初二数学提高题
人教版八年级初二数学下学期平行四边形单元 易错题难题提高题学能测试试题
人教版八年级初二数学下学期平行四边形单元 易错题难题提高题学能测试试题一、选择题1.如图,菱形ABCD 中,AC 交BD 于点O ,DE BC ⊥于点E ,连接OE ,若50BCD ∠=︒,则OED ∠的度数是( )A .35°B .30°C .25°D .20°2.如图,四边形,ABCD AD 与BC 不平行,AB CD =.,AC BD 为四边形ABCD 的对角线,,,E F ,G H 分别是,,,BD BC AC AD 的中点下列结论:①EG FH ⊥;②四边形EFGH 是矩形;③HF 平分;EHG ∠④()1 2EG BC AD =-;⑤四边形EFGH 是菱形.其中正确的个数是 ( )A .1个B .2个C .3个D .4个3.如图,依次连结第一个菱形各边的中点得到一个矩形,再依次连结矩形各边的中点得到第二个菱形,按此方法继续下去.已知第一个菱形的面积为1,则第4个菱形的面积是( )A .14B .116C .132D .164 4.如图,正方形ABCD 中,点E 是AD 边的中点,BD 、CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE ;②5:2;③S △BHE =S △CHD ;④∠AHB=∠EHD .其中正确的个数是A .1B .2C .3D .45.矩形纸片ABCD 中,AB =5,AD =4,将纸片折叠,使点B 落在边CD 上的点B '处,折痕为AE .延长B E '交AB 的延长线于点M ,折痕AE 上有点P ,下列结论中:①M DAB '∠∠=;②PB PB '=;③AE =552;④MB CD '=;⑤若B P CD '⊥,则EB B P ''=.正确的有( )个A .2B .3C .4D .56.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,AB 长为半径画弧,交边AD 于点;②再分别以B ,F 为圆心画弧,两弧交于平行四边形ABCD 内部的点G 处;③连接AG 并延长交BC 于点E ,连接BF ,若BF =3,AB =2.5,则AE 的长为( )A .2B .4C .8D .57.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =185.其中正确结论的个数是( )A .1B .2C .3D .48.如图,在菱形ABCD 中,AB=AC=1,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,连接DH 交AC 于点O ,则下列结论:①△ABF ≌△CAE ;②∠FHC=∠B ;③△ADO ≌△ACH ;④=3ABCD S 菱形;其中正确的结论个数是( )A .1个B .2个C .3个D .4个9.如图,一个四边形花坛ABCD ,被两条线段MN , EF 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S 1、S 2、S 3、S 4,若MN ∥AB ∥DC ,EF ∥DA ∥CB ,则有( )A .S 1= S 4B .S 1 + S 4 = S 2 + S 3C .S 1 + S 3 = S 2 + S 4D .S 1·S 4 = S 2·S 310.如图,正方形ABCD 中,延长CB 至E 使2CB EB =,以EB 为边作正方形EFGB ,延长FG 交DC 于M ,连接AM ,AF ,H 为AD 的中点,连接FH 分别与AB ,AM 交于点,N K .则下列说法:①ANH GNF △≌△;②DAM NFG ∠=∠;③2FN NK =;④:2:7AFN DMKH S S =△四边形.其中正确的有( )A .4个B .3个C .2个D .1个二、填空题11.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDG FDG S S =,正确的有__________________.12.如图,在正方形ABCD 中,点,E F 将对角线AC 三等分,且6AC =.点P 在正方形的边上,则满足5PE PF +=的点P 的个数是________个.13.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.14.已知在矩形ABCD 中,3,3,2AB BC ==点P 在直线BC 上,点Q 在直线CD 上,且,AP PQ ⊥当AP PQ =时,AP =________________.15.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③ABCD 19CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).16.如图,直线1l ,2l 分别经过点(1,0)和(4,0)且平行于y 轴.OABC 的顶点A ,C 分别在直线1l 和2l 上,O 是坐标原点,则对角线OB 长的最小值为_________.17.如图,在平面直角坐标系中,直线112y x =+与x 轴、y 轴分别交于A ,B 两点,以AB 为边在第二象限内作正方形ABCD ,则D 点坐标是_______;在y 轴上有一个动点M ,当MDC △的周长值最小时,则这个最小值是_______.18.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.19.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.20.如图所示,在四边形ABCD 中,顺次连接四边中点E 、F 、G 、H ,构成一个新的四边形,请你对四边形ABCD 添加一个条件,使四边形EFGH 成一个菱形,这个条件是__________.三、解答题21.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积22.如图1,在正方形ABCD 和正方形BEFG 中,点,,A B E 在同一条直线上,P 是线段DF 的中点,连接,PG PC .(1)求证:,PG PC PG PC ⊥=.简析:由Р是线段DF 的中点,//DC CF ,不妨延长GP 交DC 于点M ,从而构造出一对全等的三角形,即_______≅________.由全等三角形的性质,易证CMG 是_______三角形,进而得出结论;(2)如图2,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PG PC的值,写出你的猜想并加以证明;(3)当6,2AB BE ==时,菱形ABCD 和菱形BEFG 的顶点都按逆时针排列,且60ABC BEF ∠=∠=︒.若点A B E 、、在一条直线上,如图2,则CP =________;若点A B G 、、在一条直线上,如图3,则CP =________.23.如图1,在矩形纸片ABCD 中,AB =3cm ,AD =5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF .(1)求证:四边形BFEP为菱形;(2)当E在AD边上移动时,折痕的端点P、Q也随着移动.①当点Q与点C重合时,(如图2),求菱形BFEP的边长;②如果限定P、Q分别在线段BA、BC上移动,直接写出菱形BFEP面积的变化范围.24.如图.正方形ABCD的边长为4,点E从点A出发,以每秒1个单位长度的速度沿射线AD运动,运动时间为t秒(t>0),以AE为一条边,在正方形ABCD左侧作正方形AEFG,连接BF.(1)当t=1时,求BF的长度;(2)在点E运动的过程中,求D、F两点之间距离的最小值;(3)连接AF、DF,当△ADF是等腰三角形时,求t的值.25.如图①,已知正方形ABCD的边长为3,点Q是AD边上的一个动点,点A关于直线BQ的对称点是点P,连接QP、DP、CP、BP,设AQ=x.(1)BP+DP的最小值是_______,此时x的值是_______;(2)如图②,若QP的延长线交CD边于点M,并且∠CPD=90°.①求证:点M是CD的中点;②求x的值.(3)若点Q是射线AD上的一个动点,请直接写出当△CDP为等腰三角形时x的值.26.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN :①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).27.如图,在四边形ABCD 中,AD BC =,AD BC ∥,连接AC ,点P 、E 分别在AB 、CD 上,连接PE ,PE 与AC 交于点F ,连接PC ,D ∠=BAC ∠,DAE AEP ∠=∠. (1)判断四边形PBCE 的形状,并说明理由;(2)求证:CP AE =;(3)当P 为AB 的中点时,四边形APCE 是什么特殊四边形?请说明理由.28.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。
初二数学好的试题及答案
初二数学好的试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. √2B. 2√3C. √6D. √(-1)2. 一个数的立方等于它本身,这个数是?A. 0B. 1C. -1D. 0, 1, -13. 一个数的相反数是它自己,这个数是?A. 0B. 1C. 2D. -14. 一个数的绝对值是它自己,这个数是?A. 任何数B. 非负数C. 非正数D. 05. 一个数的倒数是它自己,这个数是?A. 0B. 1C. -1D. 1和-16. 一个数的平方等于它本身,这个数是?A. 0B. 1C. -1D. 0, 17. 一个数的平方根是它自己,这个数是?A. 0B. 1C. -1D. 0和18. 一个数的立方根是它自己,这个数是?A. 0B. 1C. -1D. 0, 1, -19. 一个数的四次方等于它本身,这个数是?A. 0B. 1C. -1D. 0, 1, -110. 一个数的五次方等于它本身,这个数是?A. 0B. 1C. -1D. 0, 1, -1二、填空题(每题4分,共20分)1. 一个数的平方是36,这个数是______。
2. 一个数的立方是-27,这个数是______。
3. 一个数的绝对值是5,这个数是______。
4. 一个数的倒数是1/2,这个数是______。
5. 一个数的平方根是4,这个数是______。
三、解答题(每题10分,共50分)1. 计算:(√3 + √2)(√3 - √2)。
2. 计算:(2x - 3)(2x + 3)。
3. 计算:(3x + 2)(3x - 2)。
4. 计算:(2x + 5)(2x - 5)。
5. 已知一个数的平方是25,求这个数。
答案:一、选择题1. A2. D3. A4. B5. D6. D7. D8. D9. D 10. D二、填空题1. ±62. -33. ±54. 25. 16三、解答题1. 3 - 2 = 12. 4x² - 93. 9x² - 44. 4x² - 255. ±5。
初二下册数学期末复习03勾股定理必刷提高练习题(原卷版)
2019-2020学年八年级数学下册同步闯关练(人教版)第十七章《勾股定理》17.117.2勾股定理及勾股定理的逆定理知识点1:勾股定理【例1】(2020春•朝阳区校级月考)如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,DE是AC 的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD等于()A.4B.3C.2.5D.2.4【变式1-1】(2019秋•雨花区校级期末)如图,Rt△ACB中,∠ACB=90°,AB=13cm,AC=5cm,动点P从点B出发沿射线BC以2cm/s的速度运动,设运动时间为ts,当△APB为等腰三角形时,t的值为()A.或B.或12或4C.或或12D.或12或4【变式1-2】(2020•浙江自主招生)如图,边长为的立方体中,B,C,D为三条棱中点,过BCD的平面切割立方体得四面体,则以△BCD为底面的四面体的高为.【变式1-3】(2019秋•南岸区校级期末)如图,在Rt△ABC,∠ACB=90°,AD在△ABC外,AD=AC,∠CAD=∠ABC,连接BD.若AB=5,AC=3,则BD=.【变式1-4】(2019秋•高安市校级期末)如图,四边形ABCD中,∠A=∠C=90°,∠ABC=60°,AD =4,CD=10,求BD的长.【变式1-5】(2019秋•邳州市期末)如图,△ABC中,∠ACB=90°,AB=10,BC=6,若点P从点A出发,以每秒1个单位长度的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求此时t的值;(2)若点P恰好在∠BAC的平分线上,求t的值.【变式1-6】(2019秋•南召县期末)如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.知识点2:勾股定理的证明【例2】(2019春•德州期末)如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【变式2-1】(2019秋•铁西区校级月考)“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是()A.9B.36C.27D.34【变式2-2】(2017秋•新泰市期末)如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于.【变式2-3】(2017春•厦门期末)公元3世纪,我国数学家赵爽用弦图证明了勾股定理,在前面的学习中,我们知道根据勾股定理可以用长为有理数的线段来作出长为,,的线段.若一个直角三角形的一条边长为,其他两边长均为有理数,则其它两边的长可以为,.【变式2-4】(2018秋•泰兴市校级月考)如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2.【变式2-5】(2018秋•商河县期中)如图1是用硬纸片做成的两个全等的直角三角形,两条直角边长分别为a和b,斜边为c;图2是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能验证勾股定理的图形.(1)画出拼成的这个图形的示意图,并用它验证勾股定理;(2)假设图3中的直角三角形有若干个,你能运用图中所给的直角三角形拼出另一种能够验证勾股定理的图形吗?画出拼成图形的示意图(不写验证过程).【变式2-6】(2016秋•甘州区校级月考)请选择一个图形来证明勾股定理.(可以自己选用其他图形进行证明)【变式2-7】(2018春•遵义期中)如图:在Rt△ABC和Rt△BDE中,∠C=90°,∠D=90°,AC=BD =a,BC=DE=b,AB=BE=c,试利用图形证明勾股定理.知识点3:勾股定理的逆定理【例3】(2019春•贵池区期中)△ABC的三边分别为a,b,c,下列条件能推出△ABC是直角三角形的有()①a2﹣c2=b2;②(a﹣b)(a+b)+c2=0;③∠A=∠B﹣∠C;④∠A:∠B:∠C=1:2:3;⑤;⑥a=10,b=24,c=26.A.2个B.3个C.4个D.5个【变式3-1】(2019秋•义乌市期末)在△ABC中,BC=a,AC=b,AB=c,根据下列条件不能判断△ABC 是直角三角形的是()A.∠B=50°,∠C=40°B.∠A:∠B:∠C=1:2:2C.a=4,b=,c=5D.a:b:c=1:1:【变式3-2】(2019秋•南岸区校级月考)如图,在四边形ABCD中,AB=BC=2,DC=3,AD=,∠ABC=90°,则四边形ABCD的面积是【变式3-3】(2019•郫都区模拟)如图,点A、B、C分别是正方体展开图的小正方形的顶点,则∠BAC的大小为.【变式3-4】(2019秋•泰安期末)如图所示,已知△ABC中,AB=8cm,AC=6cm,BC=10cm.分别以三边AB,AC及BC为直径向外作半圆,求阴影部分的面积.【变式3-5】(2018秋•长丰县期末)如图,在△ABC中,AB=30cm,BC=35cm,∠B=60°,有一动点E 自A向B以2cm/s的速度运动,动点F自B向C以4cm/s的速度运动,若E、F同时分别从A、B出发.(1)试问出发几秒后,△BEF为等边三角形?(2)填空:出发秒后,△BEF为直角三角形?【变式3-6】(2019春•三台县期中)如图,在四边形ABCD中,O是BD的中点,且AD=8,BD=12,AC=20,∠ADB=90°.求BC的长和四边形ABCD的面积.知识点4:勾股数【例4】(2017秋•靖江市校级月考)下列一组数是勾股数的是()A.1.5,2,2.5B.7,40,41C.5,12,13D.12,15,20【变式4-1】下列各组数为勾股数的是()A.2,2,5B.15,8,17C.9,12,13D.3a,4a,5a【变式4-2】(2019秋•眉山期中)观察下列等式:32+42=52;52+122=132;72+242=252;92+402=412;112+602=612…按照这样的规律,第六个等式是.【变式4-3】(2017春•永城市期中)探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…可发现,4=,12=,24=…请写出第5个数组:.【变式4-4】(2015秋•泰兴市期末)阅读理解并解答问题如果a、b、c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.(1)请你根据勾股数的意思,说明为什么3、4、5是一组勾股数;(2)写出一组不同于3、4、5的勾股数;(3)如果m表示大于1的整数,且a=2m,b=m2﹣1,c=m2+1,请你根据勾股数的意思,说明a、b、c为勾股数.【变式4-5】(2014秋•兴化市校级月考)观察下列等式:32=4+5=(5+4)(5﹣4)=52﹣42;52=12+13=(13+12)(13﹣12)=132﹣122;72=24+25=(25+24)(25﹣24)=252﹣242;…(1)仿照上述等式的规律写出:92=+=2﹣2(2)从上面的式子中,可以得到哪些勾股数?按此规律,你还能写出哪些勾股数?(至少三个)【变式4-6】(2018秋•内江期末)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所知道的四边形中是勾股四边形的两种图形的名称,;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°后得到△DBE,连接AD、DC,若∠DCB=30°,试证明;DC2+BC2=AC2.(即四边形ABCD是勾股四边形)知识点5:勾股定理的应用【例5】(2019春•江岸区校级月考)在平静的湖面上,有一支红莲,高出水面0.1米,一阵风吹来,红莲吹到一边花朵齐及水面,已知红莲移动的水平距离为0.5米,则这里的水深是()A.1米B.1.5米C.1.2米D.1.3米【变式5-1】(2019秋•诸暨市校级月考)如图,有两条公路OM,ON相交成30°,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,距拖拉机中心50米的范围内均会受到噪音影响,已知有两台相距40米的拖拉机正沿ON方向行驶,它们的速度均为10米/秒,则这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间为()A.6秒B.8秒C.10秒D.18秒【变式5-2】(2019秋•温州期末)如图是高空秋千的示意图,小明从起始位置点A处绕着点O经过最低点B.最终荡到最高点C处,若∠AOC=90°,点A与点B的高度差AD=1米,水平距离BD=4米,则点C与点B的高度差CE为米.【变式5-3】(2019春•金州区校级月考)如图,有一个长方体的盒子,它的长、宽、高分别是4m,3m和12m,则盒内可放的木棒最长为m.【变式5-4】(2019秋•金台区期末)如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB 于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?【变式5-5】(2019春•马山县期中)如图,某开发区有一块四边形空地ABCD,现计划在空地上种植草皮.经测量,∠B=90°,AB=20m,BC=15m,CD=7m,AD=24m.(1)求这块四边形空地的面积;(2)若每平方米草皮需要200元,则种植这片草皮需要多少元?【变式5-6】(2019秋•泉港区期末)一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?。
数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)
数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)一.选择题(共9小题)1.已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x 的函数关系式为y=20﹣2x,那么自变量x的取值范围是()A.x>0 B.0<x<10 C.0<x<5 D.5<x<102.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a3.函数的自变量x的取值范围是()A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠34.关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x轴的交点是(﹣2,0)③由图象可知y随x的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2平行的直线,其中正确说法有()A.5个 B.4个 C.3个 D.2个5.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B.C.D.6.下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线7.已知x关于的一次函数y=mx+n的图象如上图,则|n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣m8.如果一次函数y=kx+b,当﹣3≤x≤1时,﹣1≤y≤7,则kb的值为()A.10 B.21 C.﹣10或2 D.﹣2或109.若函数y=(2m+1)x2+(1﹣2m)x+1(m为常数)是一次函数,则m的值为()A.m B.m=C.m D.m=﹣二.填空题(共9小题)10.直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k=.11.已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第象限.12.已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k(k为常数)上,则a 与b的大小关系是a b.(填“>”“<”或“=”)13.已知正比例函数y=(1﹣m)x|m﹣2|,且y随x的增大而减小,则m的值是.14.如图,点A的坐标为(﹣1,0),点B(a,a),当线段AB最短时,点B的坐标为.15.已知一次函数y=(﹣3a+1)x+a的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的取值范围是.16.如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C 为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,沿着折线A﹣D﹣E运动.在运动过程中,△BCP的面积S与运动时间t(s)的函数图象如图2所示,则BC的长是.17.如图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在同一条直线上,则点A2015的坐标是.18.如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD 沿x轴向右平移m个单位.当点A落在MN上时,则m=.三.解答题(共22小题)19.已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.20.如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.21.已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(﹣2,0)、B(0,4),直线l经过点B,并且与直线AB垂直.点P在直线l上,且△ABP是等腰直角三角形.(1)求直线AB的解析式;(2)求点P的坐标;(3)点Q(a,b)在第二象限,且S=S△PAB.△QAB①用含a的代数式表示b;②若QA=QB,求点Q的坐标.22.某仓库甲、乙、丙三辆运货车,每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时6吨,下图是从早晨上班开始库存量y(吨)与时间x(小时)的函数图象,OA段只有甲、丙车工作,AB段只有乙、丙车工作,BC段只有甲、乙工作.(1)甲、乙、丙三辆车中,谁是进货车?(2)甲车和丙车每小时各运输多少吨?(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两车又工作了几小时,使仓库的库存量为6吨.23.如图,直线l1的解析表达式为:y=3x﹣3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求△ADC的面积;(2)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,则点P的坐标为;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.24.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.25.已知点A、B分别在x轴,y轴上,OA=OB,点C为AB的中点,AB=12(1)如图1,求点C的坐标;(2)如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF2=OE2+AF2;(3)在条件(2)中,若点E的坐标为(3,0),求CF的长.26.如图1,点A的坐标是(﹣2,0),直线y=﹣x+4和x轴、y轴的交点分别为B、C点.(1)判断△ABC的形状,并说明理由;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,它们都停止运动.设M运动t秒时,△MON的面积为S.①求S与t的函数关系式;并求当t等于多少时,S的值等于?②在运动过程中,当△MON为直角三角形时,求t的值.27.如图,一次函数y=﹣x+6的图象分别与y轴、x轴交于点A、B,点P从点B出发,沿BA以每秒1个单位的速度向点A运动,当点P到达点A时停止运动,设点P的运动时间为t秒.(1)点P在运动的过程中,若某一时刻,△OPA的面积为12,求此时P点坐标;(2)在(1)的基础上,设点Q为y轴上一动点,当PQ+BQ的值最小时,求Q 点坐标;(3)在整个运动过程中,当t为何值时,△AOP为等腰三角形?28.如图,在平面直角坐标系中,已知点A(0,1)、D(﹣2,0),作直线AD 并以线段AD为一边向上作正方形ABCD.(1)填空:点B的坐标为,点C的坐标为.(2)若正方形以每秒个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.29.有一根直尺,短边的长为2cm,长边的长为10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm.如图①,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D与点A重合,将直尺沿AB方向平移,如图②.设平移的长度为x cm,且满足0≤x≤10,直尺与直角三角形纸板重合部分的面积(即图中阴影部分)为Scm2.(1)当x=0时,S=;当x=4时,S=;当x=10时,S=.(2)是否存在一个位置,使阴影部分的面积为11cm2?若存在,求出此时x的值.30.如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C两点的坐标分别为A(0,m)、C(n,0),B(﹣5,0),且(n﹣3)2+=0,点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.(1)求A、C两点的坐标;(2)连接PA,用含t的代数式表示△POA的面积;(3)当P在线段BO上运动时,是否存在一点P,使△PAC是等腰三角形?若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由.31.如图,在平面直角坐标系中,△ABC为等腰三角形,AB=AC,将△AOC沿直线AC折叠,点O落在直线AD上的点E处,直线AD的解析式为,则(1)AO=;AD=;OC=;(2)动点P以每秒1个单位的速度从点B出发,沿着x轴正方向匀速运动,点Q是射线CE上的点,且∠PAQ=∠BAC,设P运动时间为t秒,求△POQ的面积S 与t之间的函数关系式;(3)在(2)的条件下,直线CE上是否存在一点Q,使以点Q、A、D、P为顶点的四边形是平等四边形?若存在,求出t值及Q点坐标;若不存在,说明理由.32.已知在平面直角坐标系中,A(a、o)、B(o、b)满足+|a﹣3|=0,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)求a、b的值.(2)当P点运动时,PE的值是否发生变化?若变化,说明理由;若不变,请求PE的值.(3)若∠OPD=45°,求点D的坐标.33.如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求AB的长;(2)求CD的所在直线的函数关系式;(3)若动点P从点B出发,以每秒1个单位长度的速度沿B→A方向运动,过P=,求此时点P的坐标.作x轴的垂线交x轴于点E,若S△PBE34.在平面直角坐标系xoy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q 为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.35.对于两个已知图形G1、G2,在G1上任取一点P,在G2上任取一点Q,当线段PQ的长度最小时,我们称这个最小的长度为图形G1、G2的“密距”;当线段PQ的长度最大值时,我们称这个最大的长度为图形G1、G2的“疏距”.请你在学习、理解上述定义的基础上,解决下面的问题;在平面直角坐标系xOy中,点A的坐标为(﹣3,4),点B的坐标为(3,4),矩形ABCD的对称中心为点O.(1)线段AD和BC的“密距”是,“疏距”是;(2)设直线y=x+b(b>0)与x轴、y轴分别交于点E、F,若线段EF与矩形ABCD的“密距”是1,求它们的“疏距”;(3)平面直角坐标系xOy中有一个四边形KLMN,将矩形ABCD绕点O旋转一周,在旋转过程中,它与四边形KLMN的“疏距”的最大值为7,①旋转过程中,它与四边形KLMN的“密距”的取值范围是;②求四边形KLMN的面积的最大值.36.在平面直角坐标系中,已知A,B两点分别在x轴,y轴上,OA=OB=4,C在线段OA上,AC=3,过点A作AE⊥BC,交BC的延长线于E,直线AE交y轴于D.(1)求点D坐标.(2)动点P从点A出发,沿射线AO方向以每秒1个单位长度运动,设点P的运动时间为t秒,△POB的面积为y,求y与t之间的函数关系式并直接写出自变量的取值范围.(3)在(2)问的条件下,当t=1,PB=5时,在y轴上是否存在一点Q,使△PBQ 为以PB为腰的等腰三角形?若存在,求点Q的坐标;若不存在,请说明理由.37.如图,四边形OABC中,CB∥OA,∠OCB=90°,CB=1,OA=OC,O为坐标原点,点A在x轴上,点C在y轴上,直线过A点,且与y轴交于D点.(1)求出A、点B的坐标;(2)求证:AD=BO且AD⊥BO;(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.38.如图,一次函数y=﹣x+的图象与坐标轴分别交于点A和B两点,将△AOB沿直线CD折起,使点A与点B重合,直线CD交AB于点D.(1)求点C的坐标;(2)在射线DC上求一点P,使得PC=AC,求出点P的坐标;(3)在坐标平面内,是否存在点Q(除点C外),使得以A、D、Q为顶点的三角形与△ACD全等?若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理.39.已知,如图,在平面直角坐标系中,点A、B的横坐标恰好是方程x2﹣4=0的解,点C的纵坐标恰好是方程x2﹣4x+4=0的解,点P从C点出发沿y轴正方向以1个单位/秒的速度向上运动,连PA、PB,D为AC的中点.1)求直线BC的解析式;2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直且相等?3)如图2,若PA=AB,在第一象限内有一动点Q,连QA、QB、QP,且∠PQA=60°,问:当Q在第一象限内运动时,∠APQ+∠ABQ的度数和是否会发生改变?若不变,请说明理由并求其值.40.方成同学看到一则材料,甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h,甲出发0.5h与乙相遇,…请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲、乙行驶的路程S甲、S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象.数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)参考答案与试题解析一.选择题(共9小题)1.(2016春•农安县月考)已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x的函数关系式为y=20﹣2x,那么自变量x的取值范围是()A.x>0 B.0<x<10 C.0<x<5 D.5<x<10【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,进行求解.【解答】解:根据三角形的三边关系,得则0<20﹣2x<2x,由20﹣2x>0,解得x<10,由20﹣2x<2x,解得x>5,则5<x<10.故选D.【点评】本题考查了三角形的三边关系,一元一次不等式组的解法,正确列出不等式组是解题的关键.2.(2012秋•镇赉县校级月考)如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a【分析】根据所在象限判断出a、b、c的符号,再根据直线越陡,则|k|越大可得答案.【解答】解:∵y=ax,y=bx,y=cx的图象都在第一三象限,∴a>0,b>0,c>0,∵直线越陡,则|k|越大,∴c>b>a,故选:B.【点评】此题主要考查了正比例函数图象的性质,y=kx中,当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x 的增大而减小.同时注意直线越陡,则|k|越大.3.(2016春•重庆校级月考)函数的自变量x的取值范围是()A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0且x﹣3≠0,解得:x≤2且x≠3,自变量的取值范围x≤2,故选A.【点评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(2016春•南京校级月考)关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x轴的交点是(﹣2,0)③由图象可知y随x的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2平行的直线,其中正确说法有()A.5个 B.4个 C.3个 D.2个【分析】根据一次函数的性质和图象上点的坐标特征解答.【解答】解:①将(0,﹣2)代入解析式得,左边=﹣2,右边=﹣2,故图象过(0,﹣2)点,正确;②当y=0时,y=﹣x﹣2中,x=﹣2,故图象过(﹣2,0),正确;③因为k=﹣1<0,所以y随x增大而减小,错误;④因为k=﹣1<0,b=﹣2<0,所以图象过二、三、四象限,正确;⑤因为y=﹣x﹣2与y=﹣x的k值(斜率)相同,故两图象平行,正确.故选B.【点评】本题考查了一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.5.(2016春•重庆校级月考)一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B.C.D.【分析】分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶到特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.【解答】解:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选:C.【点评】本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.6.(2015春•浠水县校级月考)下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线【分析】分别利用一次函数和反比例函数的定义以及其性质分析得出即可.【解答】解:A、所有的正比例函数肯定是一次函数,正确,不合题意;B、一次函数的一般形式是y=kx+b(k≠0),故此选项错误,符合题意;C、正比例函数和一次函数的图象都是直线,正确,不合题意;D、正比例函数的图象是一条过原点的直线,正确,不合题意;故选:B.【点评】此题主要考查了一次函数和反比例函数的定义,正确把握其性质是解题关键.7.(2016春•无锡校级月考)已知x关于的一次函数y=mx+n的图象如上图,则|n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣m【分析】根据一次函数图象与系数的关系,确定m、n的符号,然后由绝对值、二次根式的化简运算法则解得即可.【解答】解:根据图示知,关于x的一次函数y=mx+n的图象经过第一、二、四象限,∴m<0,n>0;∴|n﹣m|﹣=n﹣m﹣(﹣m)+(n﹣m)=2n﹣m.故选D.【点评】本题主要考查了一次函数图象与系数的关系,二次根式的性质与化简,绝对值的意义.一次函数y=kx+b(k≠0,b≠0)的图象,当k<0,b>0时,经过第一、二、四象限.8.(2015秋•盐城校级月考)如果一次函数y=kx+b,当﹣3≤x≤1时,﹣1≤y≤7,则kb的值为()A.10 B.21 C.﹣10或2 D.﹣2或10【分析】由一次函数的性质,分k>0和k<0时两种情况讨论求解.【解答】解:由一次函数的性质知,当k>0时,y随x的增大而增大,所以得,解得.即kb=10;当k<0时,y随x的增大而减小,所以得,解得.即kb=﹣2.所以kb的值为﹣2或10.故选D.【点评】此题考查一次函数的性质,要注意根据一次函数图象的性质分情况讨论.9.(2015秋•西安校级月考)若函数y=(2m+1)x2+(1﹣2m)x+1(m为常数)是一次函数,则m的值为()A.m B.m=C.m D.m=﹣【分析】根据一次函数的定义列出算式计算即可.【解答】解:由题意得,2m+1=0,解得,m=﹣,故选:D.【点评】本题考查的是一次函数的定义,一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.二.填空题(共9小题)10.(2014春•邹平县校级月考)直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k=﹣3.【分析】根据一次函数与正比例函数的关系可得直线y=kx向下平移2个单位后得y=kx﹣2,然后把(﹣4,10)代入y=kx﹣2即可求出k的值.【解答】解:直线y=kx向下平移2个单位后所得解析式为y=kx﹣2,∵经过点(﹣4,10),∴10=﹣4k﹣2,解得:k=﹣3,故答案为:﹣3.【点评】此题主要考查了一次函数图象与几何变换,平移后解析式有这样一个规律“左加右减,上加下减”.11.(2016春•南京校级月考)已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第二、三、四象限.【分析】根据直线y=kx+b经过第一、二、四象限可以确定k、b的符号,则易求﹣b的符号,由﹣b,k的符号来求直线y=﹣bx+k所经过的象限.【解答】解:∵直线y=kx+b经过第一、二、四象限,∴k<0,b>0,∴﹣b<0,∴直线y=﹣bx+k经过第二、三、四象限.故答案是:二、三、四.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y 轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.12.(2016春•大丰市校级月考)已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k(k为常数)上,则a与b的大小关系是a<b.(填“>”“<”或“=”)【分析】先根据一次函数的解析式判断出一次函数的增减性,再根据﹣4<﹣2即可得出结论.【解答】解:∵一次函数y=x+k(k为常数)中,k=>0,∴y随x的增大而增大,∵﹣4<﹣2,∴a<b.故答案为:<.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.(2015春•建瓯市校级月考)已知正比例函数y=(1﹣m)x|m﹣2|,且y随x 的增大而减小,则m的值是3.【分析】先根据正比例函数的定义列出关于k的不等式组,求出k取值范围,再根据此正比例函数y随x的增大而减小即可求出k的值.【解答】解:∵此函数是正比例函数,∴,解得m=3,故答案为:3.【点评】本题考查的是正比例函数的定义及性质,根据正比例函数的定义列出关于k的不等式组是解答此题的关键.14.(2016春•天津校级月考)如图,点A的坐标为(﹣1,0),点B(a,a),当线段AB最短时,点B的坐标为(﹣,﹣).【分析】过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,先根据垂线段最短得出当点B与点D重合时线段AB最短,再根据直线OB的解析式为y=x得出△AOD是等腰直角三角形,故OE=OA=,由此可得出结论.【解答】解:过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴OE=OA=1,∴D(﹣,﹣).故答案为:(﹣,﹣).【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.(2015春•宜兴市校级月考)已知一次函数y=(﹣3a+1)x+a的图象上两点A (x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的取值范围是0≤a<.【分析】根据y随x的增大而增大可得x的系数大于0,图象不经过第四象限,那么经过一三或一二三象限,那么此函数的常数项应为非负数.【解答】解:∵x1>x2时,y1>y2,∴﹣3a+1>0,解得a<,∵图象不经过第四象限,∴经过一三或一二三象限,∴a≥0,∴0≤a<.故答案为:0≤a<.【点评】考查了一次函数图象上的点的坐标的特点;得到函数图象可能经过的象限是解决本题的关键.16.(2015秋•靖江市校级月考)如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,沿着折线A﹣D﹣E运动.在运动过程中,△BCP 的面积S与运动时间t(s)的函数图象如图2所示,则BC的长是2.【分析】由函数的图象可知点P从点A运动到点D用了2秒,从而得到AD=2,当点P在DE上时,三角形的面积不变,故此DE=4,从而可求得DC=2,于是得到AC=2+2,从而可求得BC的长为2+.【解答】解:由函数图象可知:AD=1×2=2,DE=1×(6﹣2)=4.∵△DEC是等腰直角三角形,∴DC===2.∴AC=2+2.∵△ABC是等腰直角三角形,∴BC===.故答案为:.【点评】本题主要考查的是动点问题的函数图象,由函数图象判断出AD、DE的长度是解题的关键.17.(2016春•盐城校级月考)如图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在同一条直线上,则点A2015的坐标是(a,a).【分析】根据题意得出直线BB1的解析式为:y=x,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.【解答】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(a,0),AO∥A1B1,∠B1OC=60°,∴OC=a,CB1=OB1sin60°=a,∴B1的坐标为:(a,a),∴点B1,B2,B3,…都在直线y=x上,∵B1(a,a),∴A1(a,a),∴A2(2a,a),…A n(a,).∴A2015(a,a).故答案为.【点评】此题主要考查了一次函数图象上点的坐标特征以及数字变化类,得出A 点横纵坐标变化规律是解题关键.18.(2016春•泰兴市校级月考)如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m=3.【分析】根据菱形的对角线互相垂直平分表示出点A的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值范围,再根据各选项数据选择即可.【解答】解:∵菱形ABCD的顶点C(﹣1,0),点B(0,2),∴点A的坐标为(﹣1,4),当y=4时,﹣x+5=4,解得x=2,∴点A向右移动2+1=3时,点A在MN上,∴m的值为3,故答案为3.【点评】本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单.三.解答题(共22小题)19.(2016春•武城县校级月考)已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.【分析】(1)根据一次函数图象上点的坐标特征,把(﹣1,2)代入y=(m+1)x+2m﹣6求出m的值即可得到一次函数解析式;(2)根据两直线平行的问题得到m+1=2,解出m=1,从而可确定一次函数解析式.(3)两直线的解析式联立方程,解方程即可求得.【解答】解:(1)把(﹣1,2)代入y=(m+1)x+2m﹣6得﹣(m+1)+2m﹣6=2,解得m=9,所以一次函数解析式为y=10x+12;(2)因为函数y=(m+1)x+2m﹣6的图象与直线y=2x+5平行,所以m+1=2,解得m=1,所以一次函数解析式为y=2x﹣4.(3)解得,∴两直线的交点为(1,﹣2).【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.20.(2015秋•兴化市校级月考)如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法即可直接求得l2的函数解析式;(2)首先解两条之间的解析式组成的方程组求得C的坐标,然后利用三角形的面积公式即可求解;(3)△ADF和△ADC的面积相等,则F的纵坐标与C的总坐标一定互为相反数,代入l2的解析式即可求解;(4)求得C关于x轴的对称点,然后求得经过这个点和B点的直线解析式,直线与x轴的交点就是E.【解答】解:(1)设l2的解析式是y=kx+b,根据题意得:,解得:,则函数的解析式是:y=﹣x+4;(2)在中令y=0,解得:x=﹣2,则D的坐标是(﹣2,0).。
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)-
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)一.选择题(共8小题)1.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.2.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c23.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+6.一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米7.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.48.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169二.填空题(共5小题)9.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是.10.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为米.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是(只填数,不填等式)13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.三.解答题(共27小题)14.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.15.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.16.如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?19.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC 边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t 秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.20.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.21.(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n >0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?23.(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S 的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).24.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代数式(x+1)2﹣4(x+1)+4的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB=;②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c 的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即∴.28.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)30.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.31.在一次“构造勾股数”的探究性学习中,老师给出了下表:其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a=,b=,c=.(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.32.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.33.阅读下面的情景对话,然后解答问题:(1)理解:①根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)②若某三角形的三边长分别为1、、2,则该三角形(是或不是)奇异三角形.(2)探究:若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)34.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112=+ ;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.38.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B 处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.39.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.40.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对2.图中字母所代表的正方形的面积为144的选项为()A.B.C.D.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.﹣C.2 D.﹣24.如图,带阴影的正方形面积是.5.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD=.6.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析一.选择题(共8小题)1.(2016秋•吴江区期中)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.(2016春•抚顺县期中)下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选C.【点评】本题考查了勾股定理的正确运用,只有斜边的平方才等于其他两边的平方和.3.(2016春•临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.4.(2015春•青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.5.(2016春•南陵县期中)如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.【解答】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选A.【点评】本题考查了勾股定理、实数与数轴.找出OA=OB是解题的关键.6.(2015春•蓟县期中)一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米【分析】先根据梯子的顶端下滑了0.4米求出A′C的长,再根据勾股定理求出B′C 的长,进而可得出结论.【解答】解:(1)∵在Rt△ABC中,AB=2.5m,BC=0.7m,∴AC===2.4(m).∵梯子的顶端下滑了0.4米,∴A′C=2m,∵在Rt△A′B′C中,A′B′=2.5m,A′C=2m,∴B′C==1.5m,∴BB′=B′C﹣BC=1.5﹣0.7=0.8m.故选C.【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(2015春•罗田县期中)在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.4【分析】根据勾股定理求出AB的长即可解答.【解答】解:在Rt△ABC中,根据勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=4.故选D.【点评】本题综合考查了勾股定理的应用,找到关系MN=AM+BN﹣AB是关键.8.(2016春•重庆校级期中)如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2的值.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选C.【点评】考查了勾股定理的证明,注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.二.填空题(共5小题)9.(2016春•固始县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是7cm≤h≤16cm.【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故答案为:7cm≤h≤16cm.【点评】本题考查了勾股定理的应用,求出h的值最大值与最小值是解题关键.10.(2015春•汕头校级期中)如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为(1+)米.【分析】根据题意利用勾股定理得出BC的长,进而得出答案.【解答】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC2,∴BC=,∴则树高为:(1+)m.故答案为:(1+).【点评】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.11.(2016春•高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,则Rt△ABC的面积为ab=24(cm2).故答案为:24cm2.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.(2016春•嘉祥县期中)观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是15,112,113(只填数,不填等式)【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数.【解答】解:∵第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春•武昌区期中)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=84,c=85.【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.【点评】认真观察各式的特点,总结规律是解题的关键.三.解答题(共27小题)14.(2016春•黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.(2016秋•永登县期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,=,S△DAC=,∴S△ABC∵AB=CB=,DA=1,AC=2,=1,S△DAC=1∴S△ABC而S=S△ABC+S△DAC,四边形ABCD=2.∴S四边形ABCD【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.16.(2016春•邹城市校级期中)如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春•平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A 点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC中,∴==200,∴A、C两点之间的距离为200km.【点评】本题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.(2015秋•新泰市期中)如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?【分析】(1)过A作AE⊥BD于E,线段AE的长即为台风中心与气象台A的最短距离,由含30°角的直角三角形的性质即可得出结果;(2)根据题意得出线段CD就是气象台A受到台风影响的路程,求出CD的长,即可得出结果.【解答】解:(1)过A作AE⊥BD于E,如图1所示:∵台风中心在BD上移动,∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.(2)∵台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12(小时).【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题(2)的关键.19.(2015春•阳东县期中)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.【分析】(1)我们求出BP、BQ的长,用勾股定理解决即可.(2)△PQB形成等腰三角形,即BP=BQ,我们可设时间为t,列出方程2t=8﹣1×t,解方程即得结果.(3)直线PQ把原三角形周长分成相等的两部分,根据勾股定理可知AC=10cm,即三角形的周长为24cm,则有BP+BQ=12,即2t+(8﹣1×t)=12,解方程即可.【解答】解:(1)出发2秒后,AP=2,BQ=4,∴BP=8﹣2=6,PQ==2;(3分)(2)设时间为t,列方程得2t=8﹣1×t,解得t=;(6分)(3)假设直线PQ能把原三角形周长分成相等的两部分,由AB=8cm,BC=6cm,根据勾股定理可知AC=10cm,即三角形的周长为8+6+10=24cm,则有BP+BQ=×24=12,设时间为t,列方程得:2t+(8﹣1×t)=12,解得t=4,当t=4时,点Q运动的路程是4×2=8>6,所以直线PQ不能够把原三角形周长分成相等的两部分.(10分)【点评】本题重点考查了利用勾股定理解决问题的能力,综合性较强.20.(2014秋•江阴市期中)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.。
初二数学提高题附答案完整版
初二数学提高题附答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】3333lOHxyBA3333综合题1.如图(1),直角梯形OABC 中,∠A= 90°,AB ∥CO, 且AB=2,OA=23,∠BCO= 60°。
(1)求证:∆OBC 为等边三角形;(2)如图(2),OH ⊥BC 于点H ,动点P 从点H 出发,沿线段HO 向点O 运动,动点Q 从点O 出发,沿线段OA 向点A 运动,两点同时出发,速度都为1/秒。
设点P 运动的时间为t 秒,ΔOPQ 的面积为S ,求S 与t 之间的函数关系式,并求出t 的取值范围; (3)设PQ 与OB 交于点M ,当OM=PM 时,求t 的值。
解:1)根据勾股定理,AB=2,OA=23,则BO=4=2AB ,所以△ABO 是一个30°60°90°的三角形。
∵AB 3如图,正比例函数图像直线l 经过点A (3,5),点B 在x 轴的正半轴上,且∠ABO =45°。
AH ⊥OB ,垂足为点H 。
(1)求直线l 所对应的正比例函数解析式; (2)求线段AH 和OB 的长度;(3)如果点P 是线段OB 上一点,设OP =x ,△APB 的面积为S ,写出S 与x的函数关系式,并指出自变量x 的取值范围。
解:1)设y=kx 为正比例解析式,当x=3,y=5时,3k=5,k=5/32)AH 即A 的纵坐标,∴AH=5∵AH ⊥BH ,∠ABH=45°,∴∠HAB=∠ABH=45°,∴AH=BH=5 OH 即A 的横坐标,∴OH=3 ∵OB=OH+BH ,∴OB=5+3=8 3)∵OB=8,OP=x ,∴BP=8-x∴S △ABP=1/2BP ×AH=1/2(8-x)×5=20-(5/2)xx 的取值范围是0≤x <83.(本题满分12分,第1题4分,第2题6分,第3题2分)已知在△ABC 中,∠ACB =90°,AC =BC ,点D 是AB 上一点,AE ⊥AB ,且AE =BD ,DE 与AC 相交于点F 。
初二上册数学练习题计算
初二上册数学练习题计算在初二上册数学学习中,练习题计算是提高数学能力的重要一环。
通过反复练习和计算,学生们可以巩固所学的数学知识,提高解题能力和思维逻辑。
本文将从不同数学知识点出发,给出一些相关的练习题计算,帮助学生们更好地掌握数学。
一、整数运算1. 计算:(-7) + 9 - 3解答:(-7) + 9 - 3 = -12. 计算:(-4) × 6 - (-2) × 3解答:(-4) × 6 - (-2) × 3 = -24 + 6 = -18二、分数运算1. 计算:1/2 + 3/4 - 1/3解答:1/2 + 3/4 - 1/3 = (2/4) + (3/4) - (4/12) = 5/4 - 1/3 = (15/12) - (4/12) = 11/122. 计算:2/5 × 3/8 ÷ 1/4解答:2/5 × 3/8 ÷ 1/4 = (2/5) × (3/8) ÷ (1/4) = (2×3)/(5×8) ÷ (1/4) =6/40 ÷ (1/4) = (6/40) × (4/1) = 24/40 = 3/5三、代数运算1. 计算:4x - 3y,其中 x = 2,y = 5解答:4x - 3y = 4×2 - 3×5 = 8 - 15 = -72. 计算:3(x + 2y),其中 x = 3,y = 1解答:3(x + 2y) = 3(3 + 2×1) = 3(3 + 2) = 3×5 = 15四、几何运算1. 计算:正方形的面积,已知边长为 6cm解答:正方形的面积 = 边长 ×边长 = 6cm × 6cm = 36cm²2. 计算:圆的周长,已知半径为 5cm解答:圆的周长= 2πr = 2×3.14×5cm ≈ 31.4cm五、应用题计算1. 小明用货车拉运货物,每个货物的重量为 150kg,货车最多能载重2.5吨。
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)-
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)一.选择题(共8小题)1.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C .D .2.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c23.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C .﹣D.﹣1+6.一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米7.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.48.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169二.填空题(共5小题)9.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在第1页(共38页)杯子外面的长度为hcm,则h的取值范围是.10.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为米.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是(只填数,不填等式)13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= ,c= .三.解答题(共27小题)14.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.15.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.16.如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km 到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?第2页(共38页)(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?19.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.20.在△ABC中,AB、BC、AC 三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF 三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ 之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.21.(1)在△ABC中,AB、BC、AC 三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC 的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC 三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.第3页(共38页)类比创新:(3)若△ABC 三边的长分别为(m>0,n>0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?23.(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).24.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代数式(x+1)2﹣4(x+1)+4的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB=;②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所第4页(共38页)画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即∴.28.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)30.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO 方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.第5页(共38页)31.在一次“构造勾股数”的探究性学习中,老师给出了下表:其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a= ,b= ,c= .(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.32.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.33.阅读下面的情景对话,然后解答问题:(1)理解:①根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)②若某三角形的三边长分别为1、、2,则该三角形(是或不是)奇异三角形.(2)探究:若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)34.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…第6页(共38页)用你的发现解决下列问题:(1)填空:112= +;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.38.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.39.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.40.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO 方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对2.图中字母所代表的正方形的面积为144的选项为()第7页(共38页)A. B .C .D .3.如图,数轴上的点A所表示的数为x,则x的值为()A.B .﹣C.2 D.﹣24.如图,带阴影的正方形面积是.5.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD= .6.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析一.选择题(共8小题)1.(2016秋•吴江区期中)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C .D .【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.(2016春•抚顺县期中)下列说法中正确的是()第8页(共38页)A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选 C.【点评】本题考查了勾股定理的正确运用,只有斜边的平方才等于其他两边的平方和.3.(2016春•临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB 的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.4.(2015春•青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,第9页(共38页)根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.5.(2016春•南陵县期中)如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C .﹣D.﹣1+【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O 的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.【解答】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选A.【点评】本题考查了勾股定理、实数与数轴.找出OA=OB是解题的关键.6.(2015春•蓟县期中)一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米【分析】先根据梯子的顶端下滑了0.4米求出A′C的长,再根据勾股定理求出B′C的长,进而可得出结论.【解答】解:(1)∵在Rt△ABC中,AB=2.5m,BC=0.7m,∴AC===2.4(m).∵梯子的顶端下滑了0.4米,∴A′C=2m,∵在Rt△A′B′C中,A′B′=2.5m,A′C=2m,∴B′C==1.5m,∴BB′=B′C﹣BC=1.5﹣0.7=0.8m.故选C.第10页(共38页)【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(2015春•罗田县期中)在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.4【分析】根据勾股定理求出AB的长即可解答.【解答】解:在Rt△ABC中,根据勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=4.故选D.【点评】本题综合考查了勾股定理的应用,找到关系MN=AM+BN﹣AB是关键.8.(2016春•重庆校级期中)如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2的值.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选C.【点评】考查了勾股定理的证明,注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.二.填空题(共5小题)9.(2016春•固始县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是7cm≤h≤16cm .第11页(共38页)【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故答案为:7cm≤h≤16cm.【点评】本题考查了勾股定理的应用,求出h的值最大值与最小值是解题关键.10.(2015春•汕头校级期中)如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为(1+)米.【分析】根据题意利用勾股定理得出BC的长,进而得出答案.【解答】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC 2,∴BC=,∴则树高为:(1+)m.故答案为:(1+).【点评】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.11.(2016春•高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,第12页(共38页)则Rt△ABC 的面积为ab=24(cm2).故答案为:24cm2.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.(2016春•嘉祥县期中)观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是15,112,113 (只填数,不填等式)【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数.【解答】解:∵第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春•武昌区期中)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= 84 ,c= 85 .【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.第13页(共38页)【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.【点评】认真观察各式的特点,总结规律是解题的关键.三.解答题(共27小题)14.(2016春•黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.(2016秋•永登县期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;第14页(共38页)(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC =,S△DAC=,∵AB=CB=,DA=1,AC=2,∴S△ABC =1,S△DAC=1而S四边形ABCD =S△ABC+S△DAC,∴S四边形ABCD=2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.16.(2016春•邹城市校级期中)如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春•平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.第15页(共38页)【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC 中,∴==200,∴A、C两点之间的距离为200km.【点评】本题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC 的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.(2015秋•新泰市期中)如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?【分析】(1)过A作AE⊥BD于E,线段AE的长即为台风中心与气象台A的最短距离,由含30°角的直角三角形的性质即可得出结果;(2)根据题意得出线段CD就是气象台A受到台风影响的路程,求出CD的长,即可得出结果.【解答】解:(1)过A作AE⊥BD于E,如图1所示:∵台风中心在BD上移动,∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.(2)∵台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:第16页(共38页)在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12(小时).【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题(2)的关键.19.(2015春•阳东县期中)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.【分析】(1)我们求出BP、BQ的长,用勾股定理解决即可.(2)△PQB形成等腰三角形,即BP=BQ,我们可设时间为t,列出方程2t=8﹣1×t,解方程即得结果.(3)直线PQ把原三角形周长分成相等的两部分,根据勾股定理可知AC=10cm,即三角形的周长为24cm,则有BP+BQ=12,即2t+(8﹣1×t)=12,解方程即可.【解答】解:(1)出发2秒后,AP=2,BQ=4,∴BP=8﹣2=6,PQ==2;(3分)(2)设时间为t,列方程得2t=8﹣1×t,解得t=;(6分)(3)假设直线PQ能把原三角形周长分成相等的两部分,由AB=8cm,BC=6cm,根据勾股定理可知AC=10cm,第17页(共38页)。
初二数学拔高练习题
初二数学拔高练习题一. 选择题1. 设函数f(x) = 2x - 5,那么f(3)的值等于:A. -1B. 1C. 3D. 72. 若(x + 3)(2x - 1) = 0,那么x的值等于:A. -3B. 1/2C. -1/3D. 33. 已知函数f(x) = 2x + 5,g(x) = 3x - 2,那么f(x)与g(x)的交点的横坐标为:A. 7/5B. -3/5C. 5/7D. -5/74. 若ab = 1,且a ≠ 0,b ≠ 0,那么(a^2 + b^2)(a^2 + 2ab + b^2)的值等于:A. 4B. 2C. 6D. 85. 若x^2 - 5x + 6 = 0,则x的值等于:A. 2和3B. -2和-3C. 2和-3D. -2和3二. 填空题1. 在等差数列1, 3, 5, 7, ...中,公差为_______。
2. 已知等差数列的首项为3,公差为-2,前n项和为4,则n的值为_______。
3. 若4^x = 1/64,那么x的值为_______。
4. 设梯形的上底长为5 cm,下底长为8 cm,高为4 cm,面积为_______。
5. 设α是锐角,sinα = 5/13,则cosα的值为_______。
三. 解答题1. 用解析法求解方程2x + 3 = 7。
2. 将分数1⅔转换为小数。
3. 计算:3 + (-4) × 7 ÷ (-2) - 1。
4. 已知一个等差数列的首项为a,公差为d,若第5项为12,第9项为24,求首项a和公差d的值。
5. 计算:(\sqrt{5} + 3)^2 - 2(\sqrt{5} + 3)。
四. 应用题某班级共有男生和女生,男生人数占总人数的1/3。
如果该班级有30名女生,求该班级总人数。
参考答案:一. 选择题1. C2. B3. B4. A5. C二. 填空题1. 22. 23. -34. 265. 12/13三. 解答题1. 通过移项得到2x = 4,再除以2得到x = 2。
湘教版初二练习题数学
湘教版初二练习题数学在湘教版初二数学教材中,有许多练习题可以帮助学生巩固所学的知识。
这些练习题旨在激发学生的兴趣、培养学生的思维能力和解决问题的能力。
以下是一些例题,让我们来看看它们是如何帮助学生提高数学水平的。
一、整数运算1. 将-5与3相加后,再减去2。
解答:(-5) + 3 - 2 = -42. 计算(-7) × 4 ÷ (-2)。
解答:(-7) × 4 ÷ (-2) = 14二、分数运算1. 将2/3加上1/4。
解答:2/3 + 1/4 = 11/122. 计算3/5减去1/10。
解答:3/5 - 1/10 = 5/10 = 1/2三、代数式1. 如果x = 3,计算3x + 2x² = ?解答:将x = 3代入表达式中:3(3) + 2(3)² = 272. 如果x = -2,计算4x - x² = ?解答:将x = -2代入表达式中:4(-2) - (-2)² = -8 - 4 = -12四、方程求解1. 解方程3x + 4 = 16。
解答:3x + 4 = 16,移项得3x = 12,再除以3,得x = 4。
2. 解方程2(x - 3) + 4 = 10。
解答:2(x - 3) + 4 = 10,展开得2x - 6 + 4 = 10,化简得2x - 2 = 10,再加2得2x = 12,最后除以2得x = 6。
五、几何1. 计算一个正方形的面积,已知边长为4cm。
解答:正方形的面积等于边长的平方,所以面积为4² = 16cm²。
2. 计算一个圆的周长,已知半径为5cm。
解答:圆的周长等于2πr,所以周长为2π(5) = 10π cm。
六、概率1. 把一副52张的牌洗乱后,从中随机抽取1张牌,抽到红心的概率是多少?解答:一副牌中有13张红心,因此概率为13/52 = 1/4。
2. 把一枚骰子掷一次,掷到偶数点的概率是多少?解答:一枚骰子中有3个偶数点(2、4、6),因此概率为3/6 = 1/2。
初二数学提升练习题
初二数学提升练习题第一部分:整数运算题目1:计算下列各式的值,并写出计算过程。
a) 45 + 23 - 16b) 87 - (16 + 28)c) 64 × 5 - (20 + 18)d) 120 ÷ 8 + 6题目2:计算下列各式的值,并写出计算过程。
a) 6 × 12 - 10b) 83 ÷ 7 + 20c) 54 + (18 - 23)d) 125 - (7 × 3)第二部分:分数运算题目3:计算下列各式,结果需化简:a) 3/4 + 5/6b) 2/5 - 1/3c) 1/2 × 3/4d) 2/3 ÷ 4/5题目4:计算下列各式,结果需化简:a) 5/6 + 7/8 - 1/4b) 4/9 × (1/3 + 2/9)c) 2/5 ÷ (1/8 - 1/10)d) (2/3 × 1/4) ÷ (3/5 + 1/15)第三部分:代数运算题目5:计算下列各式的值,并写出计算过程。
a) 3x + 5 - 2x, 当 x = 4b) 2y + 7 - 3y, 当 y = 9c) a × b - 2a, 当 a = -3, b = 5d) 4m^2 - 2m + 3, 当 m = 2题目6:计算下列各式的值,并写出计算过程。
a) 2(x + 3) - 4x, 当 x = 5b) 3(a - 4) + 5a, 当 a = 2c) (m + 1)(3m - 2), 当 m = -2d) b^2 + 4b - 7, 当 b = -3第四部分:几何运算题目7:计算下列各题,结果保留两位小数:a) 圆的半径为5cm,求其周长和面积。
b) 三角形的底边长为8cm,高为12cm,求其面积。
c) 矩形的长为10cm,宽为6cm,求其周长和面积。
d) 正方形的边长为7cm,求其周长和面积。
题目8:计算下列各题,结果保留两位小数:a) 一块正方形的边长为5cm,求其对角线的长度。
提升初二数学的练习题
提升初二数学的练习题数学是一门需要不断练习和巩固的学科,尤其对于初二学生来说,通过做大量的练习题可以提高数学基础知识的掌握和应用能力。
在本文中,我将为初二学生提供一些提升数学水平的练习题。
一、整数运算1. 计算:(-2)+ 3 - (-5)2. 化简:-4 ×(-3) + 2 × 53. 计算:-6 ÷ 2 + 3 ×(-2)二、代数表达式4. 计算:当x = 2时,求2x + 3的值。
5. 简化代数表达式:4x + 5y - 3x + 2y。
6. 计算:当x = -1,y = 3时,求3x - 2y的值。
三、平方与平方根7. 计算:(-3)² + 4²8. 求下列数的平方根:16,25,36。
9. 计算:√(-4)× √(-9)四、分数运算10. 计算:(3/4)+ (1/2)11. 计算:(1/2)- (1/5)12. 计算:(2/3)×(3/4)÷(1/2)五、百分数13. 将1/4表示为百分数。
14. 计算:14% × 25。
15. 计算:75% ÷ 25%。
六、图形与几何16. 计算正方形的面积,当边长为5cm时。
17. 计算长方形的周长,当长为8cm,宽为3cm时。
18. 计算圆的周长,当半径为6cm时。
七、比例与比例方程19. 若两个数的比为3:7,且较小的数为15,求较大的数。
20. 若一个比例方程为3x/4 = 9/16,求x的值。
21. 若一个比例关系为x:5 = 7:15,求x的值。
八、一次函数22. 给定函数y = 2x + 3,当x = 4时,求y的值。
23. 给定函数y = 3x - 5,求x = -2时,求y的值。
24. 给定函数y = -4x + 8,求x = 3时,求y的值。
九、概率25. 一枚均匀的骰子投掷一次,求出现奇数的概率。
26. 一副扑克牌中,从中随机抽出一张牌,求抽到红心的概率。
初二数学练习题及答案
初二数学练习题及答案一、选择题1. 下列哪个数是无理数?A. -2B. √3C. 0.5D. 2.5答案:B2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 8D. 10答案:A3. 一个数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 以上都不是答案:C二、填空题4. 一个数的立方等于它本身,这个数可以是______。
答案:1 或 05. 一个数的绝对值是它本身,这个数是______。
答案:非负数6. 如果一个数的相反数是-5,那么这个数是______。
答案:5三、计算题7. 计算下列表达式的值:(1) -3²(2) (-2)³答案:(1) -9(2) -88. 计算下列方程的解:(1) 3x + 5 = 14(2) 2x - 3 = 7答案:(1) x = 3(2) x = 5四、解答题9. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长和面积。
答案:周长= 2 × (10 + 5) = 30厘米面积= 10 × 5 = 50平方厘米10. 一个圆的半径是7厘米,求这个圆的周长和面积。
答案:周长= 2 × π × 7 ≈ 43.98厘米(π取3.14)面积= π × 7² ≈ 153.94平方厘米(π取3.14)五、应用题11. 一个班级有40名学生,其中男生占60%,女生占40%,求男生和女生各有多少人?答案:男生人数= 40 × 60% = 24人女生人数= 40 × 40% = 16人12. 一个工厂生产一批零件,合格率为98%,如果这批零件总数为1000个,求不合格的零件有多少个?答案:不合格的零件数= 1000 × (1 - 98%) = 20个本练习题旨在帮助初二学生巩固数学基础知识,提高解题能力。
希望同学们认真完成,遇到问题及时向老师或同学求助。
八年级上册数学几何提高题道客巴巴
八年级上册数学几何提高题道客巴巴数学是一门抽象而又有趣的学科,它不仅考验我们的逻辑思维能力,还能培养我们的分析问题和解决问题的能力。
在八年级上册的数学课程中,几何是一个重要的内容,让我们一起来探索一些数学几何提高题。
1. 题目:已知矩形ABCD,其中AB=10cm,AD=6cm。
E为AD的中点,连接BE并延长交BC于点F。
请证明:AF=2BC。
解析:首先,我们可以通过观察得知三角形ABE和三角形BCD是全等三角形,因为它们有相等的两边AB=BC、AE=CD和一个公共角∠AEB=∠CDB。
所以,我们可以得到∠BAE=∠CBD,以及∠BCD=∠ABE。
因为BE是AD的中点,所以AE=ED,即∠ABE=∠AEB。
又因为∠BCD=∠ABE,所以∠BCD=∠AEB,这意味着三角形BCD和三角形AEB的第三个角度也相等。
所以,根据AAA(全等的三角形对应角度相等的性质),我们可以得到三角形AEB和三角形BCD是全等的。
在全等的三角形中,相等的两边所对应的角度也是相等的。
所以,∠AEB=∠BCD=∠BCF。
我们知道矩形的对角线相交于中点,所以BE是AC的中点。
根据三角形相似的性质,我们可以得到三角形AFB和三角形CFB是相似的。
因为∠ABF=∠CBF,所以根据相似三角形的对应角度相等的性质,我们可以得到∠BFA=∠BFC。
又因为∠BFA和∠BFC是相等的,所以三角形AFB和三角形CFB的第三个角度也是相等的。
因此,根据相似三角形的对应角度相等的性质,我们可以得到三角形AFB和三角形CFB是全等的。
由于这两个三角形全等,所以我们可以得知AF=2BC。
2. 题目:已知菱形ABCD,其中∠ABC=60°,AC=8cm,BD=12cm。
请证明:AD=BC。
解析:首先,根据菱形的定义,菱形的四条边都是相等的,我们可以得知AB=BC=CD=DA。
所以,我们需要证明的是AD=BC。
我们将菱形ABCD分成两个全等的三角形ABC和ADC。
八年级初二数学提高题专题复习勾股定理练习题及答案
∴∠ADE=∠AED=45°, ∴AE=AD=1,
∴在 Rt△ADE 中,DE= 12 12 2 ,
∵∠DAE=∠BAC=90°, ∴∠DAE+∠EAC=∠BAC+∠EAC,即∠CAD=∠BAE, 又∵AB=AC, ∴△BAE≌△CAD(SAS), ∴CD=BE=3,∠AEB=∠ADC=45°, ∴∠BED=90°,
B,C 都在格点上,同时构造长方形 CDEF,使它的顶点都在格点上,且它的边 EF 经过点
A,ED 经过点 B.同学们借助此图求出了△ABC 的面积.
(1)在图(1)中,△ABC 的三边长分别是 AB=
,BC=
,AC=
.△ABC
的面积是
.
(2)已知△PMN 中,PM= 17 ,MN=2 5 ,NP= 13 .请你根据启航小组的思路,在
17.如图,Rt△ABC 中,∠BCA=90°,AB= 5 ,AC=2,D 为斜边 AB 上一动点(不与点 A,B 重合),DE⊥AC,DF⊥BC,垂足分别为 E、F,连接 EF,则 EF 的最小值是_____.
18.如图,直线 y 4 x 2 与 x 轴、 y 轴分别交于点 B 和点 A ,点 C 是线段 OA 上的一 3
9.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而
成,其中 AE=10,BE=24,则 EF 的长是( )
A.14
B.13
C.14 3
10.以下列各组数为边长,能组成直角三角形的是( )
D.14 2
A.1,2,3
B.2,3,4
C.3,4,6
D.1, 3 ,2
二、填空题
得出 BD,利用勾股定理即可求出 AD,再利用三角形面积公式即可解决问题.
初二数学拔高练习题
初二数学拔高练习题题目一:整式简化(1)简化下列代数式:$2a - (3b - 4c)$;(2)简化下列代数式:$2x^2y + 3xy^2 - (4x^2y - xy^2)$;(3)简化下列代数式:$5m - (m^2 - 2mn + n^2) + (4m + 3n)$。
解答:(1)根据括号前面的减号,可以将括号内的代数式中的每一项符号取反。
即:$2a - (3b - 4c) = 2a - 3b + 4c$。
(2)根据括号前面的减号,可以将括号内的代数式中的每一项符号取反。
即:$2x^2y + 3xy^2 - (4x^2y - xy^2) = 2x^2y + 3xy^2 - 4x^2y + xy^2 = -2x^2y + 4xy^2$。
(3)首先,根据括号前面的减号,将括号内的代数式中的每一项符号取反。
然后将各项合并同类项。
即:$5m - (m^2 - 2mn + n^2) + (4m + 3n) = 5m - m^2 + 2mn - n^2 + 4m + 3n$。
题目二:方程求解(1)解方程$2x - 5 = 7$;(2)解方程$3(x - 2) = 4x + 1$;(3)解方程$4(x + 3) - 2(x - 1) = 3(2x - 5)$;解答:(1)将方程中的常数项和系数项分开,得到$2x = 12$。
然后将方程两边都除以2,得到$x = 6$。
所以方程的解为$x = 6$。
(2)首先将方程中的括号展开,得到$3x - 6 = 4x + 1$。
然后将方程两边的4x移到左边,将-6移到右边,得到$3x - 4x = 1 + 6$。
即$x =7$。
所以方程的解为$x = 7$。
(3)首先将方程中的括号展开,并合并同类项,得到$4x + 12 - 2x + 2 = 6x - 15$。
然后将方程中的6x移到左边,将常数项移到右边,得到$4x - 2x - 6x = -15 - 12 - 2$。
初二数学(上册)几何题(提高)
1、已知如图,△ABC 中,AB=AC ,∠A=120°,DE 垂直平分仙于D ,交BC 于E 点.求证:CE=2BE .2、如图,在直角坐标系xOy 中,直线y=kx+b 交x 轴正半轴于A(-1,0),交y 轴正半轴于B,C 是x 轴负半轴上一点,且CA=43CO,△ABC 的面积为6。
(1)求C 点的坐标。
(2)求直线AB 的解析式。
(3、已知如图,射线CB ∥OA ,∠C=∠OAB=100 ,E 、F 在CB 上,且满足∠FOB=∠AOB ,OE 平分∠COF.(1)求∠EOB 的度数;(2)若平行移动AB ,那么∠OBC ∶∠OFC 的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值;4.如图Ⅰ—8,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D .求证:(1)AE =CD ;(2)若AC =12 cm ,求A B C O x y F O E C B ABD 的长.5、如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,DE ⊥GF 交AB 于点E ,连接EG 。
(1)求证:BG=CF ;(2)请你判断BE+CF 与EF 的大小关系,并证明。
6.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G .(1)求证:BF AC =;(2)求证:12CE BF =; (3)CE 与BG 的大小关系如何?试证明你的结论A F C DB G E。
初二数学必刷题练习题
初二数学必刷题练习题在初二数学学习中,经常听到一个成语,“熟能生巧”。
这句话的意思是通过不断的重复练习,我们能够掌握技能,提高我们的能力。
对于数学来说,这个道理同样适用。
为了帮助初二学生更好地掌握数学知识,下面给出了一些必刷的练习题。
一、整数运算1. 计算:(-8) + 4 - (-2) - 7 + (-5) + 9 - 32. 计算:(-12) - (-7) + 5 + 9 - (-3) - 73. 计算:(-18) - 25 + (-9) + 13 - (-5) + 7二、代数式与方程1. 已知 a = 3, b = 5,求 a + b 的值。
2. 已知 a = 4, b = 7,求 a - b 的值。
3. 计算 2a + 3b - a + 2b 的值,已知 a = 5, b = 2。
4. 将 24 与一个数的和乘以 3,结果是 96,求这个数。
三、平行线与相交线1. 若两条平行线上的一组对应角相等,那么这两条平行线之间的关系是?2. 若两条平行线上的一组对应角互补,那么这两条平行线之间的关系是?3. 若两条平行线上的一组对应角平分,那么这两条平行线之间的关系是?四、类比比例1. 若 6 个苹果的价格是 24 元,那么 9 个苹果的价格是多少元?2. 若 12 千克米的距离需要用 3 升汽油,那么 15 千克米的距离需要多少升汽油?3. 若 2 天钟的工资是 150 元,那么 5 天钟的工资是多少元?五、立体几何1. 一个棱长为 6 厘米的正方体,它的面积是多少平方厘米?体积是多少立方厘米?2. 一个棱长为 8 厘米的正方体,它的面积是多少平方厘米?体积是多少立方厘米?3. 一个底面边长为 10 厘米,高为 5 厘米的三棱锥,它的表面积是多少平方厘米?体积是多少立方厘米?六、统计与概率1. 问卷调查结果显示人们对旅行的喜好如下:喜欢海滩的人数为 30,喜欢山景的人数为 20,喜欢城市的人数为 50。
初二数学练习题必刷题
初二数学练习题必刷题在初二数学学习的过程中,练习题在巩固知识、提高能力方面起着至关重要的作用。
下面将介绍几类必刷的数学练习题,帮助同学们更好地掌握数学知识和解题技巧。
一、基础知识运用题1. 四则运算题四则运算是数学中最基础的运算之一,通过大量的练习,可以巩固加减乘除的基本运算规则,提高运算的熟练度。
2. 等式与方程题等式与方程是初中数学中的重要内容,通过练习解等式、解方程的题目,可以提高代数式的计算能力和逻辑思维能力。
二、选择题选择题是考察学生对知识点理解和应用的一种常见形式。
通过练习选择题,可以帮助同学们加深对知识点的理解,并提高解题技巧和答题速度。
1. 几何图形题几何图形题考察学生对几何图形的认识和几何关系的理解。
练习几何图形题能够提高同学们的观察能力、逻辑推理能力和空间想象能力。
2. 数据统计题数据统计题考察学生对数据的处理和分析能力。
通过练习数据统计题,可以提高同学们的图表解读能力和数据分析能力。
三、应用题应用题是将数学知识应用到实际问题中的题目。
练习应用题可以培养同学们的实际问题解决能力和数学建模能力。
1. 速度与比例题速度与比例题是初中数学中比较常见的应用题形式,通过练习速度与比例题,可以提高同学们的实际问题分析能力和数学推理能力。
2. 代数应用题代数应用题是将代数知识应用到实际问题中的题目,通过练习代数应用题,可以提高同学们的代数表达能力和问题解决能力。
练习题是学习数学不可或缺的一部分,同学们在做练习题的过程中要注重思考,总结解题方法和技巧。
同时,要复习错误题目并找出错误的原因,以便在下一次练习中不再犯同样的错误。
通过大量的练习,同学们可以逐步提高数学水平,为学习更高级的数学知识打下坚实的基础。
以上是初二数学练习题必刷题的介绍。
希望同学们能够充分利用练习题的作用,努力提高数学水平,取得更好的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下册数学提高题
一、选择题 (40分)
A.1个
B.2个
C.3个
D.4个 2、.在下列各式的化简中,化简正确的有
( )
A.1个
B.2个
C.3个
D.4个 3、如图,已知AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,DF=DC ,则∠ABC 的大小是( ) A 30度 B 45度 C 60度 D 无法确定 4.
,则( )
A .a ≥4
B .a ≥0
C .0≤a ≤4
D .a 为一切实数 5.
化简200620072)2)∙的结果为( ).
(A) –1 (B)23- (C)23+ (D) 23--
A.1
B.-1
C.0
D.2a
7、已知xy >0,化简二次根式
的正确结果为 ( ) A 、 B 、 C 、 D 、 8、若式子8-x +x -10在实数范围内有意义,则χ的取值范围为( )
A . x ≥8
B .x ≤10
C . 8≤x ≤10 D. x ≥8或x ≤10 二、填空题、(20分)
1. 计算:最简二次根式3a 与式,则a = ,b = ;
y
y -y -y --2x
y
x - A E
F
B
D
C
2.化简
:23、如图在Rt △ABC 中,∠ACB =90°,AC=BC ,AD 平分∠CAB,DE ⊥AB 于E ,若AB=10,则△BDE 的周长等于____________.
4、当x=_____时,式子4-x +4的值最大。
三、解答题 1、计算:(20分) (1)405214551252021515-+-+ (2)、计算:2
1
102112736112⨯÷
(3)(
2 —(
2 (4)(5+3-2)(5-3+2)
四、已知3
21
+=a ,求a a a a a a a a 1
121212
22--+---+-的值。
(10分)
五、(10分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连结DC .
(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);
(2)试判断DC 与BE 的位置关系,并说明理由。
图1
图2
E
B。