优质解析:江苏省南京市2016届高三第三次模拟考试数学试题(解析版)
高三数学三模试卷 理(含解析)-人教版高三全册数学试题
2016年某某某某市平罗中学高考数学三模试卷(理科)一.选择题:(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)1.若集合P={x||x|<3,且x∈Z},Q={x|x(x﹣3)≤0,且x∈N},则P∩Q等于()A.{0,1,2} B.{1,2,3} C.{1,2} D.{0,1,2,3}2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣ C.D.﹣3.设命题p:若x,y∈R,x=y,则=1;命题q:若函数f(x)=e x,则对任意x1≠x2都有>0成立.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是()A.①③ B.①④ C.②③ D.②④4.已知向量满足•(+)=2,且||=1,||=2,则与的夹角为()A.B.C.D.5.若随机变量X~N(μ,σ2)(σ>0),则下列如下结论:P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974,某班有48名同学,一次数学考试的成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数均为()A.32 B.16 C.8 D.246.公元263年左右,我国数学家X徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”X徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用X徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,s in15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.487.设S n是数列{a n}(n∈N+)的前n项和,n≥2时点(a n﹣1,2a n)在直线y=2x+1上,且{a n}的首项a1是二次函数y=x2﹣2x+3的最小值,则S9的值为()A.6 B.7 C.36 D.328.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.4cm3B.6cm3C.D.9.双曲线E:﹣=1(a,b>0)的右焦点为F(c,0),若圆C:(x﹣c)2+y2=4a2与双曲线E的渐近线相切,则E的离心率为()A.B.C.D.10.数列{a n}满足a1=1,对任意的n∈N*都有a n+1=a1+a n+n,则=()A.B.C.D.11.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC 为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.12.定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式e x f(x)>4+2e x(其中e为自然对数的底数)的解集为()A.(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣∞,0)∪(0,+∞)D.(﹣∞,1)二、填空题:(本大题共4小题,每小题5分,共20分)13.若(2x﹣1)dx=6,则二项式(1﹣2x)3m的展开式各项系数和为.14.记集合,构成的平面区域分别为M,N,现随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为.15.已知点A(0,2),抛物线C1:y2=ax(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则a的值等于.16.给出下列命题:①命题“若方程ax2+x+1=0有两个实数根,则a≤”的逆命题是真命题;②“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③函数f(x)=2x﹣x2的零点个数为2;④幂函数y=x a(a∈R)的图象恒过定点(0,0)⑤“向量与的夹角是钝角”的充分必要条件是“•<0”;⑥方程sinx=x有三个实根.其中正确命题的序号为.三、解答题(本大题共计70分,解答应写出说明文字、证明过程或演算步骤).17.已知f(x)=2sin(Ⅰ)若,求f(x)的值域;(Ⅱ)在△ABC中,A为BC边所对的内角若f(A)=2,BC=1,求的最大值.18.自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:产假安排(单位:周)14 15 16 17 18有生育意愿家庭数 4 8 16 20 26(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案休假周数和不低于32周的概率;②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.19.如图,空间几何体ABCDE中,平面ABC⊥平面BCD,AE⊥平面ABC.(1)证明:AE∥平面BCD;(2)若△ABC是边长为2的正三角形,DE∥平面ABC,且AD与BD,CD所成角的余弦值均为,试问在CA上是否存在一点P,使得二面角P﹣BE﹣A的余弦值为.若存在,请确定点P的位置;若不存在,请说明理由.20.已知椭圆C: +=1(a>b>0)过点A(﹣,),离心率为,点F1,F2分别为其左右焦点.(1)求椭圆C的标准方程;(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.21.设函数,(a>0)(Ⅰ)当时,求函数f(x)的单调区间;(Ⅱ)若f(x)在内有极值点,当x1∈(0,1),x2∈(1,+∞),求证:.(e=2.71828…)【选考题】请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,答题时用2B铅笔在答题卡上把所选题目的题号涂黑.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-1:几何证明选讲] 22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BE•BD﹣AE•AC.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,设倾斜角为α的直线(t为参数)与曲线(θ为参数)相交于不同两点A,B.(1)若,求线段AB中点M的坐标;(2)若|PA|•|PB|=|OP|2,其中,求直线l的斜率.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a﹣b|≥|a|f(x),(a≠0,a、b∈R)恒成立,某某数x的X围.2016年某某某某市平罗中学高考数学三模试卷(理科)参考答案与试题解析一.选择题:(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)1.若集合P={x||x|<3,且x∈Z},Q={x|x(x﹣3)≤0,且x∈N},则P∩Q等于()A.{0,1,2} B.{1,2,3} C.{1,2} D.{0,1,2,3}【考点】交集及其运算.【分析】化简集合P、Q,求出P∩Q即可.【解答】解:P={x||x|<3,且x∈Z}={x|﹣3<x<3,x∈Z}={﹣2,﹣1,0,1,2},Q={x|x(x﹣3)≤0,且x∈N}={x|0≤x≤3,且x∈N}={0,1,2,3},∴P∩Q={0,1,2}.2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣ C.D.﹣【考点】复数的基本概念.【分析】复数z=sinθ﹣+(cosθ﹣)i是纯虚数,可得si nθ﹣=0,cosθ﹣≠0,可得cosθ,即可得出.【解答】解:∵复数z=sinθ﹣+(cosθ﹣)i是纯虚数,∴sinθ﹣=0,cosθ﹣≠0,∴cosθ=﹣.则tanθ==﹣.故选:B.3.设命题p:若x,y∈R,x=y,则=1;命题q:若函数f(x)=e x,则对任意x1≠x2都有>0成立.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是()A.①③ B.①④ C.②③ D.②④【考点】复合命题的真假.【分析】命题p:y=0时, =1不成立,即可判断出真假;命题q:由于函数f(x)在R 上单调递增,即可判断出真假.再利用复合命题真假的判定方法即可得出.【解答】解:命题p:若x,y∈R,x=y,则=1,y=0时不成立,因此是假命题;命题q:若函数f(x)=e x,由于函数f(x)在R上单调递增,则对任意x1≠x2都有>0成立,是真命题.因此在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是②④.故选:D.4.已知向量满足•(+)=2,且||=1,||=2,则与的夹角为()A.B.C.D.【考点】平面向量数量积的运算.【分析】根据条件求出向量•的值,结合向量数量积的应用进行求解即可.【解答】解:∵•(+)=2,∴•+2=2,即•=﹣2+2=2﹣1=1则cos<,>==,则<,>=,故选:D5.若随机变量X~N(μ,σ2)(σ>0),则下列如下结论:P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974,某班有48名同学,一次数学考试的成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数均为()A.32 B.16 C.8 D.24【考点】正态分布曲线的特点及曲线所表示的意义.【分析】正态总体的取值关于x=80对称,位于70分到90分之间的概率是0.6826,位于80分到90分之间的概率是位于70分到90分之间的概率的一半,得到要求的结果.【解答】解:∵数学成绩近似地服从正态分布N(80,102),P(|x﹣u|<σ)=0.6826,∴P(|x﹣80|<10)=0.6826,根据正态曲线的对称性知:位于80分到90分之间的概率是位于70分到90分之间的概率的一半∴理论上说在80分到90分的人数是(0.6826)×48≈16.故选:B.6.公元263年左右,我国数学家X徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”X徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用X徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.48【考点】程序框图.【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.7.设S n是数列{a n}(n∈N+)的前n项和,n≥2时点(a n﹣1,2a n)在直线y=2x+1上,且{a n}的首项a1是二次函数y=x2﹣2x+3的最小值,则S9的值为()A.6 B.7 C.36 D.32【考点】二次函数的性质.【分析】先根据数列的函数特征以及二次函数的最值,化简整理得到{a n}是以为2首项,以为公差的等差数列,再根据前n项公式求出即可.【解答】解∵点(a n﹣1,2a n)在直线y=2x+1上,∴2a n=2a n﹣1+1,∴a n﹣a n﹣1=,∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴a1=2,∴{a n}是以为2首项,以为公差的等差数列,∴a n=2+(n﹣1)=n+当n=1时,a1=n+=2成立,∴a n=n+∴S9=9a1+=9×2+=36故选:C8.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.4cm3B.6cm3C.D.【考点】由三视图求面积、体积.【分析】根据几何体的三视图,得出该几何体是三棱锥与三棱柱的组合体,由此求出它的体积即可【解答】解:根据几何体的三视图,得该几何体是上部为三棱锥,下部为三棱柱的组合体,三棱柱的每条棱长为2cm,三棱锥的高为2cm,∴该组合体的体积为V=×2×2×2+××2×2×2=cm2,选:C.9.双曲线E:﹣=1(a,b>0)的右焦点为F(c,0),若圆C:(x﹣c)2+y2=4a2与双曲线E的渐近线相切,则E的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】求得双曲线的渐近线方程,圆的圆心和半径,运用直线和圆相切的条件:d=r,计算即可得到b=2a,由a,b,c的关系和离心率公式,计算即可得到所求值.【解答】解:双曲线E:﹣=1(a,b>0)的渐近线方程为y=±x,圆C:(x﹣c)2+y2=4a2的圆心为(c,0),半径为2a,由直线和圆相切的条件可得,=b=2a,可得c==a,即有e==.故选:C.10.数列{a n}满足a1=1,对任意的n∈N*都有a n+1=a1+a n+n,则=()A.B.C.D.【考点】数列递推式.【分析】利用累加法求出数列的通项公式,得到.再由裂项相消法求得答案.【解答】解:∵a1=1,∴由a n+1=a1+a n+n,得a n+1﹣a n=n+1,则a2﹣a1=2,a3﹣a2=3,…a n﹣a n﹣1=n(n≥2).累加得:a n=a1+2+3+…+n=(n≥2).当n=1时,上式成立,∴.则.∴=2=.故选:B.11.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC 为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.【考点】棱柱、棱锥、棱台的体积.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1=,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V=××=,故选:A.12.定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式e x f(x)>4+2e x(其中e为自然对数的底数)的解集为()A.(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣∞,0)∪(0,+∞)D.(﹣∞,1)【考点】利用导数研究函数的单调性.【分析】构造函数g(x)=e x f(x)﹣2e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解.【解答】解:设g(x)=e x f(x)﹣2e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣2e x=e x[f(x)+f′(x)﹣2],∵f(x)+f′(x)>2,∴f(x)+f′(x)﹣2>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>2e x+4,∴g(x)>4,又∵g(1)=ef(1)﹣2e=4,∴g(x)>g(1),∴x>1,故选:A.二、填空题:(本大题共4小题,每小题5分,共20分)13.若(2x﹣1)dx=6,则二项式(1﹣2x)3m的展开式各项系数和为﹣1 .【考点】二项式系数的性质;定积分.【分析】由于(2x﹣1)dx==6,化简解得m.令x=1,即可得出二项式(1﹣2x)3m展开式各项系数和.【解答】解:∵(2x﹣1)dx==6,化为:m2﹣m﹣(1﹣1)=6,m>1,解得m=3.令x=1,则二项式(1﹣2x)3m即(1﹣2x)9展开式各项系数和=(1﹣2)9=﹣1.故答案为:﹣1.14.记集合,构成的平面区域分别为M,N,现随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为.【考点】几何概型.【分析】平面区域M、N,分别为圆与直角三角形,面积分别为π,,利用几何概型的概率公式解之即可.【解答】解:集合构成的平面区域M、N,分别为圆与直角三角形,面积分别为π,,随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为=.答案为:.15.已知点A(0,2),抛物线C1:y2=ax(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则a的值等于 4 .【考点】抛物线的简单性质.【分析】作出M在准线上的射影,根据|KM|:|MN|确定|KN|:|KM|的值,进而列方程求得a.【解答】解:依题意F点的坐标为(,0),设M在准线上的射影为K,由抛物线的定义知|MF|=|MK|,∴|KM|:|MN|=1:,则|KN|:|KM|=2:1,k FN==﹣,k FN=﹣=﹣2∴=2,求得a=4,故答案为:4.16.给出下列命题:①命题“若方程ax2+x+1=0有两个实数根,则a≤”的逆命题是真命题;②“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③函数f(x)=2x﹣x2的零点个数为2;④幂函数y=x a(a∈R)的图象恒过定点(0,0)⑤“向量与的夹角是钝角”的充分必要条件是“•<0”;⑥方程sinx=x有三个实根.其中正确命题的序号为②.【考点】命题的真假判断与应用.【分析】①根据逆命题的定义结合方程根的关系进行判断.②根据三角函数的周期公式以及充分条件和必要条件的定义进行判断.③根据函数与方程的关系进行判断.④根据幂函数的定义和性质进行判断.⑤根据向量夹角和数量积的关系进行判断.⑥构造函数,判断函数的单调性即可.【解答】解:①命题“若方程ax2+x+1=0有两个实数根,则a≤”的逆命题是若a≤,则方程ax2+x+1=0有两个实数根,当a=0时,方程等价为x+1=0,则x=﹣1,此时方程只有一个根,故①错误;②f(x)=cos2ax﹣sin2ax=cos2ax,若“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”,则,则|a|=1,则a=±1,则充分性不成立,反之成立,即“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件正确,故②正确,③由f(x)=2x﹣x2=0得2x=x2,作出两个函数y=2x和y=x2的图象如图,由图象知两个函数交点个数为3个,故③错误;④幂函数y=x a(a∈R)的图象恒过定点(0,0),错误,当a<0时,函数的图象不过点(0,0),故④错误,⑤“向量与的夹角是钝角”的充分必要条件是“•<0”且≠λ,λ<0;故⑤错误,⑥设f(x)=sinx﹣x,则函数的导数f′(x)=cosx﹣1≤0,则函数f(x)是奇函数,∵f(0)=sin0﹣0=0,∴f(x)=0的根只有一个0,解集方程sinx=x有一个实根.故⑥错误,故正确的是②,故答案为:②三、解答题(本大题共计70分,解答应写出说明文字、证明过程或演算步骤).17.已知f(x)=2sin(Ⅰ)若,求f(x)的值域;(Ⅱ)在△ABC中,A为BC边所对的内角若f(A)=2,BC=1,求的最大值.【考点】平面向量数量积的运算;三角函数中的恒等变换应用.(Ⅰ)根据二倍角的正余弦公式,和两角和的正弦公式即可化简f(x)=,【分析】而由x的X围可以求出x+的X围,从而可得出f(x)的值域;(Ⅱ)由f(A)=2即可求得A=,从而由余弦定理和不等式a2+b2≥2ab可求得|AB||AC|≤1,根据向量数量积的计算公式便可得出的最大值.【解答】解:(Ⅰ);∵;∴;∴;∴f(x)的值域为[1,2];(Ⅱ)∵f(A)=2,∴;在△ABC中,∵0<A<π,∴;∴;∴|AB||AC|=|AB|2+|AC|2﹣1≥2|AB||AC|﹣1;∴|AB||AC|≤1;∴;∴的最大值为.18.自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:产假安排(单位:周)14 15 16 17 18有生育意愿家庭数 4 8 16 20 26(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案休假周数和不低于32周的概率;②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(1)由表某某息可知,利用等可能事件概率计算公式能求出当产假为14周时某家庭有生育意愿的概率和当产假为16周时某家庭有生育意愿的概率.(2)①设“两种安排方案休假周数和不低于32周”为事件A,由已知从5种不同安排方案中,随机地抽取2种方案选法共有10种,由此利用列举法能求出其和不低于32周的概率.②由题知随机变量ξ的可能取值为29,30,31,32,33,34,35.分别求出相应的概率,由此能求出ξ的分布列和E(ξ).【解答】解:(1)由表某某息可知,当产假为14周时某家庭有生育意愿的概率为;当产假为16周时某家庭有生育意愿的概率为…(2)①设“两种安排方案休假周数和不低于32周”为事件A,由已知从5种不同安排方案中,随机地抽取2种方案选法共有(种),其和不低于32周的选法有14、18、15、17、15、18、16、17、16、18、17、18,共6种,由古典概型概率计算公式得…②由题知随机变量ξ的可能取值为29,30,31,32,33,34,35.,,,因而ξ的分布列为ξ29 30 31 32 33 34 35P 0.1 0.1 0.2 0.2 0.2 0.1 0.1所以E(ξ)=29×0.1+30×0.1+31×0.2+32×0.2+33×0.2+34×0.1+35×0.1=32,…19.如图,空间几何体ABCDE中,平面ABC⊥平面BCD,AE⊥平面ABC.(1)证明:AE∥平面BCD;(2)若△ABC是边长为2的正三角形,DE∥平面ABC,且AD与BD,CD所成角的余弦值均为,试问在CA上是否存在一点P,使得二面角P﹣BE﹣A的余弦值为.若存在,请确定点P的位置;若不存在,请说明理由.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)过点D作直线DO⊥BC交BC于点O,连接DO.运用面面垂直的性质定理,可得DO⊥平面ABC,又直线AE⊥平面ABC,可得AE∥DO,运用线面平行的判定定理,即可得证;(2)连接AO,运用线面平行和线面垂直的性质,求得OA,OB,OD两两垂直,以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴,建立空间直角坐标系.求得O,A,B,E的坐标,假设存在点P,连接EP,BP,设=λ,求得P的坐标,求得平面PBE,ABE 的法向量,运用向量的夹角公式,计算可得P的位置.【解答】解:(1)证明:如图,过点D作直线DO⊥BC交BC于点O,连接DO.因为平面ABC⊥平面BCD,DO⊂平面BCD,DO⊥BC,且平面ABC∩平面BCD=BC,所以DO⊥平面ABC,因为直线AE⊥平面ABC,所以AE∥DO,因为DO⊂平面BCD,AE⊄平面BCD,所以直线AE∥平面BCD;(2)连接AO,因为DE∥平面ABC,所以AODE是矩形,所以DE⊥平面BCD.因为直线AD与直线BD,CD所成角的余弦值均为,所以BD=CD,所以O为BC的中点,所以AO⊥BC,且.设DO=a,因为BC=2,所以,所以.在△ACD中,AC=2.所以AC2=AD2+CD2﹣2AD•CD•cos∠ADC,即,即.解得a2=1,a=1;以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系.则.假设存在点P,连接EP,BP,设=λ,即有=+λ(﹣),则.设平面ABE的法向量为={x,y,z},由=(0,0,1),=(,﹣1,0),则,即,取x=1,则平面ABE的一个法向量为.设平面PBE的法向量为={x,y,z},则,取x=1+λ,则平面PBE的一个法向量为=(1+λ,﹣λ,﹣2λ),设二面角P﹣BE﹣A的平面角的大小为θ,由图知θ为锐角,则cosθ===,化简得6λ2+λ﹣1=0,解得λ=或(舍去),所以在CA上存在一点P,使得二面角P﹣BE﹣A的余弦值为.其为线段AC的三等分点(靠近点A).20.已知椭圆C: +=1(a>b>0)过点A(﹣,),离心率为,点F1,F2分别为其左右焦点.(1)求椭圆C的标准方程;(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.【考点】直线与圆锥曲线的综合问题.【分析】(1)由椭圆的离心率公式和点满足椭圆方程及a,b,c的关系,解方程,即可得到椭圆方程;(2)讨论直线MN的斜率不存在,求得弦长,求得四边形的面积;当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)联立抛物线方程和椭圆方程,运用韦达定理和弦长公式,以及四边形的面积公式,计算即可得到最小值.【解答】解:(1)由题意得:,a2﹣b2=c2,得b=c,因为椭圆过点A(﹣,),则+=1,解得c=1,所以a2=2,所以椭圆C方程为.(2)当直线MN斜率不存在时,直线PQ的斜率为0,易得,.当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)与y2=4x联立得k2x2﹣(2k2+4)x+k2=0,令M(x1,y1),N(x2,y2),则,x1x2=1,|MN|=•.即有,∵PQ⊥MN,∴直线PQ的方程为:y=﹣(x﹣1),将直线与椭圆联立得,(k2+2)x2﹣4x+2﹣2k2=0,令P(x3,y3),Q(x4,y4),x3+x4=,x3x4=,由弦长公式|PQ|=•,代入计算可得,∴四边形PMQN的面积S=|MN|•|PQ|=,令1+k2=t,(t>1),上式=,所以.最小值为.21.设函数,(a>0)(Ⅰ)当时,求函数f(x)的单调区间;(Ⅱ)若f(x)在内有极值点,当x1∈(0,1),x2∈(1,+∞),求证:.(e=2.71828…)【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(Ⅰ)求出f(x)的导数,解关于导函数的不等式,从而求出函数的单调区间即可;(Ⅱ)求出f(x)的导数,令g(x)=x2﹣(a+2)x+1,根据函数的单调性得到:;,作差得到新函数F(n)=2lnn+n ﹣,(n>e),根据函数的单调性求出其最小值即可证明结论成立.【解答】解:(Ⅰ)函数f(x)的定义域为(0,1)∪(1,+∞),当时,,…令f′(x)>0,得:或,所以函数单调增区间为:,,令f′(x)<0,得:,所以函数单调减区间为:,…(Ⅱ)证明:,令:g(x)=x2﹣(a+2)x+1=(x﹣m)(x﹣n)=0,所以:m+n=a+2,mn=1,若f(x)在内有极值点,不妨设0<m<,则:n=>e,且a=m+n﹣2>e+﹣2,由f′(x)>0得:0<x<m或x>n,由f′(x)<0得:m<x<1或1<x<n,所以f(x)在(0,m)递增,(m,1)递减;(1,n)递减,(n,+∞)递增当x1∈(0,1)时,;当x2∈(1,+∞)时,,所以:=,n>e,设:,n>e,则,所以:F(n)是增函数,所以,又:,所以:.【选考题】请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,答题时用2B铅笔在答题卡上把所选题目的题号涂黑.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-1:几何证明选讲] 22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BE•BD﹣AE•AC.【考点】与圆有关的比例线段.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F 四点共圆即可证得结论;(2)由(1)知,BD•BE=BA•BF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BE•BD﹣AE•AC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,又EF⊥AB,∠AFE=90°,则A,D,E,F四点共圆∴∠DEA=∠DFA(2)由(1)知,BD•BE=BA•BF,又△ABC∽△AEF∴,即AB•AF=AE•AC∴BE•BD﹣AE•AC=BA•BF﹣AB•AF=AB•(BF﹣AF)=AB2[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,设倾斜角为α的直线(t为参数)与曲线(θ为参数)相交于不同两点A,B.(1)若,求线段AB中点M的坐标;(2)若|PA|•|PB|=|OP|2,其中,求直线l的斜率.【考点】参数方程化成普通方程;直线的斜率;直线与圆的位置关系.【分析】(1)把直线和圆的参数方程化为普通方程,联立后根据根与系数的关系求出两交点中点的横坐标,待入直线方程再求中点的纵坐标;(2)把直线方程和圆的方程联立,化为关于t的一元二次方程,运用直线参数方程中参数t的几何意义,结合给出的等式求解直线的倾斜角的正切值,则斜率可求,【解答】解:(1)当时,由,得,所以直线方程为,由,得曲线C的普通方程为,设A(x1,y1),B(x2,y2)再由,得:13x2﹣24x+8=0,所以,,所以M的坐标为(2)把直线的参数方程代入,得:,所以,由|PA|•|PB|=|t1t2|=|OP|2=7,得:,所以,,所以,所以.所以直线L的斜率为±.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a﹣b|≥|a|f(x),(a≠0,a、b∈R)恒成立,某某数x的X围.【考点】分段函数的解析式求法及其图象的作法.【分析】本题考查的是分段函数的解析式求法以及函数图象的作法问题.在解答时对(1)要先将原函数根据自变量的取值X围转化为分段函数,然后逐段画出图象;对(2)先结和条件a≠0将问题转化,见参数统统移到一边,结合绝对值不等式的性质找出f(x)的X围,通过图形即可解得结果.【解答】解:(1)(2)由|a+b|+|a﹣b|≥|a|f(x)得又因为则有2≥f(x)解不等式2≥|x﹣1|+|x﹣2|得。
2016届江苏省扬州中学高三3月质量检测数学试题(解析版)综述
2016届江苏省扬州中学高三3月质量检测数学试题一、填空题1.已知集合{}|11M x x =-<<,|01x N x x ⎧⎫=≤⎨⎬-⎩⎭,则=⋂N M __________. 【答案】}10|{<≤x x【解析】试题分析:|01x N x x ⎧⎫=≤⎨⎬-⎩⎭=[0,1),=⋂N M [0,1) 【考点】集合运算【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2.复数i(1i)z =+(i 是虚数单位)在复平面内所对应点的在第__________象限. 【答案】二【解析】试题分析:i(1i)z =+1i =-+在复平面内所对应点的在第二象限. 【考点】向量几何意义3.执行如图所示的程序框图,则输出的i 值为__________.【答案】4【解析】试题分析:第一次循环:2,2m i ==;第二次循环:1,3m i ==,第三次循环:0,4m i ==,结束循环,输出 4.i =【考点】循环结构流程图4.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h ~120km/h ,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有________辆.【答案】1700【解析】试题分析:2000(0.0350.030.02)101700⨯++⨯= 【考点】 频率分布直方图 5.已知等差数列{}n a 的公差0≠d ,且39108a a a a +=-.若n a =0 ,则n = .[【答案】5 【解析】试题分析:39108a a a a +=-3910821010828550200a a a a a a a a a a a a ⇒+=-⇒+=-⇒+=⇒=⇒=,因此n =5【考点】等差数列性质【思路点睛】等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.6.“1a >”是“函数()cos f x a x x =⋅+在R 上单调递增”的_______________条件.(空格处请填写“充分不必要条件” 、“必要不充分条件”、“充要条件”或“既不充分也不必要条件”) 【答案】充分不必要条件 【解析】试题分析:()cos f x a x x =⋅+在R 上单调递增()sin 0f x a x '⇒=-≥在R 上恒成立max (sin )11a x a ⇒≥=⇒≥,所以“1a >”是“函数()cos f x a x x =⋅+在R 上单调递增”的充分不必要条件条件. 【考点】导数应用【思路点睛】导数与函数的单调性(1)函数单调性的判定方法:设函数y =f (x )在某个区间内可导,如果f′(x )>0,则y =f (x )在该区间为增函数;如果f′(x )<0,则y =f (x )在该区间为减函数. (2)函数单调性问题包括:①求函数的单调区间,常常通过求导,转化为解方程或不km/h )频率0.0050.0200.030等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法. 7.在区间[1,1]-上随机取一个数x ,cos2x π的值介于1[0,]2的概率为 . 【答案】13【解析】试题分析:由题意得1220cos,[1,1]112232222333xx x x x x πππππππ≤≤∈-⇒≤≤≤≤-⇒≤≤≤≤-或-或-,因此所求概率为22(1)13.1(1)3-=--【考点】几何概型概率8.已知正六棱锥底面边长为2,侧棱长为4,则此六棱锥体积为_______. 【答案】12【解析】试题分析:由题意得六棱锥的高为=,体积为216212.3⨯= 【考点】六棱锥体积9.函数xx a y 421⋅++=在]1,(-∞∈x 上0>y 恒成立,则a 的取值范围是 .【答案】(34-,+∞)【解析】试题分析:由题意得max 11[()],(1)42x x a x >-+≤,令12x t =,则1[,)2t ∈+∞,因此2113()()424x x t t -+=-+≤-,从而34a >-【考点】不等式恒成立10.已知F 是椭圆1C :1422=+y x 与双曲线2C 的一个公共焦点,A ,B 分别是1C ,2C 在第二、四象限的公共点.若0=⋅BF AF ,则2C 的离心率是 .【答案】26【解析】试题分析:设双曲线的实轴长为2a ,F '为椭圆1C :1422=+y x 与双曲线2C 的另一个公共焦点,则由对称性知0AF AF '⋅=,因此由22222()()2()8AF AF AF AF AF AF c '''-++=+=得22244832a a e +=⨯⇒=⇒==【考点】椭圆与双曲线定义 【思路点睛】(1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF 1|+|PF 2|>|F 1F 2|,双曲线的定义中要求||PF 1|-|PF 2||<|F 1F 2|,抛物线上的点到焦点的距离与准线的距离相等的转化.(2)注意数形结合,画出合理草图. 11.平行四边形ABCD中,60,1,BAD AB AD P ∠===为平行四边形内一点,且2AP =,若),(R ∈+=μλμλ,则λ的最大值为 . 【答案】36【解析】试题分析:设(0,)3PAB πθθ∠=∈,,则由正弦定理得:2sin120sin(60)λθ==-,因此)3πλθ=+≤,当且仅当=6πθ时取等号【考点】向量与三角综合【思路点睛】三角函数和平面向量是高中数学的两个重要分支,内容繁杂,且平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,都会出现交汇问题中的难点,对于此类问题的解决方法就是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解. 12.已知ABC ∆,若存在111A B C ∆,满足111cos cos cos 1sin sin sin A B CA B C ===,则称111A B C ∆是ABC ∆的一个“友好”三角形.若等腰ABC ∆存在“友好”三角形,则其底角的弧度数为 .【答案】83π【解析】试题分析:不妨设A 为顶角,则由题意得2A π≠,且,,222A AB BC Cπππ'''=±=±=±,因此有3++=22A B C A B C A B C ππ'''=±±±⇒±±±,逐一验证得:3,=48A B C ππ==满足【考点】诱导公式13.已知函数()f x 是定义在R 上的奇函数,且当0x >时,()f x x a a =--(a ∈R ).若)()2016(,x f x f R x >+∈∀,则实数a 的取值范围是 . 【答案】504a <【解析】试题分析:当0a =时,(),f x x x R =∈,满足条件;当0a <时,2,0()0,02,0x a x f x x x a x ->⎧⎪==⎨⎪+<⎩,为R 上的单调递增函数,也满足条件;当0a >时,2,(),2,x a x a f x x a x ax a x a ->⎧⎪=--≤≤⎨⎪+<-⎩,要满足条件,需42016a < ,即0504a <<,综上实数a 的取值范围是504a <【考点】分段函数图像与性质14.若函数n mx x x f ++=2)(),(R n m ∈在[1,1]-上存在零点,且120≤-≤m n ,则n 的取值范围是 .【答案】3,9⎡--⎣【解析】试题分析:由题意得:(1)(1)0f f -≤或240112(1)0,(1)0m n m f f ⎧∆=-≥⎪⎪-≤-≤⎨⎪-≥≥⎪⎩,作出可行域OCAB :其中由2,(102n m n A n mm -==⎧⎧⇒--⎨⎨-+==-⎩⎩,2219(94,04n m n B m n m m ⎧-==-⎧⎪⇒--⎨⎨=<=-⎩⎪⎩得知n的取值范围是3,9⎡--⎣【考点】二次方程实根分布 【思路点睛】(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.二、解答题15.如图,已知直三棱柱111C B A ABC -中, BC AC =,N M ,分别是棱1CC ,AB 中点.(1)求证:CN ⊥平面11A ABB ; (2)求证:CN ∥平面1AMB ;【答案】(1)详见解析(2)详见解析 【解析】试题分析:(1)证明线面垂直,一般利用线面垂直判定与性质定理,经多次转化进行论证:先由直棱柱性质将侧棱垂直底面转化为线线垂直1AA CN ⊥,再根据平几中等腰三角形性质得CN AB ⊥,最后由线面垂直判定定理得证(2)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予论证,而线线平行的寻找,往往利用平几知识,本题构造平行四边形,利用平行四边形性质得到线线平行:CN ∥MG .试题解析:解:(Ⅰ)证明:因为三棱柱111ABC A B C -中,1AA ⊥底面ABC ,又因为CN ⊂平面ABC ,所以1AA CN ⊥. 因为AC BC =,N 是AB 中点, 所以CN AB ⊥. 因为1AA AB A ⋂=,所以CN ⊥平面11ABB A .(Ⅱ)证明:取1AB 的中点G ,连结MG ,NG ,因为N ,G 分别是棱AB ,1AB 中点,所以NG ∥1BB ,112NG BB =.又因为CM ∥1BB ,112CM BB =,所以CM ∥NG ,CM =NG .所以四边形CNGM 是平行四边形. 所以CN ∥MG .因为CN ⊄平面1AMB ,MG ⊂平面1AMB ,所以CN ∥平面1AMB .【考点】线面垂直判定与性质定理,线面平行判定定理【方法点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直. 16.设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =,且B 为钝角. (1)证明:2B A π-=;(2)求sin sin A C +的取值范围.【答案】(1)详见解析(2)9]8【解析】试题分析:(1)先由正弦定理,将已知条件统一成角的关系:即sin sin tan A B A =,再根据同角三角函数关系,化切为弦得sin cos B A =,最后根据诱导公式得2B Aπ=+(2)求取值范围问题,一般先利用条件,将其转化为一元函数:sin sin sin sin(2)2A C A A π+=+-,再利用二倍角公式,将其转化为二次函数:22sin sin 1A A ++,最后根据角的范围04A π<<,确定二次函数定义区间0sin 2A <<,结合对称轴得到函数值域9(]28试题解析:解析:(1)由t a n a b A =及正弦定理,得sin sin cos sin A a AA bB ==,∴sin cos B A =, 即sin sin()2B A π=+,又B 为钝角,因此(,)22A πππ+∈,(不写范围的扣1分) 故2B Aπ=+,即2B A π-=;(2)由(1)知,()C A B π=-+(2)2022A A πππ-+=->,∴(0,)4A π∈, 于是sin sin sin sin(2)2A C A A π+=+-2219sin cos 22sin sin 12(sin )48A A A A A =+=-++=--+, ∵04A π<<,∴0sin A <<,因此21992(sin )488A <--+≤,由此可知sin sin A C +的取值范围是9]8.【考点】正弦定理,诱导公式与二倍角公式,二次函数值域【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.17.某环线地铁按内、外环线同时运行,内、外环线的长均为30 km (忽略内、外环线长度差异).(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10 min ,求内环线列车的最小平均速度; (2)新调整的方案要求内环线列车平均速度为25 km/h ,外环线列车平均速度为30 km/h.现内、外环线共有18列列车全部投入运行,问:要使内、外环线乘客的最长候车时间之差最短,则内、外环线应各投入几列列车运行? 【答案】(1)20 km/h.(2)内环线投入10列,外环线投入8列 【解析】试题分析:(1)本题实质为路程问题:9列列车总行驶30 km ,时间不超过10min ,即设内环线列车运行的平均速度为v km/h ,则3060109V ⨯≤,v≥20.注意单位统一(2)由(1)分析,可分别求出内、外环线乘客的最长候车时间:设内环线投入x 列列车运行,则外环线投入(18-x )列列车运行,内、外环线乘客最长候车时间分别72x ,6018x-.根据绝对值的定义研究差的单调性**7260,9,726018||726018,1017,18x x N x xx x x x N x x ⎧-≤∈⎪⎪--=⎨-⎪-+≤≤∈⎪-⎩,得x =10,所以当内环线投入10列,外环线投入8列列车运行时,内、外环线乘客最长候车时间之差最短.试题解析:解:(1) 设内环线列车运行的平均速度为v km/h ,由题意可知3060109V ⨯≤,v ≥20.所以,要使内环线乘客最长候车时间为10 min ,列车的最小平均速度是20 km/h.(2) 设内环线投入x 列列车运行,则外环线投入(18-x )列列车运行,内、外环线乘客最长候车时间分别为t1、t2 min ,则t1=30726025x x ⨯=,t2=30606030(18)18x x⨯=--.于是有t=|t1-t2|=**7260,9,726018||726018,1017,18x x N x xx x x x N x x ⎧-≤∈⎪⎪--=⎨-⎪-+≤≤∈⎪-⎩在(0,9)递减,在(10,17)递增.又(9)(10)t t >,所以x =10,所以当内环线投入10列,外环线投入8列列车运行时,内、外环线乘客最长候车时间之差最短. 【考点】函数实际应用,分段函数最值18.如图,曲线Γ由两个椭圆1T :()222210x y a b a b +=>>和椭圆2T :()222210y x b c b c +=>>组成,当,,a b c 成等比数列时,称曲线Γ为“猫眼曲线”.若猫眼曲线Γ过点(0,M ,且,,a b c 的公比为22.x(1)求猫眼曲线Γ的方程; (2)任作斜率为()0k k ≠且不过原点的直线与该曲线相交,交椭圆1T 所得弦的中点为M ,交椭圆2T 所得弦的中点为N ,求证:ON OMK k 为与k 无关的定值;(3l 为椭圆2T 的切线,且交椭圆1T 于点,A B ,N 为椭圆1T 上的任意一点(点N 与点,A B 不重合),求ABN ∆面积的最大值.【答案】(1)222212:1,:1,422x y y T T x +=+=(2)详见解析(3)【解析】试题分析:(1)求椭圆标准方程,一般方法为待定系数法,由题意得b =再由,,a b c 成等比数列,且公比为22得2,1a c ==(2)弦中点问题,一般利用点差法得中点坐标与弦斜率关系:21k k OM-=⋅,2k k ON -=⋅,两式相除得ON OMK k 值为1.4(3)由椭圆几何意义得,过N1T 也相切,而直线与椭圆相切问题,一般利用判别式为零列等量关系,根据弦长公式可得底边长,根据平行直线间距离公式可得高试题解析:解. (1)b =2,1a c ∴==,221:142x y T ∴+=,222:12y T x ∴+=(2)设斜率为k 的直线交椭圆1T 于点()()1122,,,C x y D x y ,线段CD 中点()00,M x y121200,22x x y y x y ++∴==由22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,得()()()()12121212042x x x x y y y y -+-++=k 存在且0k ≠,12x x ∴≠,且0x 0≠ ∴01212012y y y x x x -⋅=-- ,即21k k OM -=⋅ 同理,2k k ON -=⋅41k k ON OM =∴得证(3)设直线l的方程为y m =+22221⎧=+⎪⎨+=⎪⎩y m y x b c ,()2222222220∴+++-=b c x x m c b c0∆=,2222∴=+m b c1: =+l y22221⎧=+⎪⎨+=⎪⎩y m x y a b , ()2222222220∴+++-=b a x x m a b a0∆=,2222∴=+m b a2: =l y两平行线间距离:d =∴=AB==AB ,d ==∆ABN的面积最大值为12S ==【考点】椭圆标准方程,点差法,直线与椭圆位置关系【思路点睛】定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现.19.已知两个无穷数列{}{},n n a b 分别满足1112n n a a a +=⎧⎨-=⎩,1112n nb b b +=-⎧⎪⎨=⎪⎩,其中*n N ∈,设数列{}{},n n a b 的前n 项和分别为,n n S T ,(1)若数列{}{},n n a b 都为递增数列,求数列{}{},n n a b 的通项公式;(2)若数列{}n c 满足:存在唯一的正整数k (2k ≥),使得1k k c c -<,称数列{}n c 为“k 坠点数列”①若数列{}n a 为“5坠点数列”,求n S ;②若数列{}n a 为“p 坠点数列”,数列{}n b 为“q 坠点数列”,是否存在正整数m ,使得1m m S T +=,若存在,求m 的最大值;若不存在,说明理由.【答案】(1)21na n =-,11,12,2n n n b n --=⎧=⎨≥⎩(2)①22,4415,5n n n S n n n ⎧≤⎪=⎨-+≥⎪⎩②6 【解析】试题分析:(1)由题意得数列{}n a 为等差数列,公差为2,首项为1,通项公式为21n a n =-,(2)①由题意得2123234345456563,5,7,5,7,a a a a a a a a a a a a a a a ≥⇒=≥⇒=≥⇒=<⇒=≥⇒=当6n ≥时,12n n a a +-=,可分项讨论得22,4415,5n n n S n n n ⎧≤⎪=⎨-+≥⎪⎩②三个未知正整数p 、q 、m 是本题难点,先分析数列{}n a 成为p 坠点数列的条件: 12,2p p a a p --=-≥,当n p ≠时,12n n a a +-=,数列{}n b 为“q 坠点数列” 的条件:除首项外有且只有一个负项. 这样,n n S T 的范围可用等差与等比数列前n 项和限制:当q m >时,121122223m m m m T --=-++⋅⋅⋅++=-,()211321(1)m S m m +≤++⋅⋅⋅++=+,当6m ≥时,223(1)m m ->+,故不存在m ,使得1m m S T +=成立;当q m =时, 121122230m m m T --=-++⋅⋅⋅+-=-<不存在m,使得1m mS T +=成立;当q m<时,()()1321112+22223m m m m m T ----≥-++⋅⋅⋅++-+=-,当1223(1)m m --≤+时,才存在m ,使得1m m S T +=成立,所以6m ≤,最后验证当6m =时,满足条件.试题解析:解(1)数列{}{},n n a b 都为递增数列,∴12n n a a +-=,21212,2,n n b b b b n N *++=-=∈,∴21n a n =-,11,12,2n n n b n --=⎧=⎨≥⎩;(2)①∵数列{}n a 满足:存在唯一的正整数=5k ,使得1k k a a -<,且12n na a +-=,∴数列{}n a 必为1,3,5,7,5,7,9,11,⋅⋅⋅,即前4项为首项为1,公差为2的等差数列,从第5项开始为首项5,公差为2的等差数列,故22,4415,5n n n S n n n ⎧≤⎪=⎨-+≥⎪⎩; ② ∵2214n n b b +=,即12n n b b +=±,1||2n n b -∴=而数列{}n b 为“q 坠点数列”且11b =-,∴数列{}n b 中有且只有两个负项.假设存在正整数m ,使得+1m m S T =,显然1m ≠,且m T 为奇数,而{}n a 中各项均为奇数,∴m 必为偶数.()211321(1)m S m m +≤++⋅⋅⋅++=+i.当q m >时,121122223m m mm T --=-++⋅⋅⋅++=- 当6m ≥时,223(1)m m ->+,故不存在m ,使得1m m S T +=成立 ii.当q m =时,121122230m m m T --=-++⋅⋅⋅+-=-< 显然不存在m ,使得1m m S T +=成立iii .当q m <时,()()1321112+22223m m m m m T ----≥-++⋅⋅⋅++-+=-当1223(1)m m --≤+时,才存在m ,使得1m m S T +=成立 所以6m ≤当6m =时,6q <,构造:{}n a 为1,3,1,3,5,7,9,⋅⋅⋅,{}n b 为1,2,4,8,16,32,--⋅⋅⋅此时3p =,5q =,所以m 的最大值为6 【考点】等差数列与等比数列综合应用20.已知函数221()xax bx f x e++=(e 为自然对数的底数). (1) 若21=a ,求函数)(x f 的单调区间; (2) 若1)1(=f ,且方程1)(=x f 在)1,0(内有解,求实数a 的取值范围.【答案】(1)0=b 时,)(x f 的单调递减区间为),(+∞-∞;0>b 时,)(x f 的单调递增区间为)1,1(b -,递减区间为)1,(b --∞,),1(+∞;0<b 时,)(x f 的单调递增区间为)1,1(b -,递减区间为)1,(-∞,),1(+∞-b . (2))21,22(-e 【解析】试题分析:(1)求函数单调区间,一般利用导数,先求导函数:x e b x b x x f --+-+-=']1)2([)(2,再求导函数在定义区间内的零点情况:11=x ,b x -=12,最后根据两根大小分类讨论单调区间(2)先由1)1(=f 得a e b 21--=,再研究代入1)(=x f ,变量分离得2(1)12x e e x a x x ---=-,令函数2(1)1(),(0,1)x e e xg x xx x---=∈-,利用导数可知2(1)1(),(0,1)x e e x g x x x x ---=∈-为增函数,结合洛必达法则可得()(2,1)g x e ∈-,因此可得实数a 的取值范围.本题也可讨论求参数取值范围.试题解析:解.(1)当21=a ,x e bx x x f -++=)1()(2,x e b x b x x f --+-+-=']1)2([)(2,令0)(='x f ,得11=x ,b x -=12.当0=b 时,0)(≤'x f .当0>b ,11<<-x b 时,0)(>'x f ,b x -<1或1>x 时,0)(<'x f ; 当0<b ,b x -<<11时,0)(>'x f ,b x ->1或1<x 时,0)(<'x f .所以,0=b 时,)(x f 的单调递减区间为),(+∞-∞;0>b 时,)(x f 的单调递增区间为)1,1(b -,递减区间为)1,(b --∞,),1(+∞; 0<b 时,)(x f 的单调递增区间为)1,1(b -,递减区间为)1,(-∞,),1(+∞-b . .....4分(2)由1)1(=f 得e b a =++12,a e b 21--=,由1)(=x f 得122++=bx ax e x ,设12)(2---=bx ax e x g x , 则)(x g 在)1,0(内有零点.设0x 为)(x g 在)1,0(内的一个零点,则由0)1(,0)0(==g g 知)(x g 在区间),0(0x 和)1,(0x 上不可能单调递增,也不可能单调递减,设)()(x g x h '=,则)(x h 在区间),0(0x 和)1,(0x 上均存在零点,即)(x h 在)1,0(上至少有两个零点. b ax e x g x --='4)(,a e x h x4)(-='.当41≤a 时,0)(>'x h ,)(x h 在区间)1,0(上递增,)(x h 不可能有两个及以上零点;.6分当4ea ≥时,0)(<'x h ,)(x h 在区间)1,0(上递减,)(x h 不可能有两个及以上零点;.7分当441e a <<时,令0)(='x h 得)1,0()4ln(∈=a x ,所以)(x h 在区间))4ln(,0(a 上递减,在)1),4(ln(a 上递增,)(x h 在区间)1,0(上存在最小值))4(ln(a h . 若)(x h 有两个零点,则有:0))4(ln(<a h ,0)0(>h ,0)1(>h .)441(1)4ln(46)4ln(44))4(ln(ea e a a ab a a a a h <<-+-=--=设)1(,1ln 23)(e x e x x x x <<-+-=ϕ,则xx ln 21)(-='ϕ,令0)(='x ϕ,得e x =.当e x <<1时,0)(>'x ϕ,)(x ϕ递增,当e x e <<时,0)(<'x ϕ,)(x ϕ递减,01)()(max <-+==e e e x ϕϕ,所以0))4(ln(<a h 恒成立.由0221)0(>+-=-=e a b h ,04)1(>--=b a e h ,得2122<<-a e .当2122<<-a e 时,设)(x h 的两个零点为21,x x ,则)(x g 在),0(1x 递增,在),(21x x 递减,在)1,(2x 递增,所以0)0()(1=>g x g ,0)1()(2=<g x g ,则)(x g 在),(21x x 内有零点.综上,实数a 的取值范围是)21,22(-e . 【考点】利用导数求函数单调区间,利用导数研究参数取值范围【思路点睛】先把方程解的问题转化为函数的零点问题.,再利用导数解决与函数零点(或方程的根)有关的问题:通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 21.已知矩阵 10120206A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,,求矩阵1.A B - 【答案】11203A B ---⎡⎤=⎢⎥⎣⎦ 【解析】试题分析:由逆矩阵公式得110102A --⎡⎤⎢⎥=⎢⎥⎣⎦,再利用矩阵运算得11203A B ---⎡⎤=⎢⎥⎣⎦ 试题解析:解:110102A --⎡⎤⎢⎥=⎢⎥⎣⎦,11203A B ---⎡⎤=⎢⎥⎣⎦ 【考点】逆矩阵22.直角坐标系xoy 内,直线l 的参数方程22(14x tt y t =+⎧⎨=+⎩为参数),以OX 为极轴建立极坐标系,圆C的极坐标方程为)4πρθ=+,确定直线l 和圆C 的位置关系.【答案】直线l 与圆C 相交.【解析】试题分析:先利用代入消元得直线l 的普通方程为32-=x y ,再利用cos ,sin x y ρθρθ==将圆C 的极坐标方程化为直角坐标方程()()21122=-+-y x ,最后根据圆心到直线距离与半径大小关系确定位置关系试题解析:解:由⎩⎨⎧+=+=t y tx 4122,消去参数t ,得直线l 的普通方程为32-=x y ,由⎪⎭⎫⎝⎛+=4sin 22πθρ,即()()θρθρρθθρcos sin 2cos sin 22+=⇒+=,消去参数θ,得直角坐标方程为()()21122=-+-y x . 由(1)得圆心()1,1C ,半径2=r ,∴ C 到l 的距离r d =<=+--=25521231222,所以,直线l 与圆C 相交.【考点】参数方程化普通方程,极坐标方程化直角坐标方程,直线与圆位置关系23.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求在未来4年中,至多1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量发电机年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台? 【答案】(1)0.9477(2)2【解析】试题分析:(1)至多1年的年入流量超过120包含两种情况,一是4年年入流量不大于120,二是恰有一年年入流量超过120,利用互斥事件概率加法公式得351(120)5010P P X =>==,04134343433991(1)(1)()4()0.9477101010P C P C P P =-+-=+⨯⨯=(2)由于至多安装3台,因此分三类依次讨论,分别求出对应分布列、数学期望值,最后比较数学期望值大小,试题解析:解:(1)由题意得:1101(4080)505P P X =<<==,2335751(80120),(120)50105010P P X P P X =≤≤===>==由二项分布,在未来4年中,至多1年的年入流量超过120的概率为04134343433991(1)(1)()4()0.9477101010P C P C P P =-+-=+⨯⨯= (2) 设水电站年总利润为y (万元)①安装1台发电机,5000,5000.y Ey == y42000.2+100000.8=8840.Ey =⨯⨯y 150000.1=8620.+⨯综上,欲使水电站年总利润的均值达到最大,应安装发电机2台 【考点】数学期望值,概率【方法点睛】求解离散型随机变量的数学期望的一般步骤为: 第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义; 第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X ~B (n ,p )),则此随机变量的期望可直接利用这种典型分布的期望公式(E (X )=np )求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度. 24.设数列{}n a (n N ∈)为正实数数列,且满足20nin i n i ni C a aa -==∑. (1)若24a =,写出10,a a ;(2)判断{}n a 是否为等比数列?若是,请证明;若不是,请说明理由. 【答案】(1)2,110==a a (2)是等比数列【解析】试题分析:(1)先寻求10,a a 之间关系:当1n =时,0121011011102C a a C a a a a a +=⇒=,同理可得当2n =时,1222022*********C a a C a a C a a a a a ++=⇒=,再根据24a =,得到2,110==a a (2)利用数学归纳法,同(1)求出02nn a a =试题解析:解:(1)当1n =时,0121011011102C a a C a a a a a +=⇒= 当2n =时,01222022112202204C a a C a a C a a a a a ++=⇒= 因为24a =,所以2,110==a a(2)假设对于n i n N ≤∈,,均有02nn a a =,则当1n i =+时,2121110101022(22)2i i i i i i a a a a a a ++++++=+-⇒= 综上,02nn a a =,{}n a 为等比数列 【考点】数学归纳法。
2016年江苏省高考数学压轴试卷(解析版)
2016年江苏省高考数学压轴试卷(解析版)2016年江苏省高考数学压轴试卷一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在题中横线上)1.若集合A={x|y=,x∈R},B={x||x|≤1,x∈R},则A∩B=.2.若复数+m(i为虚数单位)为纯虚数,则实数m=.3.若原点(0,0)和点(1,1)在直线x+y﹣a=0的两侧,则a的取值范围是.4.某射击选手连续射击5枪命中的环数分别为:9.7,9.9,10.1,10.2,10.1,则这组数据的方差为.5.如图是一个算法流程图,则输出的x的值为.6.从2个红球,2个黄球,1个白球中随机取出两个球,则两球颜色不同的概率是.7.若sinα=且α是第二象限角,则tan(α﹣)=.8.如图,正四棱锥P﹣ABCD的底面一边AB长为,侧面积为,则它的体积为9.已知双曲线﹣=1 (a>0,b>0)的一条渐近线的方程为2x﹣y=0,则该双曲线的离心率为.10.不等式组所表示的区域的面积为.11.已知△ABC外接圆O的半径为2,且,||=||,则=.12.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B3C3上有10个不同的点P1,P2,…P10,记m i=•(i=1,2,3,…,10),则m1+m2+…+m10的值为.13.在等差数列{a n}中,首项a1=3,公差d=2,若某学生对其中连续10项迸行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为.14.设关于x的实系数不等式(ax+3)(x2﹣b)≤0对任意x ∈[0,+∞)恒成立,则a2b=.二、解答题15.如图,在△ABC中,点D在边AB上,CD⊥BC,AC=5,CD=5,BD=2AD.(Ⅰ)求AD的长;(Ⅱ)求△ABC的面积.16.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,E为侧棱PA的中点.(1)求证:PC∥平面BDE;(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.17.如图,A、B是海岸线OM、ON上的两个码头,海中小岛有码头Q到海岸线OM、ON的距离分别为2km、km.测得tan∠MON=﹣3,OA=6km.以点O为坐标原点,射线OM 为x轴的正半轴,建立如图所示的直角坐标系.一艘游轮以18km/小时的平均速度在水上旅游线AB航行(将航线AB看作直线,码头Q在第一象限,航线AB经过Q).(1)问游轮自码头A沿方向开往码头B共需多少分钟?(2)海中有一处景点P(设点P在xOy平面内,PQ⊥OM,且PQ=6km),游轮无法靠近.求游轮在水上旅游线AB航行时离景点P最近的点C的坐标.18.已知椭圆C:的右焦点为F(1,0),且点P (1,)在椭圆C上;(1)求椭圆C的标准方程;(2)过椭圆C1:=1上异于其顶点的任意一点Q作圆O:x2+y2=的两条切线,切点分别为M、N(M、N不在坐标轴上),若直线MN在x轴,y轴上的截距分别为m、n,证明:为定值;(3)若P1、P2是椭圆C2:上不同两点,P1P2⊥x轴,圆E过P1、P2,且椭圆C2上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆C2是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.19.已知函数f(x)=e x|x2﹣a|(a≥0).(1)当a=1时,求f(x)的单调减区间;(2)若存在m>0,方程f(x)=m恰好有一个正根和一个负根,求实数m的最大值.20.已知数列{a n}的通项公式为a n=(n﹣k1)(n﹣k2),其中k 1,k2∈Z:(1)试写出一组k1,k2∈Z的值,使得数列{a n}中的各项均为正数;(2)若k1=1、k2∈N*,数列{b n}满足b n=,且对任意m∈N*(m≠3),均有b3<b m,写出所有满足条件的k2的值;(3)若0<k1<k2,数列{c n}满足c n=a n+|a n|,其前n项和为S n,且使c i=c j≠0(i,j∈N*,i<j)的i和j有且仅有4组,S1、S2、…、S n中至少3个连续项的值相等,其他项的值均不相等,求k1,k2的最小值.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲]21.如图:在Rt∠ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接AE交⊙O于点F,求证:BE•CE=EF•EA.B.[选修4-2:矩阵与变换]22.已知矩阵A=,求矩阵A的特征值和特征向量.C.[选修4-4:坐标系与参数方程]23.在极坐标系中,曲线C的极坐标方程为ρ=2cosθ+2sinθ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C所截得的弦长.D.[选修4-5:不等式选讲]24.设x,y均为正数,且x>y,求证:2x+≥2y+3.四.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.25.甲、乙两人投篮命中的概率为别为与,各自相互独立,现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后,甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E(ξ).26.若存在n个不同的正整数a1,a2,…,a n,对任意1≤i<j ≤n,都有∈Z,则称这n个不同的正整数a1,a2,…,a n 为“n个好数”.(1)请分别对n=2,n=3构造一组“好数”;(2)证明:对任意正整数n(n≥2),均存在“n个好数”.2016年江苏省高考数学压轴试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在题中横线上)1.若集合A={x|y=,x∈R},B={x||x|≤1,x∈R},则A∩B={1} .【分析】求出A中x的范围确定出A,求出B中不等式的解集确定出B,找出两集合的交集即可.【解答】解:由A中y=,得到x﹣1≥0,解得:x≥1,即A={x|x≥1},由B中不等式变形得:﹣1≤x≤1,即B={x|﹣1≤x≤1},则A∩B={1},故答案为:{1}.2.若复数+m(i为虚数单位)为纯虚数,则实数m=﹣1.【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简,然后由实部等于0求得m的值.解:∵+m==m+1+2i,由复数+m为纯虚数,得m+1=0,解得m=﹣1.故.3.若原点(0,0)和点(1,1)在直线x+y﹣a=0的两侧,则a的取值范围是(0,2).【考点】二元一次不等式(组)与平面区域.【分析】因为原点O和点P(1,1)在直线x+y﹣a=0的两侧,所以(﹣a)•(1+1﹣a)<0,由此能求出a的取值范围.【解答】解:因为原点O和点P(1,1)在直线x+y﹣a=0的两侧,所以(﹣a)•(1+1﹣a)<0,解得0<a<2,4.某射击选手连续射击5枪命中的环数分别为:9.7,9.9,10.1,10.2,10.1,则这组数据的方差为0.032.【考点】极差、方差与标准差.【分析】先计算数据的平均数后,再根据方差的公式计算.【解答】解:数据9.7,9.9,10.1,10.2,10.1的平均数==10,方差=(0.09+0.01+0.01+0.04+0.01)=0.032.故答案为:0.032.5.如图是一个算法流程图,则输出的x的值为.【分析】模拟执行算法流程,依次写出每次循环得到的x,n 的值,当n=6时,满足条件n>5,退出循环,输出x的值为.【解答】解:模拟执行算法流程,可得n=1,x=1, x=,n=2, 不满足条件n>5,x=,n=3不满足条件n>5,x=,n=4, 不满足条件n>5,x=,n=5, 不满足条件n>5,x=,n=6满足条件n>5,退出循环,输出x的值为.故答案为:.6.从2个红球,2个黄球,1个白球中随机取出两个球,则两球颜色不同的概率是.【考点】古典概型及其概率计算公式.【分析】根据互斥时间的概率公式计算即可.解:从5个球中任意取两个共有C52=10种,两球颜色相同的有2种,两球颜色不同的概率是1﹣=,7.若sinα=且α是第二象限角,则tan(α﹣)=﹣7.【分析】由已知求得cosα,进一步得到tanα,再由两角差的正切求得tan(α﹣)的值.【解答】解:∵α是第二象限角,sinα=,∴,∴,则=,故答案为﹣7.8.如图,正四棱锥P﹣ABCD的底面一边AB长为,侧面积为,则它的体积为4【考点】棱柱、棱锥、棱台的体积.【分析】作出棱锥的高PO,则O为底面中心,作OE⊥AB于E,根据侧面积计算PE,利用勾股定理计算PO,带入体积公式计算体积.【解答】解:过P作底面ABCD的垂线PO,则O为底面正方形ABCD的中心,过O作OE⊥AB于E,连结PE.则OE==.∵PO⊥平面ABCD,AB⊂平面ABCD,∴PO⊥AB,又AB⊥OB,PO⊂平面POE,OE⊂平面POE,PO∩OE=O,∴AB⊥平面POE,∵PE⊂平面POE,∴AB⊥PE.∴正四棱锥的侧面积S 侧=4S△PAB=4×=8,解得PE=2.∴PO==1.∴正四棱锥的体积V=S 正方形ABCD•PO=(2)2×1=4.故答案为:4.9.已知双曲线﹣=1 (a>0,b>0)的一条渐近线的方程为2x﹣y=0,则该双曲线的离心率为.【考点】双曲线的简单性质.【分析】利用双曲线﹣=1(a>0,b>0)的一条渐近线方程为2x﹣y=0,可得b=2a,c=a,即可求出双曲线的离心率.解:∵双曲线﹣=1(a>0,b>0)的一条渐近线方程为2x ﹣y=0,∴b=2a,c=a,∴离心率是e==.10.不等式组所表示的区域的面积为16.【分析】作出不等式组对应的平面区域,求出交点坐标,【解答】解:由不等式组作出平面区域如图所示(阴影部分),则由,,得A(﹣1,1),B(3,5),C(3,﹣3),所以,11.已知△ABC外接圆O的半径为2,且,||=||,则=12.【分析】运用平面向量的三角形法则,以及外心的特点,可得O为BC的中点,三角形ABC为直角三角形,再由勾股定理和向量的数量积定义,即可求出结果.【解答】解:如图所示,△A BC的外接圆的半径为2,且,∴(﹣)+(﹣)=2,∴+=2+2=,∴O为BC的中点,即AB⊥AC;又||=||,∴△ABO为等边三角形,且边长为2,由勾股定理得,AC==2,则•=||•||•cos∠ACB=2×4×=12.故答案为:12.12.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B3C3上有10个不同的点P1,P2,…P10,记m i=•(i=1,2,3,…,10),则m1+m2+…+m10的值为180.【考点】平面向量数量积的运算.【分析】以A为坐标原点,AC1所在直线为x轴建立直角坐标系,可得B 2(3,),B3(5,),C3(6,0),求出直线B3C3的方程,可设P i(x i,y i),可得x i+y i=6,运用向量的数量积的坐标表示,计算即可得到所求和.【解答】解:以A为坐标原点,AC1所在直线为x轴建立直角坐标系,可得B 2(3,),B3(5,),C3(6,0),直线B 3C3的方程为y=﹣(x﹣6),可设P i(x i,y i),可得x i+y i=6,即有m i=•=3x i+y i=(x i+y i)=18,则m1+m2+…+m10=18×10=180.故答案为:180.13.在等差数列{a n}中,首项a1=3,公差d=2,若某学生对其中连续10项迸行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为200.【考点】等差数列的前n项和.【分析】先排除不是遗漏掉首项与末项,从而设9项为a n,a n+1,a n+2,…,a n+m﹣1,a n+m+1,a n+m+2,…,a n+9,从而可得10(2n+1)+90﹣2(m+n)﹣1=185,从而求得.【解答】解:若遗漏的是10项中的第一项或最后一项,则185=9•a中,故a中=20(舍去);故设9项为a n,a n+1,a n+2,…,a n+m﹣1,a n+m+1,a n+m+2,…,a n+9,其中(0<m<9,m∈N*)故10a n+×2﹣a m+n=185,即10(2n+1)+90﹣2(m+n)﹣1=185,故m=9n﹣43,故n=5,m=2;故10×a5+×2=110+90=200;14.设关于x的实系数不等式(ax+3)(x2﹣b)≤0对任意x ∈[0,+∞)恒成立,则a 2b=9.【分析】利用换元法设f(x)=ax+3,g(x)=x2﹣b,根据一元一次函数和一元二次函数的图象和性质进行判断求解即可.【解答】解:∵(ax+3)(x2﹣b)≤0对任意x∈[0,+∞)恒成立,∴当x=0时,不等式等价为﹣3b≤0,即b≥0,当x→+∞时,x2﹣b>0,此时ax+3<0,则a<0,设f(x)=ax+3,g(x)=x2﹣b,若b=0,则g(x)=x2>0,函数f(x)=ax+3的零点为x=﹣,则函数f(x)在(0,﹣)上f(x)>0,此时不满足条件;若a=0,则f(x)=3>0,而此时x→+∞时,g(x)>0不满足条件,故b>0;∵函数f(x)在(0,﹣)上f(x)>0,则(﹣,+∞))上f(x)<0,而g(x)在(0,+∞)上的零点为x=,且g(x)在(0,)上g(x)<0,则(,+∞)上g(x)>0,∴要使(ax+3)(x 2﹣b)≤0对任意x∈[0,+∞)恒成立,则函数f(x)与g(x)的零点相同,即﹣=,∴a2b=9.故答案为:9.二、解答题15.如图,在△ABC中,点D在边AB上,CD⊥BC,AC=5,CD=5,BD=2AD.(Ⅰ)求AD的长;(Ⅱ)求△ABC的面积.【考点】解三角形.【分析】(1)假设AD=x,分别在△ACD和△ABC中使用余弦定理计算cosA,列方程解出x;(2)根据(1)的结论计算sinA,代入面积公式计算.【解答】解:(1)设AD=x,则BD=2x,∴BC==.在△ACD中,由余弦定理得cosA==,在△ABC中,由余弦定理得cosA==.∴=,解得x=5.∴AD=5.(2)由(1)知AB=3AD=15,cosA==,∴sinA=.∴S△ABC===.16.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,E为侧棱PA的中点.(1)求证:PC∥平面BDE;(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)连结AC,交BD于O,连结OE,E为PA的中点,利用三角形中位线的性质,可知OE∥PC,利用线面平行的判定定理,即可得出结论;(2)先证明PA⊥DE,再证明PA⊥OE,可得PA⊥平面BDE,从而可得平面BDE⊥平面PAB.【解答】证明:(1)连结AC,交BD于O,连结OE.因为ABCD是平行四边形,所以OA=OC.…因为E为侧棱PA的中点,所以OE∥PC.…因为PC⊂平面BDE,OE⊂平面BDE,所以PC∥平面BDE.…(2)因为E为PA中点,PD=AD,所以PA⊥DE.…因为PC⊥PA,OE∥PC,所以PA⊥OE.因为OE⊂平面BDE,DE⊂平面BDE,OE∩DE=E,所以PA⊥平面BDE.…因为PA⊂平面PAB,所以平面BDE⊥平面PAB.…17.如图,A、B是海岸线OM、ON上的两个码头,海中小岛有码头Q到海岸线OM、ON的距离分别为2km、km.测得tan∠MON=﹣3,OA=6km.以点O为坐标原点,射线OM 为x轴的正半轴,建立如图所示的直角坐标系.一艘游轮以18km/小时的平均速度在水上旅游线AB航行(将航线AB看作直线,码头Q在第一象限,航线AB经过Q).(1)问游轮自码头A沿方向开往码头B共需多少分钟?(2)海中有一处景点P(设点P在xOy平面内,PQ⊥OM,且PQ=6km),游轮无法靠近.求游轮在水上旅游线AB航行时离景点P最近的点C的坐标.【考点】直线与圆的位置关系.【分析】(1)由已知得:A(6,0),直线ON的方程为y=﹣3x,求出Q(4,2),得直线AQ的方程,从而求出水上旅游线AB的长,由此能求出游轮在水上旅游线自码头A沿方向开往码头B共航行时间.(2)点P到直线AB的垂直距离最近,则垂足为C,分别求出直线AB的方程和直线PC的方程,联立直线AB和直线PC 的方程组,能求出点C的坐标.【解答】解:(1)由已知得:A(6,0),直线ON的方程为y=﹣3x,…1分设Q(x1,2),(x1>0),由及x1>0,得x1=4,∴Q (4,2),…3分∴直线AQ的方程为y=﹣(x﹣6),即x+y﹣6=0,…5分由,得,即B(﹣3,9),…6分∴AB==9,即水上旅游线AB的长为9km.游轮在水上旅游线自码头A沿方向开往码头B共航行30分钟时间.…8分(2)点P到直线AB的垂直距离最近,则垂足为C. (10)分由(1)知直线AB的方程为x+y﹣6=0,P(4,8),则直线PC的方程为x﹣y+4=0,…12分联立直线AB和直线PC的方程组,得点C的坐标为C(1,5).…14分18.已知椭圆C:的右焦点为F(1,0),且点P (1,)在椭圆C上;(1)求椭圆C的标准方程;(2)过椭圆C1:=1上异于其顶点的任意一点Q作圆O:x2+y2=的两条切线,切点分别为M、N(M、N不在坐标轴上),若直线MN在x轴,y轴上的截距分别为m、n,证明:为定值;(3)若P1、P2是椭圆C2:上不同两点,P1P2⊥x轴,圆E过P1、P2,且椭圆C2上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆C2是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(1)由焦点坐标确定出c的值,根据椭圆的性质列出a与b的方程,再将P点坐标代入椭圆方程列出关于a与b的方程,联立求出a与b的值,确定出椭圆方程即可.(2)由题意:确定出C1的方程,设点P(x1,y1),M(x2,y2),N(x3,y3),根据M,N不在坐标轴上,得到直线PM与直线OM斜率乘积为﹣1,确定出直线PM的方程,同理可得直线PN的方程,进而确定出直线MN方程,求出直线MN与x轴,y轴截距m与n,即可确定出所求式子的值为定值.(3)依题意可得符合要求的圆E,即为过点F,P1,P2的三角形的外接圆.所以圆心在x轴上.根据题意写出圆E的方程.由于圆的存在必须要符合,椭圆上的点到圆E距离的最小值是|P1E|,结合图形可得圆心E在线段P1P2上,半径最小.又由于点F已知,即可求得结论.【解答】解:(1)∵椭圆C:的右焦点为F(1,0),且点P(1,)在椭圆C上;∴,解得a=2,b=,∴椭圆C的标准方程为.(2)由题意:C1: +=1,设点P(x1,y1),M(x2,y2),N(x3,y3),∵M,N不在坐标轴上,∴k PM=﹣=﹣,∴直线PM的方程为y﹣y2=﹣(x﹣x2),化简得:x2x+y2y=,①,同理可得直线PN的方程为x3x+y3y=,②,把P点的坐标代入①、②得,∴直线MN的方程为x1x+y1y=,令y=0,得m=,令x=0得n=,∴x1=,y1=,又点P在椭圆C1上,∴()2+3()2=4,则+=为定值.(3)由椭圆的对称性,可以设P1(m,n),P2(m,﹣n),点E在x轴上,设点E(t,0),则圆E的方程为:(x﹣t)2+y2=(m﹣t)2+n2,由内切圆定义知道,椭圆上的点到点E距离的最小值是|P 1E|,设点M(x,y)是椭圆C上任意一点,则|ME|2=(x﹣t)2+y2=,当x=m时,|ME|2最小,∴m=﹣,③,又圆E过点F,∴(﹣)2=(m﹣t)2+n2,④点P1在椭圆上,∴,⑤由③④⑤,解得:t=﹣或t=﹣,又t=﹣时,m=﹣<﹣2,不合题意,综上:椭圆C存在符合条件的内切圆,点E的坐标是(﹣,0).19.已知函数f(x)=e x|x2﹣a|(a≥0).(1)当a=1时,求f(x)的单调减区间;(2)若存在m>0,方程f(x)=m恰好有一个正根和一个负根,求实数m的最大值.【考点】一元二次方程的根的分布与系数的关系;分段函数的应用.【分析】(1)求出a=1的f(x)的解析式,分别求出各段的导数,解不等式即可得到减区间;(2)讨论a=0,a>0,通过导数判断单调区间和极值,由方程f(x)=m恰好有一个正根和一个负根,即可求得m的范围,进而得到m的最大值.【解答】解:(1)当a=1时,f(x)=,当|x|>1时,f′(x)=e x(x2+2x﹣1),由f′(x)≤0得﹣1﹣≤x≤﹣1+,所以f(x)的单调减区间是(﹣1﹣,﹣1);当|x|≤1时,f′(x)=﹣e x(x2+2x﹣1),由f′(x)≤0得x≥﹣1+或x≤﹣1﹣.所以f(x)的单调减区间是(﹣1+,1);综上可得,函数f(x)的单调减区间是(﹣1﹣,﹣1),(﹣1+,1);(2)当a=0时,f(x)=e x•x2,f′(x)=e x•x(x+2),当x<﹣2时,f′(x)>0,f(x)递增,当﹣2<x<0时,f′(x)<0,f(x)递减,当x>0时,f′(x)>0,f(x)递增.f(﹣2)为极大值,且为4e﹣2,f(0)为极小值,且为0,当a>0时,f(x)=同(1)的讨论可得,f(x)在(﹣∞,﹣﹣1)上增,在(﹣﹣1,﹣)上减,在(﹣,﹣1)上增,在(﹣1,)上减,在(,+∞)上增,且函数y=f(x)有两个极大值点,f(﹣﹣1)=,f(﹣1)=,且当x=a+1时,f(a+1)=e a+1(a2+a+1)>(﹣1)>,所以若方程f(x)=m恰好有正根,则m>f(﹣﹣1)(否则至少有二个正根).又方程f(x)=m恰好有一个负根,则m=f(﹣﹣1).令令g(x)=e﹣x(x+1),x≥1.g′(x)=﹣xe﹣x<0,g(x)在x≥1递减,即g(x)max=g(1)=,等号当且仅当x=1时取到.所以f(﹣﹣1)max=()2,等号当且仅当a=0时取到.且此时f(﹣﹣1)=(﹣1)=0,即f(﹣﹣1)>f(﹣1),所以要使方程f(x)=m恰好有一个正根和一个负根,m的最大值为.20.已知数列{a n}的通项公式为a n=(n﹣k1)(n﹣k2),其中k1,k2∈Z:(1)试写出一组k1,k2∈Z的值,使得数列{a n}中的各项均为正数;(2)若k1=1、k2∈N*,数列{b n}满足b n=,且对任意m∈N*(m≠3),均有b 3<b m,写出所有满足条件的k2的值;(3)若0<k1<k2,数列{c n}满足c n=a n+|a n|,其前n项和为S n,且使c i=c j≠0(i,j∈N*,i<j)的i和j有且仅有4组,S1、S2、…、S n中至少3个连续项的值相等,其他项的值均不相等,求k1,k2的最小值.【考点】数列的求和;数列递推式.【分析】(1)通过函数f(x)=(x﹣k1)(x﹣k2)是与x轴交于k1、k2两点且开口向上的抛物线可知,只需知k1、k2均在1的左边即可;(2)通过k1=1化简可知b n=n+﹣(1+k2),排除k2=1、2可知k2≥3,此时可知对于f(n)=n+而言,当n≤时f(n)单调递减,当n≥时f(n)单调递增,进而解不等式组即得结论;(3)通过0<k1<k2及a n=(n﹣k1)(n﹣k2)可知c n=,结合c i=c j≠0(i,j∈N*,i<j)可知0<i<k1<k2<j,从而可知k1的最小值为5,通过S1、S2、…、S n 中至少3个连续项的值相等可知5=k1≤m+1<m+2<…<k2,进而可得k2的最小值为6.【解答】解:(1)k1=k2=0;(2)∵k1=1、k2∈N*,a n=(n﹣k1)(n﹣k2),∴b n===n+﹣(1+k2),当k2=1、2时,f(n)=n+均单调递增,不合题意;当k2≥3时,对于f(n)=n+可知:当n≤时f(n)单调递减,当n≥时f(n)单调递增,由题意可知b1>b2>b3、b3<b4<…,联立不等式组,解得:6<k2<12,∴k2=7,8,9,10,11;(3)∵0<k1<k2,a n=(n﹣k1)(n﹣k2),∴c n=a n+|a n|=,∵c i=c j≠0(i,j∈N*,i<j),∴i、j∉(k1,k2),又∵c n=2[n2﹣(k1+k2)n+k1k2],∴=,∴0<i<k1<k2<j,此时i的四个值为1,2,3,4,故k1的最小值为5,又S1、S2、…、S n中至少3个连续项的值相等,不妨设S m=S m+1=S m+2=...,则c m+1=c m+2= 0∵当k1≤n≤k2时c n=0,∴5=k1≤m+1<m+2<…<k2,∴k2≥6,即k2的最小值为6.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲]21.如图:在Rt∠ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接AE交⊙O于点F,求证:BE•CE=EF•EA.【考点】圆的切线的性质定理的证明.【分析】欲证明BE•CE=EF•EA.在圆中线段利用由切割线定理得EB2=EF•FA,进而利用四边形BODE中的线段,证得BE=CE即可.【解答】证明:因为Rt△ABC中,∠ABC=90°所以OB ⊥CB, 所以CB为⊙O的切线, 所以EB2=EF•FA连接OD,因为AB=BC, 所以∠BAC=45°, 所以∠BOD=90°, 在四边形BODE中,∠BOD=∠OBE=∠BED=90°所以BODE为矩形, 所以, 即BE=CE.所以BE•CE=EF•EA.B.[选修4-2:矩阵与变换]22.已知矩阵A=,求矩阵A的特征值和特征向量.【考点】特征值与特征向量的计算.【分析】先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组求出相应的特征向量.【解答】B.矩阵A的特征多项式为,…由f(λ)=0,解得λ1=2,λ2=3..…当λ1=2时,特征方程组为故属于特征值λ1=2的一个特征向量;…当λ2=3时,特征方程组为故属于特征值λ2=3的一个特征向量.…C.[选修4-4:坐标系与参数方程]23.在极坐标系中,曲线C的极坐标方程为ρ=2cosθ+2sinθ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C所截得的弦长.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】求出曲线C的极坐标方程化为直角坐标方程,求出圆心与半径,直线的参数方程为普通方程,利用圆心距半径半弦长满足勾股定理求解弦长即可.【解答】解:曲线C的直角坐标方程为x2+y2﹣2x﹣2y=0,圆心为(1,1),半径为,直线的直角坐标方程为x﹣y﹣=0,所以圆心到直线的距离为d==,所以弦长=2=.D.[选修4-5:不等式选讲]24.设x,y均为正数,且x>y,求证:2x+≥2y+3.【分析】因为x>y,所以x﹣y>0,所以不等式左边减去2y 得:2x+=(x﹣y)+(x﹣y)+,这样便可证出本题.【解答】证明:由题设x>y,可得x﹣y>0;∵2x+﹣2y=2(x﹣y)+=(x﹣y)+(x﹣y)+;又(x﹣y)+(x﹣y)+,当x﹣y=1时取“=“;∴2x+﹣2y≥3,即2x+≥2y+3.四.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.25.甲、乙两人投篮命中的概率为别为与,各自相互独立,现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后,甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E(ξ).【考点】随机事件;离散型随机变量及其分布列.【分析】(1)比赛结束后甲的进球数比乙的进球数多1个,有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.由此能求出比赛结束后甲的进球数比乙的进球数多1个的概率.(2)由已知得ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.【解答】解:(1)比赛结束后甲的进球数比乙的进球数多1个,有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.比赛结束后甲的进球数比乙的进球数多1个的概率:p=++=.(2)由已知得ξ的可能取值为0,1,2,3,P(ξ=0)=+++= =,P(ξ=1)=+++=,P(ξ=3)==,P(ξ=2)=1﹣P(ξ=0)﹣P(ξ=1)﹣P(ξ=3)=1﹣=,∴ξ的分布列为:ξ0 1 2 3PEξ==1.26.若存在n个不同的正整数a1,a2,…,a n,对任意1≤i<j ≤n,都有∈Z,则称这n个不同的正整数a1,a2,…,a n 为“n个好数”.(1)请分别对n=2,n=3构造一组“好数”;(2)证明:对任意正整数n(n≥2),均存在“n个好数”.【分析】(1)利用新定义,分别对n=2,n=3构造一组“好数”;(2)利用数学归纳法进行证明即可.【解答】解:(1)当n=2时,取数a1=1,a2=2,因为=3∈Z,当n=3时,取数a1=2,a2=3,a3=4,则=﹣5∈Z,=﹣7∈Z,=﹣3∈Z,即a1=2,a2=3,a3=4可构成三个好数.(2)证:①由(1)知当n=2,3时均存在,②假设命题当n=k(k≥2,k∈Z)时,存在k个不同的正整数a1,a2,…,a k,使得对任意1≤i<j≤k,都有∈Z成立,则当n=k+1时,构造k+1个数A,A+a1,A+a2,…,A+a k,(*)其中A=1×2×…×a k,若在(*)中取到的是A和A+a i,则=﹣﹣1∈Z,所以成立,若取到的是A+a i和A+a j,且i<j,则=+,由归纳假设得∈Z,又a j﹣a i<a k,所以a j﹣a i是A的一个因子,即∈Z,所以=+∈Z,所以当n=k+1时也成立.所以对任意正整数,均存在“n 个好数”.。
高考数学(精讲精练精析)专题7.2 二元一次不等式(组)与简单的线性规划试题(江苏版)(含解析)-江
专题7.2 二元一次不等式(组)与简单的线性规划【三年高考】1. 【2016高考江苏12】已知实数,x y满足240220330x yx yx y-+≥⎧⎪+-≥⎨⎪--≤⎩,,,则22x y+的取值范围是 .【答案】4 [,13] 5【考点】线性规划【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线(一般不涉及虚线),其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等,最后结合图形确定目标函数最值或值域范围.2.【2016高考浙江理数改编】在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影.由区域20340xx yx y-≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线x+y-2=0上的投影构成的线段记为AB,则│AB│= .【答案】32考点:线性规划.【思路点睛】先根据不等式组画出可行域,再根据题目中的定义确定AB 的值.画不等式组所表示的平面区域时要注意通过特殊点验证,防止出现错误.3.【2016年高考北京理数改编】若x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为 .【答案】4 【解析】试题分析:作出如图可行域,则当y x z +=2经过点P 时,取最大值,而)2,1(P ,∴所求最大值为4.考点:线性规划.xy OP【名师点睛】可行域是封闭区域时,可以将端点代入目标函数,求出最大值与最小值,从而得到相应范围.若线性规划的可行域不是封闭区域时,不能简单的运用代入顶点的方法求最优解.如变式2,需先准确地画出可行域,再将目标函数对应直线在可行域上移动,观察z 的大小变化,得到最优解.4.【2016年高考四川理数改编】设p :实数x ,y 满足22(1)(1)2x y -+-≤,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的 .(在必要不充分条件、充分不必要条件、充要条件、既不充分也不必要条件中选填)【答案】必要不充分条件 【解析】试题分析:画出可行域(如图所示),可知命题q 中不等式组表示的平面区域ABC ∆在命题p 中不等式表示的圆盘内,故是必要不充分条件.考点:1.充分条件、必要条件的判断;2.线性规划.【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考,本题条件与结论可以转化为平面区域的关系,利用充分性、必要性和集合的包含关系得结论.5.【2016高考浙江文数改编】若平面区域30,230,230x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是 . 352 3252考点:线性规划.【思路点睛】先根据不等式组画出可行域,再根据可行域的特点确定取得最值的最优解,代入计算.画不等式组所表示的平面区域时要注意通过特殊点验证,防止出现错误.6.【2016高考新课标3理数】若,x y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩则z x y =+的最大值为_____________.【答案】32【解析】试题分析:作出不等式组满足的平面区域,如图所示,由图知,当目标函数z x y =+经过点1(1,)2A 时取得最大值,即max 13122z =+=.考点:简单的线性规划问题.【技巧点拨】利用图解法解决线性规划问题的一般步骤:(1)作出可行域.将约束条件中的每一个不等式当作等式,作出相应的直线,并确定原不等式的区域,然后求出所有区域的交集;(2)作出目标函数的等值线(等值线是指目标函数过原点的直线);(3)求出最终结果. 7.【2016高考山东理数改编】若变量x ,y 满足2,239,0,x y x y x 则22x y 的最大值是 .【答案】10考点:简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题,是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间距离等,考查考生的绘图、用图能力,以及应用数学解决实际问题的能力.8.【2016高考天津理数】设变量x ,y 满足约束条件20,2360,3290.x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩则目标函数25z x y =+的最小值为 .【答案】6 【解析】试题分析:可行域为一个三角形ABC 及其内部,其中(0,2),(3,0),(1,3)A B C ,直线z 25x y =+过点B 时取最小值6.考点:线性规划【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.9.【2016高考新课标1卷】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B 需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 【答案】216000 【解析】试题分析:设生产产品A 、产品B 分别为x 、y 件,利润之和为z 元,那么 1.50.5150,0.390,53600,0,0.x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩ ①目标函数2100900z x y =+.二元一次不等式组①等价于3300,103900,53600,0,0.x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩ ②作出二元一次不等式组②表示的平面区域(如图),即可行域.将2100900z x y =+变形,得73900z y x =-+,平行直线73y x =-,当直线73900zy x =-+经过点M时,z 取得最大值. 解方程组10390053600x y x y +=⎧⎨+=⎩,得M 的坐标(60,100).所以当60x =,100y =时,max 210060900100216000z =⨯+⨯=. 故生产产品A 、产品B 的利润之和的最大值为216000元. 考点:线性规划的应用【名师点睛】线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合.本题运算量较大,失分的一个主要原因是运算失误.10【2015高考新课标1,文15】若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .【答案】411.【2015高考重庆,文10】若不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形,且其面积等于43,则m 的值为__________________. 【答案】1【解析】如图,由于不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为ABC ∆,且其面积等于43,再注意到直线:20AB x y +-=与直线:20BC x y m -+=互相垂直,所以ABC ∆是直角三角形,易知,(2,0),(1,1)A B m m -+,2422(,)33m m C -+;从而112222122223ABC m S m m m ∆+=+⋅+-+⋅=43,化简得:2(1)4m +=,解得3m =-,或1m =,检验知当3m =-时,已知不等式组不能表示一个三角形区域,故舍去,所以1m =.12.【2015高考陕西,文11】某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元.4万元,则该企业每天可获得最大利润为____________________.甲乙原料限额A(吨)3212B(吨)128【答案】18万元13.【2015高考浙江,文14】已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 . 【答案】1514.【2015高考四川,文9】设实数x ,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为_______________.【答案】252【解析】画出可行域如图 在△ABC 区域中结合图象可知 当动点在线段AC 上时xy 取得最大 此时2x +y =10xy =12(2x ·y )≤21225()222x y +=当且仅当x =52,y =5时取等号,对应点(52,5)落在线段AC 上,故最大值为252.15.【2014高考安徽卷文第13题】不等式组20240320x y x y x y +-≥⎧⎪+-≤⎨⎪+-≥⎩表示的平面区域的面积为________.【答案】4A BCyx0 61410A【解析】不等式组所表示的平面区域如下图阴影部分,则其表示的面积112222422ABCD ABD BCD S S S ∆∆=+=⨯⨯+⨯⨯=.16.【2014高考福建卷文第11题】已知圆()()22:1C x a y b -+-=,设平面区域70,30,0x y x y y +-≤⎧⎪Ω=-+≥⎨⎪≥⎩,若圆心C ∈Ω,且圆C 与x 轴相切,则22a b +的最大值为_________________.【答案】3717. 【2014高考全国1卷文第11题】设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =___.【答案】3【解析】根据题中约束条件可画出可行域如下图所示,两直线交点坐标为:11(,)22a a A -+,又由题中z x ay =+可知,当0a >时,z 有最小值:21121222a a a a z a -++-=+⨯=,则22172a a +-=,解得:3a =;当0a <时,z 无最小值18. 【2014高考浙江卷文第12题】若、y 满足和240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则y x +的取值范围是________.【答案】]3,1[【2017年高考命题预测】纵观2016各地高考试题,对二元一次不等式(组)与线性规划及简单应用这部分的考查,主要考查二元一次不等式(组)表示的平面区域、目标函数的最优解问题、与最优解相关的参数问题,高考中一般会以选填题形式考查.从近几年高考试题来看,试题难度较低,属于中低档试题,一般放在选择题的第5-7题或填空题的前两位.从近几年的高考试题来看,二元一次不等式(组)表示的平面区域(的面积),求目标函数的最值,线性规划的应用问题等是高考的热点,题型既有选择题,也有填空题,难度为中、低档题.主要考查平面区域的画法,目标函数最值的求法,以及在取得最值时参数的取值范围.同时注重考查等价转化、数形结合思想.对二元一次不等式(组)表示的平面区域的考查,关键明确二元等式表示直线或曲线,而二元不等式表示直线或曲线一侧的平面区域,以小题形式出现.对目标函数的最优解问题的考查,首先要正确画出可行域,明确目标函数的几何意义,以小题形式出现.对与最优解相关的参数问题,在近几年的高考中频频出现,并且题型有所变化,体现“活”“变”“新”等特点,在备考中予以特别关注.故预测2017年高考仍将以目标函数的最值,特别是含参数的线性规划问题,线性规划的综合运用是主要考查点,重点考查学生分析问题、解决问题的能力.【2017年高考考点定位】高考对二元一次不等式(组)与线性规划及简单应用的考查有以下几种主要形式:一是不等式(组)表示的平面区域;二是线性目标函数最优解问题;三是非线性目标函数最优解问题;四是线性规划与其他知识的交汇.【考点1】不等式(组)表示的平面区域 【备考知识梳理】二元一次不等式所表示的平面区域:在平面直角坐标系中,直线:0l Ax By C ++=将平面分成两部分,平面内的点分为三类: ①直线l 上的点(x ,y )的坐标满足:0=++C By Ax ;②直线l 一侧的平面区域内的点(x ,y )的坐标满足:0>++C By Ax ; ③直线l 另一侧的平面区域内的点(x ,y )的坐标满足:0Ax By C ++<.即二元一次不等式0Ax By C ++>或0Ax By C ++<在平面直角坐标系中表示直线0Ax By C ++=的某一侧所有点组成的平面区域,直线0Ax By C ++=叫做这两个区域的边界,(虚线表示区域不包括边界直线,实线表示区域包括边界直线). 由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.【规律方法技巧】由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分. 1. 判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧的方法:因为对在直线Ax+By+C =0同一侧的所有点(x ,y),数Ax+By+C 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧.2. 画二元一次不等式0(0)Ax By C ++>≥或0(0)Ax By C ++<≤表示的平面区域的基本步骤: ①画出直线:0l Ax By C ++=(有等号画实线,无等号画虚线);②当0≠C 时,取原点作为特殊点,判断原点所在的平面区域;当0C =时,另取一特殊点判断; ③确定要画不等式所表示的平面区域. 【考点针对训练】1.【江苏省清江中学2016届高三上学期周练数学试题】若点(),x y P 满足约束条件022x x y a x y ≥⎧⎪-≤⎨⎪+≤⎩,且点(),x y P 所形成区域的面积为12,则实数a 的值为 .【答案】8【解析】由题意作出其平面区域,∵点(),x y P 所形成区域的面积为12,∴0a >,由2x y a -=,令x =0得2a y =-, 由22x y a x y -=+=⎧⎨⎩解得44,212832312a a a x S a ++=∴=⨯+⨯=∴=(),.2.【2015届安徽省淮南一中等四校高三5月联考】设不等式组310060360x y x y x y +-≥⎧⎪--≤⎨⎪+-≤⎩表示的平面区域为D ,若函数log a y x =(10≠>a a 且)的图象上存在区域D 上的点,则实数a 的取值范围是____________. 【答案】[)+∞⋃⎥⎦⎤ ⎝⎛,321,0【考点2】线性目标函数最优解问题 【备考知识梳理】名称 意义约束条件 由变量x ,y 组成的不等式(组)线性约束条件 由x ,y 的一次不等式(或方程)组成的不等式(组) 目标函数 关于x ,y 的函数解析式,如z =2x +3y 等 线性目标函数 关于x ,y 的一次解析式 可行解 满足线性约束条件的解(x ,y ) 可行域 所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解【规律方法技巧】线性目标函数z Ax By C =++(A,B 不全为0)中,当0B ≠时,A z Cy x B B-=-+,这样线性目标函数可看成斜率为AB-,且随z 变化的一组平行线,则把求z 的最大值和最小值的问题转化为直线与可行域有公共点,直线在y 轴上的截距的最大值最小值的问题.因此只需先作出直线Ay x B=-,再平行移动这条直线,最先通过或最后通过的可行域的顶点就是最优解.特别注意,当B>0时,z 的值随着直线在y 轴上的截距的增大而增大;当B<0时,z 的值随着直线在y 轴上的截距的增大而减小.通常情况可以利用可行域边界直线的斜率来判断.对于求整点最优解,如果作图非常准确可用平移求解法,也可以取出目标函数可能取得最值的可行域内的所有整点,依次代入目标函数验证,从而选出最优解,最优解一般在可行域的定点处取得,若要求最优整解,则必须满足x ,y 均为整数,一般在不是整解的最优解的附近找出所有可能取得最值的整点,然后将整点分别代入目标函数验证选出最优整解. 【考点针对训练】1. 【南京市、盐城市2016届高三年级第一次模拟考试数学】已知实数,x y 满足50,220,0,x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩则目标函数z x y =-的最小值为 ▲ . 【答案】3-【解析】可行域为一个三角形及其内部,其三个顶点坐标分别为(1,0),(5,0),(1,4)A B C -,当目标函数过点(1,4)C 时z 取最小值3-.2. 【2015届浙江省宁波市高三下学期第二次模拟考试】已知点(x ,y)的坐标满足条件302602290x y a x y x y --<⎧⎪+->⎨-+>⎪⎩,且x ,y 均为正整数.若4x -y 取到最大值8,则整数a 的最大值为___________. 【答案】5【考点3】非线性规划问题 【备考知识梳理】1.距离型:形如z =(x -a )2+(y -b )2. 2.斜率型:形如z =y -bx -a. 【规律方法技巧】对于非线性目标函数的最优解问题,关键要搞清目标函数的几何意义,利用数形结合思想求解. 【考点针对训练】1. 【江苏歌风中学(如皋办学)高三数学九月月考】若变量,x y 满足202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则2x y+的最大值为 . 【答案】8【解析】作出题设约束条件表示的可行域,如图OAB ∆内部(含边界),再作直线:0l x y +=,向上平移直线l ,z x y =+增大,当l 过点(1,2)B 时,z x y =+取得最大值3,因此2x y +的最大值为8.2. 【2015届湖南省怀化市中小学课改质量检测高三第一次模考】已知实数、x y 满足242y xx y y ⎧≤⎪+≤⎨⎪≥-⎩,则22)2()1(-+-=y x z 的最小值为____________________.【答案】95 【考点4】线性规划问题与其他知识交汇 【备考知识梳理】线性规划问题与其他知识交叉融合,不仅体现了高中数学常用的数学思想方法,比如数形结合思想,转化与化归思想,而且体现了学生综合分析问题的能力,逻辑思维能力以及解决实际问题的能力. 【规律方法技巧】线性规划问题可以和概率、向量、解析几何等交汇考查,关键是通过转化,最终转化为线性规划问题处理. 【规律方法技巧】1.已知不等式组⎪⎩⎪⎨⎧≤-≥-≥+224x y x y x ,表示的平面区域为D ,点)0,1(),0,0(A O .若点M 是D 上的动点,则||OM OM OA ⋅的最小值是____________________.【答案】1010 【解析】设点M 的坐标为(,)x y ,则22||OA OMx OM x y⋅=+,根据约束条件画出可行域可知0x >,故222221||1OA OMx yx yOM x⋅==++,而y x 的几何意义为可行域的点与原点所确定直线的斜率,数形结合可知yx 的最大值为3,则||OM OM OA ⋅的最小值为1010.2.定义,max{,},a a b a b b a b ≥⎧=⎨<⎩,设实数x ,y 满足约束条件22x y ⎧≤⎪⎨≤⎪⎩,则max{4,3}z x y x y =+-的取值范围是_______________. 【答案】[7,10]-【两年模拟详解析】1. 【江苏省扬州中学高三数学月考试卷】已知点x ,y 满足不等式组⎩⎪⎨⎪⎧x ≥0y ≥02x +y ≤2,若ax +y ≤3恒成立,则实数a 的取值范围是__________. 【答案】(-∞,3]【解析】不等式组⎩⎪⎨⎪⎧x ≥0y ≥02x +y ≤2表示的平面区域是以(0,0),(0,2),(1,0)O A B 为顶点的三角形内部(含边界),由题意00302303a +≤⎧⎪+≤⎨⎪+≤⎩,所以3a ≤.2.【镇江市2016届高三年级第一次模拟考试】已知实数x ,y 满足⎩⎪⎨⎪⎧x -y ≤2,x +y ≤8,x ≥1,则z =2x +y 的最小值是________. 【答案】1.【解析】作出不等式组⎩⎪⎨⎪⎧x -y≤2,x +y≤8,x ≥1,,其是由点()1,7A ,()1,1B -,()5,3C 围成的三角形区域(包含边界),对于目标函数z =2x +y ,转化为直线2y x z =-+,过点()1,1B -时,z 最小,即2111z =⨯-=.3.【盐城市2016届高三年级第三次模拟考试】已知实数,x y 满足约束条件152x x y x y ≥⎧⎪+≤⎨⎪-≤-⎩,则2123y x -+的最大值为 . 【答案】75【解析】可行域为一个三角形ABC 及其内部,其中)27,23(),3,1(),4,1(C B A ,而2321321y 2+-=+-x y x 表示可行域的点),(y x P到点)21,23(-E 连线的斜率,因此其最大值为.57231214=+-=EA k 4.【江苏省苏北三市(徐州市、连云港市、宿迁市)2016届高三最后一次模拟考试】若实数,x y 满足约束条件1300x y x y y +≤⎧⎪-≥⎨⎪≥⎩,则|3410|x y --的最大值为 .【答案】494【解析】1300x y x y y +≤⎧⎪-≥⎨⎪≥⎩表示一个三角形ABC 及其内部,其中13(1,0),(0,0),(,)44A B C ,且可行域在直线上方34100x y --=,因此|3410|3410x y x y --=-++,过点13(,)44C 时取最大值,为494.5.【2016高考押题卷(2)【江苏卷】】某工厂用A ,B 两种配件分别生产甲、乙两种产品,每生产一件甲产品使用4个A 配件、耗时1小时,每生产一件乙产品使用4个B 配件、耗时2小时,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,每天生产甲、乙两种产品总耗时不超过8小时.若生产一件甲产品获利2万元,生产一件乙产品获利3万元,那么该工厂每天可获取的最大利润为________万元. 【答案】146.【2016年第一次全国大联考【江苏卷】】设不等式组204020xy xy y,,表示的平面区域为D ,若指数函数(0,1)xy a a a =>≠的图象上存在区域D 上的点,则a 的取值范围是_______. 【答案】(0,1)[3)+∞,【解析】可行域D 为一个开放的区域,如图(阴影部分).当01a <<时,指数函数xy a =的图像与可行域D 恒有交点;当1a >时,需满足13a ≥,才能使指数函数x y a =的图像与可行域D 有交点;综上a 的取值范围是(0,1)[3)+∞,7.【江苏省扬州中学2015届高三4月双周测】若实数,a b 满足20101a b b a a +-≥⎧⎪--≤⎨⎪≤⎩,则22a ba b ++的最大值为_________. 【答案】75【解析】作出约束条件表示的可行域,如图ABC ∆内部(含边界),13(,)22A ,(1,1)C ,设(,)P a b 是可行域内任一点,则OP b k a =的最大值为32312OA k ==,最小值为111OC k ==,23322222a b a b a b a b a +=-=-+++,可见当b a 取最大值3时,22a b a b ++也取最大值为75.8.【泰州市2015届高三第三次调研测试】已知实数x ,y 满足条件||1||1x y ⎧⎨⎩≤≤,,则z 2x +y 的最小值是 ▲ .【答案】3-【解析】如下图所示,当直线2y x z =-+经过或行域||1||1x y ⎧⎨⎩≤≤,,的边界点(1,1)A --时,目标函数的最小值3-.9.【2015年高考模拟(南通市数学学科基地命题)(4)】设实数x ,y ,b 满足⎩⎪⎨⎪⎧2x -y ≥0,y ≥x ,y ≥-x +b ,若z =2x +y 的最小值为3, 则实数b 的值为 . 【答案】94【解析】作出约束条件表示的可行域,如图射线OA ,OB 所夹区域且在直线AB 上方(含边界)(AB 待定),作直线:20l x y +=,平移直线l ,可见当l 过点A 时,z 取得最小值,此时2y x =代入得223x x +=,34x =,故有33(,)42A ,因此3324b =-+,94b =.10.【2015年高考模拟(南通市数学学科基地命题)(6)】实数x ,y 满足121,y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩如果目标函数z=x —y的最小值为-2,则实数m 的值为______. 【答案】8【解析】如图,约束条件表示的可行域应该是ABC ∆内部(含边界)(否则可行域不存在),作直线:0l x y -=,当把直线l 向上平移时,z 减小,因此其最小值点是直线21y x =-与直线x y m +=的交点,由212y x x y =-⎧⎨-=-⎩得(3,5)B ,代入x y m +=得8m =.11.【南京市2015届高三年级第三次模拟考试】若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤2,x ≥1,y ≥0,则z =2x +y 的最大值是 . 【答案】4【解析】作出题中约束条件表示的可行域,如图ABC ∆内部(含边界),再作直线:20l x y +=,当直线l 过点(2,0)C 时,z 取最大值4.12.【徐州市2014~2015学年度高三第三次质量检测】已知实数y x ,满足条件⎪⎩⎪⎨⎧≤-≥-+≤-,03,05,0y y x y x 若不等式222)()(y x y x m +≤+恒成立,则实数m 的最大值是 .【答案】2513a ≤【解析】画出由条件05030x y x y y -≤⎧⎪+-≥⎨⎪-≤⎩决定的的可行域如下图所示,因为22222222()22()()11x y xy m x y x y m x y x y x y y x++≤+⇔≤=+=++++令y t x =,由线性规划知识可知312t ≤≤,则22111x y t y x t+=+++,令13(),(1)2f t t t t =+≤≤,由函数()f t 单调性可知,当32t =时,函数()f t 有最大值136,此时222()x y x y ++有最小值2513,所以2513a ≤及.13.【盐城市2015届高三年级第三次模拟考试】若,x y 满足约束条件+20020x y x y x y -≤⎧⎪-≥⎨⎪+≥⎩, 则目标函数z 2x y =+的最大值为 .【答案】6【解析】不等式组+20020x y x y x y -≤⎧⎪-≥⎨⎪+≥⎩表示的区域如图阴影部分所示:当直线20x y z +-=经过点(4,2)B -时,z 取得最大值6.故答案为6.14.【2015届山东师大附中高三第九次模拟】若关于,x y 的不等式组0010x x y kx y ≤⎧⎪+≥⎨⎪-+≥⎩,表示的平面区域是直角三角形区域,则正数k 的值为_____________. 【答案】1【解析】由题意得:010x y kx y +=-+=与垂直,因此10, 1.k k -==15.【2015届吉林省东北师大附中高三第四次模拟】已知实数,x y 满足平面区域10:220220x y D x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则22x y +的最大值为_______________.【答案】816.【2015届浙江省桐乡一中高三下学期联盟学校高考仿真测试】设x y 、满足约束条件360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数()0,0z ax by a b =+>>的最大值为10,则23a b+的最小值为_______________. 【答案】517.【2015届河南省南阳市一中高三下学期第三次模拟】设⎩⎨⎧<≥-=,2,,2,y x y y x y x z 若22,22≤≤-≤≤-y x ,则z 的最小值为______________. 【答案】-1【解析】符合22,22≤≤-≤≤-y x 的区域如图所示:当2x y ≥时,目标函数z x y =-在A 点取得最小值-1;当2x y <时,目标函数z y =在A 点处取得最小值-1,综上可得:z 的最小值为-1.18.【2015届甘肃省天水市一中高三高考信息卷一】已知不等式组220,22,22x y x y ⎧+-≥⎪⎪≤⎨⎪≤⎪⎩表示平面区域Ω,过区域Ω中的任意一个点P ,作圆221x y +=的两条切线且切点分别为,A B ,当APB ∠最大时,PA PB ⋅的值为_____________. 【答案】3219.【2015届浙江省余姚市高三第三次模拟考试】已知实数变量,x y 满足⎪⎪⎩⎪⎪⎨⎧≤--≥-≥+,0121,0,1y mx y x y x 且目标函数3z x y =-的最大值为4,则实数m 的值为_____________.【答案】1拓展试题以及解析1.设不等式组204020x yx yy表示的平面区域为D,若指数函数xy a的图像上存在区域D上的点,则a的取值范围是__________________. 【答案】(1]3,【入选理由】本题主要考了简单的线性规划,以及指数函数的图像等相关概念,体现了分类讨论的数学思想,意在考查学生的数形结合能力和计算能力.本题考查线性规划与函数图象性质的交汇,通过研究函数xy a =的性质,来确定a 的取值范围,这是线性规划问题涉及不多,故选此题.2.执行如图的程序框图,如果输入,x y R ∈,那么输出的S 的的最小值是_______________.【答案】255121416182022243x+y-6=0x-y+1=0x+2y-2=0C 621A BOyx【入选理由】本题考查考查程序框图中的顺序结构,条件结构以及相应语句,线性规划的应用等基础知识知识,意在考查画图、用图,分析问题、解决问题、及基本运算能力.该题新颖独特,故选此题.3.已知不等式组202020x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩表示的平面区域,则231x y z x +-=-的最大值 .【答案】7【入选理由】本题主要考查线性规划的应用等基础知识知识,意在考查学生的画图、用图,以及数形结合能力和计算能力.此题给出的目标函数231x y z x +-=-,似乎不好入手,但整理后2311211x y y z x x +--==+--,转化为斜率,就转化为常规题,高考线性规划问题的命题越来多变灵活,故选此题.。
2016年高考江苏卷数学试题解析(正式版)(解析版)
2016年江苏卷数学高考试题数学I 试题参考公式:样本数据12,,,n x x x L 的方差211()n i i s x x n ==-∑2,其中11=n i i x x n =∑.棱柱的体积V Sh =,其中S 是棱柱的底面积,h 是高. 棱锥的体积13V Sh =,其中S 是棱锥的底面积,h 是高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B I ▲ . 【答案】{}1,2- 【解析】试题分析:{}{}{}1,2,3,6231,2A B x x =--<<=-I I .故答案应填:{}1,2-考点:集合运算2. 复数(12i)(3i),z =+-其中i 为虚数单位,则z 的实部是 ▲ . 【答案】5 考点:复数概念3. 在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是 ▲ .【答案】【解析】试题分析:222227,3,7310,2a b c a b c c ==∴=+=+=∴=∴=Q考点:双曲线性质4. 已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 ▲ . 【答案】0.1【解析】试题分析:这组数据的平均数为1(4.7 4.8 5.1 5.4 5.5) 5.15⨯++++=,2222221(4.7 5.1)(4.8 5.1)(5.1 5.1)(5.4 5.1)(5.5 5.1)0.15s ⎡⎤∴=⨯-+-+-+-+-=⎣⎦.故答案应填:0.1 考点:方差5. 函数y =232x x --的定义域是 ▲ . 【答案】[]3,1-考点:函数定义域6. 右图是一个算法的流程图,则输出的a 的值是 ▲ . 【答案】9 【解析】试题分析:第一次循环:5,7a b ==,第二次循环:9,5a b ==, 此时a b >,循环结束,输出的a 的值是9,故答案应填:9. 学科&网 考点:循环结构流程图7. 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 ▲ . 【答案】56【解析】基本事件总数为36,点数之和小于10的基本事件共有30种,所以所求概率为305.366= 考点:古典概型8. 已知{n a }是等差数列,n S 是其前n 项和.若2123a a +=-,5S =10,则9a 的值是 ▲ .【答案】20【解析】由510S =得32a =,因此2922(2)33,23620.d d d a -+-=-⇒==+⨯=故 考点:等差数列的性质9. 定义在区间[0,3π]上的函数sin 2y x =的图象与cos y x =的图象的交点个数是 ▲ . 【答案】7考点:三角函数图象10. 如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b +=>>0 的右焦点,直线2by = 与椭圆交于B ,C 两点,且90BFC ∠=o ,则该椭圆的离心率是 ▲ . (第10题)【答案】3【解析】由题意得,),C(,),22b b B ,故BF⃗⃗⃗⃗⃗=(,)2b c -,CF ⃗⃗⃗⃗⃗=(,)2b c -,又90BFC ∠=o ,所以22222)()0322b c c a e -+=⇒=⇒= 考点:椭圆离心率11. 设()f x 是定义在R 上且周期为2的函数,在区间[1,1-)上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R若59()()22f f -= ,则(5)f a 的值是 ▲ . 【答案】25-【解析】51911123()()()()22222255f f f f a a -=-==⇒-+=-⇒=, 因此32(5)(3)(1)(1)1.55f a f f f ===-=-+=-考点:分段函数,周期性质12. 已知实数,x y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,,, 则22x y +的取值范围是 ▲ .【答案】4[,13]5考点:线性规划13. 如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4BC CA ⋅=u u u r u u u r ,1BF CF ⋅=-u u u r u u u r,则BE CE ⋅u u u r u u u r的值是 ▲ .【答案】78【解析】因为222211436=42244AD BC FD BC BA CA BC AD BC AD --⋅=---==u u u r u u u r u u u r u u u ru u u r u u u r u u u r u u u r u u u r u u u r g ()(),2211114123234FD BC BF CF BC AD BC AD -⋅=---==-u u u r u u u ru u u r u u u r u u u r u u u r u u u r u u u r g ()(),因此22513,82FD BC ==u u u r u u u r ,2222114167.22448ED BC FD BC BE CE BC ED BC ED --⋅=---===u u u r u u u r u u u r u u u ru u u r u u u r u u u r u u u r u u ur u u u r g ()() 考点:向量数量积14. 在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是 ▲ . 【答案】8考点:三角恒等变换,切的性质应用二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15. (本小题满分14分)在ABC △中,AC =6,4πcos .54B C ==, (1)求AB 的长; (2)求πcos(6A -)的值. 【答案】(1)52 726- 【解析】试题分析:(1)利用同角三角函数的基本关系求sin B , 再利用正弦定理求AB 的长;(2)利用诱导公式及两角和与差正余弦公式分别求sin ,cos A A ,然后求cos().6A π-考点:同角三角函数的基本关系、正余弦定理、两角和与差的正余弦公式 16. (本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .(第16题)【答案】(1)详见解析(2)详见解析 【解析】试题分析:(1)利用线面平行判定定理证明线面平行,而线线平行的寻找往往结合平面几何的知识,如中位线的性质等;(2)利用面面垂直判定定理证明,即从线面垂直出发给予证明,而线面垂直的证明,往往需要多次利用线面垂直性质定理与判定定理. 学科&网试题解析:证明:(1)在直三棱柱111ABC A B C -中,11A C ∥AC , 在三角形ABC 中,因为D ,E 分别为AB ,BC 的中点, 所以//DE AC ,于是11//DE AC ,又因为DE ⊄平面1111,AC F AC ⊂平面11AC F , 所以直线DE //平面11AC F .考点:直线与直线、直线与平面、平面与平面的位置关系 17. (本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1OO 是正四棱锥的高1PO 的4倍. (1)若16m,2m,AB PO ==则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m ,则当1PO 为多少时,仓库的容积最大?(第17题)【答案】(1)312(2)1PO =考点:函数的概念、导数的应用、棱柱和棱锥的体积 18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC=OA ,求直线l 的方程;(3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=u u r u u r u u u r,求实数t 的取值范围.(第18题)【答案】(1)22(6)(1)1x y -+-=(2):25215l y x y x =+=-或(3)22212221t -≤≤+所以()252555m +=+,解得m=5或m=-15.故直线l 的方程为2x-y+5=0或2x-y-15=0.考点:直线方程、圆的方程、直线与直线、直线与圆、圆与圆的位置关系、平面向量的运算 19. (本小题满分16分)已知函数()(0,0,1,1)xxf x a b a b a b =+>>≠≠. (1)设12,2a b ==.①求方程()f x =2的根;②若对任意x ∈R ,不等式(2)()6f x mf x ≥-恒成立,求实数m 的最大值;(2)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值. 【答案】(1)①0 ②4 (2)1 【解析】试题分析:(1)①根据指数间倒数关系转化为一元二次方程,求方程根;②根据指数间平方关系,将不等式转化为一元不等式,再利用变量分离转化为对应函数最值,最后根据基本不等式求最值;(2)根据导函数零点情况,确定函数单调变化趋势,结合图象确定唯一零点必在极值点取得,从而建立等量关系,求出ab 的值.(2)因为函数()()2g x f x =-只有1个零点,而0(0)(0)220g f a b =-=+-=, 所以0是函数()g x 的唯一零点.因为'()ln ln xxg x a a b b =+,又由01,1a b <<>知ln 0,ln 0a b <>, 所以'()0g x =有唯一解0ln log ()ln b aax b=-. 令'()()h x g x =,则''22()(ln ln )(ln )(ln )xxxxh x a a b b a a b b =+=+,从而对任意x R ∈,'()0h x >,所以'()()g x h x =是(,)-∞+∞上的单调增函数,于是当0(,)x x ∈-∞,''0()()0g x g x <=;当0(,)x x ∈+∞时,''0()()0g x g x >=.因而函数()g x 在0(,)x -∞上是单调减函数,在0(,)x +∞上是单调增函数. 下证00x =. 若00x <,则0002x x <<,于是0()(0)02xg g <=, 又log 2log 2log 2(log 2)220a a a a g ab a =+->-=,且函数()g x 在以2x 和log 2a 为端点的闭区间上的图象不间断,所以在02x 和log 2a 之间存在()g x 的零点,记为1x . 因为01a <<,所以log 20a <,又002x<,所以10x <与“0是函数()g x 的唯一零点”矛盾. 若00x >,同理可得,在2x 和log 2a 之间存在()g x 的非0的零点,矛盾.因此,00x =. 于是ln 1ln ab-=,故ln ln 0a b +=,所以1ab =. 考点:指数函数、基本不等式、利用导数研究函数单调性及零点 20. (本小题满分16分)记{}1,2,100U =…,.对数列{}()*n a n ∈N 和U的子集T ,若T =∅,定义0T S =;若{}12,,k T t t t =…,,定义12kT t t t S a a a =+++L .例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n ∈N 是公比为3的等比数列,且当{}=2,4T 时,=30T S .(1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,T k ⊆…,,求证:1T k S a +<; (3)设,,C D C U D U S S ⊆⊆≥,求证:2C C D D S S S +≥I . 【答案】(1)13n n a -=(2)详见解析(3)详见解析 考点:等比数列的通项公式、求和数学II (附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题........,并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4—1几何证明选讲](本小题满分10分)如图,在△ABC 中,∠ABC =90°,BD ⊥AC ,D 为垂足,E 是BC 的中点. 求证:∠EDC =∠ABD . 【答案】详见解析考点:相似三角形B. [选修4—2:矩阵与变换](本小题满分10分)已知矩阵12,02A⎡⎤=⎢⎥-⎣⎦矩阵B的逆矩阵111=202B-⎡⎤-⎢⎥⎢⎥⎣⎦,求矩阵AB.【答案】5 14 01⎡⎤⎢⎥⎢⎥-⎣⎦【解析】试题分析:先求逆矩阵的逆:11412B⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,再根据矩阵运算求矩阵AB.考点:逆矩阵,矩阵乘法C.[选修4—4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy中,已知直线l的参数方程为11,23x ty⎧=+⎪⎪⎨⎪=⎪⎩(t为参数),椭圆C的参数方程为cos,2sinxyθθ=⎧⎨=⎩(θ为参数).设直线l与椭圆C相交于A,B两点,求线段AB的长.【答案】16 7【解析】试题分析:将参数方程化为普通方程,再根据弦长公式或两点间距离公式求弦长.试题解析:解:椭圆C 的普通方程为2214y x +=,将直线l 的参数方程11232x t y ⎧=+⎪⎪⎨⎪=⎪⎩,代入2214y x +=,得223()12(1)124t ++=,即27160t t +=,解得10t =,2167t =-. 所以1216||7AB t t =-=. 考点:直线与椭圆的参数方程D .[选修4—5:不等式选讲](本小题满分10分)设a >0,|x -1|<3a ,|y -2|<3a ,求证:|2x +y -4|<a . 【答案】详见解析考点:含绝对值的不等式证明【必做题】第22题、第23题,每题10分,共计20分. 请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤.22. (本小题满分10分)如图,在平面直角坐标系xOy 中,已知直线l :x -y -2=0,抛物线C :y 2=2px (p >0).(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程;(2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q .①求证:线段PQ 的中点坐标为(2,)p p --;②求p 的取值范围.【答案】(1)x y 82=(2)①详见解析,②)34,0(【解析】试题分析:(1)先确定抛物线焦点,再将点代入直线方程;(2)①利用抛物线点之间关系进行化简,结合中点坐标公式求证,②利用直线与抛物线位置关系确定数量关系:0)44(4422>--=∆p p p ,解出p 的取值范围.试题解析:解:(1)抛物线2:y 2(0)C px p =>的焦点为(,0)2p 由点(,0)2p在直线:20l x y --=上,得0202p --=,即 4.p =所以抛物线C 的方程为28.y x = 考点:直线与抛物线位置关系23. (本小题满分10分)(1)求3467–47C C 的值;(2)设m ,n ∈N *,n ≥m ,求证:(m +1)C m m +(m +2)+1C m m +(m +3)+2C m m +…+n –1C m n +(n +1)C m n =(m +1)+2+2C m n .【答案】(1)0(2)详见解析 考点:组合数及其性质学科网高考一轮复习微课视频手机观看地址:。
江苏省苏锡常镇四市2025届高三第一次模拟考试数学试卷含解析
江苏省苏锡常镇四市2025届高三第一次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知等差数列{}n a 中,27a =,415a =,则数列{}n a 的前10项和10S =( )A .100B .210C .380D .4002.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为1r ,大圆柱底面半径为2r ,如图1放置容器时,液面以上空余部分的高为1h ,如图2放置容器时,液面以上空余部分的高为2h ,则12h h =( )A .21r rB .212r r ⎛⎫ ⎪⎝⎭C .321r r ⎛⎫ ⎪⎝⎭D .21r r 3.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是( )A .甲B .乙C .丙D .丁4.已知x ,y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是( )A .4B .34C .211D .14 5.函数的图象可能是下列哪一个?( )A .B .C .D .6.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是( ).A .与2016年相比,2019年不上线的人数有所增加B .与2016年相比,2019年一本达线人数减少C .与2016年相比,2019年二本达线人数增加了0.3倍D .2016年与2019年艺体达线人数相同7.已知函数()()f x x R ∈满足(1)1f =,且()1f x '<,则不等式()22lg lg f x x <的解集为( ) A .10,10⎛⎫ ⎪⎝⎭ B .10,10,10 C .1,1010⎛⎫ ⎪⎝⎭D .()10,+∞ 8.已知函数()sin(2)4f x x π=-的图象向左平移(0)ϕϕ>个单位后得到函数()sin(2)4g x x π=+的图象,则ϕ的最小值为( )A .4πB .38πC .2πD .58π 9.已知集合{}|26M x x =-<<,{}2|3log 35N x x =-<<,则MN =( ) A .{}2|2log 35x x -<<B .{}2|3log 35x x -<<C .{}|36x x -<<D .{}2|log 356x x << 10.已知(2sin ,cos ),(3cos ,2cos )2222x x x x a b ωωωω==,函数()f x a b =·在区间4[0,]3π上恰有3个极值点,则正实数ω的取值范围为( )A .85[,)52 B .75[,)42 C .57[,)34 D .7(,2]411.若双曲线C :221x y m-=的一条渐近线方程为320x y +=,则m =( ) A .49 B .94 C .23 D .3212.函数ln ||()xx x f x e =的大致图象为( ) A . B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
(江苏专用)高考数学总复习 专题1.1 集合试题(含解析)-人教版高三全册数学试题
专题1.1 集合【三年高考】1.【2017高考某某1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ . 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】集合的运算、元素的互异性【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误. (3)防X 空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.2.【2016高考某某1】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B . 【答案】{}1,2- 【解析】 试题分析:{}{}{}1,2,3,6231,2AB x x =--<<=-.故答案应填:{}1,2-【考点】集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难度不大.一要注意培养良好的答题习惯,避免出现粗心而出错,二是明确某某高考对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解.2.【2015高考某某1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 【答案】5【解析】{123}{245}{12345}A B ==,,,,,,,,,,,则集合B A 中元素的个数为5个. 【考点定位】集合运算3.【2014某某1】已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂=. 【答案】{1,3}- 【解析】由题意得{1,3}AB =-.4.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=。
2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)
2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。
专题基本不等式常见题型归纳(教师版)
专题函数常见题型归纳三个不等式关系:(1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R +,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2,当且仅当a =b 时取等号.上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系.其中,基本不等式及其变形:a ,b ∈R +,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值.利用基本不等式求最值:一正、二定、三等号. 【题型一】利用拼凑法构造不等关系【典例1】(扬州市2015—2016学年度第一学期期末·11)已知1>>b a 且7log 3log 2=+a b b a ,则112-+b a 的最小值为 .【解析】∵1>>b a 且7log 3log 2=+a b b a ∴32log 7log a a b b +=,解得1log 2a b =或log 3a b =,∵1>>b a ∴1log 2a b =,即2a b =.2111111a ab a +=-++--13≥=. 练习:1.(南京市、盐城市2015届高三年级第一次模拟·10)若实数满足,且,则的最小值为 .解析:由log 2x+log 2y=1可得log 2xy=1=log 22,则有xy=2,那么==(x-y )+≥2=4,当且仅当(x -y )=,即x=+1,y=-1,x y 0x y >>22log log 1x y +=22x y x y+-y x y x -+22yx xyy x -+-2)(2y x -4y x y x -⋅-4)(yx -433时等号成立,故的最小值为4.2.(苏北四市(徐州、淮安、连云港、宿迁)2017届高三上学期期末)若实数,x y 满足133(0)2xy x x +=<<,则313x y +-的最小值为 . 3.(无锡市2017届高三上学期期末)已知0,0,2a b c >>>,且2a b +=,则2ac c c b ab +-+的最小值为 . 【典例2】(南京市2015届高三年级第三次模拟·12)已知x ,y 为正实数,则4x 4x +y +yx +y 的最大值为 .解析:由于4x 4x +y +y x +y =))(4()4()(4y x y x y x y y x x +++++=22225484y xy x y xy x ++++ =1+22543y xy x xy ++=1+345x y y x ⋅++≤1+5423+⋅xy y x =43, 当且仅当4y x =xy,即y=2x 时等号成立. 【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________. 解析:由,a b R +∈,得223(),()4()1202a b ab a b a b a b +=++≤+-+-≥,解得6a b +≥(当且仅当a b =且3ab a b =++,即3a b ==时,取等号).变式:1.若,a b R +∈,且满足22a b a b +=+,则a b +的最大值为_________.解析:因为,a b R +∈,所以由22222()2a b a b a b a b a b ++=+⇒+=+≥,2()a b +-2()0a b +≤,解得02a b <+≤(当且仅当a b =且22a b a b +=+,即1a b ==时,取等号).2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______ 43.设R y x ∈,,1422=++xy y x ,则y x +2的最大值为_________10524.(苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中)已知正数a ,b 满足195a b+=,则ab 的最小值为 yx y x -+22【题型二】含条件的最值求法【典例4】(苏州市2017届高三上期末调研测试)已知正数y x ,满足1=+y x ,则1124+++y x 的最小值为 练习1.(江苏省镇江市高三数学期末·14)已知正数y x ,满足111=+yx ,则1914-+-y yx x 的最小值为 . 解析:对于正数x ,y ,由于x 1+y 1=1,则知x>1,y>1,那么14-x x +14-y y =(14-x x +14-y y )(1+1-x 1-y 1)=(14-x x +14-y y )(xx 1-+y y 1-)≥(x x x x 114-⋅-+yy y y 114-⋅-)2=25,当且仅当14-x x ·y y 1-=14-y y ·xx 1-时等号成立.2.(2013~2014学年度苏锡常镇四市高三教学情况调查(一)·11)已知正数满足,则的最小值为 . 解析:,当且仅当时,取等号.故答案为:9. 3.(南通市2015届高三第一次调研测试·12)已知函数(0)xy a b b =+>的图像经过点(1,3)P ,如下图所示,则411a b+-的最小值为 .,x y 22x y +=8x yxy+8181828145922x y x y x y xy y x y x y x ⎛⎫++⎛⎫=+=+⋅=+++≥+= ⎪ ⎪⎝⎭⎝⎭82x y y x=解析:由题可得a+b=3,且a>1,那么14-a +b 1=21(a -1+b )(14-a +b 1)=21(4+b a 1-+14-a b +1)≥21(2141-⋅-a b b a +5)=29,当且仅当b a 1-=14-a b时等号成立. 4.(江苏省苏北四市2015届高三第一次模拟考试·12)己知a ,b 为正数,且直线与直线 互相平行,则2a+3b 的最小值为________.【解析】由于直线ax+by -6=0与直线2x+(b -3)y+5=0互相平行,则有=,即3a+2b=ab ,那么2a+3b=(2a+3b )·=(2a+3b )(+)=++13≥2+13=25,当且仅当=,即a=b 时等号成立. 5.常数a ,b 和正变量x ,y 满足ab =16,ax +2b y =12.若x +2y 的最小值为64,则a b =________.答案:64;(考查基本不等式的应用). 6.已知正实数,a b 满足()()12122a b b b a a +=++,则ab 的最大值为 .答案:【题型三】代入消元法【典例5】(苏州市2016届高三调研测试·14)已知14ab =,,(0,1)a b ∈,则1211ab+--的最小值为 .解析:由14ab =得14a b = ,2221211424122711411451451a b b b b b b b b b b b +---+--=+==+---+--+- 令71b t -= 则2271494911141845142718427b t b b t t t t-+=+=-≥-+--+-+-当且仅当2t =即214等号成立. 60ax by +-=2(3)50x b y +-+=2a3-b b ab b a 23+b 3a2b a 6a b6a b b a 66⋅b a 6ab62练习1.(江苏省扬州市2015届高三上学期期末·12)设实数x,y满足x2+2xy-1=0,则x2+y2的最小值是.解析:由x2+2xy-1=0可得y=212xx-,那么x2+y2= x2+222(1)4xx-=54x2+214x-12≥21 212,当且仅当54x2=214x,即x4=15时等号成立.2.(苏州市2014届高三调研测试·13)已知正实数x,y满足,则x + y 的最小值为.解析:∵正实数x,y满足xy+2x+y=4,∴(0<x<2).∴x+y=x+==(x+1)+﹣3,当且仅当时取等号.∴x+y 的最小值为.故答案为:.3.(南通市2014届高三第三次调研测试·9)已知正实数,x y 满足(1)(1)16x y -+=,则x y +的最小值为 .解析:∵正实数x ,y 满足(x ﹣1)(y+1)=16,∴1116++=y x ,∴x+y=()8116121116=+⋅+≥+++y y y y ,当且仅当y=3,(x=5)时取等号.∴x+y 的最小值为8.故答案为:8.4.(扬州市2017届高三上学期期中)若2,0>>b a ,且3=+b a ,则使得214-+b a 取得最小值的实数a = 。
高考数学一模试卷 理(含解析)-人教版高三全册数学试题
2016年某某省某某实验中学高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在题目给出的四个选项中,只有一个选项是符合题目要求.1.设全集I=R,集合A={y|y=log3x,x>3},B={x|y=},则()A.A⊆BB.A∪B=AC.A∩B=∅D.A∩(∁I B)≠∅2.设i为虚数单位,则复数=()A.﹣4﹣3iB.﹣4+3iC.4+3iD.4﹣3i3.在△ABC中,角A,B,C所对边分别为a,b,c,且c=,B=45°则S=2,则b等于()A. B. C.25D.54.某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有()A.36种B.30种C.24种D.6种5.已知α、β、γ为互不重合的三个平面,命题p:若α⊥β,β⊥γ,则α∥γ;命题q:若α上不共线的三点到β的距离相等,则α∥β.对以上两个命题,下列结论中正确的是()A.命题“p且q”为真B.命题“p或¬q”为假C.命题“p或q”为假D.命题“¬p且¬q”为假6.如果实数x,y满足不等式组,目标函数z=kx﹣y的最大值为6,最小值为0,则实数k的值为()A.1B.2C.3D.47.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p≠0),发球次数为X,若X的数学期望EX>1.75,则p的取值X围是()A.(0,)B.(,1)C.(0,)D.(,1)8.把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥C﹣ABD的主视图与俯视图如图所示,则左视图的面积为()A. B. C. D.9.如图,在由x=0,y=0,x=及y=cosx围成区域内任取一点,则该点落在x=0,y=sinx及y=cosx围成的区域内(阴影部分)的概率为()A.1﹣B.﹣1C. D.3﹣210.若A,B,C是圆x2+y2=1上不同的三个点,O是圆心,且,存在实数λ,μ使得=,实数λ,μ的关系为()A.λ2+μ2=1B. C.λ•μ=1D.λ+μ=111.设数列{a n}的前n项和为S n,且a1=a2=1,{nS n+(n+2)a n}为等差数列,则a n=()A. B. C. D.12.定义区间[x1,x2]长度为x2﹣x1,(x2>x1),已知函数f(x)=(a∈R,a≠0)的定义域与值域都是[m,n],则区间[m,n]取最大长度时a的值为()A. B.a>1或a<﹣3C.a>1D.3二、填空题::本大题共4小题,每小题5分,共20分.13.如图是判断“实验数”的流程图,在[30,80]内的所有整数中,“实验数”的个数是.14.已知向量=(m,1),=(4﹣n,2),m>0,n>0,若∥,则+的最小值.15.双曲线C:的左右焦点分别为F1、F2,过F1的直线与双曲线左右两支分别交于A、B两点,若△ABF2是等边三角形,则双曲线C的离心率为.16.在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n 的值为.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,A,B,C所对的边分别为a,b,c,sin2+sinAsinB=.(1)求角C的大小;(2)若b=4,△ABC的面积为6,求边c的值.18.如图是某市2月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择2月1日至2月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气质量重度污染的概率;(2)设ξ是此人停留期间空气重度污染的天数,求ξ的分布列与数学期望.19.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2,AD=1,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A﹣PB﹣C的余弦值.20.如图,在平面直角坐标系xOy中,已知圆O:x2+y2=4,椭圆C:,A为椭圆右顶点.过原点O且异于坐标轴的直线与椭圆C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中.设直线AB,AC的斜率分别为k1,k2.(1)求k1k2的值;(2)记直线PQ,BC的斜率分别为k PQ,k BC,是否存在常数λ,使得k PQ=λk BC?若存在,求λ值;若不存在,说明理由;(3)求证:直线AC必过点Q.21.已知函数f(x)=alnx+1(a>0).(1)当a=1且x>1时,证明:f(x)>3﹣;(2)若对∀x∈(1,e),f(x)>x恒成立,某某数a的取值X围;(3)当a=时,证明: f(i)>2(n+1﹣).[选修4-1:几何证明选讲]22.如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(Ⅰ)求证:PM2=PA•PC;(Ⅱ)若⊙O的半径为2,OA=OM,求MN的长.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,直线l的参数方程为它与曲线C:(y ﹣2)2﹣x2=1交于A、B两点.(1)求|AB|的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣a|(a∈R)(1)当a=4时,求不等式f(x)≥5的解集;(2)若f(x)≥4对x∈R恒成立,求a的取值X围.2016年某某省某某实验中学高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在题目给出的四个选项中,只有一个选项是符合题目要求.1.设全集I=R,集合A={y|y=log3x,x>3},B={x|y=},则()A.A⊆BB.A∪B=AC.A∩B=∅D.A∩(∁I B)≠∅【考点】集合的包含关系判断及应用.【分析】根据对数函数的单调性便可解出A={x|x>1},利用被开方数大于等于0,求出B,从而找出正确选项.【解答】解:A={y|y=log3x,x>3}={y|y>1},B={x|y=}={x|x≥1},∴A⊆B,故选:A.2.设i为虚数单位,则复数=()A.﹣4﹣3iB.﹣4+3iC.4+3iD.4﹣3i【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则即可得出.【解答】解:原式==﹣4﹣3i,故选:A.3.在△ABC中,角A,B,C所对边分别为a,b,c,且c=,B=45°则S=2,则b等于()A. B. C.25D.5【考点】解三角形.【分析】由S==2,得a=1,再直接利用余弦定理求得b.【解答】解:由S===2,得a=1又由余弦定理得b2=a2+c2﹣2accosB=1+32﹣2×=25,所以b=5故选D4.某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有()A.36种B.30种C.24种D.6种【考点】计数原理的应用.【分析】先不考虑学生甲,乙不能同时参加同一学科竞赛,从4人中选出两个人作为一个元素,同其他两个元素在三个位置上排列,其中有不符合条件的,即甲乙两人在同一位置,去掉即可.【解答】解:从4人中选出两个人作为一个元素有C42种方法,同其他两个元素在三个位置上排列C42A33=36,其中有不符合条件的,即学生甲,乙同时参加同一学科竞赛有A33种结果,∴不同的参赛方案共有 36﹣6=30,故选:B5.已知α、β、γ为互不重合的三个平面,命题p:若α⊥β,β⊥γ,则α∥γ;命题q:若α上不共线的三点到β的距离相等,则α∥β.对以上两个命题,下列结论中正确的是()A.命题“p且q”为真B.命题“p或¬q”为假C.命题“p或q”为假D.命题“¬p且¬q”为假【考点】平面与平面之间的位置关系.【分析】根据平面平行的判断方法,我们对已知中的两个命题p,q进行判断,根据判断结合和复合命题真值表,我们对四个答案逐一进行判断,即可得到结论.【解答】解:∵当α⊥β,β⊥γ时,α与γ可能平行与可能垂直故命题p为假命题又∵若α上不共线的三点到β的距离相等时α与β可能平行也可能相交,故命题q也为假命题故命题“p且q”为假,命题“p或¬q”为真,命题“p或q”为假,命题“¬p且¬q”为真故选C6.如果实数x,y满足不等式组,目标函数z=kx﹣y的最大值为6,最小值为0,则实数k的值为()A.1B.2C.3D.4【考点】简单线性规划.【分析】首先作出其可行域,再由题意讨论目标函数在哪个点上取得最值,解出k.【解答】解:作出其平面区域如右图:A(1,2),B(1,﹣1),C(3,0),∵目标函数z=kx﹣y的最小值为0,∴目标函数z=kx﹣y的最小值可能在A或B时取得;∴①若在A上取得,则k﹣2=0,则k=2,此时,z=2x﹣y在C点有最大值,z=2×3﹣0=6,成立;②若在B上取得,则k+1=0,则k=﹣1,此时,z=﹣x﹣y,在B点取得的应是最大值,故不成立,故选B.7.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p≠0),发球次数为X,若X的数学期望EX>1.75,则p的取值X围是()A.(0,)B.(,1)C.(0,)D.(,1)【考点】相互独立事件的概率乘法公式;离散型随机变量的期望与方差.【分析】根据题意,首先求出X=1、2、3时的概率,进而可得EX的表达式,由题意EX>1.75,可得p2﹣3p+3>1.75,解可得p的X围,结合p的实际意义,对求得的X围可得答案.【解答】解:根据题意,学生发球次数为1即一次发球成功的概率为p,即P(X=1)=p,发球次数为2即二次发球成功的概率P(X=2)=p(1﹣p),发球次数为3的概率P(X=3)=(1﹣p)2,则Ex=p+2p(1﹣p)+3(1﹣p)2=p2﹣3p+3,依题意有EX>1.75,则p2﹣3p+3>1.75,解可得,p>或p<,结合p的实际意义,可得0<p<,即p∈(0,)故选C.8.把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥C﹣ABD的主视图与俯视图如图所示,则左视图的面积为()A. B. C. D.【考点】简单空间图形的三视图.【分析】画出几何体的图形,根据三视图的特征,推出左视图的形状,然后求解即可.【解答】解:在三棱锥C﹣ABD中,C在平面ABD上的射影为BD的中点,左视图的面积等于,故选:D.9.如图,在由x=0,y=0,x=及y=cosx围成区域内任取一点,则该点落在x=0,y=sinx及y=cosx围成的区域内(阴影部分)的概率为()A.1﹣B.﹣1C. D.3﹣2【考点】定积分在求面积中的应用;几何概型.【分析】根据积分的几何意义求出阴影部分的面积,利用几何概型的概率公式即可得到结论.【解答】解:由x=0,y=0,x=及y=cosx围成区域内围成的区域面积S==sinx|,由x=0,y=sinx及y=cosx围成的区域面积S==(sinx+cosx)|=,∴根据根据几何概型的概率公式可得所求的概率P=,故选:B.10.若A,B,C是圆x2+y2=1上不同的三个点,O是圆心,且,存在实数λ,μ使得=,实数λ,μ的关系为()A.λ2+μ2=1B. C.λ•μ=1D.λ+μ=1【考点】直线和圆的方程的应用;向量的共线定理;数量积判断两个平面向量的垂直关系.【分析】由A,B,C是圆x2+y2=1上不同的三个点,可得,又,所以对两边平方即可得到结论.【解答】解:∵,两边平方得:∵∴λ2+μ2=1故选A11.设数列{a n}的前n项和为S n,且a1=a2=1,{nS n+(n+2)a n}为等差数列,则a n=()A. B. C. D.【考点】数列递推式.【分析】设b n=nS n+(n+2)a n,由已知得b1=4,b2=8,从而b n=nS n+(n+2)a n=4n,进而得到是以为公比,1为首项的等比数列,由此能求出.【解答】解:设b n=nS n+(n+2)a n,∵数列{a n}的前n项和为S n,且a1=a2=1,∴b1=4,b2=8,∴b n=b1+(n﹣1)×(8﹣4)=4n,即b n=nS n+(n+2)a n=4n当n≥2时,∴,即,∴是以为公比,1为首项的等比数列,∴,∴.故选:A.12.定义区间[x1,x2]长度为x2﹣x1,(x2>x1),已知函数f(x)=(a∈R,a≠0)的定义域与值域都是[m,n],则区间[m,n]取最大长度时a的值为()A. B.a>1或a<﹣3C.a>1D.3【考点】函数的值域;函数的定义域及其求法.【分析】得出,故m,n是方程)=﹣=x的同号的相异实数根,即a2x2﹣(a2+a)x+1=0的同号的相异实数根得出mn=,只需△=a2(a+3)(a﹣1)>0,a>1或a<﹣3,利用函数求解n﹣m==,n﹣m取最大值为.此时a=3,【解答】解:设[m,n]是已知函数定义域的子集.x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数f(x)=﹣在[m,n]上单调递增,则,故m,n是方程)=﹣=x的同号的相异实数根,即a2x2﹣(a2+a)x+1=0的同号的相异实数根∵mn=∴m,n同号,只需△=a2(a+3)(a﹣1)>0,∴a>1或a<﹣3,n﹣m==,n﹣m取最大值为.此时a=3,故选:D二、填空题::本大题共4小题,每小题5分,共20分.13.如图是判断“实验数”的流程图,在[30,80]内的所有整数中,“实验数”的个数是12 .【考点】程序框图.【分析】从程序框图中得到实验数的定义,找出区间中被3整除的数;找出被12整除的数;找出不能被6整除的数得到答案.【解答】解:由程序框图知实验数是满足:能被3整除不能被6整除或能被12整除的数,在[30,80]内的所有整数中,所有的能被3整除数有:30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78共有17个数,在这17个数中能被12 整除的有36,48,60,72,共4个数,在这17个数中不能被6 整除的有33,39,45,51,57,63,69,75,共计8个数,所以在[30,80]内的所有整数中“试验数”的个数是12个.故答案为:12.14.已知向量=(m,1),=(4﹣n,2),m>0,n>0,若∥,则+的最小值\frac{9}{2} .【考点】基本不等式;平面向量共线(平行)的坐标表示.【分析】由∥,可得:n+2m=4.再利用“乘1法”与基本不等式的性质即可得出.【解答】解:∵∥,∴4﹣n﹣2m=0,即n+2m=4.∵m>0,n>0,∴+=(n+2m)=≥=,当且仅当n=4m=时取等号.∴+的最小值是.故答案为:.15.双曲线C:的左右焦点分别为F1、F2,过F1的直线与双曲线左右两支分别交于A、B两点,若△ABF2是等边三角形,则双曲线C的离心率为\sqrt{7} .【考点】双曲线的简单性质.【分析】根据双曲线的定义算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等边三角形得∠F1AF2=120°,利用余弦定理算出c=a,结合双曲线离心率公式即可算出双曲线C的离心率.【解答】解:根据双曲线的定义,可得|BF1|﹣|BF2|=2a,∵△ABF2是等边三角形,即|BF2|=|AB|∴|BF1|﹣|BF2|=2a,即|BF1|﹣|AB|=|AF1|=2a又∵|AF2|﹣|AF1|=2a,∴|AF2|=|AF1|+2a=4a,∵△AF1F2中,|AF1|=2a,|AF2|=4a,∠F1AF2=120°∴|F1F2|2=|AF1|2+|AF2|2﹣2|AF1|•|AF2|cos120°即4c2=4a2+16a2﹣2×2a×4a×(﹣)=28a2,解之得c=a,由此可得双曲线C的离心率e==故答案为:16.在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n 的值为12 .【考点】等比数列的前n项和;一元二次不等式的解法;数列的函数特性;等差数列的前n 项和.【分析】设正项等比数列{a n}首项为a1,公比为q,由题意可得关于这两个量的方程组,解之可得数列的通项公式和a1+a2+…+a n及a1a2…a n的表达式,化简可得关于n的不等式,解之可得n的X围,取上限的整数部分即可得答案.【解答】解:设正项等比数列{a n}首项为a1,公比为q,由题意可得,解之可得:a1=,q=2,故其通项公式为a n==2n﹣6.记T n=a1+a2+…+a n==,S n=a1a2…a n=2﹣5×2﹣4…×2n﹣6=2﹣5﹣4+…+n﹣6=.由题意可得T n>S n,即>,化简得:2n﹣1>,即2n﹣>1,因此只须n>,即n2﹣13n+10<0解得<n<,由于n为正整数,因此n最大为的整数部分,也就是12.故答案为:12三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,A,B,C所对的边分别为a,b,c,sin2+sinAsinB=.(1)求角C的大小;(2)若b=4,△A BC的面积为6,求边c的值.【考点】正弦定理;三角函数中的恒等变换应用.【分析】(1)利用降幂公式,两角和与差的余弦函数公式,三角形内角和定理,诱导公式化简已知等式,可求cosC的值,结合C的X围可求C的值.(2)利用三角形面积公式可求a的值,结合余弦定理即可求得c的值.【解答】解:(1)sin2+sinAsinB=.⇒,⇒,⇒,⇒,⇒,⇒,⇒,(2)∵,,∴,∵c2=a2+b2﹣2abcosC=10,∴.18.如图是某市2月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择2月1日至2月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气质量重度污染的概率;(2)设ξ是此人停留期间空气重度污染的天数,求ξ的分布列与数学期望.【考点】离散型随机变量的期望与方差;等可能事件的概率.【分析】(1)设A i表示事件“此人于2月i日到达该市”依题意知p(A i)=,设B为事件“此人到达当日空气质量重度污染”,则B=A1∪A2∪A3∪A7∪A12,由此能求出此人到达当日空气质量重度污染的概率.(2)由题意可知,ξ的所有可能取值为0,1,2,3,分别求出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),由此能求出ξ的分布列和ξ的期望.【解答】解:(1)设A i表示事件“此人于2月i日到达该市”(i=1,2,…,12).依题意知,p(A i)=,且A i∩A j=Φ(i≠j).设B为事件“此人到达当日空气质量重度污染”,则B=A1∪A2∪A3∪A7∪A12,所以P(B)=(A1∪A2∪A3∪A7∪A12)=P(A1)+P(A2)+P(A3)+P(A7)+P(A12)=.即此人到达当日空气质量重度污染的概率为.(2)由题意可知,ξ的所有可能取值为0,1,2,3,P(ξ=0)=P(A4∪A8∪A9)=P(A4)+P(A8)+P(A9)=,P(ξ=2)=P(A2∪A11)=P(A2)+P(A11)=,P(ξ=3)=P(A1∪A12)=P(A1)+P(A12)=,P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=2)﹣P(ξ=3)=1﹣=,∴ξ的分布列为:ξ0 1 2 3P故ξ的期望Eξ=.19.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2,AD=1,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A﹣PB﹣C的余弦值.【考点】用空间向量求平面间的夹角;直线与平面垂直的性质;二面角的平面角及求法.【分析】(1)由余弦定理得BD=,由勾股定理,得BD⊥AD,由线线面垂直得BD⊥PD,从而BD⊥平面PAD,由此能证明PA⊥BD.(2)以D为原点,DA为x轴,DB为y轴,DP为z轴,建立空间直角坐标系,分别求出平面APB的法向量和平面PBC的法向量,由此能求出二面角A﹣PB﹣C的余弦值.【解答】(1)证明:因为∠DAB=60°,AB=2,AD=1,由余弦定理得BD==,∴BD2+AD2=AB2,故BD⊥AD,∵PD⊥底面ABCD,BD⊂平面ABCD,∴BD⊥PD,又AD∩PD=D,∴BD⊥平面PAD,又PA⊂平面PAD,∴PA⊥BD.(2)解:以D为原点,DA为x轴,DB为y轴,DP为z轴,建立空间直角坐标系,由已知得A(1,0,0),P(0,0,1),B(0,,0),C(﹣1,,0),=(1,0,﹣1),=(0,,﹣1),=(﹣1,,﹣1),设平面APB的法向量=(x,y,z),则,取y=,得=(3,,3),设平面PBC的法向量=(a,b,c),则,取b=,得=(0,,3),设二面角A﹣PB﹣C的平面角为θ,由图象知θ为钝角,∴cosθ=﹣|cos<>|=﹣||=﹣||=﹣.∴二面角A﹣PB﹣C的余弦值为﹣.20.如图,在平面直角坐标系xOy中,已知圆O:x2+y2=4,椭圆C:,A为椭圆右顶点.过原点O且异于坐标轴的直线与椭圆C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中.设直线AB,AC的斜率分别为k1,k2.(1)求k1k2的值;(2)记直线PQ,BC的斜率分别为k PQ,k BC,是否存在常数λ,使得k PQ=λk BC?若存在,求λ值;若不存在,说明理由;(3)求证:直线AC必过点Q.【考点】椭圆的简单性质.【分析】(1)设B(x0,y0),则C(﹣x0,﹣y0),代入椭圆方程,运用直线的斜率公式,化简即可得到所求值;(2)联立直线AB的方程和圆方程,求得P的坐标;联立直线AB的方程和椭圆方程,求得B 的坐标,再求直线PQ,和直线BC的斜率,即可得到结论;(3)讨论直线PQ的斜率不存在和存在,联立直线PQ的方程和椭圆方程,求得Q的坐标,可得AQ的斜率,即可得证.【解答】解:(1)设B(x0,y0),则C(﹣x0,﹣y0),,所以;(2)联立得,解得,联立得,解得,所以,,所以,故存在常数,使得.(3)证明:当直线PQ与x轴垂直时,,则,所以直线AC必过点Q.当直线PQ与x轴不垂直时,直线PQ方程为:,联立,解得,所以,故直线AC必过点Q.21.已知函数f(x)=alnx+1(a>0).(1)当a=1且x>1时,证明:f(x)>3﹣;(2)若对∀x∈(1,e),f(x)>x恒成立,某某数a的取值X围;(3)当a=时,证明: f(i)>2(n+1﹣).【考点】导数在最大值、最小值问题中的应用.【分析】(1)当a=1且x>1时,构造函数m(x)=lnx+﹣2,利用函数单调性和导数之间的关系即可证明:f(x)>3﹣;(2)根据函数最值和函数导数之间的关系将不等式恒成立问题进行转化,某某数a的取值X 围;(3)根据函数的单调性的性质,利用放缩法即可证明不等式.【解答】(1)证明:要证f(x)>3﹣,即证lnx+﹣2>0,令m(x)=lnx+﹣2,则m'(x)=,∴m(x)在(1,+∞)单调递增,m(x)>m(1)=0,∴lnx+﹣2>0,即f(x)>3﹣成立.(2)解法一:由f(x)>x且x∈(1,e),可得a,令h(x)=,则h'(x)=,由(1)知lnx﹣1+>1+=,∴h'(x)>0函数,h(x)在(1,e)单调递增,当x∈(1,e)时,h(x)<h(e)=e﹣1,即a≥e﹣1.解法二:令h(x)=alnx+1﹣x,则h'(x)=,当a>e时,h'(x)>0,函数h(x)在(1,e)上是增函数,有h(x)>h(1)=0,当1<a≤e时,∵函数h(x)在(1,a)上递增,在(a,e)上递减,对∀x∈(1,e),f(x)>x恒成立,只需h(e)≥0,即a≥e﹣1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当a≤1时,函数h(x)在(1,e)上递减,对∀x∈(1,e),f(x)>x恒成立,只需h(e)≥0,而h(e)=a+1﹣e<0,不合题意,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综上得对∀x∈(1,e),f(x)>x恒成立,a≥e﹣1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣】【解法三:由f(x)>x且x∈(1,e)可得由于表示两点A(x,lnx),B(1,0)的连线斜率,由图象可知y=在(1,e)单调递减,故当x∈(1,e)时,,∴0,即a≥e﹣1.(3)当a=时,f(x)=,则f(i)=ln(n+1)!+n,要证f(i)>2(n+1﹣),即证lni>2n+4﹣4,由(1)可知ln(n+1)>2﹣,又n+2=(n+1)+1>2>,∴,∴ln(n+1)>2﹣,∴ln2+ln3+…+ln(n+1)=2n+4﹣4,故f(i)>2(n+1﹣).得证.[选修4-1:几何证明选讲]22.如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(Ⅰ)求证:PM2=PA•PC;(Ⅱ)若⊙O的半径为2,OA=OM,求MN的长.【考点】与圆有关的比例线段.【分析】(Ⅰ)做出辅助线连接ON,根据切线得到直角,根据垂直得到直角,即∠ONB+∠BNP=90°且∠OBN+∠BMO=90°,根据同角的余角相等,得到角的相等关系,得到结论.(Ⅱ)本题是一个求线段长度的问题,在解题时,应用相交弦定理,即BM•MN=CM•MA,代入所给的条件,得到要求线段的长.【解答】(Ⅰ)证明:连接ON,因为PN切⊙O于N,∴∠ONP=90°,∴∠ONB+∠BNP=90°∵OB=ON,∴∠OBN=∠ONB因为OB⊥AC于O,∴∠OBN+∠BMO=90°,故∠BNP=∠BMO=∠PMN,PM=PN∴PM2=PN2=PA•PC(Ⅱ)∵OM=2,BO=2,BM=4∵BM•MN=CM•MA=(2+2)(2﹣2)(2﹣2)=8,∴MN=2[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,直线l的参数方程为它与曲线C:(y ﹣2)2﹣x2=1交于A、B两点.(1)求|AB|的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.【考点】直线的参数方程;点到直线的距离公式;柱坐标刻画点的位置.【分析】(Ⅰ)把直线的参数方程对应的坐标代入曲线方程并化简得 7t2﹣12t﹣5=0,求出t1+t2和t1•t2,根据|AB|=•|t1﹣t2|=5,运算求得结果.(Ⅱ)根据中点坐标的性质可得AB中点M对应的参数为=.由t的几何意义可得点P到M的距离为|PM|=•||,运算求得结果.【解答】解:(Ⅰ)把直线的参数方程对应的坐标代入曲线方程并化简得 7t2﹣12t﹣5=0,设A,B对应的参数分别为 t1和t2,则 t1+t2=,t1•t2 =﹣.所以|AB|=•|t1﹣t2|=5 =.(Ⅱ)易得点P在平面直角坐标系下的坐标为(﹣2,2),根据中点坐标的性质可得AB中点M对应的参数为=.所以由t的几何意义可得点P到M的距离为|PM|=•||=.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣a|(a∈R)(1)当a=4时,求不等式f(x)≥5的解集;(2)若f(x)≥4对x∈R恒成立,求a的取值X围.【考点】带绝对值的函数;绝对值不等式.【分析】(Ⅰ)不等式即|x﹣1|+|x﹣4|≥5,等价于,或,或,分别求出每个不等式组的解集,再取并集即得所求.(Ⅱ)因为f(x)=|x﹣1|+|x﹣a|≥|a﹣1|,由题意可得|a﹣1|≥4,与偶此解得 a的值.【解答】解:(Ⅰ)当a=4时,不等式f(x)≥5,即|x﹣1|+|x﹣4|≥5,等价于,,或,或.解得:x≤0或x≥5.故不等式f(x)≥5的解集为{x|x≤0,或x≥5 }.…(Ⅱ)因为f(x)=|x﹣1|+|x﹣a|≥|(x﹣1)﹣(x﹣a)|=|a﹣1|.(当x=1时等号成立)所以:f(x)min=|a﹣1|.…由题意得:|a﹣1|≥4,解得a≤﹣3,或a≥5.…。
2016年江苏省高考数学试卷(含详细答案解析)
2016年江苏省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B=.2.(5分)复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是.3.(5分)在平面直角坐标系xOy中,双曲线﹣=1的焦距是.4.(5分)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是.5.(5分)函数y=的定义域是.6.(5分)如图是一个算法的流程图,则输出的a的值是.7.(5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.8.(5分)已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是.9.(5分)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.10.(5分)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.11.(5分)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f (x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是.12.(5分)已知实数x,y满足,则x2+y2的取值范围是.13.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.14.(5分)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.二、解答题(共6小题,满分90分)15.(14分)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.17.(14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?18.(16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.19.(16分)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.20.(16分)记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.B.【选修4—2:矩阵与变换】22.(10分)已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.C.【选修4—4:坐标系与参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.24.设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.附加题【必做题】25.(10分)如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值范围.26.(10分)(1)求7C﹣4C的值;(2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.2016年江苏省高考数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B={﹣1,2} .【分析】根据已知中集合A={﹣1,2,3,6},B={x|﹣2<x<3},结合集合交集的定义可得答案.【解答】解:∵集合A={﹣1,2,3,6},B={x|﹣2<x<3},∴A∩B={﹣1,2},故答案为:{﹣1,2}【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是5.【分析】利用复数的运算法则即可得出.【解答】解:z=(1+2i)(3﹣i)=5+5i,则z的实部是5,故答案为:5.【点评】本题考查了复数的运算性质,考查了推理能力与计算能力,属于基础题.3.(5分)在平面直角坐标系xOy中,双曲线﹣=1的焦距是2.【分析】确定双曲线的几何量,即可求出双曲线﹣=1的焦距.【解答】解:双曲线﹣=1中,a=,b=,∴c==,∴双曲线﹣=1的焦距是2.故答案为:2.【点评】本题重点考查了双曲线的简单几何性质,考查学生的计算能力,比较基础.4.(5分)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是0.1.【分析】先求出数据4.7,4.8,5.1,5.4,5.5的平均数,由此能求出该组数据的方差.【解答】解:∵数据4.7,4.8,5.1,5.4,5.5的平均数为:=(4.7+4.8+5.1+5.4+5.5)=5.1,∴该组数据的方差:S2=[(4.7﹣5.1)2+(4.8﹣5.1)2+(5.1﹣5.1)2+(5.4﹣5.1)2+(5.5﹣5.1)2]=0.1.故答案为:0.1.【点评】本题考查方差的求法,是基础题,解题时要认真审题,注意方差计算公式的合理运用.5.(5分)函数y=的定义域是[﹣3,1] .【分析】根据被开方数不小于0,构造不等式,解得答案.【解答】解:由3﹣2x﹣x2≥0得:x2+2x﹣3≤0,解得:x∈[﹣3,1],故答案为:[﹣3,1]【点评】本题考查的知识点是函数的定义域,二次不等式的解法,难度不大,属于基础题.6.(5分)如图是一个算法的流程图,则输出的a的值是9.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,可得答案.【解答】解:当a=1,b=9时,不满足a>b,故a=5,b=7,当a=5,b=7时,不满足a>b,故a=9,b=5当a=9,b=5时,满足a>b,故输出的a值为9,故答案为:9【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.7.(5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.【分析】出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,由此利用对立事件概率计算公式能求出出现向上的点数之和小于10的概率.【解答】解:将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,基本事件总数为n=6×6=36,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共6个,∴出现向上的点数之和小于10的概率:p=1﹣=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.8.(5分)已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是20.【分析】利用等差数列的通项公式和前n项和公式列出方程组,求出首项和公差,由此能求出a9的值.【解答】解:∵{a n}是等差数列,S n是其前n项和,a1+a22=﹣3,S5=10,∴,解得a1=﹣4,d=3,∴a9=﹣4+8×3=20.故答案为:20.【点评】本题考查等差数列的第9项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.9.(5分)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7.【分析】法1:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象即可得到答案;法2:由sin2x=cosx,即cosx(2sinx﹣1)=0,可得cosx=0或sinx=,结合题意,解之即可.【解答】解:法1:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.法2:依题意,sin2x=cosx,即cosx(2sinx﹣1)=0,故cosx=0或sinx=,因为x∈[0,3π],故x=,,,,,,,共7个,故答案为:7.【点评】本题考查正弦函数与余弦函数的图象,作出函数y=sin2x与y=cosx在区间[0,3π]上的图象是关键,属于中档题.10.(5分)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.【分析】设右焦点F(c,0),将y=代入椭圆方程求得B,C的坐标,运用两直线垂直的条件:斜率之积为﹣1,结合离心率公式,计算即可得到所求值.方法二、运用向量的数量积的性质,向量垂直的条件:数量积为0,结合离心率公式计算即可得到所求.【解答】解:设右焦点F(c,0),将y=代入椭圆方程可得x=±a=±a,可得B(﹣a,),C(a,),由∠BFC=90°,可得k BF•k CF=﹣1,即有•=﹣1,化简为b2=3a2﹣4c2,由b2=a2﹣c2,即有3c2=2a2,由e=,可得e2==,可得e=,另解:设右焦点F(c,0),将y=代入椭圆方程可得x=±a=±a,可得B(﹣a,),C(a,),=(﹣a﹣c,),=(a﹣c,),•=0,则c2﹣a2十b2=0,因为b2=a2﹣c2,代入得3c2=2a2,由e=,可得e2==,可得e=.故答案为:.【点评】本题考查椭圆的离心率的求法,注意运用两直线垂直的条件:斜率之积为﹣1,考查化简整理的运算能力,属于中档题.11.(5分)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f (x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是﹣.【分析】根据已知中函数的周期性,结合f(﹣)=f(),可得a值,进而得到f(5a)的值.【解答】解:f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,∴f(﹣)=f(﹣)=﹣+a,f()=f()=|﹣|=,∴a=,∴f(5a)=f(3)=f(﹣1)=﹣1+=﹣,故答案为:﹣【点评】本题考查的知识点是分段函数的应用,函数的周期性,根据已知求出a 值,是解答的关键.12.(5分)已知实数x,y满足,则x2+y2的取值范围是[,13] .【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合两点间的距离公式以及点到直线的距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域,设z=x2+y2,则z的几何意义是区域内的点到原点距离的平方,由图象知A到原点的距离最大,点O到直线BC:2x+y﹣2=0的距离最小,由得,即A(2,3),此时z=22+32=4+9=13,点O到直线BC:2x+y﹣2=0的距离d==,则z=d2=()2=,故z的取值范围是[,13],故答案为:[,13].【点评】本题主要考查线性规划的应用,涉及距离的计算,利用数形结合是解决本题的关键.13.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.【分析】由已知可得=+,=﹣+,=+3,=﹣+3,=+2,=﹣+2,结合已知求出2=,2=,可得答案.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:【点评】本题考查的知识是平面向量的数量积运算,平面向量的线性运算,难度中档.14.(5分)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是8.【分析】结合三角形关系和式子sinA=2sinBsinC可推出sinBcosC+cosBsinC=2sinBsinC,进而得到tanB+tanC=2tanBtanC,结合函数特性可求得最小值.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC,sinBcosC十cosBsinC=2sinBcosC,两边同除以cosBcosC,tanB十tanC=2tanBtanC,∵﹣tanA=tan(B十C)=,∴tanAtanBtanC=tanA十tanB十tanC,∴tanAtanBtanC=tanA十2tanBtanC≥2,令tanAtanBtanC=x>0,即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8.当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C 均为锐角.【点评】本题考查了三角恒等式的变化技巧和函数单调性知识,有一定灵活性.二、解答题(共6小题,满分90分)15.(14分)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【分析】(1)利用正弦定理,即可求AB的长;(2)求出cosA、sinA,利用两角差的余弦公式求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cosB=,B∈(0,π),∴sinB=,∵,∴AB==5;(2)cosA═﹣cos(π﹣A)=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.∵A为三角形的内角,∴sinA=,∴cos(A﹣)=cosA+sinA=.【点评】本题考查正弦定理,考查两角和差的余弦公式,考查学生的计算能力,属于基础题.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.【分析】(1)通过证明DE∥AC,进而DE∥A1C1,据此可得直线DE∥平面A1C1F1;(2)通过证明A1F⊥DE结合题目已知条件A1F⊥B1D,进而可得平面B1DE⊥平面A1C1F.【解答】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC﹣A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)在ABC﹣A1B1C1的直棱柱中,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.【点评】本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难度不大.17.(14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?【分析】(1)由正四棱柱的高O1O是正四棱锥的高PO1的4倍,可得PO1=2m时,O1O=8m,进而可得仓库的容积;(2)设PO1=xm,则O1O=4xm,A1O1=m,A1B1=•m,代入体积公式,求出容积的表达式,利用导数法,可得最大值.【解答】解:(1)∵PO1=2m,正四棱柱的高O1O是正四棱锥的高PO1的4倍.∴O1O=8m,答:仓库的容积V=×62×2+62×8=312m3,(2)若正四棱锥的侧棱长为6m,设PO1=xm,则O1O=4xm,A1O1=m,A1B1=•m,则仓库的容积V=×(•)2•x+(•)2•4x=x3+312x,(0<x<6),∴V′=﹣26x2+312,(0<x<6),当0<x<2时,V′>0,V(x)单调递增;当2<x<6时,V′<0,V(x)单调递减;故当x=2时,V(x)取最大值;答:当PO1=2m时,仓库的容积最大.【点评】本题考查的知识点是棱锥和棱柱的体积,导数法求函数的最大值,难度中档.18.(16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.【分析】(1)设N(6,n),则圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,从而得到|7﹣n|=|n|+5,由此能求出圆N的标准方程.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d=,由此能求出直线l的方程.(3)=,即||=,又||≤10,得t∈[2﹣2,2+2],对于任意t∈[2﹣2,2+2],欲使,只需要作直线TA的平行线,使圆心到直线的距离为,由此能求出实数t的取值范围.【解答】解:(1)∵N在直线x=6上,∴设N(6,n),∵圆N与x轴相切,∴圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,又圆N与圆M外切,圆M:x2+y2﹣12x﹣14y+60=0,即圆M:(x﹣6)2+(x﹣7)2=25,∴|7﹣n|=|n|+5,解得n=1,∴圆N的标准方程为(x﹣6)2+(y﹣1)2=1.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d==,则|BC|=2=2,BC=2,即2=2,解得b=5或b=﹣15,∴直线l的方程为:y=2x+5或y=2x﹣15.(3)设P(x1,y1),Q(x2,y2),∵A(2,4),T(t,0),,∴,①∵点Q在圆M上,∴(x2﹣6)2+(y2﹣7)2=25,②将①代入②,得(x1﹣t﹣4)2+(y1﹣3)2=25,∴点P(x1,y1)即在圆M上,又在圆[x﹣(t+4)]2+(y﹣3)2=25上,从而圆(x﹣6)2+(y﹣7)2=25与圆[x﹣(t+4)]2+(y﹣3)2=25有公共点,∴5﹣5≤≤5+5.解得2﹣2≤t,∴实数t的取值范围是[2﹣2,2+2].【点评】本题考查圆的标准方程的求法,考查直线方程的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用.19.(16分)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.【分析】(1)①利用方程,直接求解即可.②列出不等式,利用二次函数的性质以及函数的最值,转化求解即可.(2)求出g(x)=f(x)﹣2=a x+b x﹣2,求出函数的导数,构造函数h(x)=+,求出g(x)的最小值为:g(x0).①若g(x0)<0,g(x)至少有两个零点,与条件矛盾.②若g(x0)>0,利用函数g(x)=f(x)﹣2有且只有1个零点,推出g(x0)=0,然后求解ab=1.【解答】解:函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①方程f(x)=2;即:=2,y=2x在R上单调,可得x=0.②不等式f(2x)≥mf(x)﹣6恒成立,即≥m()﹣6恒成立.令t=,t≥2.不等式化为:t2﹣mt+4≥0在t≥2时,恒成立.可得:△≤0或即:m2﹣16≤0或m≤4,∴m∈(﹣∞,4].实数m的最大值为:4.(2)g(x)=f(x)﹣2=a x+b x﹣2,g′(x)=a x lna+b x lnb=a x[+]lnb,0<a<1,b>1可得,令h(x)=+,则h(x)是递增函数,而,lna<0,lnb>0,因此,x0=时,h(x0)=0,因此x∈(﹣∞,x0)时,h(x)<0,a x lnb>0,则g′(x)<0.x∈(x0,+∞)时,h(x)>0,a x lnb>0,则g′(x)>0,则g(x)在(﹣∞,x0)递减,(x0,+∞)递增,因此g(x)的最小值为:g(x0).①若g(x0)<0,x<log a2时,a x>=2,b x>0,则g(x)>0,因此x1<log a2,且x1<x0时,g(x1)>0,因此g(x)在(x1,x0)有零点,则g(x)至少有两个零点,与条件矛盾.②若g(x0)≥0,函数g(x)=f(x)﹣2有且只有1个零点,g(x)的最小值为g(x0),可得g(x0)=0,由g(0)=a0+b0﹣2=0,因此x0=0,因此=0,﹣=1,即lna+lnb=0,ln(ab)=0,则ab=1.可得ab=1.【点评】本题考查函数与方程的综合应用,函数的导数的应用,基本不等式的应用,函数恒成立的应用,考查分析问题解决问题的能力.20.(16分)记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.【分析】(1)根据题意,由S T的定义,分析可得S T=a2+a4=a2+9a2=30,计算可得a2=3,进而可得a1的值,由等比数列通项公式即可得答案;(2)根据题意,由S T的定义,分析可得S T≤a1+a2+…a k=1+3+32+…+3k﹣1,由等比数列的前n项和公式计算可得证明;(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,进而分析可以将原命题转化为证明S C≥2S B,分2种情况进行讨论:①、若B=∅,②、若B≠∅,可以证明得到S A≥2S B,即可得证明.【解答】解:(1)等比数列{a n}中是公比为3的等比数列,则a4=3a3=9a2,当T={2,4}时,S T=a2+a4=a2+9a2=30,因此a2=3,从而a1==1,故a n=3n﹣1,(2)S T≤a1+a2+…a k=1+3+32+…+3k﹣1=<3k=a k+1,(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,分析可得S C=S A+S C∩D,S D=S B+S C∩D,则S C+S C∩D﹣2S D=S A﹣2S B,因此原命题的等价于证明S A≥2S B,由条件S C≥S D,可得S A≥S B,①、若B=∅,则S B=0,故S A≥2S B,②、若B≠∅,由S A≥S B可得A≠∅,设A中最大元素为l,B中最大元素为m,若m≥l+1,则其与S A<a1+1≤a m≤S B相矛盾,因为A∩B=∅,所以l≠m,则l≥m+1,S B≤a1+a2+…a m=1+3+32+…+3m﹣1=≤=,即S A≥2S B,综上所述,S A≥2S B,故S C+S C∩D≥2S D.【点评】本题考查数列的应用,涉及新定义的内容,解题的关键是正确理解题目中对于新定义的描述.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.【分析】依题意,知∠BDC=90°,∠EDC=∠C,利用∠C+∠DBC=∠ABD+∠DBC=90°,可得∠ABD=∠C,从而可证得结论.【解答】解:在△ABC中,由BD⊥AC可得∠BDC=90°,因为E为BC的中点,所以DE=CE=BC,则:∠EDC=∠C,由∠BDC=90°,可得∠C+∠DBC=90°,由∠ABC=90°,可得∠ABD+∠DBC=90°,因此∠ABD=∠C,而∠EDC=∠C,所以,∠EDC=∠ABD.【点评】本题考查三角形的性质应用,利用∠C+∠DBC=∠ABD+∠DBC=90°,证得∠ABD=∠C是关键,属于中档题.B.【选修4—2:矩阵与变换】22.(10分)已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.【分析】依题意,利用矩阵变换求得B=(B﹣1)﹣1==,再利用矩阵乘法的性质可求得答案.【解答】解:∵B﹣1=,∴B=(B﹣1)﹣1==,又A=,∴AB==.【点评】本题考查逆变换与逆矩阵,考查矩阵乘法的性质,属于中档题.C.【选修4—4:坐标系与参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.【分析】分别化直线与椭圆的参数方程为普通方程,然后联立方程组,求出直线与椭圆的交点坐标,代入两点间的距离公式求得答案.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.【点评】本题考查直线与椭圆的参数方程,考查了参数方程化普通方程,考查直线与椭圆位置关系的应用,是基础题.24.设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.【分析】运用绝对值不等式的性质:|a+b|≤|a|+|b|,结合不等式的基本性质,即可得证.【解答】证明:由a>0,|x﹣1|<,|y﹣2|<,根据绝对值不等式的性质,可得|2x+y﹣4|=|2(x﹣1)+(y﹣2)|≤2|x﹣1|+|y﹣2|<+=a,则|2x+y﹣4|<a成立.【点评】本题考查绝对值不等式的证明,注意运用绝对值不等式的性质,以及不等式的简单性质,考查运算能力,属于基础题.附加题【必做题】25.(10分)如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值范围.【分析】(1)求出抛物线的焦点坐标,然后求解抛物线方程.(2):①设点P(x1,y1),Q(x2,y2),通过抛物线方程,求解k PQ,通过P,Q 关于直线l对称,点的k PQ=﹣1,推出,PQ的中点在直线l上,推出=2﹣p,即可证明线段PQ的中点坐标为(2﹣p,﹣p);②利用线段PQ中点坐标(2﹣p,﹣p).推出,得到关于y2+2py+4p2﹣4p=0,有两个不相等的实数根,列出不等式即可求出p的范围.【解答】解:(1)∵l:x﹣y﹣2=0,∴l与x轴的交点坐标(2,0),即抛物线的焦点坐标(2,0).∴,∴抛物线C:y2=8x.(2)证明:①设点P(x1,y1),Q(x2,y2),则:,即:,k PQ==,又∵P,Q关于直线l对称,∴k PQ=﹣1,即y1+y2=﹣2p,∴,又PQ的中点在直线l上,∴==2﹣p,∴线段PQ的中点坐标为(2﹣p,﹣p);②因为Q中点坐标(2﹣p,﹣p).∴,即∴,即关于y2+2py+4p2﹣4p=0,有两个不相等的实数根,∴△>0,(2p)2﹣4(4p2﹣4p)>0,∴p∈.【点评】本题考查抛物线方程的求法,直线与抛物线的位置关系的应用,考查转化思想以及计算能力.26.(10分)(1)求7C﹣4C的值;(2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【分析】(1)由已知直接利用组合公式能求出7的值.(2)对任意m∈N*,当n=m时,验证等式成立;再假设n=k(k≥m)时命题成立,推导出当n=k+1时,命题也成立,由此利用数学归纳法能证明(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【解答】解:(1)7=﹣4×=7×20﹣4×35=0.证明:(2)对任意m∈N*,①当n=m时,左边=(m+1)=m+1,右边=(m+1)=m+1,等式成立.②假设n=k(k≥m)时命题成立,即(m+1)C+(m+2)C+(m+3)C+…+k+(k+1)=(m+1),当n=k+1时,左边=(m+1)+(m+2)+(m+3)++(k+1)+(k+2)=,右边=∵=(m+1)[﹣]=(m+1)×[k+3﹣(k﹣m+1)]=(k+2)=(k+2),∴=(m+1),∴左边=右边,∴n=k+1时,命题也成立,∴m,n∈N*,n≥m,(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【点评】本题考查组合数的计算与证明,是中档题,解题时要认真审题,注意组合数公式和数学归纳法的合理运用.。
2016江苏高考数学答案全解析!最后一题详解在这里!
2016江苏高考数学答案全解析!最后一题详解在这里!高考人生重大考试之一,别国没有的珍贵体验。
每个考试结束,都会有一瞬(可能不止)的挣扎——到底要不要对答案?对了,怕喜过头,错了,怕会难过。
小新温馨提示:考生们在查看今天的考试点评前,请一定要确认自己的心理承受能力足够强大!考完最后一门再回头看也是可以的!可以先收藏~新东方优能中学高中组第一时间做解析现场——那么,我们一起回到今天的试卷内容——数学篇今年江苏高考的数学试卷延续了2013年开始到现在的命题思路,着重考查学生对三基的运用,对重要知识点都进行了重点考查。
试题力求创新,虽然题目素材都是教材和平时的练习题,但又在原题的基础上进行了提炼、综合、改遍,赋予了它们一个全新的面貌。
使得考生看似似曾相识,但又要重新分析,才能解答。
填空题1前8题属于基础题,符合考前的猜测,送分题会把分数送到家;第9题到第12题属于中档难度的题,考生在读完题后会有思路,但是又需要仔细思考一下,才能求解出来;第13题考查向量问题,解题思路基本和平时课上的一样;最后第14题,考查形式于历年江苏高考一样,要求考生对三角公式非常熟练,考查以三角函数背景的不等式最值问题。
今年填空题应该在55分以上。
解答题215,16属于基础题,难度不大;17题应用题还是和历年考查形式一样,以图形为背景的最值问题,由于今年填空题没有考查空间几何题的体积问题,放在应用题中加以考查了;18题考查了直线与圆的位置关系,与填空的第10题椭圆的问题考查,符合江苏的惯例,填空和大题一题考查直线与圆,一题考查椭圆;19题考查函数与导数问题,第一问考查方程的解与函数恒成立问题,比较基础,第二问考查函数零点问题,难度较大,考查了指数型导数与指数函数图像与性质;第20题考查了数列中的子数列问题,前2问在理解题目基础上,难度不大,第3问难度较大,得分率应该和历年高考的最后一问接近。
今年江苏高考的数学试卷难度相对比较基础,平均分应该能突破100,这就要求考生在答题时注意细节,填空的第3题焦距要注意是,而不是,解答题的解题步骤要详细,特别是书写要清晰。
三年高考两年模拟高考数学专题汇编 第三章 导数及其应用2 文-人教版高三全册数学试题
第二节导数的应用A组三年高考真题(2016~2014年)1.(2016·某某,6)已知a是函数f(x)=x3-12x的极小值点,则a=( )A.-4B.-2C.4D.22.(2015·某某,9)设f(x)=x-sin x,则f(x)( )A.既是奇函数又是减函数B.既是奇函数又是增函数C.是有零点的减函数D.是没有零点的奇函数3.(2015·某某,10)函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是( )A.a>0,b<0,c>0,d>0B.a>0,b<0,c<0,d>0C.a<0,b<0,c>0,d>0D.a>0,b>0,c>0,d<04.(2014·新课标全国Ⅱ,11)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值X围是( )A.(-∞,-2] B.(-∞,-1]C.[2,+∞) D.[1,+∞)5.(2014·某某,9)若0<x1<x2<1,则( )A.e2x-e1x>ln x2-ln x1B.e2x-e1x<ln x2-ln x1C.x2e1x>x1e2x D.x2e1x<x1e2x6.(2014·新课标全国Ⅰ,12)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值X围是( )A.(2,+∞) B.(1,+∞)C.(-∞,-2) D.(-∞,-1)7.(2016·新课标全国卷Ⅱ,20)已知函数f(x)=(x+1)ln x-a(x-1).(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(2)若当x∈(1,+∞)时,f(x)>0,求a的取值X围.8.(2016·新课标全国Ⅲ,21)设函数f(x)=ln x-x+1.(1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x<x ;(3)设c >1,证明:当x ∈(0,1)时,1+(c -1)x >c x. 9.(2016·某某,20)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R . (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值.某某数a 的取值X 围.10.(2016·某某,21)设函数f (x )=ax 2-a -ln x ,g (x )=1x -e e x ,其中a ∈R ,e =2.718…为自然对数的底数. (1)讨论f (x )的单调性; (2)证明:当x >1时,g (x )>0;(3)确定a 的所有可能取值,使得f (x )>g (x )在区间(1,+∞)内恒成立. 11.(2016·,20)设函数f (x )=x 3+ax 2+bx +c . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值X 围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件. 12.(2015·新课标全国Ⅱ,21)已知f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值X 围. 13.(2015·新课标全国Ⅰ,21)设函数f (x )=e 2x-a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a.14.(2015·某某,22)已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间; (2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1). 15.(2015·某某,17)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米,以l 2,l 1所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数y =ax 2+b(其中a ,b 为常数)模型. (1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.16.(2015·某某,21)已知a >0,函数f (x )=a e xcos x (x ∈[0,+∞)).记x n 为f (x )的从小到大的第n (n ∈N *)个极值点. (1)证明:数列{f (x n )}是等比数列;(2)若对一切n ∈N *,x n ≤|f (x n )|恒成立,求a 的取值X 围.17.(2015·某某,20)设函数f (x )=(x +a )ln x ,g (x )=x 2e x . 已知曲线y =f (x ) 在点(1,f (1))处的切线与直线2x -y =0平行. (1)求a 的值;(2)是否存在自然数k ,使得方程f (x )=g (x )在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(3)设函数m (x )=min{f (x ),g (x )}(min{p ,q }表示p ,q 中的较小值),求m (x )的最大值. 18.(2015·某某,20)设函数f (x )=x 2+ax +b (a ,b ∈R ).(1)当b =a 24+1时,求函数f (x )在[-1,1]上的最小值g (a )的表达式;(2)已知函数f (x )在[-1,1]上存在零点,0≤b -2a ≤1,求b 的取值X 围. 19.(2015·某某,20)已知函数f (x )=4x -x 4,x ∈R . (1)求f (x )的单调区间;(2)设曲线y =f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y =g (x ), 求证:对于任意的实数x ,都有f (x )≤g (x );(3)若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-a3+134.20.(2015·某某,21)设a 为实数,函数f (x )=(x -a )2+|x -a |-a (a -1). (1)若f (0)≤1,求a 的取值X 围; (2)讨论f (x )的单调性;(3)当a ≥2时,讨论f (x )+4x在区间(0,+∞)内的零点个数.21.(2014·某某,20)设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 22.(2014·某某,21)已知函数f (x )=13x 3+x 2+ax +1(a ∈R ).(1)求函数f (x )的单调区间;(2)当a <0时,试讨论是否存在x 0∈⎝ ⎛⎭⎪⎫0,12∪⎝ ⎛⎭⎪⎫12,1,使得f (x 0)=f ⎝ ⎛⎭⎪⎫12. 23.(2014·某某,19)已知函数f (x )=x 2-23ax 3(a >0),x ∈R .(1)求f (x )的单调区间和极值;(2)若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1.求a 的取值X 围.24.(2014·某某,21)设函数f (x )=ln x +m x,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b)-f (a )b -a<1恒成立,求m 的取值X 围.25.(2014·新课标全国Ⅰ,21)设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1, f (1))处的切线斜率为0. (1) 求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值X 围.B 组 两年模拟精选(2016~2015年)1.(2016·某某某某第二次模拟)已知函数f (x )=x 2-2cos x ,则f (0),f ⎝ ⎛⎭⎪⎫-13,f ⎝ ⎛⎭⎪⎫25的大小关系是( )A.f (0)<f ⎝ ⎛⎭⎪⎫-13<f ⎝ ⎛⎭⎪⎫25B.f ⎝ ⎛⎭⎪⎫-13<f (0)<f ⎝ ⎛⎭⎪⎫25C.f ⎝ ⎛⎭⎪⎫25<f ⎝ ⎛⎭⎪⎫-13<f (0) D.f (0)<f ⎝ ⎛⎭⎪⎫25<f ⎝ ⎛⎭⎪⎫-13 2.(2016·某某师大附中检测)若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值X 围是( )A.⎝ ⎛⎦⎥⎤-∞,518B.(-∞,3]C.⎣⎢⎡⎭⎪⎫518,+∞ D.[3,+∞)3.(2016·某某某某第三次诊断模拟)设函数f (x )的导函数为f ′(x ),对任意x ∈R ,都有xf ′(x )<f (x )成立,则( )A.3f (2)>2f (3)B.3f (2)=2f (3)C.3f (2)<2f (3)D.3f (2)与2f (3)大小不确定4.(2016·某某某某诊断)若函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+1 (x ≤0),e ax (x >0)在[-2,2]上的最大值为2,则a 的取值X 围是( )A.⎣⎢⎡⎭⎪⎫12ln 2,+∞B.⎣⎢⎡⎦⎥⎤0,12ln 2C.(-∞,0]D.⎝ ⎛⎦⎥⎤-∞,12ln 25.(2015·某某省实验中学二诊)已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导函数f ′(x )<13,则f (x )<x 3+23的解集是( )A.{x |-1<x <1}B.{x |x <-1}C.{x |x <-1或x >1}D.{x |x >1}6.(2015·某某某某调研)若函数f (x )=x 3-3x 在(a ,6-a 2]上有极小值,则实数a 的取值X 围是( ) A.(-5,1)B.[-5,1)C.[-2,1)D.(-2,1)7.(2015·某某市十二县联考)若函数f (x )=13x 3-a 2x 2+(3-a )x +b 有三个不同的单调区间,则实数a 的取值X 围是________.8.(2015·某某某某三模)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值X 围为________.9.(2015·某某某某中学模拟)已知函数f (x )=x ln x ,g (x )=-x 2+ax -3,其中 a 为实数. (1)求函数f (x )在[t ,t +2]上的最小值;(2)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,某某数a 的取值X 围.答案精析A 组 三年高考真题(2016~2014年)1.解析 ∵f (x )=x 3-12x ,∴f ′(x )=3x 2-12, 令f ′(x )=0,则x 1=-2,x 2=2.当x ∈(-∞,-2),(2,+∞)时,f ′(x )>0,则f (x )单调递增; 当x ∈(-2,2)时,f ′(x )<0,则f (x )单调递减, ∴f (x )的极小值点为a =2. 答案 D2.解析 f (x )=x -sin x 的定义域为R ,关于原点对称, 且f (-x )=-x -sin(-x )=-x +sin x =-f (x ), 故f (x )为奇函数.又f ′(x )=1-sin x ≥0恒成立,所以f (x )在其定义域内为增函数,故选B. 答案 B3.解析 由已知f (0)=d >0,可排除D ;其导函数f ′(x )=3ax 2+2bx +c 且f ′(0)=c >0,可排除B ;又f ′(x )=0有两不等实根,且x 1x 2=c a>0,所以a >0.故选A. 答案 A4.解析 因为f (x )=kx -ln x ,所以f ′(x )=k -1x.因为f (x )在区间(1,+∞)上单调递增, 所以当x >1时,f ′(x )=k -1x≥0恒成立,即k ≥1x在区间(1,+∞)上恒成立.因为x >1,所以0<1x<1,所以k ≥1.故选D.答案 D5.解析 构造函数f (x )=e x -ln x ,则f ′(x )=e x -1x,故f (x )=e x-ln x 在(0,1)上有一个极值点,即f (x )=e x-ln x 在(0,1)上不是单调函数,无法判断f (x 1)与f (x 2)的大小,故A 、B 错;构造函数g (x )=e xx ,则g ′(x )=x e x-e xx 2=e x(x -1)x 2,故函数g (x )=exx在(0,1)上单调递减,故g (x 1)>g (x 2),x 2e x 1>x 1e x 2,故选C. 答案 C6. 解析 由题意知f ′(x )=3ax 2-6x =3x (ax -2),当a =0时,不满足题意. 当a ≠0时,令f ′(x )=0,解得x =0或x =2a,当a >0时,f (x )在(-∞,0),⎝ ⎛⎭⎪⎫2a,+∞上单调递增,在 ⎝⎛⎭⎪⎫0,2a 上单调递减.又f (0)=1,此时f (x )在(-∞,0)上存在零点,不满足题意;当a <0时,f (x )在⎝ ⎛⎭⎪⎫-∞,2a ,(0,+∞)上单调递减,在⎝ ⎛⎭⎪⎫2a ,0上单调递增,要使f (x )存在唯一的零点x 0,且x 0>0,则需f ⎝ ⎛⎭⎪⎫2a>0,即a ×⎝ ⎛⎭⎪⎫2a 3-3×⎝ ⎛⎭⎪⎫2a 2+1>0,解得a <-2,故选C. 答案 C7.解 (1)f (x )的定义域为(0,+∞),当a =4时,f (x )=(x +1)ln x -4(x -1),f ′(x )=ln x +1x-3,f ′(1)=-2,f (1)=0,曲线y =f (x )在(1,f (1))处的切线方程为2x +y-2=0.(2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a (x -1)x +1>0,设g (x )=ln x -a (x -1)x +1,则g ′(x )=1x -2a (x +1)2=x 2+2(1-a )x +1x (x +1)2,g (1)=0.(ⅰ)当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)单调递增,因此g (x )>0;(ⅱ)当a >2时,令g ′(x )=0得,x 1=a -1-(a -1)2-1,x 2=a -1+(a -1)2-1. 由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)单调递减,因此g (x )<0, 综上,a 的取值X 围是(-∞,2].8.(1)解 由题设,f (x )的定义域为(0,+∞),f ′(x )=1x-1,令f ′(x )=0解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减. (2)证明 由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1,即1<x -1ln x <x .(3)证明 由题设c >1,设g (x )=1+(c -1)x -c x,则g ′(x )=c -1-c xln c ,令g ′(x )=0,解得x 0=lnc -1ln cln c.当x <x 0时,g ′(x )>0,g (x )单调递增;当x >x 0时,g ′(x )<0,g (x )单调递减.由(2)知1<c -1ln c<c ,故0<x 0<1.又g (0)=g (1)=0,故当0<x <1时,g (x )>0. 所以当x ∈(0,1)时,1+(c -1)x >c x. 9.解 (1)由f ′(x )=ln x -2ax +2a .可得g (x )=ln x -2ax +2a ,x ∈(0,+∞), 则g ′(x )=1x -2a =1-2axx.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增; 当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0时,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减. 所以当a ≤0时,g (x )的单调递增区间为(0,+∞);当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0. ①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减, 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增, 所以f (x )在x =1处取得极小值,不合题意.②当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增.可得当x ∈(0,1)时,f ′(x )<0,x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减.所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意. ④当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增, 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 所以f (x )在x =1处取极大值,合题意 .综上可知,实数a 的取值X 围为⎝ ⎛⎭⎪⎫12,+∞.10.(1)解 f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0有x =12a .当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增.(2)证明 令s (x )=ex -1-x ,则s ′(x )=ex -1-1.当x >1时,s ′(x )>0,所以e x -1>x ,从而g (x )=1x -1ex -1>0.(3)解 由(2)知,当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1,由(1)有f ⎝ ⎛⎭⎪⎫12a <f (1)=0,而g ⎝ ⎛⎭⎪⎫12a >0.所以f (x )>g (x )在区间(1,+∞)内不恒成立; 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1),当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x2>0. 因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞.11.(1)解 由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b ,切线斜率k =f ′(0)=b . 又f (0)=c ,所以切点坐标为(0,c ).所以所求切线方程为y -c =b (x -0),即bx -y +c =0. (2)解 由a =b =4得f (x )=x 3+4x 2+4x +c ∴f ′(x )=3x 2+8x +4=(3x +2)(x +2) 令f ′(x )=0,得(3x +2)(x +2)=0,解得x =-2或x =-23,f ′(x ),f (x )随x 的变化情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-∞,-2),x 2∈⎝ ⎛⎭⎪⎫-2,-23,x 3∈⎝ ⎛⎭⎪⎫-23,+∞,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎝ ⎛⎭⎪⎫0,3227时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)证明 当Δ=4a 2-12b <0时,即a 2-3b <0,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增, 所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0, 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点, 所以a 2-3b >0不是f (x )有三个不同零点的充分条件. 因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件. 12.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a>2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值X 围是(0,1).13.(1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x-a x(x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点. 当a >0时,因为e 2x单调递增,-a x单调递增, 所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0,故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1)可设f ′(x )在(0,+∞)的唯一零点为x 0, 当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0. 故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x =x 0时,f (x )取得最小值,最小值为f (x 0).由于2e2x 0-a x 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a.故当a >0时,f (x )≥2a +a ln 2a.14.解 (1)f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞).由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0.解得0<x <1+52. 故f (x )的单调递增区间是⎝⎛⎭⎪⎫0,1+52.(2)令F (x )=f (x )-(x -1),x ∈(0,+∞).则有F ′(x )=1-x2x.当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在[1,+∞)上单调递减, 故当x >1时,F (x )<F (1)=0, 即当x >1时,f (x )<x -1.(3)由(2)知,当k =1时,不存在x 0>1满足题意. 当k >1时,对于x >1,有f (x )<x -1<k (x -1), 则f (x )<k (x -1),从而不存在x 0>1满足题意. 当k <1时,令G (x )=f (x )-k (x -1),x ∈(0,+∞), 则有G ′(x )=1x -x +1-k =-x 2+(1-k )x +1x.由G ′(x )=0得,-x 2+(1-k )x +1=0.解得x 1=1-k -(1-k )2+42<0,x 2=1-k +(1-k )2+42>1.当x ∈(1,x 2)时,G ′(x )>0,故G (x )在[1,x 2)内单调递增. 从而当x ∈(1,x 2)时,G (x )>G (1)=0, 即f (x )>k (x -1).综上,k 的取值X 围是(-∞,1).15.解 (1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5).将其分别代入y =ax 2+b,得⎩⎪⎨⎪⎧a25+b =40,a 400+b =2.5,解得⎩⎪⎨⎪⎧a =1 000,b =0.(2)①由(1)知,y =1 000x2(5≤x ≤20),则点P 的坐标为⎝⎛⎭⎪⎫t ,1 000t2,设在点P 处的切线l 交x ,y 轴分别于A ,B 点,y ′=-2 000x3,则l 的方程为y -1 000t 2=-2 000t3(x -t ),由此得A ⎝ ⎛⎭⎪⎫3t 2,0,B ⎝⎛⎭⎪⎫0,3 000t 2.故f (t )=⎝ ⎛⎭⎪⎫3t 22+⎝ ⎛⎭⎪⎫3 000t 22=32t 2+4×106t4,t ∈[5,20].②设g (t )=t 2+4×106t 4,则g ′(t )=2t -16×106t5. 令g ′(t )=0,解得t =10 2.当t ∈(5,102)时,g ′(t )<0,g (t )是减函数; 当t ∈(102,20)时,g ′(t )>0,g (t )是增函数. 从而,当t =102时,函数g (t )有极小值,也是最小值, 所以g (t )min =300,此时f (t )min =15 3.答:当t =102时,公路l 的长度最短,最短长度为153千米.16.解 (1)f ′(x )=a e x cos x -a e x sin x =2a e xcos ⎝⎛⎭⎪⎫x +π4.令f ′(x )=0,由x ≥0, 得x +π4=m π-π2,即x =m π-3π4,m ∈N *.而对于cos ⎝⎛⎭⎪⎫x +π4,当k ∈Z 时,若2k π-π2<x +π4<2k π+π2,即2k π-3π4<x <2k π+π4,则cos ⎝⎛⎭⎪⎫x +π4>0. 若2k π+π2<x +π4<2k π+3π2,即2k π+π4<x <2k π+5π4,则cos ⎝⎛⎭⎪⎫x +π4<0.因此,在区间⎝ ⎛⎭⎪⎫(m -1)π,m π-3π4与⎝ ⎛⎭⎪⎫m π-3π4,m π+π4上,f ′(x )的符号总相反.于是当x =m π-3π4(m ∈N *)时,f (x )取得极值,所以x n =n π-34π(n ∈N *).此时,f (x n )=a e n π-3π4cos ⎝⎛⎭⎪⎫n π-3π4=(-1)n +12a 2e n π-3π4.易知f (x n )≠0,而f (x n +1)f (x n )=(-1)n +22a 2e (n +1)π-3π4(-1)n +12a 2e n π-3π4=-e π是常数,故数列{f (x n )}是首项为f (x 1)=2a 2e π4,公比为-e π的等比数列. (2)对一切n ∈N *,x n ≤|f (x n )|恒成立,即n π-3π4≤2a 2e n π-3π4恒成立,亦即2a ≤e n π-3π4n π-3π4恒成立(因为a >0).设g (t )=e tt (t >0),则g ′(t )=e t(t -1)t2. 令g ′(t )=0得t =1.当0<t <1时,g ′(t )<0,所以g (t )在区间(0,1)上单调递减; 当t >1时,g ′(t )>0,所以g (t )在区间(1,+∞)上单调递增. 因为x 1∈(0,1),且当n ≥2时,x n ∈(1,+∞),x n <x n +1, 所以[g (x n )]min =min{g (x 1),g (x 2)}=min ⎩⎨⎧⎭⎬⎫g ⎝ ⎛⎭⎪⎫π4,g ⎝ ⎛⎭⎪⎫5π4=g ⎝ ⎛⎭⎪⎫π4=4πe π4. 因此,x n ≤|f (x n )|恒成立,当且仅当2a ≤4πe π4,解得a ≥2π4e -π4. 故a 的取值X 围是⎣⎢⎡⎭⎪⎫2π4e -π4,+∞.17.解 (1)由题意知,曲线y =f (x )在点(1,f (1))处的切线斜率为2,所以f ′(1)=2,又f ′(x )=ln x +a x+1,所以a =1. (2)k =1时,方程f (x )=g (x )在(1,2)内存在唯一的根. 设h (x )=f (x )-g (x )=(x +1)ln x -x 2e x ,当x ∈(0,1]时,h (x )<0.又h (2)=3ln 2-4e 2=ln 8-4e 2>1-1=0,所以存在x 0∈(1,2),使得h (x 0)=0. 因为h ′(x )=ln x +1x +1+x (x -2)e x, 所以当x ∈(1,2)时,h ′(x )>1-1e >0,当x ∈(2,+∞)时,h ′(x )>0, 所以当x ∈(1,+∞)时,h (x )单调递增,所以k =1时,方程f (x )=g (x )在(k ,k +1)内存在唯一的根. (3)由(2)知方程f (x )=g (x )在(1,2)内存在唯一的根x 0. 且x ∈(0,x 0)时,f (x )<g (x ),x ∈(x 0,+∞)时,f (x )>g (x ), 所以m (x )=⎩⎪⎨⎪⎧(x +1)ln x ,x ∈(0,x 0],x 2e x ,x ∈(x 0,+∞).当x ∈(0,x 0)时,若x ∈(0,1],m (x )≤0; 若x ∈(1,x 0),由m ′(x )=ln x +1x+1>0,可知0<m (x )≤m (x 0); 故m (x )≤m (x 0).当x ∈(x 0,+∞)时,由m ′(x )=x (2-x )ex,可得x ∈(x 0,2)时,m ′(x )>0,m (x )单调递增;x ∈(2,+∞)时,m ′(x )<0,m (x )单调递减;可知m (x )≤m (2)=4e 2,且m (x 0)<m (2).综上可得,函数m (x )的最大值为4e2.18.解 (1)当b =a 24+1时,f (x )=⎝ ⎛⎭⎪⎫x +a 22+1,故对称轴为直线x =-a2.当a ≤-2时,g (a )=f (1)=a 24+a +2.当-2<a ≤2时,g (a )=f ⎝ ⎛⎭⎪⎫-a 2=1.当a >2时,g (a )=f (-1)=a 24-a +2.综上,g (a )=⎩⎪⎨⎪⎧a 24+a +2,a ≤-2,1,-2<a ≤2,a 24-a +2,a >2.(2)设s ,t 为方程f (x )=0的解,且-1≤t ≤1,则⎩⎪⎨⎪⎧s +t =-a ,st =b ,由于0≤b -2a ≤1,因此-2t t +2≤s ≤1-2tt +2(-1≤t ≤1).当0≤t ≤1时,-2t 2t +2≤st ≤t -2t2t +2,由于-23≤-2t 2t +2≤0和-13≤t -2t 2t +2≤9-45,所以-32≤b ≤9-4 5.当-1≤t <0时,t -2t 2t +2≤st ≤-2t2t +2,由于-2≤-2t 2t +2<0和-3≤t -2t2t +2<0,所以-3≤b <0.故b 的取值X 围是[-3,9-45].19.(1)解 由f (x )=4x -x 4,可得f ′(x )=4-4x 3. 当f ′(x )>0,即x <1时,函数f (x )单调递增; 当f ′(x )<0,即x >1时,函数f (x )单调递减.所以,f (x )的单调递增区间为(-∞,1),单调递减区间为(1,+∞). (2)证明 设点P 的坐标为(x 0,0),则x 0=413,f ′(x 0)=-12.曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)(x -x 0),即g (x )=f ′(x 0)(x -x 0). 令函数F (x )=f (x )-g (x ),即F (x )=f (x )-f ′(x 0)(x -x 0), 则F ′(x )=f ′(x )-f ′(x 0).由于f ′(x )=-4x 3+4在(-∞,+∞)上单调递减, 故F ′(x )在(-∞,+∞)上单调递减,又因为F ′(x 0)=0,所以当x ∈(-∞,x 0)时,F ′(x )>0,当x ∈(x 0,+∞)时,F ′(x )<0, 所以F (x )在(-∞,x 0)上单调递增,在(x 0,+∞)上单调递减, 所以对于任意的实数x ,F (x )≤F (x 0)=0, 即对于任意的实数x ,都有f (x )≤g (x ). (3)证明 由(2)知g (x )=-12(x -413).设方程g (x )=a 的根为x 2′,可得x 2′=-a 12+413.因为g (x )在(-∞,+∞)上单调递减, 又由(2)知g (x 2)≥f (x 2)=a =g (x 2′), 因此x 2≤x 2′.类似地,设曲线y =f (x )在原点处的切线方程为y =h (x ), 可得h (x )=4x .对于任意的x ∈(-∞,+∞),有f (x )-h (x )=-x 4≤0,即f (x )≤h (x ). 设方程h (x )=a 的根为x 1′,可得x 1′=a4.因为h (x )=4x 在(-∞,+∞)上单调递增,且h (x 1′)=a =f (x 1)≤h (x 1),因此x 1′≤x 1,由此可得x 2-x 1≤x 2′-x 1′=-a 3+413.20.解 (1)f (0)=a 2+|a |-a 2+a =|a |+a ,因为f (0)≤1,所以|a |+a ≤1, 当a ≤0时,|a |+a =-a +a =0≤1,显然成立; 当a >0,则有|a |+a =2a ≤1,所以a ≤12,所以0<a ≤12,综上所述,a 的取值X 围是a ≤12.(2)f (x )=⎩⎪⎨⎪⎧x 2-(2a -1)x ,x ≥a ,x 2-(2a +1)x +2a ,x <a .对于u 1=x 2-(2a -1)x ,其对称轴为x =2a -12=a -12<a ,开口向上,所以f (x )在(a ,+∞)上单调递增;对于u 1=x 2-(2a +1)x +2a ,其对称轴为x =2a +12=a +12>a ,开口向上,所以f (x )在(-∞,a )上单调递减.综上,f (x )在(a ,+∞)上单调递增,在(-∞,a )上单调递减,(3)由(2)得f (x )在(a ,+∞)上单调递增,在(0,a )上单调递减,所以f (x )min =f (a )=a -a 2.(ⅰ)当a =2时,f (x )min =f (2)=-2,f (x )=⎩⎪⎨⎪⎧x 2-3x ,x ≥2,x 2-5x +4,x <2,令f (x )+4x =0,即f (x )=-4x(x >0),因为f (x )在(0,2)上单调递减,所以f (x )>f (2)=-2,而y =-4x 在(0,2)上单调递增,y <f (2)=2,所以y =f (x )与y =-4x在(0,2)无交点.当x ≥2时,f (x )=x 2-3x =-4x,即x 3-3x 2+4=0,所以x 3-2x 2-x 2+4=0,所以(x -2)2(x +1)=0, 因为x ≥2,所以x =2,即当a =2时,f (x )+4x有一个零点x =2.(ⅱ)当a >2时,f (x )min =f (a )=a -a 2, 当x ∈(0,a )时,f (0)=2a >4,f (a )=a -a 2,而y =-4x 在x ∈(0,a )上单调递增,当x =a 时,y =-4a,下面比较f (a )=a -a 2与-4a的大小,因为a -a 2-⎝ ⎛⎭⎪⎫-4a =-(a 3-a 2-4)a =-(a -2)(a 2+a +2)a <0所以f (a )=a -a 2<-4a.结合图象不难得当a >2,y =f (x )与y =-4x有两个交点,综上,当a =2时,f (x )+4x 有一个零点x =2;当a >2,y =f (x )与y =-4x有两个零点.21.解 (1)f (x )的定义域为(-∞,+∞),f ′(x )=1+a -2x -3x 2. 令f ′(x )=0,得x 1=-1-4+3a 3,x 2=-1+4+3a3,x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2).当x <x 1或x >x 2时,f ′(x )<0;当x 1<x <x 2时,f ′(x )>0.故f (x )在(-∞,x 1)和(x 2,+∞)内单调递减,在(x 1,x 2)内单调递增. (2)因为a >0,所以x 1<0,x 2>0.①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增, 所以f (x )在x =0和x =1处分别取得最小值和最大值. ②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值; 当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. 22.解 (1)f ′(x )=x 2+2x +a 开口向上, 方程x 2+2x +a =0的判别式Δ=4-4a =4(1-a ),若a ≥1,则Δ≤0,f ′(x )=x 2+2x +a ≥0恒成立,∴f (x )在R 上单调递增.若a <1,则Δ>0,方程x 2+2x +a =0有两个不同的实数根,x 1=-1-1-a ,x 2=-1+1-a ,当x <x 1或x >x 2时,f ′(x )>0;当x 1<x <x 2时,f ′(x )<0, ∴f (x )的单调递增区间为(-∞,-1-1-a )和(-1+1-a ,+∞), 单调递减区间为(-1-1-a ,-1+1-a ).综上所述,当a ≥1时,f (x )在R 上单调递增;当a <1时,f (x )的单调递增区间为(-∞,-1-1-a )和(-1+1-a ,+∞),f (x )的单调递减区间为(-1-1-a ,-1+1-a ).(2)当a <0时,Δ>0,且f (0)=1,f ⎝ ⎛⎭⎪⎫12=3124+a2,f (1)=73+a ,此时x 1<0,x 2>0, 令x 2=12得a =-54.①当-54<a <0时,x 1<0<x 2<12,f (x )在(0,x 2)上单调递减,在⎝⎛⎭⎪⎫x 2,12上单调递增,在⎝⎛⎭⎪⎫12,1上单调递增.(ⅰ)若-54<a <-712,则f (0)=1>f ⎝ ⎛⎭⎪⎫12, ∴存在x 0∈(0,x 2),使得f (x 0)=f ⎝ ⎛⎭⎪⎫12;(ⅱ)当-712≤a <0时,f (0)≤f ⎝ ⎛⎭⎪⎫12, ∴不存在x 0∈⎝ ⎛⎭⎪⎫0,12∪⎝ ⎛⎭⎪⎫12,1,使得f (x 0)=f ⎝ ⎛⎭⎪⎫12.②当a =-54时,f (x )在⎝ ⎛⎭⎪⎫0,12上单调递减,在⎝ ⎛⎭⎪⎫12,1上单调递增. ∴不存在x 0,使得f (x 0)=f ⎝ ⎛⎭⎪⎫12.③当-2512<a <-54时,f ⎝ ⎛⎭⎪⎫12<f (1), ∴存在x 0∈⎝ ⎛⎭⎪⎫0,12∪⎝ ⎛⎭⎪⎫12,1,使得f (x 0)=f ⎝ ⎛⎭⎪⎫12.④当a ≤-2512时,f ⎝ ⎛⎭⎪⎫12≥f (1), ∴不存在x 0∈⎝ ⎛⎭⎪⎫0,12∪⎝ ⎛⎭⎪⎫12,1,使得f (x 0)=f ⎝ ⎛⎭⎪⎫12. 综上,当a ∈⎣⎢⎡⎭⎪⎫-712,0∪{-54}∪⎝ ⎛⎦⎥⎤-∞,-2512时,不存在x 0∈⎝ ⎛⎭⎪⎫0,12∪⎝ ⎛⎭⎪⎫12,1,使得f (x 0)=f ⎝ ⎛⎭⎪⎫12;当a ∈⎝⎛⎭⎪⎫-2512,-54∪⎝⎛⎭⎪⎫-54,-712时,存在x 0∈⎝⎛⎭⎪⎫0,12∪⎝⎛⎭⎪⎫12,1,使得f (x 0)=f ⎝ ⎛⎭⎪⎫12. 23.解 (1)由已知,有f ′(x )=2x -2ax 2(a >0). 令f ′(x )=0,解得x =0或x =1a.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,f (x )的单调递增区间是⎝⎛⎭⎪⎫0,a ;单调递减区间是(-∞,0),⎝ ⎛⎭⎪⎫a ,+∞.当x =0时,f (x )有极小值,且极小值f (0)=0;当x =1a时,f (x )有极大值,且极大值f ⎝ ⎛⎭⎪⎫1a =13a2. (2)由f (0)=f ⎝ ⎛⎭⎪⎫32a =0及(1)知,当x ∈⎝ ⎛⎭⎪⎫0,32a 时,f (x )>0;当x ∈⎝ ⎛⎭⎪⎫32a ,+∞时,f (x )<0.设集合A ={f (x )|x ∈(2,+∞)},集合B =⎩⎨⎧⎭⎬⎫1f (x )|x ∈(1,+∞),f (x )≠0,则“对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B . 显然,0∉B .下面分三种情况讨论:(1)当32a >2,即0<a <34时,由f ⎝ ⎛⎭⎪⎫32a =0可知,0∈A ,而0∉B ,所以A 不是B 的子集.(2)当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A =(-∞,f (2)),因而A ⊆(-∞,0);由f (1)≥0,有f (x )在(1,+∞)上的取值X 围包含(-∞,0),则(-∞,0)⊆B .所以A ⊆B . (3)当32a <1,即a >32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减,故B =⎝⎛⎭⎪⎫1f (1),0,A =(-∞,f (2)),所以A 不是B 的子集.综上,a 的取值X 围是⎣⎢⎡⎦⎥⎤34,32. 24.解 (1)由题设,当m =e 时,f (x )=ln x +e x ,则f ′(x )=x -ex2,∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, 因此x =1也是φ(x )的最大值点. ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.(3)对任意的b >a >0,f (b )-f (a )b -a<1恒成立,等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +m x-x (x >0), ∴(*)式等价于h (x )在(0,+∞)上单调递减. 由h ′(x )=1x -mx2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14(x >0)恒成立,∴m ≥14(对m =14,h ′(x )=0仅在x =12时成立),∴m 的取值X 围是⎣⎢⎡⎭⎪⎫14,+∞.25.解 (1)f ′(x )=a x+(1-a )x -b . 由题设知f ′(1)=0,解得b =1. (2)f (x )的定义域为(0,+∞). 由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=a x +(1-a )x -1=1-a x (x -a1-a)(x -1).①若a ≤12,则a1-a ≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)单调递增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f (1)<a a -1,即1-a 2-1<aa -1, 解得-2-1<a <2-1. ②若12<a <1,则a1-a>1,故当x ∈⎝ ⎛⎭⎪⎫1,a 1-a 时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a1-a ,+∞时,f ′(x )>0. f (x )在⎝⎛⎭⎪⎫1,a 1-a 单调递减,在⎝ ⎛⎭⎪⎫a 1-a ,+∞单调递增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f ⎝ ⎛⎭⎪⎫a 1-a <aa -1. 而f ⎝ ⎛⎭⎪⎫a 1-a =a ln a 1-a +a 22(1-a )+a a -1>a a -1,所以不合题意. ③若a >1,则f (1)=1-a 2-1=-a -12<a a -1.综上,a 的取值X 围是(-2-1,2-1)∪(1,+∞).B 组 两年模拟精选(2016~2015年)1.解析 f ′(x )=2x +2sin x ,当x ∈[0,1]时f ′(x )>0.∴f (x )为增函数,所以f (0)<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫25,又f (x )为偶函数,所以f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫13, 则f (0)<f ⎝ ⎛⎭⎪⎫-13<f ⎝ ⎛⎭⎪⎫25. 答案 A2.解析 f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上恒成立,因为y =32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝ ⎛⎭⎪⎫4+14=518,故选C.答案 C3.解析 令F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2<0, 所以F (x )为减函数,f (2)2>f (3)3,所以3f (2)>2f (3).答案 A4.解析 当x ≤0时,f ′(x )=6x 2+6x ,易知函数f (x )在(-∞,0]上的极大值点是x =-1,且f (-1)=2,故只要在(0,2]上,e ax≤2即可,即ax ≤ln 2在(0,2]上恒成立,即a ≤ln 2x在(0,2]上恒成立,故a ≤12ln 2.答案 D5.解析 构造函数F (x )=f (x )-⎝ ⎛⎭⎪⎫x 3+23,F (1)=f (1)-1=0, ∵f ′(x )<13,∴F ′(x )=f ′(x )-13<0,∴F (x )在R 上单调递减,f (x )<x 3+23的解集即F (x )<0=F (1)的解集,得x >1.答案 D6.解析 f (x )=x 3-3x ,f ′(x )=3x 2-3, 令f ′(x )=0,解得x =±1, 可以判断当x =1时函数有极小值,∴⎩⎪⎨⎪⎧a <1,6-a 2≥1,6-a 2>a ,解得a ∈[-5,1), ∴选B. 答案 B7.解析 f ′(x )=x 2-ax +3-a ,要使f (x )有三个不同单调区间,需Δ=(-a )2-4(3-a )>0,即a ∈(-∞,-6)∪(2,+∞). 答案 (-∞,-6)∪(2,+∞)8.解析 ∵f ′(x )=3x 2+1>0恒成立,∴f (x )在R 上是增函数. 又f (-x )=-f (x ),∴y =f (x )为奇函数.由f (mx -2)+f (x )<0得f (mx -2)<-f (x )=f (-x ), ∴mx -2<-x ,即mx -2+x <0在m ∈[-2,2]上恒成立. 记g (m )=xm -2+x ,则⎩⎪⎨⎪⎧g (-2)<0,g (2)<0,即⎩⎪⎨⎪⎧-2x -2+x <0,2x -2+x <0, 解得-2<x <23.答案 ⎝⎛⎭⎪⎫-2,23 9.解 (1)由题知函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1,当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,故f (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增. ①当0<t <t +2<1e 时,无解;②当0<t <1e <t +2,即0<t <1e时,函数f (x )在[t ,t +2]上的最小值f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e ;③当1e ≤t <t +2,即t ≥1e 时,f (x )在[t ,t +2]上单调递增,故函数f (x )在[t ,t +2]上的最小值f (x )min =f (t )=t ln t .综上可知f (x )min=⎩⎪⎨⎪⎧-1e ,0<t <1e ,t ln t ,t ≥1e .(2)由题知2x ln x ≥-x 2+ax -3,即a ≤2ln x +x +3x对一切x ∈(0,+∞)恒成立.设h (x )=2ln x +x +3x(x >0),则h ′(x )=(x +3)(x -1)x2, 当x ∈(0,1)时,h ′(x )<0,故h (x )在(0,1)上单调递减, 当x ∈(1,+∞)时,h ′(x )>0, 故h (x )在(1,+∞)上单调递增.所以h (x )在(0,+∞)上有唯一极小值h (1),即为最小值, 所以h (x )min =h (1)=4,因为对一切x ∈(0,+∞),a ≤h (x )恒成立,所以a ≤4.。
2016年江苏省南京市中考数学试卷附详细答案(原版+解析版)
2016年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)为了方便市民出行,提倡低碳交通,近几年南京市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达70000辆,用科学记数法表示70000是()A.0.7×105B.7×104C.7×105D.70×1032.(2分)数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|3.(2分)下列计算中,结果是a6的是()A.a2+a4B.a2•a3C.a12÷a2D.(a2)34.(2分)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,75.(2分)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.26.(2分)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或6二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)化简:=;=.8.(2分)若式子在实数范围内有意义,则x的取值范围是.9.(2分)分解因式:2a(b+c)﹣3(b+c)=.10.(2分)比较大小:﹣3.11.(2分)分式方程的解是.12.(2分)设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2=,m=.13.(2分)如图,扇形OAB的圆心角为122°,C是上一点,则∠ACB=°.14.(2分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.15.(2分)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.16.(2分)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)解不等式组,并写出它的整数解.18.(7分)计算﹣.19.(7分)某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是()A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数20.(8分)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.21.(8分)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.22.(8分)某景区7月1日﹣7月7日一周天气预报如图,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.23.(8分)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为L/km、L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?24.(7分)如图,在▱ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.(1)求证:∠D=∠F;(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).25.(9分)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?26.(8分)如图,O是△ABC内一点,⊙O与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC,连接DF、EG.(1)求证:AB=AC.(2)已知AB=10,BC=12,求四边形DFGE是矩形时⊙O的半径.27.(11分)如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.类似地,我们可以认识其他函数.(1)把函数y=的图象上各点的纵坐标变为原来的倍,横坐标不变,得到函数y=的图象;也可以把函数y=的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=的图象.(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.(Ⅰ)函数y=x2的图象上所有的点经过④→②→①,得到函数的图象;(Ⅱ)为了得到函数y=﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点.A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥(3)函数y=的图象可以经过怎样的变化得到函数y=﹣的图象?(写出一种即可)2016年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)为了方便市民出行,提倡低碳交通,近几年南京市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达70000辆,用科学记数法表示70000是()A.0.7×105B.7×104C.7×105D.70×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:70000=7×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2分)数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|【分析】由距离的定义和绝对值的关系容易得出结果.【解答】解:∵点A、B表示的数分别是5、﹣3,∴它们之间的距离=|﹣3﹣5|=8,故选:D.【点评】本题考查绝对值的意义、数轴上两点间的距离;理解数轴上两点间的距离与绝对值的关系是解决问题的关键.3.(2分)下列计算中,结果是a6的是()A.a2+a4B.a2•a3C.a12÷a2D.(a2)3【分析】A:根据合并同类项的方法判断即可.B:根据同底数幂的乘法法则计算即可.C:根据同底数幂的除法法则计算即可.D:幂的乘方的计算法则:(a m)n=a mn(m,n是正整数),据此判断即可.【解答】解:∵a2+a4≠a6,∴选项A的结果不是a6;∵a2•a3=a5,∴选项B的结果不是a6;∵a12÷a2=a10,∴选项C的结果不是a6;∵(a2)3=a6,∴选项D的结果是a6.故选:D.【点评】(1)此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(4)此题还考查了合并同类项的方法,要熟练掌握.4.(2分)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,7【分析】在能够组成三角形的条件下,如果满足较小两边平方的和等于最大边的平方是直角三角形;满足较小两边平方的和大于最大边的平方是锐角三角形;满足较小两边平方的和小于最大边的平方是钝角三角形,依此求解即可.【解答】解:A、因为32+42>42,所以三条线段能组锐角三角形,不符合题意;B、因为32+42=52,所以三条线段能组成直角三角形,不符合题意;C、因为3+4>6,且32+42<62,所以三条线段能组成钝角三角形,符合题意;D、因为3+4=7,所以三条线段不能组成三角形,不符合题意.故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.掌握组成钝角三角形的条件是解题的关键.5.(2分)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.2【分析】根据题意画出图形,利用正六边形中的等边三角形的性质求解即可.【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×=,∴边长为2的正六边形的内切圆的半径为.故选B.【点评】本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算,记住基本概念是解题的关键,属于中考常考题型.6.(2分)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或6【分析】根据数据x1,x2,…x n与数据x1+a,x2+a,…,x n+a的方差相同这个结论即可解决问题.【解答】解:∵一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.【点评】本题考查方差、平均数等知识,解题的关键利用结论:数据x1,x2,…x n 与数据x1+a,x2+a,…,x n+a的方差相同解决问题,属于中考常考题型.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)化简:=2;=2.【分析】根据二次根式的性质和立方根的定义化简即可.【解答】解:==2;=2.故答案为:2;2.【点评】本题考查了二次根式的性质与化简,立方根的定义,是基础题,熟记概念是解题的关键.8.(2分)若式子在实数范围内有意义,则x的取值范围是x≥1.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.9.(2分)分解因式:2a(b+c)﹣3(b+c)=(b+c)(2a﹣3).【分析】直接提取公因式b+c即可.【解答】解:原式=(b+c)(2a﹣3),故答案为:(b+c)(2a﹣3).【点评】此题主要考查了提公因式法分解因式,关键是正确找出公因式.10.(2分)比较大小:﹣3<.【分析】先判断出﹣3与﹣2的符号,进而可得出结论.【解答】解:∵4<5<9,∴2<<3,∴﹣3<0,﹣2>0,∴﹣3<.故答案为:<.【点评】本题考查的是实数的大小比较,熟知正数与负数比较大小的法则是解答此题的关键.11.(2分)分式方程的解是3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=3(x﹣2),去括号得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.(2分)设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2= 4,m=3.【分析】根据根与系数的关系找出x1+x2=﹣=4,x1x2==m,将其代入等式x1+x2﹣x1x2=1中得出关于m的一元一次方程,解方程即可得出m的值,从而此题得解.【解答】解:∵x1、x2是方程x2﹣4x+m=0的两个根,∴x1+x2=﹣=4,x1x2==m.∵x1+x2﹣x1x2=4﹣m=1,∴m=3.故答案为:4;3.【点评】本题考查了根与系数的关系,解题的关键是找出x1+x2=4,x1x2=m.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.13.(2分)如图,扇形OAB的圆心角为122°,C是上一点,则∠ACB=119°.【分析】在⊙O上取点D,连接AD,BD,根据圆周角定理求出∠D的度数,由圆内接四边形的性质即可得出结论.【解答】解:如图所示,在⊙O上取点D,连接AD,BD,∵∠AOB=122°,∴∠ADB=∠AOB=×122°=61°.∵四边形ADBC是圆内接四边形,∴∠ACB=180°﹣61°=119°.故答案为:119.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.14.(2分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是①②③.【分析】根据全等三角形的性质得出∠AOB=∠AOD=90°,OB=OD,再根据全等三角形的判定定理得出△ABC≌△ADC,进而得出其它结论.【解答】解:∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确∴BC=DC,故②正确;故答案为①②③.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法:SSS,SAS,ASA,AAS,以及HL,是解题的关键.15.(2分)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出DB,再根据相似三角形对应边成比例列式计算即可得解.【解答】解:∵EF是△ODB的中位线,∴DB=2EF=2×2=4,∵AC∥BD,∴△AOC∽△BOD,∴=,即=,解得AC=.故答案为:.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,相似三角形的判定与性质,熟记定理与性质是解题的关键.16.(2分)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.【点评】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)解不等式组,并写出它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.【解答】解:解不等式3x+1≤2(x+1),得:x≤1,解不等式﹣x<5x+12,得:x>﹣2,则不等式组的解集为:﹣2<x≤1,则不等式组的整数解为﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.(7分)计算﹣.【分析】首先进行通分运算,进而合并分子,进而化简求出答案.【解答】解:﹣=﹣==.【点评】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.19.(7分)某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是()A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数【分析】(1)用九年级学生的总分除以总人数即可得出答案;(2)根据条形统计图和扇形统计图不能求出众数和中位数,从而得出答案.【解答】解:(1)根据题意得:(80×1000×60%+82.5×1000×40%)÷1000=81(分),答:该校九年级学生本次数学测试成绩的平均数是81分;(2)A、根据统计图不能求出九年级学生成绩的众数,故本选项错误;B.根据统计图不能求出九年级学生成绩的中位数,故本选项错误;C.随机抽取一个班,该班学生成绩的平均数不一定等于九年级学生成绩的平均数,故本选项错误;D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数,故本选项正确;故选D.【点评】本题考查了众数、平均数和中位数的定义.一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.20.(8分)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.【分析】(1)根据平移的性质即可得到结论;(2)根据轴对称的性质即可得到结论;(3)同(2);(4)由旋转的性质即可得到结论.【解答】解:(1)平移的性质:平移前后的对应线段相等且平行.所以与对应线段有关的结论为:AB=A′B′,AB∥A′B′;(2)轴对称的性质:AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.(3)轴对称的性质:轴对称图形对称轴是任何一对对应点所连线段的垂直平分线.所以与对应点有关的结论为:l垂直平分AA′.(4)OA=OA′,∠AOA′=∠BOB′.故答案为:(1)AB=A′B′,AB∥A′B′;(2)AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.;(3)l垂直平分AA′;(4)OA=OA′,∠AOA′=∠BOB′.【点评】本题考查了旋转的性质,平移的性质,轴对称的性质,余角和补角的性质,熟练掌握各性质是解题的关键.21.(8分)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.【分析】证法1:根据平角的定义得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根据三角形内角和定理和角的和差关系即可得到结论;证法2:要求证∠BAE+∠CBF+∠ACD=360°,根据三角形外角性质得到∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,则∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),然后根据三角形内角和定理即可得到结论.【解答】证明:证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.证法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.故答案为:平角等于180°,∠1+∠2+∠3=180°.【点评】本题考查了多边形的外角和:n边形的外角和为360°.也考查了三角形内角和定理和外角性质.22.(8分)某景区7月1日﹣7月7日一周天气预报如图,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.【分析】(1)由天气预报是晴的有4天,直接利用概率公式求解即可求得答案;(2)首先利用列举法可得:随机选择连续的两天等可能的结果有:晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,然后直接利用概率公式求解即可求得答案.【解答】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为:;(2)∵随机选择连续的两天等可能的结果有:晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,∴随机选择连续的两天,恰好天气预报都是晴的概率为:=.【点评】此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为0.13L/km、0.14 L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?【分析】(1)和(2):先求线段AB的解析式,因为速度为50km/h的点在AB上,所以将x=50代入计算即可,速度是100km/h的点在线段BC上,可由已知中的“该汽车的速度每增加1km/h,耗油量增加0.002L/km”列式求得,也可以利用解析式求解;(3)观察图形发现,两线段的交点即为最低点,因此求两函数解析式组成的方程组的解即可.【解答】解:(1)设AB的解析式为:y=kx+b,把(30,0.15)和(60,0.12)代入y=kx+b中得:解得∴AB:y=﹣0.001x+0.18,当x=50时,y=﹣0.001×50+0.18=0.13,由线段BC上一点坐标(90,0.12)得:0.12+(100﹣90)×0.002=0.14,∴当x=100时,y=0.14,故答案为:0.13,0.14;(2)由(1)得:线段AB的解析式为:y=﹣0.001x+0.18;(3)设BC的解析式为:y=kx+b,把(90,0.12)和(100,0.14)代入y=kx+b中得:解得,∴BC:y=0.002x﹣0.06,根据题意得解得,答:速度是80km/h时,该汽车的耗油量最低,最低是0.1L/km.【点评】本题考查了一次函数的应用,正确求出两线段的解析式是解好本题的关键,因为系数为小数,计算要格外细心,容易出错;另外,此题中求最值的方法:两图象的交点,方程组的解;同时还有机地把函数和方程结合起来,是数学解题方法之一,应该熟练掌握.24.(7分)如图,在▱ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.(1)求证:∠D=∠F;(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).【分析】(1)BF交AD于G,先利用AD∥BC得到∠FBC=∠FGE,加上∠FBC=∠DCE,所以∠FGE=∠DCE,然后根据三角形内角和定理易得∠D=∠F;(2)分别作BC和BF的垂直平分线,它们相交于点O,然后以O为圆心,OC 为半径作△BCF的外接圆⊙O,⊙O交AD于P,连结BP、CP,则根据圆周角定理得到∠F=∠BPC,而∠F=∠D,所以∠D=∠BPC,接着可证明∠PCD=∠APB=∠PBC,于是可判断△BPC∽△CDP.【解答】(1)证明:BF交AD于G,如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FBC=∠FGE,而∠FBC=∠DCE,∴∠FGE=∠DCE,∵∠GEF=∠DEC,∴∠D=∠F;(2)解:如图,点P为所作.【点评】本题考查了作图﹣相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.也考查了平行四边形的性质.解决(2)小题的关键是利用圆周角定理作∠BPC=∠F.25.(9分)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?【分析】(1)过点P作PH⊥OA于H,如图,设PH=3x,运用三角函数可得OH=6x,AH=2x,根据条件OA=4可求出x,即可得到点P的坐标;(2)若水面上升1m后到达BC位置,如图,运用待定系数法可求出抛物线的解析式,然后求出y=1时x的值,就可解决问题.【解答】解:(1)过点P作PH⊥OA于H,如图.设PH=3x,在Rt△OHP中,∵tanα==,∴OH=6x.在Rt△AHP中,∵tanβ==,∴AH=2x,∴OA=OH+AH=8x=4,∴x=,∴OH=3,PH=,∴点P的坐标为(3,);(2)若水面上升1m后到达BC位置,如图,过点O(0,0),A(4,0)的抛物线的解析式可设为y=ax(x﹣4),∵P(3,)在抛物线y=ax(x﹣4)上,∴3a(3﹣4)=,解得a=﹣,∴抛物线的解析式为y=﹣x(x﹣4).当y=1时,﹣x(x﹣4)=1,解得x1=2+,x2=2﹣,∴BC=(2+)﹣(2﹣)=2=2×1.41=2.82≈2.8.答:水面上升1m,水面宽约为2.8米.【点评】本题主要考查了三角函数、运用待定系数法求抛物线的解析式、解一元二次方程等知识,出现角的度数(30°、45°或60°)或角的三角函数值,通常放到直角三角形中通过解直角三角形来解决问题.26.(8分)如图,O是△ABC内一点,⊙O与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC,连接DF、EG.(1)求证:AB=AC.(2)已知AB=10,BC=12,求四边形DFGE是矩形时⊙O的半径.【分析】(1)由切线长定理可知AD=AE,易得∠ADE=∠AED,因为DE∥BC,由平行线的性质得∠ADE=∠B,∠AED=∠C,可得∠B=∠C,易得AB=AC;(2)如图,连接AO,交DE于点M,延长AO交BC于点N,连接OE、DG,设⊙O半径为r,由△AOD∽△ABN得=,得到AD=r,再由△GBD∽△ABN 得=,列出方程即可解决问题.【解答】(1)证明:∵AD、AE是⊙O的切线,∴AD=AE,∴∠ADE=∠AED,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠B=∠C,∴AB=AC;(2)解:如图,连接AO,交DE于点M,延长AO交BC于点N,连接OE、DG,设⊙O半径为r,∵四边形DFGE是矩形,∴∠DFG=90°,∴DG是⊙O直径,∵⊙O与AB、AC分别相切于点D、E,∴OD⊥AB,OE⊥AC,∵OD=OE,OE⊥AC,∵OD=OE.∴AN平分∠BAC,∵AB=AC,∴AN⊥BC,BN=BC=6,在RT△ABN中,AN===8,∵OD⊥AB,AN⊥BC,∴∠ADO=∠ANB=90°,∵∠OAD=∠BAN,∴△AOD∽△ABN,∴=,即=,∴AD=r,∴BD=AB﹣AD=10﹣r,∵OD⊥AB,∴∠GDB=∠ANB=90°,∵∠B=∠B,∴△GBD∽△ABN,∴=,即=,∴r=,∴四边形DFGE是矩形时⊙O的半径为.【点评】本题考查圆、切线的性质、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是利用参数解决问题,学会用方程的思想思考问题,属于中考压轴题.27.(11分)如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.类似地,我们可以认识其他函数.(1)把函数y=的图象上各点的纵坐标变为原来的6倍,横坐标不变,得到函数y=的图象;也可以把函数y=的图象上各点的横坐标变为原来的6倍,纵坐标不变,得到函数y=的图象.(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.(Ⅰ)函数y=x2的图象上所有的点经过④→②→①,得到函数y=4(x﹣1)2﹣2的图象;(Ⅱ)为了得到函数y=﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点D.A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥(3)函数y=的图象可以经过怎样的变化得到函数y=﹣的图象?(写出一种即可)。
2016年高考数学江苏省(理科)试题及答案【解析版】
2016年江苏省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)【2016江苏(理)】已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B=.【答案】{﹣1,2}【解析】解:∵集合A={﹣1,2,3,6},B={x|﹣2<x<3},∴A∩B={﹣1,2},【2016江苏(理)】复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是.【答案】5【解析】解:z=(1+2i)(3﹣i)=5+5i,则z的实部是5,【2016江苏(理)】在平面直角坐标系xOy中,双曲线﹣=1的焦距是.【答案】2【解析】解:双曲线﹣=1中,a=,b=,∴c==,∴双曲线﹣=1的焦距是2.【2016江苏(理)】已知一组数据4。
7,4.8,5。
1,5。
4,5.5,则该组数据的方差是.【答案】0。
1【解析】解:∵数据4。
7,4。
8,5.1,5。
4,5。
5的平均数为:=(4.7+4.8+5.1+5.4+5.5)=5。
1,∴该组数据的方差:S2=[(4.7﹣5。
1)2+(4。
8﹣5。
1)2+(5。
1﹣5。
1)2+(5.4﹣5。
1)2+(5.5﹣5。
1)2]=0。
1.【2016江苏(理)】函数y=的定义域是.【答案】[﹣3,1]【解析】解:由3﹣2x﹣x2≥0得:x2+2x﹣3≤0,解得:x∈[﹣3,1],【2016江苏(理)】如图是一个算法的流程图,则输出的a的值是.【答案】9【解析】解:当a=1,b=9时,不满足a>b,故a=5,b=7,当a=5,b=7时,不满足a>b,故a=9,b=5当a=9,b=5时,满足a>b,故输出的a值为9,【2016江苏(理)】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.【答案】【解析】解:将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,基本事件总数为n=6×6=36,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共6个,∴出现向上的点数之和小于10的概率:p=1﹣=.【2016江苏(理)】已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是.【答案】20【解析】解:∵{a n}是等差数列,S n是其前n项和,a1+a22=﹣3,S5=10,∴,解得a1=﹣4,d=3,∴a9=﹣4+8×3=20.【2016江苏(理)】定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.【答案】7【解析】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.【2016江苏(理)】如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.【答案】【解析】解:设右焦点F(c,0),将y=代入椭圆方程可得x=±a=±a,可得B(﹣a,),C(a,),由∠BFC=90°,可得k BF•k CF=﹣1,即有•=﹣1,化简为b2=3a2﹣4c2,由b2=a2﹣c2,即有3c2=2a2,由e=,可得e2==,可得e=,【2016江苏(理)】设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是.【答案】﹣【解析】解:f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,∴f(﹣)=f(﹣)=﹣+a,f()=f()=|﹣|=,∴a=,∴f(5a)=f(3)=f(﹣1)=﹣1+=﹣,【2016江苏(理)】已知实数x,y满足,则x2+y2的取值范围是.【答案】[,13]【解析】解:作出不等式组对应的平面区域,设z=x2+y2,则z的几何意义是区域内的点到原点距离的平方,由图象知A到原点的距离最大,点O到直线BC:2x+y﹣2=0的距离最小,由得,即A(2,3),此时z=22+32=4+9=13,点O到直线BC:2x+y﹣2=0的距离d==,则z=d2=()2=,故z的取值范围是[,13],故答案为:[,13].【2016江苏(理)】如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.【答案】【解析】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,【2016江苏(理)】在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.【答案】8【解析】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C均为锐角.二、解答题(共6小题,满分90分)【2016江苏(理)】在△ABC中,AC=6,cosB=,C=.(1)求AB的长; (2)求cos(A﹣)的值.【解析】解:(1)∵△ABC中,cosB=,∴sinB=,∵,∴AB==5;(2)cosA=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.∵A为三角形的内角,∴sinA=,∴cos(A﹣)=cosA+sinA=.【2016江苏(理)】如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.【解析】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC﹣A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)∵ABC﹣A1B1C1为直棱柱,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.【2016江苏(理)】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P ﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?【解析】解:(1)∵PO1=2m,正四棱柱的高O1O是正四棱锥的高PO1的4倍.∴O1O=8m,∴仓库的容积V=×62×2+62×8=312m3,(2)若正四棱锥的侧棱长为6m,设PO1=xm,则O1O=4xm,A1O1=m,A1B1=m,则仓库的容积V=×(•)2•x+(•)2•4x=x3+312x,(0<x<6),∴V′=﹣26x2+312,(0<x<6),当0<x<2时,V′>0,V(x)单调递增;当2<x<6时,V′<0,V(x)单调递减;故当x=2时,V(x)取最大值;即当PO1=2m时,仓库的容积最大.【2016江苏(理)】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x ﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.【解析】解:(1)∵N在直线x=6上,∴设N(6,n),∵圆N与x轴相切,∴圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,又圆N与圆M外切,圆M:x2+y2﹣12x﹣14y+60=0,即圆M:((x﹣6)2+(x﹣7)2=25,∴|7﹣n|=|n|+5,解得n=1,∴圆N的标准方程为(x﹣6)2+(y﹣1)2=1.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d==,则|BC|=2=2,BC=2,即2=2,解得b=5或b=﹣15,∴直线l的方程为:y=2x+5或y=2x﹣15.(3)=,即,即||=||,||=,又||≤10,即≤10,解得t∈[2﹣2,2+2],对于任意t∈[2﹣2,2+2],欲使,此时,||≤10,只需要作直线TA的平行线,使圆心到直线的距离为,必然与圆交于P、Q两点,此时||=||,即,因此实数t的取值范围为t∈[2﹣2,2+2],.【2016江苏(理)】已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.【解析】解:函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①方程f(x)=2;即:=2,可得x=0.②不等式f(2x)≥mf(x)﹣6恒成立,即≥m()﹣6恒成立.令t=,t≥2.不等式化为:t2﹣mt+4≥0在t≥2时,恒成立.可得:△≤0或即:m2﹣16≤0或m≤4,∴m∈(﹣∞,4].实数m的最大值为:4.(2)g(x)=f(x)﹣2=a x+b x﹣2,g′(x)=axlna+bxlnb=ax[+],0<a<1,b>1可得,令h(x)=+,则h(x)是递增函数,而,lna<0,lnb>0,因此,x0=时,h(x0)=0,因此x∈(﹣∞,x0)时,h(x)<0,a x lnb>0,则g′(x)<0.x∈(x0,+∞)时,h(x)>0,a x lnb>0,则g′(x)>0,则g(x)在(﹣∞,x0)递减,(x0,+∞)递增,因此g(x)的最小值为:g(x0).①若g(x0)<0,x<log a2时,a x>=2,b x>0,则g(x)>0,因此x1<log a2,且x1<x0时,g(x1)>0,因此g(x)在(x1,x0)有零点,则g(x)至少有两个零点,与条件矛盾.②若g(x0)>0,函数g(x)=f(x)﹣2有且只有1个零点,g(x)的最小值为g(x0),可得g(x0)=0,由g(0)=a0+b0﹣2=0,因此x0=0,因此=0,﹣=1,即lna+lnb=0,ln(ab)=0,则ab=1.可得ab=1.【2016江苏(理)】记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.【解析】解:(1)当T={2,4}时,S T=a2+a4=a2+9a2=30,因此a2=3,从而a1==1,故a n=3n﹣1,(2)S T≤a1+a2+…a k=1+3+32+…+3k﹣1=<3k=a k+1,(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,分析可得S C=S A+S C∩D,S D=S B+S C∩D,则S C+S C∩D﹣2S D=S A﹣2S B,因此原命题的等价于证明S C≥2S B,由条件S C≥S D,可得S A≥S B,①、若B=∅,则S B=0,故S A≥2S B,②、若B≠∅,由S A≥S B可得A≠∅,设A中最大元素为l,B中最大元素为m,若m≥l+1,则其与S A<a i+1≤a m≤S B相矛盾,因为A∩B=∅,所以l≠m,则l≥m+1,S B≤a1+a2+…a m=1+3+32+…+3m﹣1=<=,即S A≥2S B,综上所述,S A≥2S B,故S C+S C∩D≥2S D.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤。
【解析版】江苏省南京、盐城市2013届高三第三次模拟考试数学试卷
一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.
1.(5分)(2013•盐城三模)记函数f(x)=的定义域为A,函数g(x)=lg(x﹣1)的定义域为B,则A∩B=(1,3].
2.(5分)(2013•盐城三模)已知复数z满足(z+1)i=3+5i,其中i为虚数单位,则|z|=5.
=
=
3.(5分)(2013•盐城三模)某算法的伪代码如图所示,若输出y的值为3,则输入x的值为8.
y=,再利用输出值为
或
4.(5分)(2013•盐城三模)如图是7位评委给某作品打出的分数的茎叶图,那么这组数据的方差是.
=90
[
=
故答案为:.
5.(5分)(2013•盐城三模)已知函数f (x)=2sin(ωx+ϕ)(ω>0)的部分图象如图所示,则ω=.
=
==
.
6.(5分)(2013•盐城三模)在一个盒子中有分别标有数字1,2,3,4,5的5张卡片,现从中一次取出2
张卡片,则取到的卡片上的数字之积为偶数的概率是.
张卡片,共有
一个偶数和一个奇数,有
张卡片,共有
另一类是一个偶数和一个奇数,有
.
故答案为.
7.(5分)(2013•盐城三模)在平面直角坐标系xOy中,已知=(3,﹣1),=(0,2).若•=0,
=λ,则实数λ的值为2.
根据向量、的坐标,得到=,设•=.而=λ,得到
解:∵==
=﹣=。
2016年高考数学(新课标版) 专题06 三角化简求值 含解析
2016年高考三轮复习系列:讲练测之核心热点 【全国通用版】 热点六 三角化简求值 【名师精讲指南篇】 【高考真题再现】1.【2013⋅新课标全国】设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______【答案】;2.【2013⋅新课标全国】已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )(A )10(B )9(C )8(D )5【答案】D ;【解析】因为225cos 10A -=,且锐角△ABC,故1cos 5A =,故2222cos a b c bc A =+-,解得5b =.3.【2014高考全国1文】若0tan >α,则( )A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α 【答案】C 【解析】试题分析:由sin tan 0cos ααα=>,可得:sin ,cos αα同正或同负,即可排除A 和B,又由sin 22sin cos ααα=⋅,故sin 20α>.4.【2014全国1高考理】设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则( ) (A ) 32παβ-= (B )32παβ+=(C )22παβ-=(D )22παβ+=【答案】C5.【2015全国1理】sin 20cos10cos160sin10-=( ).A..12- D .12B.原式sin 20cos10cos 20sin10=+=1sin 302=.故选D . 【热点深度剖析】三角函数的化简、求值及最值问题,主要考查同角三角函数的基本关系式,三角函数的诱导公式,和、差、倍、半、和积互化公式在求三角函数值时的应用,考查利用三角公式进行恒等变形的技能,以及基本运算的能力,特别突出算理方法的考查. 2013年试题主要考查三角恒等变换,及倍角公式的灵活运用、同角的三角函数关系等知识以及相应的运算能力. 2014年的试题文主要考查三角函数的同角的三角函数关系,理科考查三角函数的同角的三角函数关系,三角恒等变换.2015主要考查两角和与差的三角函数公式.通过三年试题来看,二倍角公式,同角的三角函数关系是考试的重点.从近几年的高考试题来看,利用同角三角函数的关系改变三角函数的名称,利用诱导公式、和差角公式及二倍角公式改变角的恒等变换是高考的热点,常与三角函数式的求值、三角函数的图象与性质、三角形中三角恒等变化,向量等知识综合考查,既有选择题、填空题,又有解答题,属中低档题.预测2016年会加大对三角客观题考查的力度,同角三角函数基本关系式、诱导公式及三角恒等变换是考查重点. 【重点知识整合】 一.三角函数诱导公式1.对于形如2,,()k a a a k Z ππ±-±∈即满足2nπα+中n 取偶数时:等于角α的同名三角函数,前面加上一个把α看成是锐角时,该角所在象限的符号; 2.对于形如3,()22a a k Z ππ±±∈即满足2nπα+中n 取奇数时:等于角α的余名三角函数,前面加上一个把α看成是锐角时,该角所在象限的符号.3.口诀:奇变偶不变,符号看象限(看原函数,同时可把α看成是锐角).4.运用诱导公式转化角的一般步骤:(1)负化正:当已知角为负角时,先利用负角的诱导公式把这个角的三角函数化为正角的三角函数值;(2)正化负:当已知角是大于360的角时,可用360k α⋅+的诱导公式把这个角的三角函数值化为主区间0360→内的三角函数值;(3)主化锐:当已知角是90到360内的角时,可利用180,270,360ααα---的诱导公式把这个角的三角函数值化为0到90内的角. 二. 两角和与差的三角函数公式1. 两角和与差的正弦公式:()sin αβ±=sin cos cos sin αβαβ±. 变形式:()()sin sin αβαβ++-=2sin cos αβ()();sin sin αβαβ+--=2cos sin αβ;2.两角和与差的余弦公式:()cos αβ±=cos cos sin sin αβαβ变形式:()()cos cos αβαβ++-=2cos cos αβ;()()cos cos αβαβ+--=2sin sin αβ;3.两角和与差的正切公式:()tan αβ±=tan tan 1tan tan αβαβ±())2k k Z παβαβπ+≠+∈(、、.变形式:tan tan αβ±=()()tan 1tan tan αβαβ±.注意:运用两角和与差的三角函数公式的关键是熟记公式,我们不仅要记住公式,更重要的是抓住公式的特征,如角的关系,次数关系,三角函数名等抓住公式的结构特征对提高记忆公式的效率起到至关重要的作用,而且抓住了公式的结构特征,有利于在解题时观察分析题设和结论等三角函数式中所具有的相似性的结构特征,联想到相应的公式,从而找到解题的切入点.三.二倍角公式的正弦、余弦、正切1.二倍角的正弦公式:sin 2α=2sin cos αα;二倍角的余弦公式:cos 2α=22cos sin αα-=22cos 1α-=212sin α-;二倍角的正切公式:tan 2α= 22tan 1tan αα- .2. 降幂公式:sin cos αα=1sin 22α;2sin α=1cos 22α-;2cos α=1cos 22α+. 3.升幂公式:1sin 2α+=2(sin cos )αα+;1cos 2α+=22cos α;1cos 2α-=22sin α.注意:在二倍角公式中,两个角的倍数关系,不仅限于2α是α的二倍,要熟悉多种形式的两个角的倍数关系,同时还要注意απαπα-+442,,三个角的内在联系的作用,⎪⎭⎫⎝⎛±⎪⎭⎫ ⎝⎛±=⎪⎭⎫⎝⎛±=απαπαπα4cos 4sin 222sin 2cos 是常用的三角变换. 【应试技巧点拨】1. 利用诱导公式求值:给角求值的原则和步骤 (1)原则:负化正、大化小、化到锐角为终了.(2)步骤:利用诱导公式可以把任意角的三角函数转化为02π:之间角的三角函数,然后求值,其步骤为:给值求值的原则:寻求所求角与已知角之间的联系,通过相加或相减建立联系,若出现2π的倍数,则通过诱导公式建立两者之间的联系,然后求解. 常见的互余与互补关系 (1)常见的互余关系有:3πα+与6πα-;3πα-与6πα+;4πα+与4πα-等.(2)常见的互补关系有:3πα+ 与23πα-;4πα+与34πα-等.遇到此类问题,不妨考虑两个角的和,要善于利用角的变换的思想方法解决问题. 2.利用诱导公式化简三角函数的原则和要求(1)原则:遵循诱导公式先行的原则,即先用诱导公式化简变形,达到角的统一,再进行三角函数名称转化,以保证三角函数名称最少.(2)要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.2. 利用诱导公式证明三角恒等式的主要思路 (1)由繁到简法:由较繁的一边向简单一边化简.(2)左右归一法:使两端化异为同,把左右式都化为第三个式子. (3)转化化归法:先将要证明的结论恒等变形,再证明.提醒:由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如()()cos 5cos cos παπαα-=-=-. 4. 正、余弦三兄妹“sin cos x x ±、sin cos x x ⋅”的应用sin cos x x ±与sin cos x x ⋅通过平方关系联系到一起,即2(sin cos )12sin cos x x x x ±=±,2(sin cos )1sin cos ,2x x x x +-=21(sin cos )sin cos .2x x x x --=因此在解题中若发现题设条件有三者之一,就可以利用上述关系求出或转化为另外两个. 5.如何利用“切弦互化”技巧(1)弦化切:把正弦、余弦化成切得结构形式,这样减少了变量,统一为“切”得表达式,进行求值. 常见的结构有:① sin ,cos αα的二次齐次式(如22sin sin cos cos a b c αααα++)的问题常采用“1”代换法求解;②sin ,cos αα的齐次分式(如sin cos sin cos a b c d αααα++)的问题常采用分式的基本性质进行变形.(2)切化弦:利用公式tan α=sin cos αα,把式子中的切化成弦.一般单独出现正切、余切的时候,采用此技巧.6.三角函数的化简、计算、证明的恒等变形的基本思路基本思路是:一角二名三结构.即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心.第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点.基本的技巧有:(1)巧变角:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等. (2)三角函数名互化:切割化弦,弦的齐次结构化成切. (3)公式变形使用:如()()()()()()()()cos cos sin sin cos tan 1tan tan tan tan tan tan tan tan tan tan tan tan tan tan tan tan .αββαββααβαβαβαβαβαβαβαβαβαβαβ+++=+-=++=+--+++=+,,,(4)三角函数次数的降升:降幂公式与升幂公式. (5)式子结构的转化.(6)常值变换主要指“1”的变换:221sin cos x x =+22sec tan tan cot x x x x =-=⋅tan sin 42ππ===等.(7)辅助角公式:()sin cos a x b x x θ+=+(其中θ角所在的象限由a b 、的符号确定,θ的值由tan baθ=确定.在求最值、化简时起着重要作用,这里只要掌握辅助角θ为特殊角的情况即可.如sin cos ),sin 2sin(cos 2sin()436x x x x x x x x x πππ±=±±=±±=±等.【考场经验分享】1.在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点.OP r =一定是正值.2.同角三角函数关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围判断符号,正确取舍.3.使用诱导公式时一定要注意三角函数值在各象限的符号,特别是在具体题目中出现类似kπ±α(k ∈Z)的形式时,需要对k 的取值进行分类讨论,从而确定三角函数值的正负.4.重视三角函数的“三变”: “三变”是“变角”,“ 变名”,“ 变式”;变角为:对角的拆分要尽可能化为同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.4.两角和与两角差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式在学习时应注意以下几点:(1)不仅对公式的正用逆用要熟悉,而且对公式的变形应用也要熟悉; (2)善于拆角、拼角如()ββαα-+=,()()()αβαβαβαβαα++=+-++=22,等; (3)注意倍角的相对性 (4)要时时注意角的范围(5)化简要求熟悉常用的方法与技巧,如切化弦,异名化同名,异角化同角等.5.证明三角等式的思路和方法.(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式.(2)证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等.6.解答三角高考题的策略.(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”.(2)寻找联系:运用相关公式,找出差异之间的内在联系.(3)合理转化:选择恰当的公式,促使差异的转化.7.加强三角函数应用意识的训练由于考生对三角函数的概念认识肤浅,不能将以角为自变量的函数迅速与三角函数之间建立联系,造成思维障碍,思路受阻.实际上,三角函数是以角为自变量的函数,也是以实数为自变量的函数,它产生于生产实践,是客观实际的抽象,同时又广泛地应用于客观实际,故应培养实践第一的观点.总之,三角部分的考查保持了内容稳定,难度稳定,题量稳定,题型稳定,考查的重点是三角函数的概念、性质和图象,三角函数的求值问题以及三角变换的方法. 8.变为主线、抓好训练变是本章的主题,在三角变换考查中,角的变换,三角函数名的变换,三角函数次数的变换,三角函数式表达形式的变换等比比皆是,在训练中,强化变意识是关键,但题目不可太难,较特殊技巧的题目不做,立足课本,掌握课本中常见问题的解法,把课本中习题进行归类,并进行分析比较,寻找解题规律.针对高考中题目看,还要强化变角训练,经常注意收集角间关系的观察分析方法.另外如何把一个含有不同名或不同角的三角函数式化为只含有一个三角函数关系式的训练也要加强,这也是高考的重点.同时应掌握三角函数与二次函数相结合的题目.三角函数求值中要特别注意角的范围,如根据21cos2sin2αα-=求sinα的值时,sinα=中的符号是根据角的范围确定的,即当α的范围使得sin0α≥时,取正号,反之取负号.注意在运用同角三角函数关系时也有类似问题.9.本热点一般难度不大,属于得全分的题目,一般放在选择题与填空题的中间位置,但是因题目解法的灵活性造成在紧张的考试氛围里面,容易一时的思路堵塞,需冷静处理,如果一时想不到化简的方向,可暂且放一放,不要钻牛角尖,否则可能造成心理负担,情绪受到影响,因新课标高考对这个热点考查难度已经降低,学生应有必胜的信心.【名题精选练兵篇】ns s i2cos B +2sin B =,B.tanα=2,则=. B . C . D .=sinαcosα===,tanx=,(+x .B .C .D .tanx=+x==+ ++=,10.【2016届甘肃省河西五市部分普通高中高三第一次联考】已知sin 2cos αα=,则tanα=2tan则= 【答案】:∵tanα=2tan,======== ,故答案为:.sincos22sin cos22παπαπαπα++-=---( )A .12 B .12- C .2 D .2- 【答案】B.【解析】由题意3sin 5α=-,因为α是第三象限的角,所以4cos 5α=-,因此222sincoscossin(cossin )1sin 1222222cos 2sin cos cos sin cos sin 222222παπααααααπαπαααααα++-+++====------. 13. 【惠安一中、养正中学、安溪一中2015届高三上学期联合考试】已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边上一点()1,2P --,则sin 2θ 等于( ) A .45-B .35-C .35D .45【答案】D.【解析】根据任意角的三角函数的定义,sin θ=,cos θ=4sin 22sin cos 5θθθ==.14. 【宿迁市2015届高三年级摸底考试】若1cos()33απ-=,则sin(2)απ-6的值是 . 【答案】97-. 【解析】9719121)3(cos 2)322cos()2322sin()62sin(2-=-⨯=--=-=+-=-παπαππαπα.15. 【浙江省效实中学2015届高三上学期期末考试】化简:22cos ()12πα--=A .cos αB .cos α-C .cos 2αD .cos 2α- 【答案】D 【解析】22cos ()12πα--=ααπαπ2cos )2cos()2(2cos -=-=-,答案D.16. 【拉萨中学高三年级(2015届)第三次月考试卷】若⎥⎦⎤⎢⎣⎡∈24ππθ,, 8732sin =θ,则θsin =( )A. 53B. 54C. 47D. 43或47【答案】D.17. 若202παβπ<<<<-,1cos()43πα+=,cos()42πβ-=则cos()2βα+= A .33B .33-C .935 D .96-【答案】C. 【解析】因为202παβπ<<<<-,1cos()43πα+=,所以4344παππ<+<,且322)4sin(=+απ;又因为cos()42πβ-=且02<<-βπ,所以2244πβππ<-<,且36)24sin(=-βπ.又因为)24()4(2βπαπβα--+=+,所以)24sin()4sin()24cos()4cos()]24()4cos[()2cos(βπαπβπαπβπαπβα-++-+=--+=+935363223331=⨯+⨯=.故应选C. 18. 【北京101中学2014—2015学年度高三第一学期期中模拟】在ABC ∆中,若=+=C B C B A tan tan ,cos cos 2sin 则 .【答案】2【解析】因为C B A cos cos 2sin =,所以()2tan tan cos sin cos sin sin cos cos 2=+⇒+=+=C B B C C B C B C B【名师原创测试篇】1. 若锐角θ满足3sin 5θ=,则tan(2)4πθ-的值为( ) A.1731 B.1625 C.3117- D.2516- 【答案】A2. 已知1sin 22α=,则11tan tan 2αα-=____. 【答案】2【解析】由已知得2222sin cos 2tan 1sin 2sin cos 1tan 2ααααααα===++,所以11tan tan 2αα-=2211tan 1tan 2tan 2tan 2tan ααααα-+-==. 3. 已知第三象限角α的终边经过点P ()3,4a a ,则cos α=( ) A.35 B.45 C.35- D.45- 【答案】C【解析】由题可得,因为角α是第三象限角,所以0a <,根据三角函数的概念可得33cos 55a a α===--,故选C. 4. 执行如图所示的程序框图,则输出结果S 的值为( )C.12- D.12cos3。
万变不离其宗2016版高中数学课本典型试题改编系列之必修3解析版 含解析
万变不离其宗—-—2016版高中数学课本典型试题改编系列之必修31。
原题(必修3第13页例6)改编 已知程序框图如图1所示,则该程序框图的功能是( )A.求数列⎭⎬⎫⎩⎨⎧n 1的前10项和()*N n ∈ B 。
求数列⎭⎬⎫⎩⎨⎧n 21的前10项和()*N n ∈C.求数列⎭⎬⎫⎩⎨⎧n 1的前11项和()*N n ∈ D.求数列⎭⎬⎫⎩⎨⎧n 21的前11项和()*N n ∈ 【答案】B.2.原题(必修3第15页思考)改编 在图2程序中所有的输出结果之和为 。
3。
原题(必修3第19页图1。
1—20)改编如图3,输出结果为.【解析】算法程序表示用二分法求函数2(2-)xf的零点,精确度为0。
=x1。
答案:1.4375.4。
原题(必修3第20页习题1。
1B组第二题)改编1某高中男子体育小组的50m的跑步成绩(单位:s)如下表:学123456789号i成6。
46。
57。
0 6.87。
17.3 6.97.07.5绩a i若图4中的程序用来表示输出达标的成绩,且输出结果为6.4,6.5,则达标成绩x的最大值为.(结果保留一位小数).改编2某高中男子体育小组的50m的跑步成绩(单位:s)如下表: 123456789学号i成6。
46。
57。
06。
87。
17.36。
97.07。
5绩a i若图5中的程序用来表示输出达标的成绩,则从该小组中任取两名同学的成绩,至少有一名达标的概率为.5。
原题(必修3第33页习题1。
2B组第四题)改编在图6的程序框中,将输出的a的值分别记为a1,a2,a3…,若t=3,则数列{}n a的通项公式为.6. 原题(必修3第50页复习参考题A 组第三题)某铁路客运部门规定甲、乙两地之间旅客托运行李的费用:不超过50kg 按0。
53元/kg 收费,超过50kg 的部分按0.85元/kg 收费.相应收费系统的流程图如右图所示,则①处应填( )A 。
x y 85.0=B 。
()85.05053.050⨯-+⨯=x yC 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题:本大题共14个小题,每小题5分,共70分.1.已知全集U ={-1,2,3,a },集合M ={-1,3}.若∁U M ={2,5},则实数a 的值为 ▲ . 【答案】5 【解析】试题分析:因为{1,3,2,5}U U M C M ==-,所以 5.a =考点:集合补集2.设复数z 满足z (1+i)=2+4i ,其中i 为虚数单位,则复数z 的共轭复数为 ▲ . 【答案】3-i 【解析】 试题分析:因为24(24)(1)(12)(1)3i,12i i i z i i i ++-===+-=++所以复数z 的共轭复数为3-i 考点:复数概念3.甲、乙两位选手参加射击选拔赛,其中连续5轮比赛的成绩(单位:环)如下表:则甲、乙两位选手中成绩最稳定的选手的方差是 ▲ . 【答案】0.02考点:方差4.从2个白球,2个红球,1个黄球这5个球中随机取出两个球,则取出的两球中恰有一个红球的概率是 ▲ . 【答案】35【解析】试题分析:从5个球中随机取出两个球,共有10种基本事件,其中取出的两球中恰有一个红球包含有236⨯=种基本事件,其概率为63.105= 考点:古典概型概率5.执行如图所示的伪代码,输出的结果是 ▲ .【答案】8考点:循环结构流程图6.6.已知α,β是两个不同的平面,l ,m 是两条不同直线,l ⊥α,m ⊂β. 给出下列命题:①α∥β⇒l ⊥m ; ②α⊥β⇒l ; ③m ∥α⇒l ⊥β; ④l ⊥β⇒m ∥α.其中正确的命题是 ▲ . (填.写所有正确命题的........序号..). 【答案】①④ 【解析】试题分析:①α∥β,l ⊥α⇒ l ⊥β⇒ l ⊥m ,命题正确;②α⊥β,l ⊥α⇒ l 、m 可平行,可相交,可异面,命题错误;③m ∥α,l ⊥α⇒ l ⊥m ⇒ l 与β可平行,l 可在β内,l 可与β相交,命题错误;④ l ⊥β、l ⊥α⇒β∥α⇒m ∥α.命题正确.考点:线面关系判定7.设数列{a n }的前n 项和为S n ,满足S n =2a n -2,则86a a = ▲ .(第5题图)【解析】试题分析:由S n =2a n -2,得S n-1=2a n-1-2,(n 2)≥所以a n =2a n -2a n-1 ,a n =2a n-1(n 2)≥,数列{a n }为等比数列,公比为2,2862 4.a a == 考点:等比数列定义及性质8.设F 是双曲线的一个焦点,点P 在双曲线上,且线段PF 的中点恰为双曲线虚轴的一个端点,则双曲线的离心率为 ▲ .【解析】试题分析:不妨设22221,(c,0)x y F a b -=,则点P(c,2b)-±,从而有222222415c b c e a b a-=⇒=⇒=考点:双曲线离心率9.如图,已知A ,B 分别是函数f (x )sin ωx (ω>0)在y 轴右侧图象上的第一个最高点和第一个最低点,且∠AOB =2π,则该函数的周期是 ▲ .【答案】4考点:三角函数性质10.已知f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=2x -2,则不等式f (x -1)≤2的解集是 ▲ . 【答案】[-1,3](第9题图)试题分析:因为当x ≥0时,f (x )=2x -2,所以当0≤x ≤2时,f (x ) ≤f (2)=2,而f (x )是定义在R 上的偶函数,所以当-2≤x ≤2时,f (x ) ≤2,因此不等式f (x -1)≤2等价于-2≤x -1≤2,即-1≤x ≤3,解集是[-1,3]考点:利用函数性质解不等式11.如图,在梯形ABCD 中,AB ∥CD ,AB =4,AD =3,CD =2,2AM MD =.若AC BM ⋅=-3,则AB AD ⋅= ▲ .【答案】32【解析】试题分析:因为122()()23233AC BM AD AB AB AD AB AD ⋅=+⋅-+=--⋅=-,所以3.2AB AD ⋅= 考点:向量数量积12.在平面直角坐标系xOy 中,圆M :(x -a )2+(y +a -3)2=1(a >0),点N 为圆M 上任意一点.若以N 为圆心,ON 为半径的圆与圆M 至多有一个公共点,则a 的最小值为 ▲ . 【答案】3考点:两圆位置关系13.设函数f (x )=1,1,x x x a e x x a-⎧≥⎪⎨⎪--<⎩,g (x )=f (x )-b .若存在实数b ,使得函数g (x )恰有3个零点,则实数a 的取值范围为 ▲ . 【答案】(-1-21e ,2)(第11题图)试题分析:令1x x y e -=,则2x x y e -'=,所以当2x ≤时,211(,]x x y e e -=∈-∞,当2x ≥时,211(0,]x x y e e-=∈ 因此要使函数g (x )恰有3个零点,须2a <且211a e --<,即实数a 的取值范围为(-1-21e,2)考点:利用导数研究函数零点14.若实数x ,y 满足2x 2+xy -y 2=1,则222522x yx xy y --+的最大值为 ▲ .考点:基本不等式求最值二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分14分)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边.若向量m =(a ,cos A ),向量n =(cos C ,c ),且m ·n =3b cos B . (1)求cos B 的值;(2)若a ,b ,c 成等比数列,求11tan tanCA +的值.【答案】(1)13(2【解析】试题分析:(1)先由向量数量积得a cos C +c cos A =3b cos B ,再由正弦定理将边化角,得sin A cos C +sin C cos A =3sin B cos B ,即得cos B =13.(2)由等比数列性质得b 2=ac ,再由正弦定理将边化角,得sin 2B =sin A ·sin C .利用同角三角函数关系、两角和正弦公式化11tan tanC A +得11tan tanC A +1sin B ==考点:向量数量积、正弦定理、同角三角函数关系16.(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,D为棱BC上一点.(1)若AB=AC,D为棱BC的中点,求证:平面ADC1⊥平面BCC1B1;(2)若A1B∥平面ADC1,求BDDC的值.【答案】(1)详见解析(2)1【解析】试题分析:(1)证明面面垂直,一般利用面面垂直判定定理,即从线面垂直出发给予证明,而线面垂直的证明,一般需多次利用线面垂直判定与性质定理(2)已知线面平行,一般利用线面平行性质定理,将其转化为线线平行:连结A1C,交AC1于O,则可得A1B∥OD.再结合平面几何性质确定线段比值.试题解析:证明:(1)因为AB=AC,点D为BC中点,所以AD⊥BC. (2)分因为ABC-A1B1C1 是直三棱柱,所以BB1⊥平面ABC.因为AD⊂平面ABC,所以BB1⊥AD.···················································4分因为BC∩BB1=B,BC⊂平面BCC1B1,BB1⊂平面BCC1B1,所以AD⊥平面BCC1B1.因为AD⊂平面ADC1,所以平面ADC1⊥平面BCC1B1.·············································6分考点:面面垂直判定定理,线面平行性质定理17.(本小题满分14分)如图,在平面直角坐标系xOy中,已知椭圆C:22221x ya b+=(a>b>0)点(2,1)在椭圆C上.(1)求椭圆C的方程;(2)设直线l与圆O:x2+y2=2相切,与椭圆C相交于P,Q两点.①若直线l过椭圆C的右焦点F,求△OPQ的面积;②求证:OP⊥OQ.(第17题图)【答案】(1)22163x y +=(2试题解析:解:(1)由题意,得c a =22411a b +=,解得a 2=6,b 2=3. 所以椭圆的方程为22163x y += ··································································2分 (2)①解法一 椭圆C 的右焦点F,0). 设切线方程为y =k (x),即kx -yk =0,=k,所以切线方程为y(x.·······················4分由方程组22163y y x x ⎧+=⎪⎨⎪⎩解得x y ⎧=⎪⎪⎨⎪⎪⎩或x y ⎧=⎪⎪⎨⎪⎪⎩所以PQ. ·································6分 因为O 到直线PQ,所以△O PQ.因为椭圆的对称性,当切线方程为y(x)时,△O PQ.综上所述,△O PQ·································8分②解法二 消去y 得5x 2-x +6=0.设P(x1,y1) ,Q(x2,y2),则有x1+x2.由椭圆定义可得,PQ=PF+FQ=2a-e( x1+x2)=2.···············6分②(i)若直线PQ的斜率不存在,则直线PQ的方程为x或x.当x时,P),Q).因为OP OQ=0,所以OP⊥OQ.当x时,同理可得OP⊥OQ.·································10分考点:椭圆标准方程,直线与圆相切,直线与椭圆位置关系18.(本小题满分16分)如图,某森林公园有一直角梯形区域ABCD,其四条边均为道路,AD∥BC,∠ADC=90°,AB=5千米,BC=8千米,CD=3千米.现甲、乙两管理员同时从A地出发匀速前往D地,甲的路线是AD,速度为6千米/小时,乙的路线是ABCD,速度为v千米/小时.(1)若甲、乙两管理员到达D的时间相差不超过15分钟,求乙的速度v的取值范围;(2)已知对讲机有效通话的最大距离是5千米.若乙先到达D,且乙从A到D的过程中始终能用对讲机与甲保持有效通话,求乙的速度v的取值范围.(第18题图)CBD【答案】(1)646497v≤≤(2)8<v≤394.试题解析:解:(1)由题意,可得AD=12千米.由题可知12161||64v-≤············································2分解得646497v≤≤.··············································4分(2)经过t小时,甲、乙之间的距离的平方为f(t).由于乙先到达D地,故16v<2,即v>8.················································6分①当0<vt≤5,即0<t≤5v时,f(t)=(6t)2+(vt)2-2×6t×vt×cos∠DAB=(v2-48vv+36) t2.因为v2-48vv+36>0,所以当t=5v时,f(t)取最大值,所以(v2-48vv+36)×(5v)2≤25,解得v≥154.·········································9分②当5<vt≤13,即5v<t≤13v时,f(t)=(vt-1-6t)2+9=(v-6) 2 (t-16v-)2+9.因为v>8,所以16v-<5v,(v-6) 2>0,所以当t=13v时,f(t)取最大值,所以(v-6) 2 (13v-16v-)2+9≤25,解得398≤v≤394.········································13分③当13≤vt≤16,13v≤t≤16v时,f(t)=(12-6t)2+(16-vt)2,因为12-6t>0,16-vt>0,所以当f(t)在(13v,16v)递减,所以当t=13v时,f(t)取最大值,(12-6×13v)2+(16-v×13v)2≤25,解得398≤v≤394.因为v>8,所以8<v≤394.·············································16分考点:实际应用题,分段函数求函数最值19.(本小题满分16分)设函数f(x)=-x3+mx2-m(m>0).(1)当m=1时,求函数f(x)的单调减区间;(2)设g(x)=|f(x)|,求函数g(x)在区间[0,m]上的最大值;(3)若存在t≤0,使得函数f(x)图象上有且仅有两个不同的点,且函数f(x)的图象在这两点处的两条切线都经过点(2,t),试求m的取值范围.【答案】(1)(-∞,0)和(23,+∞)(2)y max=3,0427m m mm m≥<<⎧⎪⎪⎨⎪⎪⎩-,3)(0,83]∪[9+,+∞).试题解析:解:(1)当m=1时,f(x)=-x3+x2-1.f ′(x)=-3x2+2x=-x(3x-2).由f ′(x)<0,解得x<0或x>23.所以函数f(x)的减区间是(-∞,0)和(23,+∞).······································2分(2)依题意m>0.因为f(x)=-x3+mx2-m,所以f ′(x)=-3x2+2mx=-x(3x-2m).由f ′(x )=0,得x =23m 或x =0. 当0<x <23m 时,f ′(x )>0,所以f (x )在(0,23m )上为增函数; 当23m <x <m 时,f ′(x )<0,所以f (x )在(23m ,m )上为减函数; 所以,f (x )极大值=f (23m )=427m 3-m . ·················································4分 ①当427m 3-m ≥m ,即my max =427m 3-m .···············································6分 ②当427m 3-m <m ,即0<my max =m . 综上,y max=3,0427m m m m m ≥<<⎧⎪⎪⎨⎪⎪⎩-, ··················································8分列表可判断单调性,可得当x =2或x =3m , h (x )取得极值分别为h (2)=3m -8,或h (3m )=-127m 3+23m 2-m . 要使得关于x 的方程t =2x 3-(6+m )x 2+4mx -m 有且仅有两个不相等的实根,则t =3m -8,或t =-127m 3+23m 2-m . ·······························14分 因为t ≤0,所以3m -8≤0,(*),或-127m 3+23m 2-m ≤0.(**)解(*),得m ≤83,解(**),得m ≤9-m ≥9+因为m >0,所以m 的范围为(0,83]∪[9+∞). ··································16分考点:利用导数求函数单调区间,利用导数研究函数最值,利用导数研究函数零点20.(本小题满分16分)已知数列{a n }的前n 项的和为S n ,记b n =1n S n+. (1)若{a n }是首项为a ,公差为d 的等差数列,其中a ,d 均为正数.①当3b 1,2b 2,b 3成等差数列时,求a d的值; ②求证:存在唯一的正整数n ,使得a n +1≤b n <a n +2.(2)设数列{a n }是公比为q (q >2)的等比数列,若存在r ,t (r ,t ∈N *,r <t )使得22t r b t b r +=+求q 的值. 【答案】(1)①34a d =②详见解析(2试题解析:解:(1)①因为3b 1,2b 2,b 3成等差数列,所以4b 2=3b 1+b 3,即4×3+3d 2a =3(2a +d )+4+6d 3a , 解得,34a d =. ····································4分 ② 由a n +1≤b n <a n +2,得a +nd ≤(1)(1)+d 2n n n a n++<a +(n +1)d ,整理得222020a n n d a n n d ⎧--≤⎪⎪⎨⎪+->⎪⎩········································6分<n········································8分=1>0. 因此存在唯一的正整数n ,使得a n +1≤b n <a n +2. ·········································10分于是t =2,所以321183q q --=,即3q 2-5q -5=0. 又q >2,所以q···········································16分考点:等差数列性质,数列单调性,等比数列求和公式附加题21.A选修4—1:几何证明选讲如图,已知半圆O的半径为2,P是直径BC延长线上的一点,P A与半圆O相切于点A,H是OC的中点,AH⊥BC.(1)求证:AC是∠P AH的平分线;(2)求PC的长.【答案】(1)详见解析(2)2试题解析:证明:(1)连接AB.因为P A是半圆O的切线,所以∠P AC=∠ABC.因为BC是圆O的直径,所以AB⊥AC.又因为AH⊥BC,所以∠CAH=∠ABC,所以∠P AC=∠CAH,所以AC是∠P AH的平分线.···········································5分(2)因为H是OC中点,半圆O的半径为2,所以BH=3,CH=1.又因为AH⊥BC,所以AH2=BH·HC=3,所以AH.在Rt△AHC中,AHCH=1,所以∠CAH=30°.由(1)可得∠P AH=2∠CAH=60°,所以P A=.由P A是半圆O的切线,所以P A2=PC·PB,所以PC·(PC+BC)=)2=12,所以PC=2.···········································10分考点:弦切角定理,切割线定理21.B 选修4—2:矩阵与变换已知曲线C :x 2+2xy +2y 2=1,矩阵A =1210⎡⎤⎢⎥⎣⎦所对应的变换T 把曲线C 变成曲线C 1,求曲线C 1的方程. 【答案】x 2+y 2=2考点:矩阵变换,相关点法求轨迹方程21.C 选修4—4:坐标系与参数方程设极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合.已知椭圆C 的参数方程为2cos sin x y θθ=⎧⎨=⎩(θ为参数),点M 的极坐标为(1,2π).若P 是椭圆C 上任意一点,试求PM 的最大值,并求出此时点P 的直角坐标.【答案】PM P 的坐标是(13). 【解析】试题分析:先将M 的极坐标化为直角坐标M (0,1),再利用椭圆参数方程表示PM 距离:PM =,最后根据二次函数对称轴与定义区间位 置关系求最值试题解析:解:M 的极坐标为(1,2π),故直角坐标为M (0,1),且P (2cos θ,sin θ),所以PM =,sin θ∈[-1,1]. ·················5分当sin θ=-13时,PM max cos θ.所以,PM P 的坐标是(,-13).·······························10分 考点:极坐标化为直角坐标,二次函数最值21.D 选修4—5:不等式选讲求函数f (x )=【答案】考点:利用柯西不等式求最值【必做题】第22题、第23题,每题10分,共计20分.请在答.卷卡指定区域内.......作答.解答应写出 文字说明、证明过程或演算步骤.22.(本小题满分10分)从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X 为所组成的三位数各位数字之和.(1)求X 是奇数的概率;(2)求X 的概率分布列及数学期望.【答案】(1)712(2)254【解析】试题分析:(1)因为X 是奇数,所以三个数字必是一奇二偶:按是否取0讨论,有11232223(2)28C C A A ⨯+=而能组成的三位数的个数是223424248C A A ⨯+=,因此所求概率为P (A )=287=4812.(2)先确定随机变量取法3,4,5,6,7,8,9.再分别求对应概率,最后利用公式求数学期望,注意按是否取0讨论 试题解析:解:(1)记“X 是奇数”为事件A ,能组成的三位数的个数是48. ·································2分 X 是奇数的个数有28,所以P (A )=287=4812. 答:X 是奇数的概率为712. ·································4分考点:概率分布,数学期望23.(本小题满分10分)在平面直角坐标系xOy 中,点P (x 0,y 0)在曲线y =x 2(x >0)上.已知A (0,-1),00(x ,y )n n n P ,n ∈N *.记直线AP n 的斜率为k n .(1)若k 1=2,求P 1的坐标;(2)若 k 1为偶数,求证:k n 为偶数.【答案】(1)(1,1)(2)详见解析(2)设k 1=2p (p ∈N *),即20000112y x p x x ++==, 所以20x -2px 0+1=0,所以x 0=p. ··································4分 因为y 0=x 02,所以k n =2000000111n n n n n n y x x x x x ++==+ 所以当x 0=p时, k n =(p)n +)n =(p)n +(p)n .····························6分 同理,当 x 0=p时,k n =(p)n +(p)n .①当n =2m (m ∈N *)时, k n =22220(p 1)m k n k k n k C p -=-∑,所以 k n 为偶数. ②当n =2m +1(m ∈N )时,k n =22220(p 1)mk n k k n k C p -=-∑,所以 k n 为偶数. 综上, k n 为偶数. ································10分 考点:二项式展开定理应用:。