 饱和蒸汽压力,MPa异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 乙炔 -25 0 1.3 0.2 0.06 0.04 0.025 0.007 0 -20 0 1.38 0.27 0.075 0.048 0.03 0.009 0 0 0 2.355 0.466 0.153 0.102 0.034 0.024 0 20 0 3.721 0.833 0.294 0.205 0.076 0.058 0 5071.7440.670.50.20.160.00112、设计温度根据本设计工艺要求,使用地点为武汉市的室外,用途为液化石油气储配站工作温度为-20—48℃,介质为易燃易爆的气体。

从表中我们可以明显看出,温度从50℃降到-25℃时,各种成分的饱和蒸气压力下降的很厉害,可以推断,在低温状态下,由饱和蒸气压力引起的应力水平不会很高。

由上述条件选择危险温度为设计温度。

为保证正常工作,对设计温度留一定的富裕量。

所以,取最高设计温度t=50℃,最低设计温度t=﹣25℃。

根据储罐所处环境,最高温度为危险温度,所以选t=50℃为设计温度。

3、设计压力该储罐用于液化石油气储配供气站,因此属于常温压力储存。

工作压力为相应温度下的饱和蒸气压。

因此,不需要设保温层。

根据道尔顿分压定律,我们不难计算出各种温度下液化石油气中各种成分的饱和蒸气分压,如表:表1-3各种成分在相应温度下的饱和蒸气分压温度, ℃饱和蒸气分压, MPa异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戍烷 正戍烷乙烯 -25 0 0.029 0.0946 0.014 0.0088 0.00095 0.000083 0 -20 0 0.031 0.127 0.0176 0.0105 0.00114 0.000109 0 0 0 0.053 0.2204 0.0359 0.0224 0.00129 0.000256 0 20 0 0.084 0.394 0.069 0.045 0.00288 0.00063 0 500 0.158 0.0825 0.1573 0.1098 0.007580.0019 0有上述分压可计算再设计温度t=50℃时,总的高和蒸汽压力P=in i i py ∑81===0.01%×0+2.25%×7+47.3%×1.744+23.48%×0.67+21.96%×0.5+3.79%×0.2+1.19%×0.16+0.02%×0.0011=1.25901 MPa因为:P异丁烷(0.2)<P液化气(1.25901)<P丙烷(1.744)当液化石油气在50℃时的饱和蒸汽压力高于异丁烷在50℃时的饱和蒸汽压力时,若无保冷设施,则取50℃时丙烷的饱和蒸汽压力作为最高工作压力。

对于设置有安全泄放装置的储罐,设计压力应为1.05~1.1倍的最高工作压力。

所以有Pc=1.1×1.947=2.142MPa。

4、设计储量参考相关资料,石油液化气密度一般为500-600Kg/m3,取石油液化气的密度为580Kg/m3,盛装液化石油气体的压力容器设计储存量为:W=øVρt=0.9×27×580=14.094t第二章 机械设计1、筒体和封头的设计:对于承受内压,且设计压力P c =2.142MPa<4MPa 的压力容器,根据化工工艺设计手册(下)常用设备系列,采用卧式椭圆形封头容器。

筒体和封头的选形 a 、 筒体设计:查GB150-1998,为了有效的提高筒体的刚性,一般取L/D=3~6,为方便设计,此处取 L/D=4 ① 。

所以 2D πL/4=27 ② 。

由 ① ② 连解得:D=2048mm 。

圆整得D=2100mm b 、封头设计:查标准JB/T4746-2002《钢制压力容器用封头》中表B.1 EHA 椭圆形封头内表面积、容积得:表2-1,EHA 椭圆形封头内表面积、容积公称直径DN /mm总深度H /mm内表面积A/2m容积V 封/3m 21005655.04431.3508图2-1椭圆形封头 由2V 封 +2D πL/4=27 得L=7015mm圆整得 L=7100mm 则L/D= 3.381 符合要求.则V 计 =2 V 封+2D πL/4=27.281 m 3>27m 3且比较接近,所以结构设计合理。

第三章 结构设计1、液柱静压力:根据设计为卧式储罐,所以储存液体最大高度h max ≤D=2100mm 。

P 静(max )=ρgh max ≤ρgD=580×9.8×2.1=11.936Kp a%5%557.0%10010142.210936.11/63max <=⨯⨯⨯=c P P )静 则P 静可以忽略不记。

2、圆筒厚度的设计:根据介质的易燃易爆、有毒、有一定的腐蚀性等特性,存放温度为-20~48℃,最高工作压力等条件。

根据GB150-1998表4-1,选用筒体材料为低合金钢16MnR (钢材标准为GB6654)[σ]t =170MPa 。

选用16MnR 为筒体材料,适用于介质含有少量硫化物,具有一定腐蚀性,壁厚较大(≥8mm )的压力容器。

根据GB150,初选厚度为6~25mm ,最低冲击试验温度为-20℃,热轧处理。

∴ δ=31.13142.20117022100142.2-Φ]σ[2=-⨯⨯⨯=c t i c P D P mm∵ 对于低碳钢和低合金钢,需满足腐蚀裕度C 2≥1mm ,取C 2=2mm查标准HG20580-1998《钢制化工容器设计基础规定》表7-1知,钢板厚度负偏差C 1=0.25mm 。

而当钢材的厚度负偏差不大于0.25mm ,且不超过名义厚度的6%时,负偏差可以忽略不计,故取C 1=0。

∴ δd =δ+C 2=13.31+2=15.31mm , δn =δd +C 1=15.31+0=15.31mm圆整后取名义厚度δn =16mm ,[σ]t 没有变化,故取名义厚度16mm 合适。

3、椭圆封头厚度的设计:为了得到良好的焊接工艺,封头材料的选择同筒体设计,同样采用16MnR 。

∴ δ=142.25.0117022100142.25.0][2⨯-⨯⨯⨯=-Φc ti c P D P σ=13.27mm 同理,选取C 2=2 mm ,C 1=0 mm 。

∴ δn =δ+C 1+C 2=13.27+2+0=175.2 mm 圆整后取名义厚度为δn =16mm跟筒体一样,选择厚度为16mm 的16MnR 材料合适。

4、接管,法兰,垫片和螺栓的选择4.1、接管和法兰液化石油气储罐应设置排污口,气相平衡口,气相口,出液口,进液口,人孔,液位计口,温度计口,压力表口,安全阀口,排空口。

相关文档
最新文档