帧中继1

合集下载

第五章 帧中继与ATM网络技术

第五章 帧中继与ATM网络技术

第五章帧中继与ATM网络技术在第一部分“数据通信基础”一章及第二部分“数字数据网”一章我们都讨论过快速分组交换——帧中继,本章将更为详细地讲述帧中继的基本概念和技术。

在本章后面的章节还要讨论另外一种快速分组技术——ATM及其应用。

第一节帧中继基本概念1.什么是帧中继帧中继(Frame Relay,FR)技术是在分组交换技术充分发展,数字与光纤传输线路逐渐取代已有的模拟线路,用户终端日益智能化的条件下诞生并发展起来的。

它在OSI第二层上用简化的方法传送和交换数据单元。

由于链路层的数据单元一般称为帧,所以叫做帧中继。

帧中继技术主要用于传递数据业务,它使用一组规程将数据信息以帧的形式有效的进行传送。

2.帧中继的特点与X.25相比,帧中继具有如下技术特点:帧中继是简化的X.25分组技术。

它完成OSI物理层和链路层核心层的功能,删除分组层功能,将流量控制、纠错等留给智能终端去完成,大大简化了节点机之间的协议。

与X.25相类似,帧中继使用统计时分复用技术向终端用户提供共享的网络资源,通过永久虚电路实现线路资源的按需分配。

帧中继在链路层完成统计复用、帧透明传输和错误检测,但不提供发现错误后的重传操作。

省去了帧编号、流量控制、应答和监视等机制,把原X25分组在每个网络节点必须处理的27种控制信息减少到7种,从而大大节省了交换机的开销,提高了网络的吞吐能力,降低了通信时延,使节点机时延由20ms~30ms降到2~3ms。

一般帧中继的接入速率在64kbps~2Mbps之间,近期帧中继的速率已提高到8 Mbps~10Mbps,今后将达到45Mbps。

提供一套合理的带宽管理和防止阻塞的机制,允许用户有效地利用预先约定的带宽(CIR),还允许用户的突发数据占用未预定的带宽,以提高整个网络资源的利用率。

与分组交换网一样,帧中继采用面向连接的交换技术,可以提供SVC和PVC业务,但目前已应用的帧中继网络中,只采用PVC业务。

CISCO路由器配置手册----帧中继(Frame Relay)配置

CISCO路由器配置手册----帧中继(Frame Relay)配置

CISCO路由器配置手册----Frame Relay1. 帧中继技术帧中继是一种高性能的WAN协议,它运行在OSI参考模型的物理层和数据链路层。

它是一种数据包交换技术,是X.25的简化版本。

它省略了X.25的一些强健功能,如提供窗口技术和数据重发技术,而是依靠高层协议提供纠错功能,这是因为帧中继工作在更好的WAN设备上,这些设备较之X.25的WAN设备具有更可靠的连接服务和更高的可靠性,它严格地对应于OSI参考模型的最低二层,而X.25还提供第三层的服务,所以,帧中继比X.25具有更高的性能和更有效的传输效率。

帧中继广域网的设备分为数据终端设备(DTE)和数据电路终端设备(DCE),Cisco 路由器作为 DTE设备。

帧中继技术提供面向连接的数据链路层的通信,在每对设备之间都存在一条定义好的通信链路,且该链路有一个链路识别码。

这种服务通过帧中继虚电路实现,每个帧中继虚电路都以数据链路识别码(DLCI)标识自己。

DLCI的值一般由帧中继服务提供商指定。

帧中继即支持PVC也支持SVC。

帧中继本地管理接口(LMI)是对基本的帧中继标准的扩展。

它是路由器和帧中继交换机之间信令标准,提供帧中继管理机制。

它提供了许多管理复杂互联网络的特性,其中包括全局寻址、虚电路状态消息和多目发送等功能。

2. 有关命令:端口设置任务命令设置Frame Relay封装encapsulationframe-relay[ietf] 1设置Frame Relay LMI类型frame-relay lmi-type {ansi | cisco | q933a}2设置子接口interface interface-typeinterface-number.subinterface-number[multipoint|point-to-point]映射协议地址与DLCI frame-relay map protocolprotocol-address dlci[broadcast]3设置FR DLCI编号frame-relay interface-dlcidlci [broadcast]注:1.若使Cisco路由器与其它厂家路由设备相连,则使用Internet工程任务组(IETF)规定的帧中继封装格式。

帧中继——点到点子接口(point-to-point)配置

帧中继——点到点子接口(point-to-point)配置

帧中继概述:•是由国际电信联盟通信标准化组和美国国家标准化协会制定的一种标准。

•它定义在公共数据网络上发送数据的过程。

•它是一种面向连接的数据链路技术,为提供高性能和高效率数据传输进行了技术简化,它靠高层协议进行差错校正,并充分利用了当今光纤和数字网络技术。

帧中继的作用:•帧使用DLCI进行标识,它工作在第二层;帧中继的优点在于它的低开销。

•帧中继在带宽方面没有限制,它可以提供较高的带宽。

•典型速率56K-2M/s内选择 Frame Relay 拓扑结构:•全网结构:提供最大限度的相互容错能力;物理连接费用最为昂贵。

•部分网格结构:对重要结点采取多链路互连方式,有一定的互备份能力。

•星型结构:最常用的帧中继拓扑结构,由中心节点来提供主要服务与应用,工程费最省帧中继的前景:•一种高性能,高效率的数据链路技术。

•它工作在OSI参考模型的物理层和数据链路层,但依赖TCP上层协议来进行纠错控制。

•提供帧中继接口的网络可以是一个ISP服务商;也可能是一个企业的专有企业网络。

•目前,它是世界上最为流行的WAN协议之一,它是优秀的思科专家必备的技术之一。

子接口的配置:•点到点子接口–子接口看作是专线–每一个点到点连接的子接口要求有自己的子网–适用于星型拓扑结构•多点子接口(和其父物理接口一样的性质)–一个单独的子接口用来建立多条PVC,这些PVC连接到远端路由器的多点子接口或物理接口–所有加入的接口都处于同一的子网中–适用于 partial-mesh 和 full-mesh 拓扑结构中帧中继术语:•DTE:客户端设备(CPE),数据终端设备•DCE:数据通信设备或数据电路端接设备•虚电路(VC):通过为每一对DTE设备分配一个连接标识符,实现多个逻辑数据会话在同一条物理链路上进行多路复用。

•数字连接识别号(DLCI):用以识别在DTE和FR之间的逻辑虚拟电路。

•本地管理接口(LMI):是在DTE设备和FR之间的一种信令标准,它负责管理链路连接和保持设备间的状态。

帧中继介绍和原理

帧中继介绍和原理

帧中继帧中继(Frame Relay)是一种网络与数据终端设备(DTE)接口标准。

由于光纤网比早期的电话网误码率低得多,因此,可以减少X.25的某些差错控制过程,从而可以减少结点的处理时间,提高网络的吞吐量。

帧中继就是在这种环境下产生的。

帧中继提供的是数据链路层和物理层的协议规范,任何高层协议都独立于帧中继协议,因此,大大地简化了帧中继的实现。

目前帧中继的主要应用之一是局域网互联,特别是在局域网通过广域网进行互联时,使用帧中继更能体现它的低网络时延、低设备费用、高带宽利用率等优点。

帧中继的主要特点是:使用光纤作为传输介质,因此误码率极低,能实现近似无差错传输,减少了进行差错校验的开销,提高了网络的吞吐量;帧中继是一种宽带分组交换,使用复用技术时,其传输速率可高达44.6Mbps。

但是,帧中继不适合于传输诸如话音、电视等实时信息,它仅限于传输数据。

帧中继Frame Relay帧中继是一种用于连接计算机系统的面向分组的通信方法。

它主要用在公共或专用网上的局域网互联以及广域网连接。

大多数公共电信局都提供帧中继服务,把它作为建立高性能的虚拟广域连接的一种途径。

帧中继是进入带宽范围从56Kbps到1.544Mbps的广域分组交换网的用户接口。

帧中继是从综合业务数字网中发展起来的,并在1984年推荐为国际电话电报咨询委员会(CCITT)的一项标准,另外,由美国国家标准协会授权的美国TIS标准委员会也对帧中继做了一些初步工作。

大多数主要的电信公司象AT&T,MCI,US Sprint,和地方贝尔运营公司都提供了帧中继服务。

与帧中继网相连,需要一个路由器和一条从用户场地到交换局帧中继入口的线路。

这种线路一般是象T1那样的租用数字线路,但取决于通信量而定。

两种可能的广域连接方法,如下面所述:¥¥专用网方法在这种方法中,每个场点将需要三条专用(租用)线路和相联的路由器,以便与其它每一个场点相连,这样总共需要6条专线和12个路由器。

计算机网络基础教程:帧中继网

计算机网络基础教程:帧中继网

9.4 帧中继网帧中继网络是目前局域网互联综合性能(可靠性、价格、传输速度、网络延时、响应时间、吞吐量、覆盖面等)最好的公共网络,可提供高达45Mbps的高速数据传输。

帧中继网络正在逐渐替代DDN网络,成为局域网互联的主要公共服务网络。

帧中继公共网络最早是在1992年在美国投入公共服务。

我国从1996年底由中国电信(现在的电信和网通)开始建设ChinaFRN,其一期主干网络于1997年6月建设完成,覆盖北京、上海、广州、沈阳、武汉、南京等21个省会城市,并在北京、上海和广州建立了国际出口,与其它国家的帧中继网络相连。

目前,经过8年的建设,我国的ChinaFRN已经延伸到几乎所有地级市,部分地区甚至延伸到县级市,覆盖面非常广泛。

9.4.1 帧中继网络的构造帧中继网络是由帧中继交换机组成的一个跨地域的大型网络。

帧中继网络的核心是帧中继交换机,是一个工作在链路层的网络设备。

帧中继交换机之间使用光纤连接,采用时分多路复用的方式提供多条虚电路。

图9.14帧中继由帧中继交换机组成的一个大型网络帧中继网络是一个分组交换网,在帧中继交换机之间传输的数据报是与局域网一样带有帧报头的数据帧。

帧中继数据帧的报头格式如图9.15所示:图9.15帧中继的报头格式帧中继报头的头一个字节是01111110的二进制序列,标明一帧数据的开始。

第二个字段是16位的地址字段,其中的DLCI地址占10位。

另外还有3个标志位,分别是向前拥挤标志位FECN、向后拥挤标志位BECN 和丢弃标志位DE。

DLCI地址是交换机识别虚电路使用的虚电路号(own Data Link Channel Identifier)。

帧中继交换机使用DLCI地址进行数据报转发的工作原理如图9.16所示:图9.16 帧中继交换机的工作原理帧中继交换机的与以太网交换机一样,拥有一个交换表。

数据报进入端口后,交换机从帧报头的地址字段取出DLCI地址,查交换表就可以得知应该向哪个端口转发。

帧中继基本原理

帧中继基本原理

4.4.1 帧中继基本原理帧中继(Frame Relay,FR)技术是在OSI 第二层上用简化的方法传送和交换数据单元的一种技术。

帧中继技术是在分组技术充分发展,数字与光纤传输线路逐渐替代已有的模拟线路,用户终端日益智能化的条件下诞生并发展起来的。

帧中继仅完成OSI 物理层和链路层核心层的功能,将流量控制、纠错等留给智能终端去完成,大大简化了节点机之间协议;同时,帧中继采用虚电路技术,能充分利用网络资源,因而帧中继具有吞吐量高、时延低、适合突发性业务等特点。

作为一种新的承载业务,通过RFC1490协议,把网络层的IP 数据包封装成数据链路层的帧中继帧,帧中继的用户接口速率最高为34Mbit/s ,它目前在中、低速率网络互联的应用中被广泛使用。

帧中继技术适用于以下两种情况:(1) 用户需要数据通信,其带宽要求为64kbit/s-34Mbit/s ,而参与通信的各方多于两个的时候使用帧中继是一种较好的解决方案;(2) 当数据业务量为突发性时,由于帧中继具有动态分配带宽的功能,选用帧中继可以有效地处理突发性数据。

1 帧中继业务帧中继业务是在用户-网络接口(UNI)之间提供用户信息流的双向传送,并保持原顺序不变的一种承载业务。

用户信息流以帧为单位在网络内传送,用户-网络接口之间以虚电路进行连接,对用户信息流进行统计复用。

帧中继网络提供的业务有两种:永久虚电路和交换虚电路。

永久虚电路是指在帧中继终端用户之间建立固定的虚电路连接,并在其上提供数据传送业务。

交换虚电路是指在数据传送前,两个帧中继终端用户之间通过呼叫建立虚电路连接,网络在建好的虚电路上提供数据信息的传送服务,终端用户通过呼叫清除操作终止虚电路。

目前已建成的帧中继网络大多只提供永久虚电路业务。

帧中继永久虚电路业务模型如图2-1所示。

FR 网络FR网络FR 网络FRAD :帧中继组装和拆分 PVC :永久虚电路 LAN :局域网图2-1 永久虚电路业务模型2 帧中继的基本功能帧中继在OSI 第二层以简化的方式传送数据,仅完成物理层和链路层核心层的功能,智能化的终端设备把数据发送到链路层,并封装在LAPD 帧结构中,实施以帧为单位的信息传送。

帧中继技术基础

帧中继技术基础

帧中继技术基础数据通信技术的发展数据通信就是进行数据传输和数据交换,把数据源发送的数据信息从一个地方通过传输信道交换设备传送到另一个地方的数据接收设备中,也就是数据信息在发送设备和接收设备之间进行信息传递。

数据通信网是为提供数据通信业务而提供的媒体,随着通信技术的不断发展,数据通信网的交换技术有:电路方式、分组方式、帧方式、和信元方式等。

电路方式是传递信息最简单的方式。

电路方式之一是基于公众交换电话网(PSTN)或ISDN电路交换的原理,当用户要求发送数据时,交换机在主叫用户端及被叫用户端之间连接一条链路。

终端设备通过接入设备(调制解调器(MODEM)或适配器(TA))连到交换机上,经接入设备的拨号在交换机之间构成一条物理链路。

如图1-1所示。

MODEM/TA MODEM/TA图1-1 利用PSTN/ISDN进行数据通信示意图这种方式属于预分配电路资源系统,即在一次接续中,电路资源预先分配给一对用户固定使用,不管该用户是否有数据在链路中传递,电路一直被这一对用户占用,其它用户无法插入该链路中。

只有该对用户使用完后把该链路释放,其它用户才能使用。

另一种电路方式是采用专线,即数字数据网(DDN)。

DDN一般向用户提供专用数据传递链路,如图1-2所示。

DDN图1-2利用专线联接方式进行数据通信电路方式的主要特点是为通信的两端建立物理连接,它有如下优点:①信息传输时延小,因为它是一个固定物理连接,信息传输的时延也是固定的。

②电路是“透明”的。

发送端和接收端传递的信息并没有限制在某一个协议下,只要终端设备认可,任何协议的信息都可以传递。

③信息传递的吞吐量大。

可以根椐信息量的大小来选择信息的传递带宽。

它的缺点是资源比较浪费。

基于PSTN或ISDN电路方式至少要占用一路话路,即64Kbps。

如果传递的信息不到64Kbps,占用的带宽也不能减小,其它用户也不能享用。

基于DDN的电路方式虽然可以根据需要分配带宽,但对信道的占用也是半永久性的,用户一旦租用,即使没有信息传递,其带宽也不能由其它用户享用,因此,DDN一般用于对实时性和可靠性要求较高的业务。

帧中继练习题

帧中继练习题

帧中继练习题帧中继(Frame Relay)是一种传输协议,它在传送数据时将数据分配成固定长度的帧进行传输,帧中继网络通常用于连接广域网中的多个站点。

帧中继练习题旨在帮助读者巩固对帧中继原理和配置的理解。

1. 帧中继是一种什么类型的通信协议?请简要解释。

帧中继是一种分组交换通信协议。

它将数据分割成固定长度的帧,并使用标识符进行识别和路由选择,然后在网络中进行传输。

帧中继基于物理链路层和数据链路层进行传输,提供了高带宽利用率和灵活的虚拟连接服务。

2. 帧中继网络中的主要组件有哪些?帧中继网络中的主要组件包括:- 数据终端设备(DTE):连接在用户侧的设备,如路由器或交换机。

- 数据通路连接器(DLC):在DTE和数据服务单元(DSU)之间提供物理连接的接口设备。

- 数据服务单元(DSU):提供数字信号和帧中继协议之间的转换。

- 帧中继交换机(Frame Relay Switch):在帧中继网络中进行帧的交换和路由选择。

3. 帧中继的主要优点是什么?帧中继具有以下主要优点:- 高带宽利用率:帧中继采用统计复用技术,可实现多路复用,使多个虚拟连接共享物理链路,提高带宽利用率。

- 灵活的虚拟连接服务:帧中继可以动态地建立、修改和释放虚拟连接,满足网络中不同站点之间的通信需求。

- 提供多种服务类型:帧中继支持不同的服务质量,如实时传输和非实时传输,满足不同应用对延迟和带宽的需求。

- 可扩展性:帧中继支持连接大量的站点,具有良好的可扩展性。

4. 帧中继中的虚拟通道标识符(VCI)有何作用?虚拟通道标识符(VCI)用于在帧中继网络中标识虚拟通道。

每个VCI唯一地标识一个虚拟通道,可以用于将收到的帧路由到正确的目的地。

VCI是一个16位的字段,允许最多有65535个虚拟通道。

5. 请简要描述帧中继的配置步骤。

帧中继的配置步骤如下:1) 配置物理连接:将DTE设备与DLC设备连接,并设置相应的物理连接参数,如电压、速率等。

实验报告——实验七:帧中继配置实验

实验报告——实验七:帧中继配置实验

实验七:帧中继配置⏹实验目的1、掌握帧中继基本概念、DLCI含义、LMI作用、静态和动态映射区别2、掌握帧中继基本配置:如接口封装、DLCI配置、LMI配置等3、能够对帧中继进行基本故障排除⏹实验要求1、帧中继拓扑与地址规划;2、帧中继基本配置和帧中继网云配置(如帧中继交换表配置)3、ospf配置4、验证帧中继配置并给出配置清单⏹实验拓扑⏹实验设备(环境、软件)路由器3个,网云一个,串口线3条。

⏹实验设计到的基本概念和理论帧中继用虚电路为面向连接的服务建立连接。

DLCI的含义是数据链路连接标识,在源和目的设备之间标识逻辑电路的一个数值。

LMI的含义是本地管理接口,是客户前端设备和帧中继交换机之间的信令标准,负责管理设备之间的连接、维护设备之间的连接状态。

⏹实验过程和主要步骤1、地址规划情况2、单个路由器的基本配置清单(1)路由器Router0配置Router>enableRouter#config tEnter configuration commands, one per line. End with CNTL/Z.Router(config)#interface s2/0Router(config-if)#no ip addressRouter(config-if)#encapsulation frame-relayRouter(config-if)#interface s2/0.1 multipointRouter(config-subif)#ip address 192.168.1.1 255.255.255.0Router(config-subif)#bandwidth 64Router(config-subif)#frame-relay map ip 192.168.1.2 102 broadcastRouter(config-subif)#frame-relay map ip 192.168.1.3 103 broadcastRouter(config-subif)#exitRouter(config)#interface s2/0Router(config-if)#no shut%LINK-5-CHANGED: Interface Serial2/0, changed state to up%LINK-5-CHANGED: Interface Serial2/0.1, changed state to upRouter(config-if)#%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial2/0, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial2/0.1, changed state to up (2)路由器Router1配置Router>enableRouter#config tEnter configuration commands, one per line. End with CNTL/Z.Router(config)#interface s2/0Router(config-if)#no ip addressRouter(config-if)#encapsulation frame-relayRouter(config-if)#interface s2/0.1 multipointRouter(config-subif)#ip address 192.168.1.2 255.255.255.0Router(config-subif)#bandwidth 64Router(config-subif)#frame-relay map ip 192.168.1.1 201 broadcastRouter(config-subif)#frame-relay map ip 192.168.1.3 203 broadcastRouter(config-subif)#exitRouter(config)#interface s2/0Router(config-if)#no shut%LINK-5-CHANGED: Interface Serial2/0, changed state to up%LINK-5-CHANGED: Interface Serial2/0.1, changed state to upRouter(config-if)#%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial2/0, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial2/0.1, changed state to up(3)路由器Router2配置Router>enableRouter#config tEnter configuration commands, one per line. End with CNTL/Z.Router(config)#interface s2/0Router(config-if)#no ip addressRouter(config-if)#encapsulation frame-relayRouter(config-if)#interface s2/0.1 multipointRouter(config-subif)#ip address 192.168.1.3 255.255.255.0Router(config-subif)#bandwidth 64Router(config-subif)#frame-relay map ip 192.168.1.1 301 broadcastRouter(config-subif)#frame-relay map ip 192.168.1.2 302 broadcastRouter(config-subif)#exitRouter(config)#interface s2/0Router(config-if)#no shut%LINK-5-CHANGED: Interface Serial2/0, changed state to up%LINK-5-CHANGED: Interface Serial2/0.1, changed state to upRouter(config-if)#%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial2/0, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial2/0.1, changed state to up3、网云交换表配置(1)Se0端口的配置:(2)Se1端口的配置(3)Se2端口的配置(4)将其进行连接:4、验证三个路由器通信情况(1)Router0到Router1和Router2(2)Router1到Router0和Router2(3)Router2到Router0和Router1心得体会通过这次的实验我懂得了什么是帧中继以及其作用,知道了DLCI和LMI的含义及其重要性,同时也明白了如何配置帧中继。

帧中继技术

帧中继技术
帧中继技术
帧中继-标准、技术和网络 第一部分: 帧中继标准综述
帧中继技术的概述
• 帧中继本质上是一种分组交换技术。
-采用帧的形式来封装用户的数据以进行跨网的传输。
• 帧中继网中所包含的基本成分有:
-PVC、Trunk、UNI、NNI、LMI协议
•虚电路业务
-PVC方式和SVC方式 -各PVC利用所设的DLCI值进行寻址 -DLCI代表了PVC的终止点 -DLCI能够具有本地及全网的含义
Network Data Link Physical Data Link Physical Data Link Physical Data Link Physical Network Data Link
Application Presenation
Session
Transport Network Data Link Physical
Transport
Network Data Link Physical
Physical
• IP点到点跨过广域网的方式:
-每个路由器上的第3层操作都要大量消耗CPU的资源,从而使得端到端的延时增大。 -此为当前Internet/Intranet网中传统路由器的方式。因此尽量减少第3层的开销(路由器 的跳数)将会大大简化网络并降低端到端的延时。
Transport
Network Data Link Physical
Physical
• 每个X.25交换机和路由器上的第3层功能增加了用于每个分组的处理时间。 • 而分组交换技术中在第1、2和3层中采用的繁杂的检错和纠错机制增大了端到端 延时。
帧中继-标准、技术和网络 第一部分: 帧中继标准综述
帧中继-标准、技术和网络 第一部分: 帧中继标准综述

帧中继

帧中继

DLCI(Data Link Circiut Identification,数据链路连接标识符)实际上就是帧中继网络中的第 2 层地址。

如图,当路由器 R1 要把数据发向路由器 R2 (IP为123.123.123.2)时,路由器 R1 可以用DLCI=102 来对 IP 数据包进行第 2 层的封装。

数据帧到了帧中继交换机,帧中继交换机根据帧中继交换表进行交换:从 S1 接口收到一个 DLCI 为102 的帧时,交换机将把帧从 S2 接口发送出去,并且发送出去的帧的 DLCI 改为 201。

这样路由器 R2 就会接收到 R1 发来的数据包。

而当路由器 R2 要发送数据给 R1(IP 为123.123.123.1)时,路由器 R2 可以用 DLCI=201 来对 IP 数据包进行第 2 层的封装,数据帧到了帧中继交换机,帧中继交换机同样根据帧中继交换表进行交换:从 S2 接口收到一个 DLCI为 201 的帧时,交换机将把帧从 S1 接口发送出去,并且发送出去的帧的 DLCI 改为 102。

这样路由器 R1 就会接收到 R2 发来的数据包。

通过以上分析可以知道DLCI实际上就是IP数据包在帧中继链路上进行封装时所需的第2 层地址。

图中各路由器中的第 3 层地址和第 2 层地址映射如下:R1: 123.123.123.2→102123.123.123.3→103R2: 123.123.123.1→201123.123.123.3→203R3: 123.123.123.1→301123.123.123.2→302LMI (Local Management Interface)提供DTE设备和帧中继之间的一种信令标准有三种标准CiscoANSIQ933a负责管理设备之间的连接及维护其连接状态路由器从帧中继交换机收到LMI 信息后,可以得知PVC 状态。

三种PVC 状态是:@激活状态(Active):本地路由器与帧中继交换机的连接是启动且激活的。

现代交换原理与通信网络技术

现代交换原理与通信网络技术

二、填空题1.电话交换技术的发展经历了人工交换阶段、机电式自动交换阶段、电子式自动交换阶段三个阶段。

2.PSTN(公用电话网)采用的交换方式是电路交换方式。

3.数字程控交换机的基本结构是由控制子系统和信息子系统。

4.本地电话网的汇接方式可分为去话汇接、来话汇接、去来话汇接、主辅汇接四种方式。

5.我国电话网采用5级结构。

6.从公共式交换机直到今天的交换机,一直采用由交换机提供通话电源的方式,我们称这种方式为中央馈电方式。

7.电话机的基本组成包括通话设备、转接设备、信令设备三部分。

8.本地电话网按照覆盖区域的大小和服务区域内人口的多少采用不同的组网方式主要可以采用单局制、多局制、汇接制三种组网方式。

9.按照节点的接续类型有四种,分别是本局接续、出具接续、入局接续、转接(汇接)接续。

10.T接线器的基本功能是完成一条同步时分复用线上各个时隙之间话音信息的交换。

三、简答题1.试分析程控电话交换的接续过程。

答曰:主叫摘机呼叫——向A送拨号音准备收号——收号与号码分析——建立连接向B振铃向A送回铃音——被叫应答进入通话——一方用户挂机向另一方送忙音——通话结束。

3.拨打一个国际长途:00-82-301-2345678,五个字段的数字分别代表什么含义?答曰:00国际长途字冠,82国家号码,301国内长途号码,2345678本地网电话号码。

第一章交换概论1、在通信网中为什么要引入交换的概念?为了实现多个终端之间的相互通信,引入了交换节点,各个用户终端分别经通信线路连接到交换节点上,交换节点就是交换机,它完成交换的功能!2、交换方式有多少类传输模式?各传输模式的特点?目前交换技术主要有那几种,分别属于哪种传送模式?(1)电路传送模式CTM:电路交换,多速率电路交换,快速电路交换(2)分组传送模式PTM:分组交换,帧交换,帧中继(3)异步传送模式ATM:IP交换,光交换,软交换3、电路交换、分组交换的虚电路方式以及ATM交换都采用面向连接的工作方式,它们有何异同?(1)相同点:①都有连接建立,传送信息,连接拆除三个阶段;②一旦建立连接,该通信所有信息都沿着这个连接传送,且保证信息的有序性;③信息传送的时延比无连接工作方式的时延小;④对故障敏感;(2)不同点:电路交换建立的是物理连接;分组交换的虚电路方式建立的是逻辑连接;ATM交换建立的是逻辑连接(虚连接)。

帧中继概述

帧中继概述

拥塞控制机制(续)
• 帧中继丢弃合格位(DE):用于指示帧的重要性 是否比其他帧低,位于帧中继帧头的地址字段中。 DTE设备将DE位设置为1,指出该帧的重要性比 其他帧低,当网络发生拥塞时,DCE设备将首先 丢弃DE位被设置的帧,然后再丢弃其他帧。这降 低了拥塞发生时帧中继DCE设备将重要数据丢弃 的可能性。 • 帧中继错误检验:帧中继错误检验机制采用CRC, 只进行错误检验而不是纠错。
– 数据链路连接标识符(DLCI):帧中继交换机上PVC号,只有本地意义。 – 本地管理接口(LMI):帧中继交换机对帧中继DTE设备发送的LMI请求 进行响应。通过这种机制,将其配置的DLCI告知帧中继DTE设备。DLCI 只在本地有意义,即目标PVC可以不使用相同的DLCI号。 下图说明帧中继交换机和帧中继DTE设备之间发生的事件,从下图可知,路由 器将LMI存活(keepalive)消息发送给帧中继交换机,后者对此进行响应,并 将合适的DLCI信息发送给路由器。
帧中继验证命令
• Show frame-relay vc
– 输出DLCI编号、PVC状态以及收到这些DLCI的接口、PVC creat time和last time PVC status changed – PVC状态有三种:
• Active state(活动状态) 所有都是活动的,路由器可以交换信息。 • Inactive state(非活动状态)路由器的接口是活动的,并和所连接的 交换局正常工作,但是远程路由器没有正常工作。 • Deleted state(删除状态)接口没有收到交换机的任何LMI信息。可 能是映射问题或线路失效。
帧中继帧的格式
标记(Flag):指示帧的开始和结束。该字段值总是7E。 地址字段: DLCI:由10位组成,是帧头中必不可少的,是DTE和DCE之间 的虚连接。每条被多路复用到物理信道中的虚连接都由一个唯一 的DLCI标识。DLCI值只有本地意义,即只在其所在的物理信道中 是唯一的。 拥塞控制:由3位组成,用于控制帧中继拥塞通知机制,位于地址 字段中的最后3位,分别是前向显示拥塞通知(FECN位)、后向 显示拥塞通知(BECN位)和丢弃合格(DE)位。 若FECN位设置为1,表示告诉终端DTE设备,该帧从信源传 输到信宿的过程中遇到过拥塞情况。若BECN位设置为1,指 出该帧从信源传输到信宿的相反方向上发生拥塞。使用 FECN和BECN字段的好处是高层协议可以根据这些指示采取 措施,如启用流量控制机制。丢弃合格(DE)由DTE设备设 置,以指出该帧的重要性比其他帧低。当网络发生拥塞时, 被标记为“丢弃合格”的帧将优先于其他的帧被丢弃。在帧 中继网络中实现了基本的优先级机制。

帧中继的配置

帧中继的配置

帧中继(Frame Relay)配置帧中继设置中可分为DCE端和DTE设置,在实际应用中,Cisco路由器为DTE端,通过V.35线缆连接CSU/DSU,如果将两个路由器通过V.35线缆直连,连接V.35 DCE线缆的路由器充当DCE的角色,并且需要提供同步时钟。

帧中继协议的术语及相关技术虚电路:两个DTE设备(如路由器)之间的逻辑链路称为虚电路(VC),帧中继用虚电路来提供端点之间的连接。

由服务提供商预先设置的虚电路称为永久虚电路(PVC);另外一种虚电路是交换虚电路(SVC),它是动态的虚电路。

DLCI(即数据链路标识符-Data link connection identifier),是在源和目的设备之间标识逻辑电路的一个数值。

帧中继交换机通过在一对路由器之间映射DLCI来创建虚电路。

本地访问速率:连接到帧中继的时钟速度(端口速度),是数据流入或者流出网络的速率。

本地管理接口(LMI):是用户设备和帧中继交换机之间的信令标准,它负责管理设置之间的连接、维持设备之间的连接状态。

帧中继的子接口:所谓子接口,是在帧中继的物理接口中定义的逻辑接口。

帧中继有两种子接口类型,即点到点子接口(point-to-point subinterface)和多点子接口(multipoint subinterfac).DTE端配置∙在端口配置中,封装帧中继encapsulation frame-relay IETFCisco路由器缺省为帧中继数据包封装格式为IETF,可以不用显示设置,另外,国内帧中继线路一般为IETF格式的封装,如果不同,请与当地电信管理部门联系,采用其它装格式。

∙设置LMI信令格式frame-relay lmi-type CiscoCisco路由器缺勤省的LMI信令格式为Cisco,可以不用设置,国内帧中继线路一般采用Cisco的LMI信令格式。

如果不同,请与当地电信管理部门联系,采用相应的LMI信令格式。

帧中继-FR-说明

帧中继-FR-说明

帧中继是一种工作在OSI参考模型的物理层和数据链路层的高性能广域网协议。

最初,帧中继技术主要应用于ISDN网络,现在,可以在多种网络平台上使用。

本文将主要介绍广域网环境下,帧中继技术的规范和应用。

为了方便本文的讲解,在文中我们将帧中继略作FR(英文Frame Relay的首字母缩写)表示。

FR是一种典型的包交换技术。

包交换技术能够使网络节点工作站动态的分享网络介质和可用带宽。

包交换网络支持可变长度数据包,数据的传输更加有效和灵活。

所有的数据包基于交换机制在不同的网段之间进行传递,直到到达最终的目的地。

包交换网络使用统计复用技术控制网络接入,使网络带宽的使用更加灵活和高效。

目前流行的绝大多数局域网应用,包括以太网和令牌环在内,都属于包交换网络。

FR可以看做是X.25协议的简化版本,它省略了X.25协议所具有的一些强健功能,例如窗口技术和丢失数据重发技术等。

这主要是因为目前FR技术所使用的广域网环境比起七、八十年代X.25协议普及时所存在的网络基础设施,无论在服务的稳定性还是质量方面都有了很大的提高和改进。

此外,FR与X.25不同,是一种严格意义上的第二层协议,所以可以把一些复杂的控制和管理功能交由上层协议完成。

这样就大大提高了FR的性能和传输速度,使其更加适合广域网环境下的各种应用。

早在1984年,关于FR技术的标准化协议就已经提交到国际电话与电报委员会(CCITT)。

但是,由于当时的标准并不完善,而且缺乏互操作性,所以在随后的几年当中FR并没有迅速普及开来。

FR发展史上最重要的转折点出现在1990年。

当时,由Cisco,Digital Equipment 以及北电等几家业界著名厂商共同组建起专业联盟致力于FR技术的开发。

该联盟所推出的新规范在CCITT协议的基础之上对FR的功能进行了扩展,增加了许多面向复杂网络环境的新功能。

通常,我们把这些FR扩展功能统称为本地管理接口(LMI)。

新规范推出之后受到了业界厂商的广泛支持。

《帧中继资料》课件

《帧中继资料》课件

分类
VLAN分类可以根据端口、 地址、协议、服务,以及 策略进行。
优点
VLAN能够进行精细梳理, 使网络更有效率,安全性 更好,同时降低了维护成 本。
模糊连接——中继器
1
工作方式
2
中继器所传递的是物理信号,是通过
电气或光信号放大,然后再将信号重
新送出去。
3
介绍
中继器(Repeater)是把物理位给传 递到下一级的网络设备。
优缺点
优点是成本低且对吞吐量较 大的局域网有很好的扩展性; 缺点是在高速网上传输性能 跟不上速度,易产生拥塞。
帧中继的应用
数据中心
因为交换机比网桥快,所以 在数据交换环境中常用帧中 继替换网桥。
广域网
多种帧中继技术被应用于广 域网上,以获得更高效的数 据传输。
音视频传输
帧中继技术成功应用于其它 数据的不可靠传输领域,如 实时音视频传输。
应用场景
中继器广泛应用在数字或模拟信号传 输等通讯领域。
扩展性——桥
原理
桥是以MAC地址为基础,实现 两个局域网之间基本的数据传 输功能。
工作方式
桥能够将数据转发到其他局域 网,从而实现局域网互联。
应用场景
桥在局域网互联中广泛应用, 加强了网络的可扩展性,同时 对网络数据传输质量的保障起 到了重要作用。
总结
1 概念
帧中继以帧为单位,负责在网络节点之间传输数据,是网络传输中重要的物理层协议。
2 应用
帧中继被广泛应用在数据中心、广域网和音视频传输领域。
3 特性
帧中继有多种类型和特点,如高级特性虚拟局域网 VLAN、中继器、桥等。
《帧中继资料》PPT课件
学习网络传输百科知识,掌握帧中继核心技术。

帧中继

帧中继
LMI的主要作用
(1)获知路由器被分配了哪些DLCI,确定PVC的操作状态,有哪些可用的PVC等;发送维持分组,以确保
PVC处于激活状态。
r1(config)#int s1/1
r1(config-if)#encapsulation frame-relay
封装帧中继。帧中继有两种封装类型,cisco和ietf,默认的封装类型是cisco,如果连接到一台非思科的
router(config)#host r4
(2)多点子接口(multipoint)
使用一个单独的子接口来建立多条PVC,这些PVC连接到远程路由器的子接口或物理接口。在这种情况下,所有
连接到这个子接口的远程路由器的子接口或物理接口的IP地址同属于一个子网。这里的多点子接口和物理接口
一样,仍然会受到水平分割的限制。
点到点子接口可以解决路由的水平分割问题,但因为要使用多个子网,会造成IP地址的浪费,多点子接口
完成,所以大大缩短了节点的延时,提高了网内数据的传输速率。这主要是因为目前帧中继技术所使用的广
域网环境比起20世纪七八十年代X.25协议普及时所存在的网络基础设施,无论在服务的稳定性还是质量方面
都有了很大的提高和改进。帧中继是一种严格意义上的第二层协议,所以可以把一些复杂的控制和管理功能
交由上层协议完成。这样就大大提高了帧中继的性能和传输速度,其更加适合广域网环境下的各种应用。
DCE线缆无关。为了帧中继交换,需要把它改变成
DCE,路由器默认是DTE
frame-relay(config-if)#frame-relay route 103 interface serial1/1 301
在承诺信息速率的测量间隔内交换机准许接受和发送的最大数据量,以b/s为单位。

帧中继工作原理

帧中继工作原理

帧中继工作原理
帧中继工作原理是通过将传输的数据分成一小部分,称为帧,然后再通过传输媒介进行传递的一种数据传输方式。

它的作用是将长距离传输变成短距离传输,从而降低传输的错误率和延迟。

帧中继的工作原理主要包括以下几个步骤:
1. 分帧:发送方将要传输的数据分成若干个帧,并且给每个帧加上帧标识,使得接收方可以识别出每个帧的开始和结束。

2. 帧封装:帧中继会在每个帧的前后添加一些必要的控制信息,如起始标记、帧长度等,以便接收方能够正确解析和提取出帧中的数据。

3. 帧传输:分好的帧通过传输媒介,如光纤或电缆,传输到接收方。

帧的传输可以采用同步传输或异步传输方式。

4. 帧接收:接收方按照发送方约定的格式和信息,将传输的帧进行解析,识别出每个帧的起始和结束,并提取出包含的数据。

5. 帧还原:接收方将提取出的帧中的数据进行重组,还原为原始的数据流,并进行后续的处理和应用。

帧中继的工作原理可以有效地提高传输的可靠性和效率。

由于帧中继将数据分成一小部分进行传输,当某一个帧出现错误时,只需要重新传输这个帧,而不需要重新传输整个数据流,从而
减少了传输的开销。

另外,帧中继还可以进行流量控制和差错校验,确保传输过程中的稳定性和正确性。

总之,帧中继通过将数据分成帧的方式实现了数据的可靠传输和有效利用传输媒介的目的。

它在数据通信领域得到了广泛应用,并成为了传输速率较低的局域网中常用的传输方式之一。

帧中继协议

帧中继协议

帧中继协议什么是帧中继协议?帧中继协议是一种网络通信协议,用于在数据链路层转发数据帧。

它允许多个网络设备通过共享同一物理链路进行通信,并支持广播和组播功能。

帧中继协议通过转发数据帧,将信息从一个物理接口传输到另一个物理接口,从而实现数据的传输。

帧中继协议的工作原理帧中继协议基于点对点的拓扑结构,其中每个网络设备都直接连接到中央交换机。

中央交换机充当帧中继网的核心设备,负责转发数据帧。

当一个设备发送数据帧时,中央交换机会将该帧转发到目标设备,同时还可以将数据帧广播到所有设备或者组播给特定设备组。

帧中继协议主要使用MAC地址来标识设备,并通过MAC地址表来确定数据帧的转发路径。

当一个设备发送数据帧时,中央交换机会查找MAC地址表,找到目标设备所在的物理接口,并将数据帧转发到该接口。

如果目标设备的MAC地址不在MAC地址表中,交换机会将数据帧广播到所有的物理接口上,以便找到目标设备。

帧中继协议的优点1.高效性:帧中继协议可以在物理链路上同时传输多个数据帧,提高了网络的传输效率。

2.可靠性:帧中继协议通过交换机转发数据帧,可以减少数据传输过程中的丢包和错误。

3.灵活性:帧中继协议支持广播和组播功能,可以方便地进行网络广播和多播通信。

4.可扩展性:帧中继协议可以通过增加交换机和物理链路来扩展网络规模,满足不同规模网络的需求。

帧中继协议的应用场景1.局域网接入:帧中继协议常用于将多个局域网连接到一个中央交换机上,实现不同网络之间的通信。

例如,一个公司的多个部门可以通过帧中继协议连接到同一个交换机上,方便员工之间的信息交流和资源共享。

2.广域网扩展:帧中继协议可以将多个广域网连接到一个中央交换机上,实现不同地理位置之间的通信。

例如,一个跨国公司可以通过帧中继协议将位于不同国家的办公室连接起来,方便跨国团队的协作和沟通。

3.数据中心互联:帧中继协议可以用于连接不同数据中心之间的网络,实现数据的备份和共享。

例如,一个云服务提供商可以通过帧中继协议将不同数据中心的服务器连接起来,提供高可用性和高性能的云服务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

帧中继一.实验目的
理解帧中继交换机的工作原理
理解PVC的概念
掌握用路由器充当交换机的配置
理解这种机上面路由协议的特殊性
知道水平分割
二.实验内容
拓扑图如上所示,配置如下:
R1:
Int l0
Ip add 1.1.1.1 255.255.255.255
Ip os n point-to-point
Int s0/0
No ip add
En fram
No shu
Int s0/0.1 point-to-point
Ip add 13.1.1.1 255.255.255.0
Fram int 103
Int s0/0.2 point-to-point
Ip add 14.1.1.1 255.255.255.0
Fram int 104
Router os 1
Ro 1.1.1.1
Net 1.1.1.0 0.0.0.255 a 0
Net 13.1.1.0 0.0.0.255 a 0
Net 14.1.1.0 0.0.0.255 a 0
FR:
Fram sw
Int s0/0
En fram
No ip add
No shu
Fram intv-type dce
Clo r 64000
Fram route 103 int s0/1 301 Fram route 104 int s0/2 401
Int s0/1
En fram
No shu
Fram intf-type dce
Clo r 64000
Fram route 301 int s0/0 103
Int s0/2
En fram
No shu
Fram intf-type dce
Clo r 64000
Fram ro 401 int s0/0 104
R3:
Int l0
Ip add 3.3.3.3 255.255.255.255 Ip os n point-to-point
Int s0/1
No ip add
En fram
No fram inve
No shu
Int s0/1.1 point-to-point
Ip add 13.1.1.3 255.255.255.0 Fram int 301
Router os 1
Ro 3.3.3.3
Net 3.3.3.0 0.0.0.255 a 0
Net 13.1.1.0 0.0.0.255 a 0
R4:
Int l0
Ip add 4.4.4.4 255.255.255.255
Ip os n point-to-point
Int s0/2
En fram
No fram inve
No shu
Int s0/2.1 point-to-point
Ip add 14.1.1.4 255.255.255.0
Fram int 401
Router os 1
Ro 4.4.4.4
Net 4.4.4.0 0.0.0.255 a 0
Net 14.1.1.0 0.0.0.255 a 0
三.实验感想
通过本次试验,我学会了帧中继的配置,同时学会了如何将帧中继应用到路由协议中,掌握了帧中继的工作原理。

相关文档
最新文档