等腰三角形教学反思
八年级等腰三角形数学教案【优秀6篇】
八年级等腰三角形数学教案【优秀6篇】作为一名专为他人授业解惑的人民教师,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。
来参考自己需要的教案吧!小编为您精心收集了6篇《八年级等腰三角形数学教案》,如果能帮助到您,小编将不胜荣幸。
等腰三角形篇一9.3章等腰三角形教案(一)、温故知新,激发情趣:1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。
(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。
)(二) 、构设悬念,创设情境:3、一般三角形有哪些特征?(三条边、三个内角、高、中线、角平分线)4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?(把问题3作为教学的出发点,激发学生的学习兴趣。
问题4给学生留下悬念。
)(三)、目标导向,自然引入:本节课我们一起研究——9.3 等腰三角形(板书课题) 9.3 等腰三角形(了解本节课的学习内容)(四)、设问质疑,探究尝试:结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。
[问题]通过观察,你发现了什么结论?(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)[结论]等腰三角形的两个底角相等。
(板书学生发现的结论)等腰三角形特征1:等腰三角形的两个底角相等在△ ABC中,△AB=AC()△△B=△C()[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。
例1:已知:在△ABC中,AB=AC,△B=80°,求△C和△A的度数。
〔学生思考,教师分析,板书〕练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。
等腰三角形教学反思(共8篇)
等腰三角形教学反思(共8篇)以下是网友分享的关于等腰三角形教学反思的资料8篇,希望对您有所帮助,就爱阅读感谢您的支持。
等腰三角形的教学反思篇1《等腰三角形》教学反思我给本校的教师上了一节示范课,八年级学生共计38人(是我班学生),听课教师10人左右,教学内容是等腰三角形及性质(人教版八年级上册49页)。
本节教学内容是在学习了三角形的有关概念、轴对称的概念及性质,掌握了全等三角形基础上进行的,它是以后证明线段相等和角相等的重要依据。
探索、证明和应用等腰三角形的性质是本节的重点,把操作实验结果抽象为数学语言和得出辅助线的添加方法是本节的难点。
整体设计思路:创设情景——观察比较——操作实验工——验证归纳——推理论证——巩固应用。
下面是我对这节课教学的几点反思:1、在引课时:我要求学生独立完成,也可四人小组共同完成,同学们按课本探究要求将一张纸折叠后剪出一个三角形,然后在本上画出一个等腰三角形,这个过程大约花了3分钟。
之后提出的又一问题过于开放,我进行了补充,是关于角的方面。
学生积极思考,互相交流,不一会,有的学生猜出了答案。
我的问题是:什么是等腰三角形?根据原有的知识,你能说出等腰三角形的腰、底边、顶角、底角的概念吗?这时学生畅所欲言,思维活跃,踊跃回答,课堂气氛热烈。
有的学生说等腰三角形的两底角相等,我是用折纸的方法得到的。
有的说是用度量的方法得出等腰三角形的两底角相等,这使我有点出乎意料。
但很快就有学生反驳:“用度量的方法得出等腰三角形的两底角不一定相等”。
我及时赞扬了该同学的发现。
进一步询问“为什么会出现这个现象”。
学生的回答令人满意“画图不准确,可能度量有误差”。
这位学生的注意很不简单。
这时是及时引导学生用事实讲话,以理服人的好时候。
那么用折纸的办法就能够避免误差吗?显然,同样避免不了。
只要是动手,只要是操作,误差就是不可避免的。
那几何岂不成了不精确的学问了,这还是数学吗?几何学的创造者用智慧解决了这个问题,他们想出了绕过动手操作,从而避免难以克服的对误差精度的要求的办法,用概念、用公理、用命题、用道理来确定等腰的含义,这就避免了由动手操作、直观想象所带来的不确定性,于是边与角、腰与角之间的关系就成为确定等腰三角形的精确关系,用这些关系,不用画、不用量就可以把握住等腰三角形,同样,这也可以从等腰三角形中延拓出各种性质。
《等腰三角形性质》教学反思
《等腰三角形性质》教学反思
固始县草庙一中贾维生
等腰三角形性质这节课让学生折纸。
剪纸,培养学生的动手操作能力,让学生精力观察猜想,验证归纳的过程。
让学生自主学习,合作探究,推理证明,又感性认识圣神到理性认识。
从而掌握等腰三角形的两个性质,学生在活动中理解掌握基本知识,技能和方法。
不局限于添加等腰三角形顶角平分线,底边的高和边上的中线。
要让学生的思维扩展开去。
从而顶角的顶点添加辅助先试试看,培养学生的发散思维,锻炼学生探究和发现问题的能力,从而解决问题的能力。
通过一个个问题的解决。
激发学生探索问题的欲望,在分析问题和解决问题中获得更多的体验和经验,从而获得一种成功的喜悦和成就感。
本节课内容多,探索性强,如果学生感觉困难,课下要辅导补习。
等腰三角形的教学反思
等腰三角形的教学反思等腰三角形的教学反思6篇等腰三角形的教学反思精选篇1本节课重点要让学生通过实践、交流、猜想、论证,得出等腰三角形“两个底角相等”、“三线合一”的性质。
“等腰三角形”是学生小学学过的、生活中常见的一类__面图形,今天讲的一定要是有别于以往的、又对旧知识做一个补充和印证的。
因此我给它定位是“轴对称图形”的典型#。
从这点出发结合“探究1”让学生用不同的方法得到等腰三角形,继而复习它的相关概念,由“探究2”让学生自主探究等腰三角形的性质。
实践、交流、归纳出等腰三角形的2点性质:“两个底角相等”、“三线合一”。
要论证猜想的正确性,除了小学里的等腰三角形翻折的直观印证外,就要用到之前的“证明三角形全等”这一常见方法了。
在此,将猜想的命题转化成符号语言是一个初步的训练。
而此命题证明的关键是“添加辅助线”,有前面两个“探究”,如何添加辅助线也就水到渠成了。
这条辅助线就是图形的对称轴。
结合课本76页证明过程,进一步提出:将“作底边BC的中线AD”改为“过A 作底边BC的高线AD”或者“作∠BAC的__分线AD交BC于D”性质1、2是不是同样得到证明?证明过程中有什么异同?在此要给学生强调:性质2实际上包含了三个命题,需要一一证明。
这点在辅助线的添加处加以说明:作中线,证高线,证__分线;作高线,证中线,证__分线或作角__分线,证高线,证中线。
性质2不容易引起学生的重视,但它的应用十分广泛,所以我在此补充了例题让学生加以巩固。
等腰三角形的2条性质对今后证明线段相等或角相等方面有很多的应用,限于课堂时间有限,没有加以补充,今后具体问题时再予总结。
等腰三角形的教学反思精选篇23月4日本节课的教学重点是认识等腰三角形和等边三角形以及它们的特征。
我首先出示两块三角板,通过观察让学生发现有一块三角板边不同于另一块,有两条边相等的,从而引出等腰三角形,然后利用折纸这个活动,来进一步体会等腰三角形的特点。
等边三角形与之类似,在教学中我把重点放在折纸上,先是引导学生看书上的图示,理解做的步骤,然后让学生自己动手去做,在等腰三角形的操作中,学生做得还可以,但在做等边三角形时,有些学生看图不细,点的位置不正确导致做的效果不好。
等腰三角形教学反思
篇一:等腰三角形的性质教学反思《等腰三角形的性质》教学反思奉城二中李爱贤 2007-5-12本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。
通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。
并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。
通过本节课的教学要求学生掌握等腰三角形的性质定理1、2、3,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法,培养学生的联想能力。
而等腰三角形的性质定理是本课的重点,等腰三角形“三线合一”性质的运用是本课的难点“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
首先我用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。
引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。
从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活,紧接着进入第二个环节。
在本章的开始已经学习了三角形的分类,并且认识了等腰三角形,为了更好地学好本节课,让学生画一个等腰三角形,指出其各部分的名称,然后让学生猜测等腰三角形除了两腰相等以外它还具有哪些性质?猜想形成不成熟的结论∠b=∠c,那么,我们如何来证明呢?为学生提供可探索性的问题,合理的设计实验过程,创造出良好的问题情境,不断地引导学生观察、实验、思考、探索,使学生感到自己就像数学家那样发现问题、分析问题、解决问题,去发现规律,证实结论。
《等腰三角形》教学反思
《等腰三角形》教学反思《等腰三角形》教学反思1本节课中,性质的引入体现了新课程的理念,学生合作学习,课堂上,学生充分猜想、验证,用实验方法得出各种不同的结论,借助小组合作学习的方式,使学生的思维充分展开,在课堂上通过讨论,点评了两种方法,其余给学生课后验证,拓展了课堂的空间。
从“折叠等腰三角形”这一实践中,通过“小组内交流→小组间交流→小组内归纳”这一过程,总结出等腰三角形的各种性质(现象),学生学习的兴趣增强了,对知识的探究也深入了,印象也比较深刻,明显比教师讲解有更强的作用。
另一方面也说明了教师有深厚的学科功底,对教材的理解非常深刻,是在“用课本教”而不是在“教课本”。
在本节课中还应处理好以下几点:⑴等腰三角形“三线合一”定理的强调,尤其是书写。
因为它需要两个条件,推出两个结论,学生第一次碰到,比较困难。
⑵加强证题前的分析,引导学生从已知条件出发,探究解题思路,此时可能有多种途径选择,最好结合所要求证的结论一起考虑,按需择取。
⑶加强学生的书写能力的培养。
本节课学生书写板演基本没有,比较欠缺,可能学生能说不会写,或者写不好。
《等腰三角形》教学反思2本节课是九年级第一轮复习中为巩固学生对等腰三角形知识的灵活运用而精心设计的一堂几何复习课,结合本节课谈几点感悟:1 、起点的教学设计,有利于调动学生的学习积极性,让学生全面参与,符合让学生发展为本的课改理念,今后应多在课堂教学中使用。
2、学习数学离不开解题,但如果陷入茫茫的题海中,解题千万道,解后抛九霄,是难以达到提高解题能力、发展思维的目的的。
初三学生单纯的做、练激不起求知的欲望,在学生掌握课本基础知识和技能的前提下,对先前习题进行适当的挖掘、拓展、整合,是提高学生思维能力和解题能力,较好掌握课本知识与技能的重要方法。
既________于教材,又高于教材,较有新意,又能提高综合应用知识的能力,这才是高层次的复习课。
3、复习课既不像新授课那样有新鲜感,又不像练习课那样有成功感。
《等腰三角形》教学反思(精选10篇)
《等腰三角形》教学反思(精选10篇)作为一名优秀的教师,教学是重要的工作之一,借助教学反思我们可以拓展自己的教学方式,教学反思应该怎么写呢?下面是小编收集整理的《等腰三角形》教学反思(精选10篇),欢迎阅读与收藏。
《等腰三角形》教学反思1首先我让学生从概念上去认识等腰三角形,会识别它的腰、底边、顶角和底角。
然后让学生在练习本上画出一个等腰三角形,锻炼学生的动手作图能力,对等腰三角形翻折让它的两条腰AB和AC重合,通过这个简单的试验让学生从中寻找、发现等腰三角形的一些性质。
学生归纳和抽象的逻辑思维能力略显不足,归纳结论也没有方向性,我及时的对学生进行引导,翻折图形的过程三角形的两部分完全重合说明该三角形是一个轴对称图形。
然后从轴对称图形所具有的一般性质出发,推导等腰三角形所具有的具体的性质。
通过引导学生轴对称图形的对应线段相等,对应角相等从而在等腰三角形图形中找到相应的线段和角。
学生的观察图形,抽象归纳的能力有待提高,今后也要加强这方面的训练。
例如我们从图中观察出线段BD=CD,那么线段AD是三角形的什么线?有不少学生说是高线和角平分线,这也是学生一个不好的习惯导致的,做题不看清楚题目意思,不读懂题目,想当然的说出答案。
当然还有一个原因:学生对概念定义的理解不够透彻,混淆了意思相近的概念,导致了解题的出错。
在结论一推出后我马上给出一例题,加强学生对结论一的理解和吸收,并能够简单的对结论一加以应用;同样在给出结论二后,为了让学生更深入的理解结论二(三线合一),在反复的强调结论二以后仍然给出了一个例子,也是为了追求思维的连贯性。
纵贯整堂课,在教学内容上,结合学生的理解程度,还是略显偏多。
就结论二这个知识点学生理解起来相当吃力,等腰三角形的三线合一学生很容易把三条线弄混淆,什么时候该用等腰三角形的顶角平分线,什么时候用底边上的中线,什么时候用底边的高线学生不明白,再加上文字语言与数学语言之间的转换,学生学起来就更加的吃力。
等腰三角形课后反思
课后反思:
在这节课的教学中,充分体现“学生是学习的主人,教师是学习的组织者、引导者和合作者。
动手实践、自主探究与合作交流是学生学习数学的重要方式。
(1)引导学生观察生活中常见的等腰三角形实物图片,让学生感受数学无处不在,并感受数学知识无处不在,并感知等腰三角形的特点激发学生学生求知欲。
(2)教学过程中让每个学生参与学习,组织学生动手折纸、自主探索、合作交流归纳得出等腰三角形的性质,这样就让学生在自然地情境中,在教师的帮助下,自己动手、动脑做数学,获得体验调动学生主动参与的积极性,让学生在主动参与中学习数学。
(3)利用多媒体教学,丰富学生的切实体验和感受直观动态的演示,为学生发现性质、提供素材。
使学生乐意并更多的经历投入到现实的、探索性的教学活动中去。
关于等腰三角形的教学反思
关于等腰三角形的教学反思关于等腰三角形的教学反思6篇关于等腰三角形的教学反思(篇1)今天在县教育局的#下,在李菊芳科长的#下,我在永流中学顺利上完示范课《等腰三角形的性质》,并和#,同仁们进行了评课。
在大家的指导下,结合这节课的设计意图,以及学生的学习效果,我个人认为值得以后借鉴的地方有:(一)突出重点,实现教学目标《等腰三角形的性质》这节课重点是让学生通过动手翻折等腰三角形纸片得出“等腰三角形的两底角相等”及“三线合一”的性质。
设计理念是让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证。
使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目标。
(二)导课自然,成功引入新课首先用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。
引出学生探究心理,迅速集中#,使其带着浓厚的兴趣开始积极探索思考。
从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。
(三)设置有梯度,学生易于接受在本节课的问题设置中,特别是巩固练习题的设置,由易到难,由一般到规律先一般顶角70度,到一个角是70度,再到一个角是110度,再总结出顶角的范围,底角的范围,给据学生的认知特点,易于接受。
有着良好的效果这节课,也有不足的地方:(一)在证明性质时由命题转化几何求证时应多加强已知,求证的书写过程。
(二)上课的节奏有点快。
在以后的教学中能多加以改正。
美中不足的是性质二的应用本节课安排的例题,习题有点少,在以后的.教学中应多补充些例题及习题。
关于等腰三角形的教学反思(篇2)《等腰三角形的判定》是初中数学的一个重要定理,也是本章的重点内容。
本节内容是在学生已有的__行线性质、命题以及等腰三角形的性质等知识基础上进一步研究的问题。
特点之一是它揭示了同一个三角形的边、角关系;特点之二是它与等腰三角形的性质定理互为逆定理;特点之三是它为我们提供了证明两条线段相等的新方法,为以后的学习提供了证明和计算依据,有助于培养学生思维的灵活性和广阔性。
(完整版)等腰三角形教学反思
等腰三角形教学反思谷城县城关一中黄艳丽等腰三角形是在学生已经学了三角形的基本概念,全等三角形和轴对称知识的基础上进一步学习的,是为证明角的相等、线段相等和线段垂直提供了方法,也为后续学习等边三角形、菱形、正方形、圆等内容的重要基础.本节课我认为有以下几个特点:1. 教学设计自然流淌,注重知识的形成过程.我首先设计了一个微课,帮助学生回顾了等腰三角形的有关概念,吸引了学生的注意力,促使他们的思维进入最佳状态.然后让学生从剪一剪、折一折、找一找中猜想,写出已知求证证明,形成性质,文字、图形、符号语言间相互转化,剖析性质中所表述的真实含义,性质的生成到形成让学生经历全过程,最后运用性质,掌握巩固。
呈现了一个动手操作得出概念,观察实验得到性质,推理证明论证性质,变式训练巩固性质的过程.充分体现了一个实验、观察、猜想、论证、运用的研究几何图形问题的全过程。
2.教学灵活循序渐进,注重数学方法的学习.通过学生自己动手实验,发现等腰三角形共同的特征,体会认识事物的一般方法——由特殊到一般,进一步培养学生的抽象概括能力.在学生经历完整的命题证明过程中,理解等腰三角形性质表述形式的真正含义,会进行文字语言、符号语言、图形语言间的相互转换,能从操作实验中发现辅助线的添加方法,体验辅助线的添加与解决问题思路的相关性,提高添加辅助线的自觉性和能动性. 让学生进一步理解等腰三角形性质2的意义——它既是全等知识的运用和延续,又是证明角相等、线段相等、线段垂直关系的更为简捷的途径和方法.3.注重数学思想方法的渗透.在证明性质1时把等腰三角形的问题转化为全等三角形问题,体现转化的数学思想。
性质2的理解和灵活运用是本节课的重点,学生不好理解性质2所包含的三重含义,因此在这里引导学生分析性质2的题设和结论,发现需要分三种情况讨论,渗透分类讨论思想。
例1中涉及一个内角为36°时,分顶角和底角;变式3,4涉及腰上的高时也需要注意分类讨论。
等腰三角形听课心得体会等腰三角形听课反思
等腰三角形听课心得体会等腰三角形听课反思等腰三角形听课心得体会等腰三角形听课反思有了一些收获以后,可以通过写心得体会的方式将其记录下来,这么做能够提升我们的书面表达能力。
怎样写好心得体会呢?以下是小编整理的等腰三角形听课心得体会等腰三角形听课反思,希望能够帮助到大家。
等腰三角形听课心得体会等腰三角形听课反思1本周三下午第三节,我们全体数学组成员及教研处王主任共同学习了由数学教研组长X老师执教的《等腰三角形》一课。
听后,颇受启发及教育。
首先,我觉得X老师很用心的在准备这节课,讲这节课。
因为是上学期小组汇报课讲过的“熟课”,不仅学生学过,而且老师们都听过。
如果没有新意,很容易使学生及听课老师产生感官疲劳。
但X老师匠心独具的是,在课堂导入的环节,巧妙地安排了一场“爱因斯坦的智商”智力游戏,使学生“惊喜”的发现,自己居然和爱因斯坦的智商同样高,自信心无比高涨,后又借机对学生进行具备了爱因斯坦的智商,还要有勤奋学习不说空话的态度,激发了学生的学习动力。
其次,课堂教学中,X老师始终面带微笑,语速不急不缓,使学生如沐春风,在轻松愉快的氛围中完成了整堂课教学。
另外,在课堂练习的环节,设计了积分制的回答方式,调动了学生认真思考及回答问题的积极性,效果甚好。
整堂课的设计条理清晰,层次分明,注重学生动手操作,合作探究。
既使学生理解并掌握了等腰三角形的性质,同时又培养了学生动手操作勇于探索的能力。
美中稍显不足的是,课件有些简单,背景色调有点刺眼,可以做些改进。
课堂习题学生已在上次听课时做过,对答案很熟悉,新鲜感稍差。
可在习题设计上做些改动,变换方式和数据,效果会更好的。
总之,我觉得这是一堂很成功的课。
也使我体会到要想讲好一堂课,必须要以无比敬业的态度认真去准备,多方搜索,积极探索,不断反思总结改进。
等腰三角形听课心得体会等腰三角形听课反思2本节课教学目标明确,整节课紧紧围绕着目标来进行,语言清晰,学生参与强,每个学生都能积极思考,积极参与,有利于增强学生对语言的运用能力;教师在教学中充分发挥了主导作用,利用多种证明方法证明命题,有利于培养学生一题多解的做题能力,教案中设计了形成性变式训练,有利于学生对新知的巩固。
等腰三角形课后反思
等腰三角形的课后反思
等腰三角形性质的第一课时,等腰三角形是一种特殊的三角形,它除了具有一般三角形的所有性质外,还有许多特殊的性质,讲授完《等腰三角形性质》这节课,我掩卷沉思,反复回味,我个人认为比较成功,分析其原因,主要有以下几点;
一讲课前我认真分析教材,明确这一课时的内容在教材中占有非常重要的地位,特别是第一课时的教学,它们是学生学习了三角形基本边角关系掌握了全等三角形的性质与判定。
又在学习了轴对称图形之后,进一步学习由于它的这些特殊性质,使它比一般三角形应用更广泛,等腰三角形性质定理是证明同一个三角形中两角相等的依据,等腰三角形中三线合一是证明线段相等,两个角相等及两条直线垂直的依据,将图形的变换与图形的认识,图形的证明有机整合,利用变换研究图形。
二认真分析新课标,明确教学目标,教学重难点。
本节课的教学目标分为知识技能,数学思考,解决问题,情感态度四个部分。
知识技能要求理解掌握等腰三角形形的性质,运用等腰三角形的性质进行证明合计算,数学思考包括观察等腰三角形的对称性,发展形象思维,通过实践观察,证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力,解决问题主要通过观察等腰三角形的对称性,培养学生观察,分析归纳问题的能力,运用等腰三角形的性质,解决有关的问题,提高知识和技能解决问题的能力,建立学习的自信心。
教学重点是等腰三角形的性质和应用,教学难点是等腰三角形的性质证明。
《等腰三角形》教学反思范文(通用6篇)
《等腰三角形》教学反思范文〔通用6篇〕《等腰三角形》教学反思范文〔通用6篇〕《等腰三角形》教学反思1安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。
在证明性质时,不再有同学直接用性质证明性质了,这是一个很大的进步,用三种方法研究性质的证明,要用到小组交流,比拟发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角平分线,用“SAS”证明全等。
通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。
缺乏的是,课堂交流的面可以更宽些。
性质2的应用比拟多,初学者往往不能灵敏应用这条性质优化证题途径,因此要解读这条性质,由图形训练和标准符号语言,把性质一句话改写成三句话或者六句话。
一句话是“等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合”。
三句话是“等腰三角形的顶角平分线平分底边、垂直于底边;等腰三角形的底边上的中线平分顶角、垂直于底边;等腰三角形的底边上的高平分顶角、平分底边。
”等腰三角形的性质教学反思——《初中数学解题才能与解题策略的研究》课题研究阶段材料六句话是“1等腰三角形的顶角平分线平分底边;2等腰三角形的顶角平分线垂直于底边;3等腰三角形的底边上的中线平分顶角;4等腰三角形的底边上的中线垂直于底边;5等腰三角形的底边上的高平分顶角;6等腰三角形的底边上的高平分底边”。
结合图形概括起来就是:在ABc中,AB=Ac,以下论断∠BAD=∠cAD,BD=cD,AD⊥Bc中,有一条成立,另外两条就成立,分六句话,写出推理语言。
这里设计了一组填空题,有利于性质2的应用。
学生可以整齐地表达,但还需进一步稳固。
性质在计算中的应用,涉及到方程思想和分类讨论思想,课堂上的训练不是太充分的,安排了两个同学在黑板上板演,提升学习的六道题没有讨论。
要培养学生讨论和自觉纠错的学习习惯。
性质在证明中的应用,集体备课安排的两道题很好,先由学生独立考虑,多数同学用全等证明,提出问题进展考虑“结合新知识,可以不用全等证明吗”,课堂至此,到了思维的最高潮,两道题最优解法的得到是学生获得成功的最好感受,这是我觉得提升学习的一道题可以不要了,留有更多的时间进展课堂小结,本课的课堂小结还应当更充分些。
《等腰三角形》教学反思(通用7篇)
《等腰三角形》教学反思《等腰三角形》教学反思(通用7篇)随着社会不断地进步,我们要有一流的教学能力,反思指回头、反过来思考的意思。
那么你有了解过反思吗?以下是小编整理的《等腰三角形》教学反思(通用7篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
《等腰三角形》教学反思1本节课中,性质的引入体现了新课程的理念,学生合作学习,课堂上,学生充分猜想、验证,用实验方法得出各种不同的结论,借助小组合作学习的方式,使学生的思维充分展开,在课堂上通过讨论,点评了两种方法,其余给学生课后验证,拓展了课堂的空间。
从“折叠等腰三角形”这一实践中,通过“小组内交流→小组间交流→小组内归纳”这一过程,总结出等腰三角形的各种性质(现象),学生学习的兴趣增强了,对知识的探究也深入了,印象也比较深刻,明显比教师讲解有更强的作用。
另一方面也说明了教师有深厚的学科功底,对教材的理解非常深刻,是在“用课本教”而不是在“教课本”。
在本节课中还应处理好以下几点:⑴等腰三角形“三线合一”定理的强调,尤其是书写。
因为它需要两个条件,推出两个结论,学生第一次碰到,比较困难。
⑵加强证题前的分析,引导学生从已知条件出发,探究解题思路,此时可能有多种途径选择,最好结合所要求证的结论一起考虑,按需择取。
⑶加强学生的书写能力的培养。
本节课学生书写板演基本没有,比较欠缺,可能学生能说不会写,或者写不好。
《等腰三角形》教学反思2本节课是九年级第一轮复习中为巩固学生对等腰三角形知识的灵活运用而精心设计的一堂几何复习课,结合本节课谈几点感悟:1 、起点的教学设计,有利于调动学生的学习积极性,让学生全面参与,符合让学生发展为本的课改理念,今后应多在课堂教学中使用。
2、学习数学离不开解题,但如果陷入茫茫的题海中,解题千万道,解后抛九霄,是难以达到提高解题能力、发展思维的目的的。
初三学生单纯的做、练激不起求知的欲望,在学生掌握课本基础知识和技能的前提下,对先前习题进行适当的挖掘、拓展、整合,是提高学生思维能力和解题能力,较好掌握课本知识与技能的重要方法。
等腰三角形教学反思
编制人: __________________审核人: __________________审批人: __________________编制学校: __________________编制时间: ____年____月____ 日下载提示:该文档是本店铺精心编制而成的,希翼大家下载后,能够匡助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如幼儿教案、小学教案、中学教案、教学活动、评语、寄语、发言稿、工作计划、工作总结、心得体味、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as preschool lesson plans, elementary school lesson plans, middle school lesson plans, teaching activities, comments, messages, speech drafts, work plans, work summary, experience, and other sample essays, etc. Iwant to knowPlease pay attention to the different format and writing styles of sample essays!这是等腰三角形教学反思,是优秀的数学教案文章,供老师家长们参考学习。
等腰三角形-课后反思
《等腰三角形》-课后反思
本课改变传统的教学角色。
整节课教师是教的主体,学生则是学的主体,大部分时间学生都是在进行自主探究、小组合作与交流,教师更多的是起示范和引导作用。
这样就大大增加了学生思维的空间,同时提高了课堂效率。
充分的自主思考,对于“学困生”来说有困难。
内容探究环节,因学生水平的差异,如果都让学生自主思考有些困难,采用小组合作这种学习方法,既能够对“学困生”起到“促进”作用;又能够培养全体学生良好的学习态度。
同时多媒体的使用提高了教学效率,提高了课堂教学效率。
在整节课的教学过程中,把等腰三角形判定定理作为知识主线,训练学生思维,以设疑——动手——猜想——证明——运用为教学程序,使学生能顺利地掌握重点,突破难点,提高能力,注重引导学生体会知识的发生发展过程,让学生充分地动脑、动口、动手,积极地参与到教学中来,在教学过程中,增设了由浅到深、各不相同却又紧紧相关的训练题目,从而巩固学生对新知识的掌握。
《等腰三角形》教学反思
《等腰三角形》教学反思《《等腰三角形》教学反思》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学永远是一门遗憾的艺术,即使是再伟大的专家,他们的课堂上也难免存有不足之处。
为了更好的了解自己在教学中存在的问题,以便在今后的教学中改进,促进个人课堂教学的进步,我邀请几位同行听我讲授《等腰三角形的性质》这一堂课,并将课堂教学过程录了下来。
本节课第一环节我从学生生活实际出发,设计了一个利用自制测水平仪往墙上挂画框的问题,引起学生探究新知的兴趣。
从实际课堂操作中来看,这一环节的设计达到了预期的目的,学生学习热情高涨。
第二环节学生通过折折剪剪得到等腰三角形,复习等腰三角形的相关概念并猜想等腰三角形的性质。
这一环节的难点是学生对三线合一性质的猜想,我引导学生通过折叠得到AD是底边上的中线,是底边的高线,是顶角的平分线,发现这三条线都是AD,进而猜想出三线合一。
教学中这一环节较为顺利,不过在折纸环节,部分学生不会折,我当时没有发现,说明我对学生的关注面不广,对学生的课堂预设也不足。
虽然后面有折纸的plash,但强调不够。
第三环节是验证一般三角形也具有猜想的性质,我发给学生一些自制等腰三角形纸片,学生能通过验证其轴对称性得到结论。
但小组合作有点差强人意。
第四环节是证明等腰三角形的性质。
学生能较为容易想到全等,想到辅助线,想到三种方法,。
但在三线合一的符号表达时,学生不容易想到先给出一线,我专门从等腰三角形的顶点向底边任连一线,让同学们发现“知一线得三线”,教学过程挺流畅。
第五环节是应用环节,为了突破例1这个难点,我设计了预备题,设计了利用几何画板展示图形中的等腰三角形等,学生也能较快的找到解决方法。
但本环节因为时间关系,没有全部完成。
总之,因为课前进行了精心设计,能较好地运用“情境引入——探索——演练——印证结论——应用——点评小结”的教学流程,学习目的明确,重点突出,整堂课安排合理,授课的思路清晰,有较好的师生互动,能充分注意调动学生的学习积极性,很好地体现了学生是学习的主体。
等腰三角形的教学反思
等腰三角形的教学反思等腰三角形是新人教版八年级上册十三章第三节等腰三角形的第一课时的内容.等腰三角形是一种特殊的三角形,它除了具有一般三角形的所有性质外, 还具有特殊的性质.本课数学内容的是:利用等腰三角形的轴对称性研究等腰三角形〞等边对等角〞和“三线合一〞的性质.一、教学策略的反思1、对等腰三角形〞等边对等角〞和“三线合一〞的性质探索.学生对于性质的探索和发现都是有一定的难度.故在这个环节上,我通过观察实验的数学方法突破此难点.先拿出一张长方形纸,把它对折,剪出一个三角形. 让学生通过观察得到所剪得三角形是等腰三角形.通过找重合的线段、重合的角, 发现等腰三角形〞等边对等角〞的性质.但怎样用数学符号表示条件和结论?对于根底差点的学生可能就不会表示了.在黑板板演v AB=AC.•・/ B=/ C 〔等边对等角〕证实这个性质的关键在于作辅助线,引导学生通过实验得到启发一一折痕就是我们用于证实时要添加的辅助线,从而让学生掌握到添加辅助线的方法.在证实角相等时,通过数学的转化思想证实角所在的两个三角形全等.通过刚刚找重合的线段、重合的角得到等腰三角形的另一个性质“三线合一〞.教师需引导学生用几何符号表达,并强调应用性质 2 “三线合一〞应注意的问题:必须以等腰三角形为前提.2、等腰三角形的性质的使用等腰三角形的性质的使用是这节课的重点和难点. 例题处理:课本例题较难理解故在这个环节上我先通过求三角形三个内角的度数的方法, 设未知数,根据内角和等于180°的解题思路,从而类比得到例题的解法.习题处理:题目应循序渐进的表现,引导学生拾阶而上,可极大的增强了学生学习数学的自信心.题目的变式也有利于学生的知识稳固. 在解题时,还要注重学生分类讨论的数学思想方法.二、成效性反思1、注重培养了学生的数学方法.在剪三角形中渗透“观察与实验〞的数学方法,让学生探索出等腰三角形的两个性质;在例题的讲解中用类比和方程的思想使学生更能找到解题思路;在等腰三角形的性质的使用上,注重了学生分类讨论的数学思想方法.2、有梯度的习题设计可满足不同层次的学生需求.总来说之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动了学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生, 挖掘学生潜力,让他们展开联想的思维,培养其水平为主旨而开展的.整个教学过程来说,学生掌握效果较好.但还有几点需要改良的地方:1、创设情境,提出问题.问题的解决允许使用直观的方法,还理应鼓励学生不停留在直观的理解上,要实行合情的推理、精确计算,科学地判断.本案例把“问题〞贯穿于教学的始终,使用“提出问题一一探究问题一一解决问题〞的方式,让学生发现规律和使用规律,使学生在长知识的同时,也长智慧、长水平,进一步培养学生良好的思维品质.2、让数学思想方法渗透于课堂教学之中应积极引导学生通过折一折的手段来使用于“转化〞思想,将等腰三角形转化为轴对称变换.同时渗透数学与实践相结合的思想,培养学生的应用意识.3、由于学生对等腰三角形的知识已有初步的理解,本课例的难点突破应在等腰三角形的“三线合一〞及其应用上,应创设有利于学生学习的情境〔生活中的事例〕,通过“折〞〔强调“折〞〕这个直观方法引导学生实行积极主动地探索、交流去发现,从而习得知识和经验,提升水平和兴趣.4、在数学活动中,应积极鼓励学生,让每一位学生积极行动起来,能提出自己的方法和建议,成为数学活动中的一分子,培养学生相对独立地获取知识和水平,逐步学会使用分析、类比、转化等方法.本课例中围绕一个“折〞字较为成功地表达了这个点.5、应放手让学生自己去发现问题、解决问题,不要小看学生,如果课堂上使用手段恰当、互动的气氛形成,学生发现和解决问题的水平会令人刮目相看, 虽然有人答不到点子上,但有的人却答得非常准确.他们自己说出的准确答案比老师说出的答案令他们记忆深刻,由于这是他们自己“折〞出来、想出来的,甚至是争论出来的.通过这样的开放性探究活动,学生不但掌握了根本知识,也稳固了相对应的数学思想方法,从中学会了探究的方法,也提升了学生的思考水平,分析问题和解决问题的水平,也让不同层次的学生得到了不同的开展, 收到了较好的教学效果.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形性质(第四课时)教学反思
土门关初中孙萍本人在等腰三角形性质(第四课时)的教学中,难点在于探究两个定理:“在三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°”和“直角三角形中,30°所对的直角边等于斜边的一半”,由于设计了三角板操作的实践活动,有效地突破了难点,教学方法是采用“目标--问题”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。
本着“问题是数学的心脏”原则,精心设计了一些问题,在教学过程中有半数的学生回答了教师的提问,但碍于教学计划,有的问题在答问过程中还不时得到本人的提醒,这样导致的结果是难于发现学生真实的思维过程。
“多提问”固然有利于学生思考和理解知识,有利于了解学生掌握知识的程度。
但在倡导培养创新精神和实践能力的今天,更要重视对学生问题意识的培养。
问起于疑,疑源于思,课堂上教师要为学生质疑创造足够的空间和时间。
目标--问题教学法的本质在于:在问题解决过程中培养学生问题意识和发现问题、提出问题的能力。
令人遗憾的是本节课由于教学设计中留给学生的时间和空间偏少,导致学生发现问题、提出问题太少,长此以往的“后遗症”是学生问题意识的淡化。
而在探索问题的关键时候,本人也缺乏耐心急于把思路给出,这是缺乏对学生的信任,学生将因此产生思维惰性。
教学永远是一门遗憾的艺术,吹尽黄沙始现金,我们只有以“没有最好,力求更好”来不断改进我们的教学,才能实现真正意义上的与时俱进。
1。