北师大版七年级数学上册 第四章基本平面图形100道选择题专项训练 (无答案)

合集下载

完整版北师大版七年级上册数学第四章 基本平面图形含答案

完整版北师大版七年级上册数学第四章 基本平面图形含答案

北师大版七年级上册数学第四章基本平面图形含答案一、单选题(共15题,共计45分)1、下列叙述正确的是()A.画直线AB=10厘米B.若AB=6,BC=2,那么AC=8或4C.河道改直可以缩短航程,是因为“经过两点有一条直线,并且只有一条直线”。

D.在直线AB上任取4点,以这4个点为端点的线段共有6条2、过平面上三点中的任意两点作直线,可作( )A.1条B.3条C.1条或3条D.无数条3、正六边形的周长为6mm,则它的面积为()A. mm 2B. mm 2C.3 mm 2D.6 mm 24、如图所示,∠1=28°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A.128°B.118°C.108°D.152°5、从A市到B市,乘坐火车共经过5个车站(不包括A,B两种),买车票的价格因为起点和终点不同有很多种,从A市到B市的任意两个车站的车票价格最多有()A.7种B.14种C.21种D.28种6、如图,下列表示角的方法,错误的是()A.∠1与∠AOB表示同一个角B.∠AOC也可以用∠O来表示C.∠β表示的是∠BOCD.图中共有三个角:∠AOB,∠AOC,∠BOC7、下列命题中,假命题的是()A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形D.圆的切线垂直于经过切点的半径8、如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连接AC、BC.若∠ABC=54°,则∠1的大小为()A.36°B.54°C.72°D.73°9、锐角加上锐角的和是()A.锐角B.直角C.钝角D.以上三种都有可能10、如图,按照上北下南,左西右东的规定画出东南西北的十字线,其中点A 位于点O的( )A.北偏西65°方向B.北偏东65°方向C.南偏东35°方向D.南偏西65°方向11、下列各图中所给的线段、射线、直线能相交的是()A. B. C. D.12、将一副直角三角尺按如图所示的不同方式摆放,则图中与相等的是().A. B. C.D.13、对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理 C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理 D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理14、如图,OA⊥OC,OB⊥OD,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD;乙:∠BOC+∠AOD=180°;丙:∠AOB+∠COD=90°;丁:图中小于平角的角有5个.其中正确的结论是()A.1个B.2个C.3个D.4个15、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直二、填空题(共10题,共计30分)16、从n边形的一个顶点出发有四条对角线,则这个n边形的内角和为________度.17、如图,小明从点A向北偏东75°方向走到B点,又从B点向南偏西30°方向走到点C,则∠ABC的度数为________18、计算:180°﹣20°40′=________19、试写出用n边形的边数n表示对角线总条数S的式子:________.20、往返于甲、乙两地的火车中途要停靠三个站,则有________种不同的票价(来回票价一样),需准备________种车票.21、如图,点O是直线AB上一点,∠COD=120°,则∠AOC+∠BOD=________.22、已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB 度数为________.23、如图,是的平分线,是的平分线,且,________度.24、已知∠AOB=80°,∠BOC=20°,OE平分∠AOC,则∠AOE=________.25、若∠α=35°16′,则∠α的余角的度数为________.三、解答题(共5题,共计25分)26、计算:(1)13°29’+78°37‘ (2)62°5’-21°39‘ (3)22°16′×5(4)42°15′÷527、已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB的中点.求证:∠A=∠B.28、如图,O是直线AB上一点,OD,OE分别是∠AOC和∠BOC的平分线.求证:∠DOE=90°.29、如图,C、D、E将线段AB分成四部分,且AC:CD:DE:EB=2:3:4:5,M、P、Q、N分别是AC、CD、DE、EB的中点,且MN=21.求PQ的长.30、两个相等的角,有公共顶点和一条公共边,另两条边所成的角是直角.求这两个角的度数.参考答案一、单选题(共15题,共计45分)1、D2、C3、B4、B5、C6、B7、B8、C9、D10、A11、B12、D13、B14、B15、A二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。

北师大版七年级上册数学第四章 基本平面图形 含答案

北师大版七年级上册数学第四章 基本平面图形 含答案

北师大版七年级上册数学第四章基本平面图形含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.单项式的系数是B.同一平面内,过一点有且只有一条直线与已知直线平行C.内错角相等,两直线平行D.若AB=BC,则点B是线段AC的中点2、如图,点, 在线段上,,是的中点,是的中点,,则的长为( )A.5B.6C.7D.83、如图,直线相交于点平分,且,则的度数是()A. B. C. D.4、如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°5、墨墨发现从某多边形的一个顶点出发,可以作4条对角线,则这个多边形的内角和是()A.1260°B.1080°C.900°D.720°6、如图,已知a∥b,三角形直角顶点在直线a上,已知∠1=25°18′27″,则∠2度数是()A.25°18′27″B.64°41′33″C.74°4133″D.64°41′43″7、下列说法中正确的是()A.所有连接两点的线中,直线最短B.连接两点之间的线段叫做两点间的距离C.如果点P是线段AB的中点,那么AP=BPD.如果AP=BP,那么点P是线段AB的中点8、等于圆周的弧叫做()A.劣弧B.半圆C.优弧D.圆9、3°=()A.180′B.18′C.30′D.3′10、下面四个判断中正确的是().A.过圆内一点(非圆心)的无数条弦中,有最长的弦,没有最短的弦B.过圆内一点(非圆心)的无数条弦中,有最短的弦,没有最长的弦C.过圆内一点(非圆心)的无数条弦中,有且只有一条最长的弦,也有且只有一条最短的弦D.过圆内一点(非圆心)的无数条弦中,既没有最长的弦,也没有最短的弦11、把圆的半径缩小到原来的,那么圆的面积缩小到原来的()A. B. C. D.12、如图,下列说法中错误的是()A.OB方向是北偏西15ºB.OA方向是北偏东30ºC.OC方向是南偏西25ºD.OD方向是东南方向13、从五边形的一个顶点出发,分别连接这个点与其余各顶点,可以把五边形分割成几个三角形()A.2个B.3个C.4个D.5个14、已知∠1=18°18′,∠2=18.18°,∠3=18.3°,下列结论正确的是()A.∠1=∠3B.∠1=∠2C.∠2=∠3D.∠1=∠2=∠315、数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,则a 的值是()A.3B.4.5C.6D.18二、填空题(共10题,共计30分)16、把一副三角板按如图所示方式拼在一起,并作的平分线,则的度数是________.17、如图,已知∠EOA=90°,射线OD在北偏东35°的方向,反向延长射线OD 于点C,∠DOE的度数为________,∠AOC的度数为________.18、如图,的方向是________.19、已知;在同一个平面内,.垂足为平分,则的度数为________度20、若|x|=2表示数轴上到原点距离为2的点,则x=±2;|x﹣1|=3表示数轴上的点到1的距离为3的点,则x=4或x=﹣2;则|x﹣2|+|x+3|+|x﹣4|的最小值为________.21、计算:58°35′+67°45′=________.22、下列有四个生活、生产现象:①植树时,只要定出两棵树的位置,就能确定同一行所在的直线;②有两个钉子就可以把木条固定在墙上;③把弯曲的公路改直,就能缩短路程,④从A地到B地架设电线,总是尽可能沿着线段AB架设:其中可用基本事实“两点之间,线段最短”来解释的现象有________(填写正确说法的序号)23、点A的坐标为(﹣2,0),点B的坐标(0,4),那么A、B两点间的距离是________.24、如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D 四点,且AB=BC= CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D 四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有________个。

2024年北师大版七年级上册数学第四章综合检测试卷及答案

2024年北师大版七年级上册数学第四章综合检测试卷及答案
解:因为 , ,所以 .因为 , 平分 ,所以 .因为 , , 三点共线,所以 .所以 .
20.(10分)如图,长方形纸片 ,点 , 分别在边 , 上,连接 ,将 对折,点 落在直线 上的点 处,得折痕 ;将 对折,点 落在直线 上的点 处,得折痕 .
17.(8分)如图, , , 为直线 上的三点.
(1)图中有多少条线段,多少条射线?能用大写字母表示的线段、射线有哪些?请表示出来;
解:图中有10条线段,10条射线.能用大写字母表示的线段:线段 、线段 、线段 、线段 、线段 、线段 、线段 、线段 、线段 、线段 .能用大写字母表示的射线:射线 、射线 、射线 、射线 、射线 、射线 、射线 、射线 .
13.直线 外有 , 两点,由点 , , , 可确定的直线条数是______.
4或6
14.如图所示,点 , 把线段 三等分,点 为 的中点,且 ,则 ____ .
12
15.某学校运动场跑道的一段弯道如图所示,现需对其进行改造.经施工队测得弯道的内外边缘均为圆弧,点 是 、
(1)求 的度数;
解:根据折叠可知, , ,因为 ,所以 ,即 .
(2)若 恰好平分 ,求 的度数.
[答案] 因为 恰好平分 ,所以 ,根据折叠可知, ,所以 ,因为 ,所以 ,所以 .
21.(12分)
(1)问题:
①从四边形的一个顶点出发可以画___条对角线,四边形共有___条对角线;
所在圆的圆心,点 、 分别在 、 上,测得圆弧跑道半径 , 跑道宽 , ,则这段圆弧跑道的面积为_ _____ .(结果保留 )
三、解答题(共55分)
16.(6分)如图,已知线段 , ,用尺规作一条线段 ,使 ,并写明作法.
解:作法:(1)作射线 ;(2)在射线 上依次截取线段 ;(3)在射线 上截取 .则线段 即为所求.

北师大版数学新教材七年级上册第四章基本平面图形

北师大版数学新教材七年级上册第四章基本平面图形

炉山二中2013—2014学年度第一学期单元测试试卷七年级数学第四章 《基本平面图形》(总分:150分;时间:90分钟)姓名 学号 成绩一、选择题(10小题,每小题4分,共40分)1、平面上有四点(三点在同一条直线),经过其中的两点画直线最多可画出 ( )A 、三条B 、四条C 、五条D 、六条2、如图,下列不正确的几何语句是( )A 、直线AB 与直线BA 是同一条直线B 、射线OA 与射线OB 是同一条射线C 、射线OA 与射线AB 是同一条射线D 、线段AB 与线段BA 是同一条线段3、如图,从A 地到B 地最短的路线是( )A 、A -C -G -E -B B 、A -C -E -BC 、A -D -G -E -B D 、A -F -E -B4、如图,已知A 、B 两点之间的距离是10 cm ,C 是线段AB 上的任意一点,则AC 中点与BC 中点间的距离是( )A 、3 cmB 、4 cmC 、5 cmD 、不能计算5、已知α、β都是钝角,甲、乙、丙、丁四人计算 (α+β)的结果依次是28°、48°、60°、88°,其中只有一人计算正确,他是( )A 、甲B 、乙C 、丙D 、丁6、如图,OA⊥OB,若∠1=34°,则∠2的度数是( )A、20° B、40° C、56° D、60°第6题图7、如图,阴影部分扇形的圆心角是 ( )61第3题图 第2题图A 、15°B 、23°C 、30°D 、45°8、在下列说法中,正确的个数是( )①钟表上九点一刻时,时针和分针形成的角是平角;②钟表上六点整时,时针和分针形成的角是平角;③钟表上十二点整时,时针和分针形成的角是周角;④钟表上差一刻六点时,时针和分针形成的角是直角;⑤钟表上九点整时,时针和分针形成的角是直角。

A 、1B 、2C 、3D 、49、如图,O 为直线AB 上一点,∠COB =26°30′,则∠1=( )A 、153°30′B 、163°30′C 、173°30′D 、183°30′10、两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有( )A、21个交点 B、18个交点 C、15个交点 D、10个交点二、填空题(8小题,每小题5分,共40分)11、已知线段AB=10 cm ,BC=5 cm ,A 、B 、C 三点在同一条直线上,则AC= 。

七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版

七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版

七年级数学上册《第四章基本平面图形》单元测试卷及答案-北师大版一、选择题1.下列各线段的表示方法中,正确的是( )A .线段AB .线段abC .线段ABD .线段Ab2.下列命题是假命题的是( )A .等角的补角相等B .垂线段最短C .两点之间,线段最短D .无限小数是无理数3.下列四个图中,能用1∠,O ∠与AOB ∠三种方法表示同一个角的是( )A .B .C .D .4.利用一副三角板不能画出的角的度数是( )A .105︒B .100︒C .75︒D .15︒5.从多边形的一个顶点出发,可以画出4条对角线,则该多边形的边数为( )A .5B .6C .7D .86.要在墙上钉牢一根木条,至少要钉两颗钉子.能正确解释这一现象的数学知识是( )A .两点之间,线段最短B .垂线段最短C .两点确定一条直线D .经过一点有且只有一条直线与已知直线垂直7.如图,已知ABC ,点D 是BC 边中点,且ADC BAC.∠∠=若BC 6=,则AC =( )A .3B .4C .42D .328.一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛A 的北偏西30︒方向上,在海岛B 的北偏西60︒方向上,则海岛B 到灯塔C 的距离是( ) A .15海里B .20海里C .30海里D .60海里9.如图,直线AB 、CD 交于点O ,OE 平分BOC ∠,若136∠=︒,则DOE ∠等于( )A .72︒B .90︒C .108︒D .144︒10.下列命题正确的是( )A .三点确定一个圆B .圆的任意一条直径都是它的对称轴C .等弧所对的圆心角相等D .平分弦的直径垂直于这条弦二、填空题11.要在墙上订牢一根木条,至少需要2颗钉子,其理由是 .12.如图,在菱形ABCD 中,10AB =,M ,N 分别为BC ,CD 的中点,P 是对角线BD 上的一个动点,则PM PN +的最小值是 .13.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,若80BOC ∠=︒,则COE ∠的度数是 .14.一个多边形的每个内角都等于150°,则这个多边形的边数为 ,对角线总数是条。

北师大版七年级数学第四章 基本平面图形 单元总复习 选择题专训30道

北师大版七年级数学第四章 基本平面图形  单元总复习 选择题专训30道

基本平面图形 单元总复习 选择题专训30道(2020-2021版)姓名:___________班级:___________一、选择题1.(2021秋•迁安市期中)当分针指向12,时针这时恰好与分针成30°的角,此时是( )A .9点钟B .10点钟C .11点钟或1点钟D .2点钟或10点钟2.(2021秋•江夏区校级月考)从7边形的一个顶点作对角线,把这个7边形分成三角形的个数是( )A .7个B .6个C .5个D .4个 3.(2020秋•北仑区期末)如图,BC=12AB ,D 为AC 的中点,DC=3cm ,则AB 的长是( )A .4cmB .92cmC .5cmD .112cm4.(2021秋•鼓楼区校级月考)下列说法中,正确的是( )A .两个半圆是等弧B .同圆中优弧与半圆的差必是劣弧C .长度相等的弧是等弧D .直径未必是弦 5.(2020秋•宁波期末)下列各图中表示线段MN ,射线PQ 的是( )A .B .C .D .6.(2021•耿马县二模)如图,从一个四边形的同一个顶点出发可以引出1条对角线,从五边形的同一个顶点出发,可以引出2条对角线,从六边形的同一个顶点出发,可以引出3条对角线,…,依此规律,从n 边形的同一个顶点出发,可以引出的对角线数量为( )A .nB .n-2C .n-3D .2n-37.(2021•河北一模)如图,有三个小海岛A 、B 、C ,其中海岛C 到海岛A 的距离为100海里,海岛B 在海岛A 北偏东70°的方向上,若海岛C 在海岛B 北偏西20°的方向上,且到海岛B 的距离是50海里,则海岛C 在海岛A ( )A .北偏东20°方向B .北偏东30°方向C .北偏东40°方向D .北偏西30°方向8.(2021•南岗区校级开学)若n 边形恰好有2n 条对角线,则n 为( )A .4B .5C .6D .79.(2021春•牧野区校级期末)如图所示,关于线段、射线和直线的条数,下列说法正确的是( )A .五条线段,三条射线B .三条线段,两条射线,一条直线C .三条射线,三条线段D .三条线段,三条射线10.(2021秋•海淀区校级期中)如图,B 岛在A 岛南偏西55°方向,B 岛在C 岛北偏西60°方向,C 岛在A 岛南偏东30°方向.从B 岛看A ,C 两岛的视角∠ABC 度数为( )A .50°B .55°C .60°D .65°11.(2020秋•海曙区期末)如图,从8点钟开始,过了20分钟后,分针与时针所夹的度数是( )A .120°B .130°C .140°D .150°12.(2021•河北模拟)如图,射线OA 的方向是北偏西38°,在同一平面内,∠AOB=82°,则射线OB 的方向是( )A .北偏东44°B .北偏西60°C .南偏西60°D .A 、C 都有可能13.(2021•九龙坡区校级开学)半径为6,圆心角为60°的扇形面积为( )A .2πB .6πC .12πD .36π14.(2021春•烟台期末)钟表9点15分时,时针与分针所成的角是( )A .170.5°B .172.5°C .175°D .180°15.(2021春•聊城期末)如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,则∠2的度数是( )A .27°40′B .62°20′C .57°40′D .58°20′16.(2021春•莱阳市期末)下列说法正确的是( )A .钟表的时间是9点30分,此时时针与分针所成的夹角是105°B .若经过某个多边形一个顶点的所有对角线,将这个多边形分成八个三角形,则这个多边形是九边形C .若AC=BC ,则点C 是线段AB 的中点D .31.25°=31°25′17.(2020秋•光明区期末)如图,点C 是线段AB 的中点,CD=13AC ,若AD=1cm ,则AB=( )A .3cmB .2.5cmC .4cmD .6cm18.(2020秋•东西湖区期末)如图,把一长方形纸片ABCD 的一角沿AE 折叠,点D 的对应点D'落在∠BAC 内部.若∠CAE=2∠BAD',且∠CAD'=15°,则∠DAE 的度数为( )A .12°B .24°C .39°D .45°19.(2021秋•南京月考)有一个圆的半径为5,则该圆的弦长不可能是( )A .1B .4C .10D .11 20.(2021•沙坪坝区校级开学)线段AB 的长为2cm ,延长AB 到C ,使AC=3AB ,再延长BA 到D ,使BD=2BC ,则线段CD 的长为( )A .10cmB .8cmC .6cmD .12cm21.(2021春•长兴县月考)如图,在线段AB 上有C 、D 两点,CD 长度为1cm ,AB 长为整数,则以A ,B ,C ,D 为端点的所有线段长度和不可能为( )A .16cmB .21cmC .22cmD .31cm22.(2020秋•武侯区期末)已知线段AB=10cm ,点C 为直线AB 上一点,且AC=2cm ,点D 为线段BC 的中点,则线段AD 的长为( )A .4cmB .6cmC .4cm 或5cmD .4cm 或6cm23.(2020秋•五常市期末)用一副三角板不能画出的角是( )A .75°B .105°C .110°D .135°24.(2020秋•南山区期末)如图所示,∠AOB 是平角,OC 是射线,OD 、OE 分别是∠AOC 、∠BOC 的角平分线,若∠COE=28°,则∠AOD 的度数为( )A .56°B .62°C .72°D .124°25.(2020秋•三明期末)兴泉铁路是江西省兴国县至福建省泉州市正在建设中的国家一级铁路,途中经过三明地界停靠的车站依次是:宁化-清流-明溪-三元区-永安-大田,那么要为三明境内站点拟制作的火车票有( )A .15种B .18种C .30种D .36种 26.(2020秋•惠来县期末)如图,∠AOB=120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是( )A .∠AOD+∠BOE=60°B .∠AOD=12∠EOC C .∠BOE=2∠CODD .∠DOE 的度数不能确定27.(2021春•松北区期末)如图,点G 是AB 的中点,点M 是AC 的中点,点N 是BC 的中点,则下列式子不成立的是( )A .MN=GBB .CN=12(AG-GC)C .GN=12(BG+GC) D .MN=12(AC+GC)28.(2020秋•邵阳县期末)如图,点C 、D 是线段AB 上任意两点,点M 是AC 的中点,点N 是DB 的中点,若AB=a ,MN=b ,则线段CD 的长是( )A .2b-aB .2(a-b )C .a-bD .12(a+b ) 29.(2020秋•奉化区校级期末)两根木条,一根长10cm ,另一根长12cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A .1cmB .11cmC .1cm 或11cmD .2cm 或11cm30.(2020秋•奉化区校级期末)如图,AB=30,C 为射线AB 上一点,BC 比AC 的4倍少20,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC=2AC ;②运动过程中,QM 的长度保持不变;③AB=4NQ ;④当BQ=PB 时,t=12,其中正确结论的个数是( )A .1B .2C .3D .4。

北师大版七年级数学上册第四章基本平面图形单元测试题含解析(Word最新版)

北师大版七年级数学上册第四章基本平面图形单元测试题含解析(Word最新版)

北师大版七年级数学上册第四章基本平面图形单元测试题含解析通过整理的北师大版七年级数学上册第四章基本平面图形单元测试题含解析相关文档,渴望对大家有所扶植,感谢观看!北师大版七年级数学上册第四章基本平面图形单元测试题时间:100分钟满分:120分一、选择题(共10小题,每小题3分,共30分) 1.乘火车从北京到上海,共有25个车站(包括北京和上海在内),那么共须要打算多少种不同的车票()A.400 B.25 C.600 D.100 2.如图所示四幅图中,符合“射线PA与射线PB是同一条射线”的图为()A.B.C.D. 3.在墙壁上固定一根横放的木条,则至少须要钉子的枚数是()A.1枚B.2枚C.3枚D.随意枚 4.如图,下列不正确的几何语句是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB 是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段 5.已知线段AB,延长AB至C,使AC=2BC,反向延长AB至D,使AD=BC,那么线段AD是线段AC的()A.B.C.D. 6.如图,AB=8cm,AD=BC=5cm,则CD等于()A.1cm B.2cm C.3cm D.4cm 7.下列说法中,正确的有()个①过两点有且只有一条直线;②连接两点的线段叫做两点间的距离;③两点之间,线段最短;④若AB=BC,则点B是线段AC的中点;⑤射线AB和射线BA是同一条射线⑥直线有多数个端点.A.2个B.3个C.4个D.5个8.如图,从点O动身的五条射线,可以组成()个角.A. 4 B. 6 C.8 D.10 9.时钟显示为8:30时,时针与分针所夹的角是()A.90° B.120° C.75° D.84° 10.如图,∠AOB是始终角,∠AOC=40°,OD平分∠BOC,则∠AOD等于()A.65° B.50° C.40° D.25° 二、填空题(共8小题,每小题3分,共24分) 11.下列说法中正确的有(把正确的序号填到横线上).①延长直线AB到C;②延长射线OA到C;③延长线段OA到C;④经过两点有且只有一条线段;⑤射线是直线的一半.12.公园里打算修四条直的走廊,并且在走廊的每个交叉路口处设一个报亭,这样的报亭最多有____________个.13.一点将一长为28cm的线段分成5:2的两段,该分点与原线段中点间的距离为cm.14.数轴上A、B两点离开原点的距离分别为2和3,则AB两点间的距离为.15.钟表上4时15分钟,时针与分针的夹角的度数是.16.计算33°52′+21°54′=.17.如图,点A、O、B在一条直线上,∠AOC=140°,OD是∠BOC的平分线,则∠COD=度.18.如图,将三角形ABC纸片沿MN折叠,使点A落在点A′处,若∠A′MB=55°,则∠AMN=°.三、解答题(共7小题,每小题8分,共56分) 19.已知平面上四点A、B、C、D,如图:(1)画直线AD;(2)画射线BC,与AD相交于O;(3)连结AC、BD相交于点F.20.如图,M是线段AB的中点,点C在线段AB上,且AC=8cm,N是AC的中点,MN=6cm,求线段AB的长.21.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=∠AOC,∠AOB=114°.求∠COD的度数.22.将一张纸如图所示折叠后压平,点F在线段BC上,EF、GF为两条折痕,若∠1=57°,∠2=20°,求∠3的度数.23.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?假如有,指出结论并说明理由.25.O为直线AD上一点,以O为顶点作∠COE=90°,射线OF平分∠AOE.(1)如图1,请写出∠AOC与∠DOE的数量关系、∠COF和∠DOE的数量关系;(2)若将∠COE绕点O旋转至图2的位置,OF仍旧平分∠AOE,请写出∠COF和∠DOE之间的数量关系,并说明理由;(3)若将∠COE绕点O旋转至图3的位置,射线OF仍旧平分∠AOE,请写出∠COF和∠DOE之间的数量关系,并说明理由.答案解析 1.【答案】C 【解析】∵共有25个车站,∴线段的条数为25(25-1)=600,∴共须要打算600种不同的车票.故选C. 2.【答案】C 【解析】A.射线PA和射线PB不是同一条射线,故此选项错误;B.射线PA和射线PB不是同一条射线,故此选项错误;C.射线PA和射线PB是同一条射线,故此选项正确;D.射线PA 和射线PB不是同一条射线,故此选项错误;故选C. 3.【答案】B 【解析】∵两点确定一条直线,∴至少须要2枚钉子.故选B. 4.【答案】C 【解析】A正确,因为直线向两方无限延长;B正确,射线的端点和方向都相同;C错误,因为射线的端点不相同;D 正确.故选C. 5.【答案】D 【解析】设BC=a,则AC=2a,AD=a,则,故选D. 6.【答案】B 【解析】∵AB=8cm,AD=5cm,∴BD=AB-AD=3cm,∵BC=5cm,∴CD=CB-BD=2cm,故选B.7.【答案】A 【解析】①过两点有且只有一条直线,正确,②连接两点的线段叫做两点间的距离,不正确,应为连接两点的线段的长度叫做两点间的距离,③两点之间,线段最短,正确,④若AB=BC,则点B是线段AC的中点,不正确,只有点B在AC上时才成立,⑤射线AB和射线BA是同一条射线,不正确,端点不同,⑥直线有多数个端点.不正确,直线无端点.共2个正确,故选A.8.【答案】D 【解析】点O动身的五条射线,可以组成的角有:∠AOB,∠AOC,∠AOD,∠AOE,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE.故选D.9.【答案】C 【解析】由于钟面被分成12大格,每格为30°,8点30分时,钟面上时针指向数字8与9的中间,分针指向数字6,所以时针与分针所成的角等于2×30°+×30°=75°.故选C.10.【答案】A 【解析】∵∠AOB是始终角,∠AOC=40°,∴∠COB=50°,∵OD平分∠BOC,∴∠COD=25°,∵∠AOD=∠AOC+∠COD,∴∠AOD=65°.故选A.11.【答案】③ 【解析】①延长直线AB到C,说法错误;②延长射线OA到C,说法错误;③延长线段OA到C,说法正确;④经过两点有且只有一条线段,说法错误;⑤射线是直线的一半,说法错误;故答案为:③.12.【答案】6 【解析】∵有4条直线,最多与前4-1=3条直线有4-1=3个交点,∴最多有4×(4-1)÷2=6个交点.故这样的报亭最多有6个.故答案为:6.13.【答案】6 【解析】如图,AB=28cm,AC:BC=5:2,点D为AB的中点,设AC=5x,则BC=2x,∵AC+BC=AB,∴5x+2x=28,解得x=4,∴AC=5x=20,∵点D为AB的中点,∴AD=AB=14,∴CD=AC-AD=20-14=6(cm),即该分点与原线段中点间的距离为6cm.故答案为6.14.【答案】5或1 【解析】∵数轴上A、B两点离开原点的距离分别为2和3可得出点A表示±2,点B表示±3,∴当点A、B在原点的同侧时,AB=|3-2|=1;当点A、B在原点的异侧时,AB=|-2-3|=5.故答案为:5或1.15.【答案】()° 【解析】4时15分,时针与分针相距1+=份,4时15分钟,时针与分针的夹角的度数30×=()°,故答案为:()°.16.【答案】55°46′ 【解析】相同单位相加,满60,向前进1即可.33°52′+21°54′=54°106′=55°46′.17.【答案】20 【解析】∵∠AOC与∠BOC是邻补角,∴∠AOC+∠BOC=180°,∵∠AOC=140°,∴∠BOC=180°-140°=40°,∵OD平分∠BOC,∴∠COD=∠COB=20°.故答案为:20.18.【答案】62.5 【解析】∵∠A′MB=55°,∴∠AMA′=180°-∠A′MB=180°-55°=125°,由折叠的性质得,∠A′MN=∠AMN=∠AMA′=×125°=62.5°,故答案为:62.5.19.【答案】解:如图所示:【解析】(1)画直线AD,连接AD并向两方无限延长;(2)画射线BC,以B为端点向BC 方向延长交AD于点O;(3)连接各点,其交点即为点F.20.【答案】解:由AC=8cm,N是AC的中点,得AN=AC=4cm.由线段的和差,得AM=AN+MN=4+6=10cm.由M是线段AB的中点,得AB=2AM=20cm,线段AB的长是20cm.【解析】依据线段中点的性质,可得AN的长,依据线段的和差,可得AM的长,依据线段中点的性质,可得答案.21.【答案】解:∵OD平分∠AOB,∠AOB=114°,∴∠AOD=∠BOD=∠AOB=57°.∵∠BOC=2∠AOC,∠AOB=114°,∴∠AOC=∠AOB=38°.∴∠COD=∠AOD-∠AOC=57°-38°=19°.【解析】依据OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°,可以求得∠AOC、∠AOD的度数,从而可以求得∠COD 的度数.22.【答案】解:如图由折叠可知,∠EFB′=∠1=57°,∠2=20°,∠3=∠GFC′,∵∠EFB′+∠1+∠2+∠3+∠GFC′=180°,∴∠3==23°.【解析】依据折叠的特点可找到相等的角,在绽开图中,利用∠EFB′+∠1+∠2+∠3+∠GFC′等于平角得出结论.23.【答案】解:(1)∵OA平分∠EOC,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°;(2)设∠EOC=2x,∠EOD=3x,依据题意得2x+3x=180°,解得x=36°,∴∠EOC=2x=72°,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.【解析】(1)依据角平分线定义得到∠AOC=∠EOC=×70°=35°,然后依据对顶角相等得到∠ BOD=∠AOC=35°;(2)先设∠EOC=2x,∠EOD=3x,依据平角的定义得2x+3x=180°,解得x=36°,则∠EOC=2x=72°,然后与(1)的计算方法一样.24.【答案】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,ON 平分∠BOC,∴∠MOC=∠AOC=75°,∠NOC=∠BOC=30°,∴∠MON=∠MOC-∠NOC=45°.(2)如图2,∠MON=α,理由是:∵∠AOB=α,∠BOC=60°,∴∠AOC=α+60°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=α+30°,∠NOC=∠BOC=30° ∴∠MON=∠MOC-∠NOC=(α+30°)-30°=α.(3)如图3,∠MON=α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC=(α+β),∠NOC=∠BOC=β,∴∠AON=∠AOC-∠NOC=α+β-β=α+β.∴∠MON=∠MOC-∠NOC=(α+β)-β=α,即∠MON=α.【解析】(1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可;(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可;(3)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC-∠NOC求出即可.25.【答案】解:(1)∵∠COE=90°,∠COE+∠AOC+∠DOE=180°,∴∠AOC+∠DOE=90°,∵射线OF平分∠AOE,∴∠AOF=∠EOF=∠AOE,∴∠COF=∠AOF-∠AOC=∠AOE-(90°-∠DOE)=(180°−∠DOE)−90°+∠DOE=∠DOE,即∠AOC+∠DOE=90°,∠COF=∠DOE. (2)数量关系:∠COF=∠DOE. ∵OF平分∠AOE,∴∠AOF=∠AOE,∵∠COE=90°,∴∠AOC=90°-∠AOE,∴∠COF=∠AOC+∠AOF=90°-∠AOE+∠AOE=90°-∠AOE,∵∠AOE=180°-∠DOE,∴∠COF=90°-(180°-∠DOE)=∠DOE,即∠COF=∠DOE;(3)数量关系:∠COF=180°−∠DOE.∵OF 平分∠AOE,∴∠EOF=∠A OE,∴∠COF=∠COE+∠EOF=90°+∠AOE=90°+(180°−∠DOE)=180°-∠DOE,即∠COF=180°−∠DOE 【解析】(1)依据已知条件和图形可知:∠COE=90°,∠COE+∠AOC+∠DOE=180°,从而可以得到∠AOC与∠DOE的数量关系;由射线OF平分∠AOE,∠AOC与∠DOE的数量关系,从而可以得到∠COF和∠DOE的数量关系;(2)由图2,可以得到各个角之间的关系,从而可以得到∠COF和∠DOE 之间的数量关系;(3)由图3和已知条件可以建立各个角之间的关系,从而可以得到∠COF和∠DOE之间的数量关系.。

北师大版七年级数学上册第四章《基本平面图形》练习题及答案

北师大版七年级数学上册第四章《基本平面图形》练习题及答案

北师大版七年级数学上册第四章《基本平面图形》练习题及答案第四章单元测试卷(时间:100分钟 满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 下列说法正确的是(B )A .过一点P 只能作一条直线B .直线AB 和直线BA 表示同一条直线C .射线AB 和射线BA 表示同一条射线D .射线a 比直线b 短2. 下面表示∠ABC 的图是(C )3. 同一平面内互不重合的三条直线的交点的个数是(C )A .可能是0个,1个,2个B .可能是0个,2个,3个C .可能是0个,1个,2个或3个D .可能是1个或3个 4. 如图,点C ,D 是线段AB 上的两点,且点D 是线段AC 的中点,若AB =10 cm ,BC =4 cm ,则AD 的长为(B )A .2 cmB .3 cmC .4 cmD .6 cm,第4题图) ,第5题图),第6题图) ,第9题图)5. 如图,点O 在直线AB 上,射线OC 平分∠DOB.若∠COB=35°,则∠AOD 等于(C ) A .35° B .70° C .110° D .145°6. 如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是(A )A .两点之间线段最短B .两点确定一条直线C .过一点,有无数条直线D .连接两点之间的线段叫做两点间的距离7. 点C 是线段AB 的中点,点D 是BC 上一点,则以下关系式中不正确的是(C )A .CD =AC -BDB .CD =12AB -BDC .CD =12BC D .CD =AD -BC8. 下列属于正n 边形的特征的有(A )①各边相等;②各个内角相等;③各条对角线都相等;④从一个顶点可以引(n -2)条对角线;⑤从一个顶点引出的对角线将n 边形分成面积相等的(n -2)个三角形.A .2个B .3个C .4个D .5个9. 如图,圆的四条半径分别是OA ,OB ,OC ,OD ,其中点O ,A ,B 在同一条直线上,∠AOD=90°,∠AOC=3∠BOC,那么圆被四条半径分成的四个扇形的面积的比是(A) A.1∶2∶2∶3 B.3∶2∶2∶3 C.4∶2∶2∶3 D.1∶2∶2∶110. 如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE 为∠BOC的平分线,则∠DOE的度数为(D)A.36°B.45°C.60°D.72°,第10题图) ,第13题图),第16题图)二、填空题(本大题6小题,每小题4分,共24分)11. 班长小明在墙上钉木条挂报夹,钉一颗钉子时,木条可任意转动;钉两颗钉子时,木条不动了,用数学知识解释这种现象为两点确定一条直线.12. 点C在射线AB上,若AB=3,BC=2,则AC为1或5.13. 如图,平角AOB被分成的三个角∠AOC,∠COD,∠DOB的比为2∶3∶4,则∠DOB =80°.14. 十边形的一个顶点与其余各个顶点相连能得到8个三角形.15. 已知∠A=18°18′,∠B=18.18°,则∠A>∠B.16. 如图,斜折一页书的一角,原顶点A落到A1处,EF为折痕,FG平分∠A1FD,则∠EFG =90°.三、解答题(一)(本大题3小题,每小题6分,共18分)17. 如图,共有多少条线段?多少条射线?多少条直线?把能用字母表示的表示出来.解:有3条线段,分别为线段AB,线段AC,线段BC.有8条射线,能用字母表示的分别为射线AB,射线BA,射线CA,射线BC.有1条直线,直线AB18. 如图,在四边形ABCD内找一点O,使得线段AO,BO,CO,DO的和最小,并说明理由.(画出即可,不写作法)解:如图所示,连接AC,BD,交点即为点O,是根据两点之间线段最短19. 如图,AB=6 cm,延长AB到点C,使BC=3AB,点D是BC的中点,求AD的长度.解:因为AB=6 cm,BC=3AB,所以BC=18 cm,因为点D为BC的中点,所以BD=9 cm,所以AD=AB+BD=15(cm)四、解答题(二)(本大题3小题,每小题7分,共21分)20. 如图,已知线段a,b和射线OA.(1)在OA上截取OB=2a+b,OC=2a-b;(2)若a=3,b=2,求BC.解:(1)如图,OB,OC即为所求(2)BC=BO-CO=2a+b-(2a-b)=2b=2×2=421. 如图,在O点的观测站测得渔船A,B的方向分别为北偏东45°,南偏西30°,为了减少相互干扰并取得较好的捕鱼效益,渔船C恰好位于∠AOB的平分线上,求渔船C相对观测站的方向.解:由题意可知,∠AOB=180°-45°+30°=165°,165°÷2-30°=52.5°,所以点C在观测点南偏东52.5°方向22. 如图,OE 为∠AOD 的平分线,∠COD =14∠EOC,∠COD =15°.求: (1)∠EOC 的大小;(2)∠AOD 的大小.解:(1)由∠COD=14∠EOC,得∠EOC=4∠COD=4×15°=60° (2)因为∠EO D =∠EOC-∠COD=60°-15°=45°.由角平分线的性质,得∠AOD=2∠EOD=2×45°=90°五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如图,点C 在线段AB 上,AC =8 cm ,BC =6 cm ,点M ,N 分别是AC ,BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任意一点,满足AB =AC +BC =a cm ,其他条件不变,试求线段MN 的长;(3)若C 在线段AB 的延长线上,且满足AB =AC -BC =b cm ,点M ,N 分别是AC ,BC 的中点,试求线段MN 的长,并画出图形.解:(1)MN =MC +CN =12AC +12BC =4+3=7(cm ) (2)MN =MC +CN =12AC +12BC =12(AC +BC)=a 2(cm ) (3)如图所示:MN =MC -NC =12AC -12BC =12(AC -BC)=b 2(cm ) 24.钟面角是指时钟的时针与分针所成的角.如图,在钟面上,点O 为钟面的圆心,图中的圆我们称之为钟面圆.为便于研究,我们规定:钟面圆的半径OA 表示时针,半径OB 表示分针,它们所成的钟面角为∠AOB;本题中所提到的角都不小于0°,且不大于180°.本题中所指的时刻都介于0点整到12点整之间.(1)时针每分钟转动的角度为0.5°,分针每分钟转动的角度为6°;(2)8点整,钟面角∠AOB =120°,钟面角与此相等的整点还有:4点整;(3)如图,设半径OC 指向12点方向,在图中画出6点15分时半径OA ,OB 的大概位置,并求出此时∠AOB 的度数.解:(3)如图:∠AOB =6×30+15×0.5-15×6=97.5°25. 乐乐对几何中角平分线等兴趣浓厚,请你和乐乐一起探究下面问题吧.已知∠AOB =100°,射线OE ,OF 分别是∠AOC 和∠COB 的角平分线.(1)如图①,若射线OC 在∠AOB 的内部,且∠AOC=30°,求∠EOF 得度数; (2)如图②,若射线OC 在∠AOB 的内部绕点O 旋转,求∠EOF 的度数;(3)若射线OC 在∠AOB 的外部绕点O 旋转(旋转中∠AOC,∠BOC 均指小于180°的角),其余条件不变,请借助图③探究∠EOF 的大小,写出∠EOF 的度数.解:(1)因为∠AOB =100°,∠AOC =30°,所以∠BOC=∠AOB-∠AOC=70°,因为OE ,OF 分别是∠AOC 和∠COB 的角平分线,所以∠EOC=12∠AOC=15°,∠FOC =12∠BOC=35°,所以∠EOF=∠EOC+∠FOC=15°+35°=50°(2)因为OE ,OF 分别是∠AOC 和∠COB 的角平分线,所以∠EOC=12∠AOC,∠FOC =12∠BOC,所以∠EOF=∠EOC+∠FOC=12∠AOB=12×100°=50°(3)①射线OE ,OF 只有1条射线在∠AOB 外面,如图④,∠EOF =∠FOC-∠COE=12∠BOC -12∠AOC=12∠AOB=12×100°=50°;②射线OE ,OF 都在∠AOB 外面,如图⑤,∠EOF =∠EOC +∠COF=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12(360°-∠AOB)=12×260°=130°.故∠EOF 的度数是50°或130°。

2022-2023学年北师大版七年级数学上册第四章基本平面图形专项练习试卷(含答案详解)

2022-2023学年北师大版七年级数学上册第四章基本平面图形专项练习试卷(含答案详解)

七年级数学上册第四章基本平面图形专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,钟表上10点整时,时针与分针所成的角是()A.30B.60︒C.90︒D.120︒2、如图,在观测站O发现客轮A,货轮B分别在它北偏西50°,西南方向,则∠AOB的度数是()A.80°B.85°C.90°D.95°3、如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm4、若过六边形的一个顶点可以画n 条对角线,则n 的值是( ) A .1B .2C .3D .45、下列角度换算错误的是( ) A .10.6°=10°36″ B .900″=0.25° C .1.5°=90′D .54°16′12″=54.27°6、如图,下列各组角中,表示同一个角的是( )A .ABE ∠与EBC ∠B .BAE ∠与DAC ∠ C .AED ∠与AEB ∠D .ACD ∠与ADC ∠7、在四边形ABCD 中,A ∠的对角是( ) A .A ∠B .BC .C ∠D .D ∠8、有下列说法:①由许多条线段连结而成的图形叫做多边形; ②多边形的边数是不小于4的自然数;③从一个多边形(边数为n)的同一个顶点出发,分别连结这个顶点和其余与之不相邻的各顶点,可以把这个多边形分割成(n-2)个三角形;④在平面内,由5条线段首尾顺次相接组成的封闭图形叫做五边形.其中正确的说法有( )A.1个B.2个C.3个D.4个9、如图,钟表上显示的时间是12:20,此时,时针与分针的夹角是()A.100︒B.110︒C.115︒D.120︒10、如图下列说法错误的是().A.OA方向是北偏东55︒B.OB方向是北偏西75︒C.OC方向是西南方向D.OD方向是南偏东30第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点C为线段AB上一点,AC:CB=3:2,D、E两点分别AC、AB的中点,若线段DE=2cm,则AB=_____cm.2、如图,直线,AB CD 相交于O ,OE 平分,∠⊥AOC OF OE ,若46BOD ∠=︒,则DOF ∠的度数为______︒.3、如图,线段AB 和线段CD 的公共部分是线段BD ,且1134BD AB CD ==,点E 、F 分别是AB 、CD 的中点,若20EF =,则BD 的长为______4、如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.5、如图,在AOB ∠的内部有3条射线OC 、OD 、OE ,若52AOC ∠︒=,14BOE BOC ∠=∠,14BOD AOB ∠=∠,则DOE ∠=__________︒.三、解答题(5小题,每小题10分,共计50分)1、已知线段AB =14,在AB 上有四个点C ,D ,M ,N ,且AC :CD :DB =1:2:4,AM =12AC ,DN =16DB ,计算线段MN 的长.2、如图①,直线AB 、CD 相交于点O ,射线OE CD ⊥,垂足为点O ,过点O 作射线OF 使130BOF ∠=︒.(1)将图①中的直线CD 绕点O 逆时针旋转至图②,OE 在BOF ∠的内部,当OE 平分BOF ∠时,OC 是否平分AOF ∠,请说明理由;(2)将图①中的直线CD 绕点O 逆时针旋转至图③,OD 在的内部,探究AOE ∠与DOF ∠之间的数量关系,并说明理由;(3)若20BOE ∠=︒,将图①中的直线CD 绕点O 按每秒5°的速度逆时针旋转度α度(0180α︒<<︒),设旋转的时间为t 秒,当AOC ∠与EOF ∠互余时,求t 的值. 3、已知:如图①所示,OC 是AOB ∠内部一条射线,且OD 平分AOC ∠,OE 平分BOC ∠. (1)若80AOC ∠=︒,50BOC ∠=︒,则EOD ∠的度数是______.(2)若AOC α∠=,BOC β∠=,求EOD ∠的度数,并根据计算结果直接写出EOD ∠与AOB ∠之间的数量关系.(写出计算过程)(3)如图③所示,射线OC 在AOB ∠的外部,且OD 平分AOC ∠,OE 平分BOC ∠.试着探究EOD ∠与AOB ∠之间的数量关系.(写出详细推理过程)4、如图所示,C 是线段AB 上的一点,D 是AC 的中点,E 是BC 的中点,如果AB =9cm ,AC =5cm. 求:⑴AD 的长; ⑵DE 的长.5、如图1,A 、O 、B 三点在同一直线上,∠BOD 与∠BOC 互补. (1)请判断∠AOC 与∠BOD 大小关系,并验证你的结论;(2)如图2,若OM 平分∠AOC ,ON 平分∠AOD ,∠BOD =30°,请求出∠MON 的度数.-参考答案-一、单选题 1、B【分析】根据钟面分成12个大格,每格的度数为30°即可解答. 【详解】解:∵钟面分成12个大格,每格的度数为30°, ∴钟表上10点整时,时针与分针所成的角是60° 故选B . 【考点】考核知识点:钟面角.了解钟面特点是关键. 2、B 【解析】 【分析】根据西南方向即为南偏西45︒,然后用180︒减去两个角度的和即可. 【详解】由题意得:180(4550)85AOB ∠=︒-︒+︒=︒, 故选:B . 【考点】本题考查有关方位角的计算,理解方位角的概念,利用数形结合的思想是解题关键. 3、B 【解析】 【分析】利用线段和的定义和线段中点的意义计算即可.∵AB=AC+BC,且AB=10,BC=4,∴AC=6,∵D是线段AC的中点,AC=3,∴AD=DC=12∴BD=BC+CD=4+3=7,故选B.【考点】本题考查了线段和的意义和线段中点的意义,熟练掌握两个概念并灵活运用进行线段的计算是解题的关键.4、C【解析】【分析】根据从一个n边形一个顶点出发,可以连的对角线的条数是n-3进行计算即可.【详解】解:6-3=3(条).答:从六边形的一个顶点可引出3条对角线.故选:C.【考点】本题考查了多边形的对角线,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n-3.5、A【分析】根据度、分、秒之间的换算关系求解. 【详解】解:A 、10.6°=10°36',错误;B 、900″=0.25°,正确;C 、1.5°=90′,正确;D 、54°16′12″=54.27°,正确;故选:A . 【考点】本题考查了度、分、秒之间的换算关系:160︒=',160'='',难度较小. 6、B 【解析】 【分析】根据角的表示方法,用三个字母表示角,顶点字母写在中间,例如∠AOC 表示该角是射线OA 和线段OC 的夹角,据此分析即可.【详解】A . ABE ∠表示射线,BA BE 的夹角,EBC ∠表示射线,BE BC 的夹角,不是同一个角,不符合题意;B . BAE ∠表示射线,AB AE 的夹角,DAC ∠表示射线,AD AC 的夹角,是同一个角,符合题意; C . AED ∠表示射线,EA ED 的夹角,AEB ∠表示射线,EA EB 的夹角,不是同一个角,不符合题意; D . ACD ∠表示射线,CA CD 的夹角,ADC ∠表示射线,DA DC 的夹角,不是同一个角,不符合题意.故选B . 【考点】本题考查了角的表示方法,理解三个字母表示角的方法是解题的关键.7、C【解析】【分析】根据四边形的表示方法回答即可. .【详解】解:在四边形ABCD中,∴A的对角是∠C,故答案为:C.【考点】本题考查了对角的表示方法的应用,关键是根据学生对四边形的表示方法的理解.8、B【解析】【详解】分析:根据每种说法中所涉及的相关数学知识进行分析判断即可.详解:(1)因为“多边形的定义是:由3条及3条以上的线段首尾顺次连接形成的封闭图形叫多边形”,所以①中说法错误;(2)因为“多边形中边数最少的是三角形,只有3条边”,所以②中说法错误;(3)因为“从n边形的一个顶点出发引出的所有对角线刚好把多边形分成(n-2)个三角形”,所以③中说法正确;(4)因为“五边形的定义是:在平面内,由五条线段首尾顺次连接形成的封闭图形叫做五边形”,所以④中说法正确.综上所述,上述四种说法中正确的有2个.故选B.点睛:熟悉“多边形的相关概念和知识”是解答本题的关键.9、B【解析】【分析】根据时针在钟面上每分钟转0.5,分针每分钟转6,然后分别求出时针、分针转过的角度,即可得到答案.【详解】解:∵时针在钟面上每分钟转0.5,分针每分钟转6,∴钟表上12时20分钟时,时针转过的角度为0.52010⨯=,⨯=,分针转过的角度为620120所以12:20时分针与时针的夹角为12010110-=.故选B.【考点】本题主要考查了钟面角,解题的关键在于能够熟练掌握时针和分针每分钟所转过的角度是多少.10、A【解析】【分析】根据方位角的定义,逐项分析即可,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南).【详解】A. OA方向是北偏东35︒,故该选项不正确,符合题意;B. OB方向是北偏西75︒,故该选项正确,不符合题意;C. OC方向是西南方向,故该选项正确,不符合题意;D. OD方向是南偏东30,故该选项正确,不符合题意.故选A.【考点】本题考查了方位角的定义,掌握方位角的表示方法是解题的关键.二、填空题1、10【解析】【分析】设AB=x,根据比值可求出AC、BC的长,再根据线段中点的性质可求出AD、AE,然后根据线段的和差列出关于x的方程并求解即可.【详解】解:设AB=x,由已知得:AC=35x,BC=25x,∵D、E两点分别为AC、AB的中点,∴DC=310x,BE=12x,∵DE=DC﹣EC=DC﹣(BE﹣BC),∴310x﹣(12x﹣25x)=2,解得:x=10,∴AB的长为10cm.故填10.本题考查两点间的距离、线段中点定义以及比例的知识,根据线段的和差列出方程是解答本题的关键.2、67【解析】【分析】根据角平分线与角度的运算即可求解.【详解】∵46BOD ∠=︒,∴46∠=∠=︒AOC BOD ,∵OE 平分AOC ∠, ∴1232∠=∠=︒COE AOC , 又∵OF OE ⊥,∴90FOE ∠=︒,∵180∠+∠+∠=︒COE EOF FOD ,∴180∠=︒-∠-∠FOD COE EOF1802390=︒-︒-︒67=︒.故答案为:67.【考点】此题主要考查角平分线的性质,解题的关键是熟知角度计算.3、8【分析】设BD x =,由线段中点的性质得到131,2222AE EB AB x DF FC CD x ======,再根据线段的和差得到AC AB CD BD =+-=AE EF FC ++,转化为解一元一次方程即可.【详解】解:设BD x =,3,4AB x CD x ∴==点E 、F 分别是AB 、CD 的中点,131,2222AE EB AB x DF FC CD x ∴====== 346AC AB CD BD x x x x =+-=+-=6AE EF FC AC x ∴++==320262x x x ∴++= 解得5202x = 8x ∴=8BD ∴=,故答案为:8.【考点】本题考查线段的和差,涉及线段的中点、一元一次方程的解法等知识,是重要考点,掌握相关知识是解题关键.4、14【解析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【详解】解:如图,作点A关于CM的对称点'A,点B关于DM的对称点'B.∠=,CMD120∴∠+∠=,AMC DMB60∴''60∠+∠=,CMA DMB∴∠=,A MB''60=,''MA MBA MB∴∆为等边三角形''≤++=++=,CD CA A B B D CA AM BD''''14∴的最大值为14,CD故答案为14.【考点】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题5、13【解析】先用含∠BOE的代数式表示出∠AOB,进而表示出∠BOD,然后根据∠DOE=∠BOD-∠BOE即可得到结论.【详解】解:∵∠BOE=14∠BOC,∴∠BOC=4∠BOE,∴∠AOB=∠AOC+∠BOC=52°+4∠BOE,∴∠BOD=14∠AOB=13+∠BOE,∴∠DOE=∠BOD-∠BOE=13,故答案为:13.【考点】本题考查了角的和差倍分计算,正确的识别图形是解题的关键.三、解答题1、193或113【解析】【分析】根据题意画出图形,分别求得CM,CD,DN的值即可求得线段MN的长,即可解题.【详解】①当N在D右侧时,∵AC:CD:DB=1:2:4,AC+CD+DB=14,∴AC=2,CD =4,BD =8, ∵AM=12AC ,∴CM=1, ∵DN=16DB , ∴DN=86=43, ∴MN=CM+CD+DN =1+4+43=193. ②当N 在D 左边时,MN =CM+(CD ﹣DN )=1+4﹣43=113. 综上所述MN 为193或113. 【考点】 本题考查了线段长度的计算,分别求出CM ,CD ,DN 的长是解题的关键.2、(1)OC 平分AOF ∠,理由见解析;(2)40AOE DOF ∠=∠+︒,理由见解析;(3)17t =或35t =时,AOC ∠与EOF ∠互余.【解析】【分析】(1)根据平分线的定义可得65FOE BOE ∠=∠=︒,根据OE CD ⊥,可得25FOC ∠=︒,从而得到25AOC ∠=︒,所以可得结论;(2)设DOF ∠为β︒,根据130BOF ∠=︒可得50AOD β∠=︒-︒,根据OE CD ⊥可得40AOE β∠=+︒,从而得到AOE ∠与DOF ∠之间的数量关系;(3)根据题意可知150EOF ∠=︒,因为OE CD ⊥,所以可得70BOC ∠=︒,可求出110AOC ∠=︒,根据“直线CD 绕点O 按每秒5°的速度逆时针旋转”可得出1105(022)AOC t t ∠=︒-<≤,()51102236AOC t t ∠=-︒<<,1505(030)EOF t t ∠=︒-<≤,()51503036EOF t t ∠=-︒<<,然后分情况进行讨论:①022t <≤时,90AOC EOF ∠+∠=︒②2230t <≤时,90AOC EOF ∠+∠=︒③3036t <<时,90AOC EOF ∠+∠=︒,从而得出结果.【详解】解:(1)OC 平分AOF ∠,理由如下:∵130BOF ∠=︒且OE 平分BOF ∠∴65FOE BOE ∠=∠=︒∵OE CD ⊥∴90EOC ∠=︒∴906525FOC ∠=︒-︒=︒∴1801801302525AOC BOF FOC ∠=︒-∠-∠=︒-︒-︒=︒∴AOC FOC ∠=∠即OC 平分AOF ∠(2)40AOE DOF ∠=∠+︒,理由如下:设DOF ∠为β︒,则180********AOD BOF DOF ββ∠=︒-∠-∠=︒-︒-︒=︒-︒∵OE CD ⊥∴90EOD ∠=︒∴9040AOE AOD β∠=︒-∠=+︒即40AOE DOF ∠=∠+︒(3)∵20BOE ∠=︒且130BOF ∠=︒∴150EOF ∠=︒又∵OE CD ⊥∴70BOC ∠=︒∴110AOC ∠=︒∵直线CD 绕点O 按每秒5°的速度逆时针旋转∴①022t <≤时,1105,1505AOC t EOF t ∠=︒-∠=︒-若AOC ∠与EOF ∠互余,则1105150590t t -+-=解得17t =②2230t <≤时,5110,1505AOC t EOF t ∠=-︒∠=︒-若AOC ∠与EOF ∠互余,则5110150590t t -+-=此时无解③3036t <<时,5110,5150AOC t EOF t ∠=-︒∠=-︒若AOC ∠与EOF ∠互余,则5110515090t t -+-=解得35t =综上所述,17t =或35t =时,AOC ∠与EOF ∠互余.【考点】本题考查了角的计算,角平分线有关的计算,余角相关计算.关键是认真审题并仔细观察图形,找到各个量之间的关系.3、(1)65°;(2)12EOD AOB ∠=∠(或2AOB EOD ∠=∠),见解析;(3)12EOD AOB ∠=∠.见解析 【解析】【分析】(1)根据角平分线的性质计算即可;(2)根据角平分线的性质进行表示即可;(3)根据角平分线的性质分析判断即可;【详解】(1)∵OD 平分AOC ∠,OE 平分BOC ∠, ∴12EOC BOC ∠=∠,12DOC AOC ∠=∠,又∵80AOC ∠=︒,50BOC ∠=︒,∴402565EOF ∠=︒+︒=︒;故答案是:65︒.(2)方法1:∵OE 平分AOC ∠,AOC a ∠=, ∴12COE a ∠=, ∵OD 平分BOC ∠,AOC β∠=, ∴12COD β∠=, ∴1122EOD COE COD a β∠=∠+∠=+, EOD ∠与AOB ∠之间的关系为:12EOD AOB ∠=∠(或2AOB EOD ∠=∠); 方法2:∵OD 平分AOC ∠,OE 平分BOC ∠, ∴12EOA AOC ∠=∠,12BOE BOC ∠=∠, ∴()EOD AOB DOA BOE ∠=∠-∠+∠,1122AOB AOC BOC ⎛⎫=∠-∠+∠ ⎪⎝⎭, ()12AOB AOC BOC =∠-∠+∠, 12AOB AOB =∠-∠, 12AOB =∠, ∵AOC α∠=,BOC β∠=, ∴()12EOD αβ∠=+, EOD ∠与AOB ∠之间的关系为:12EOD AOB ∠=∠(或2AOB EOD ∠=∠); (3)∵OD 平分AOC ∠,OE 平分BOC ∠, ∴12COD AOC ∠=∠,12COE BOC ∠=∠, ∴111222EOD COD COE AOC BOC AOB ∠=∠-∠=∠-∠=∠. 【考点】本题主要考查了角平分线的综合应用,准确分析计算是解题的关键.4、(1)AD =52cm ;(2)DE =92cm.【解析】【分析】(1)根据中点的定义AD=12AC计算即可;(2)根据DE=DC+CE,求出CD、CE即可解决问题. 【详解】解:(1)∵AC=5cm,D是AC中点,∴AD=DC=12AC=52cm,(2)∵AB=9cm,AC=5cm,∴BC=AB−AC=9−5=4cm,∵E是BC中点,∴CE=12BC=2cm,∴DE=CD+CE=52+2=92cm.【考点】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.5、(1)∠AOC=∠BOD,证明见解析;(2)60°【解析】【分析】(1)根据补角的性质即可求解;(2)根据角平分线的定义以及等量关系列出方程求解即可.【详解】解:(1)∠AOC=∠BOD,理由如下:∵A,O,B三点共线,∴∠AOC+∠BOC=180°,∴∠AOC与∠BOC互补,∵∠BOD与∠BOC互补,∴∠AOC=∠BOD;(2)∵∠BOD=30°,∴∠AOC=∠BOD=30°,∵OM平分∠AOC,∴1152AOM AOC=∠=∠,∵∠AOD+∠BOD=180°,∴∠AOD=180°﹣30°=150°,∵ON平分∠AOD,∴1752AON AOD=∠=∠,∴∠MON=∠AON﹣∠AOM=60°.【考点】本题考查的是角的有关计算和角平分线的定义,正确理解并灵活运用角平分线的定义是解题的关键.。

北师大版七年级上册数学第四章 基本平面图形 单元测试题(无答案)

北师大版七年级上册数学第四章 基本平面图形 单元测试题(无答案)

第四章基本平面图形一、选择题1.如果线段AB=13cm,MA+MB=17cm,那么下面说法中正确的是().A.M点在线段AB上.B.M点在直线AB上.C.M点在直线AB外.D.M点可能在直线AB上,也可能在直线AB外.2.修建高速公路时,经常将弯曲的道路改直,从而缩短路程,这样做的数学根据是()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.同位角相等,两直线平行3.A、B是半径为5cm的⊙O上两个不同的点,则弦AB的取值范围是()A.AB>0B.0<AB<5C.0<AB<10D.0<AB≤104.下列各式不正确的是()A.18000″<360′B.2°30′>2.4°C.36000″<8°D.1°10′20″>4219″5.下列叙述,其中不正确的是()A.两点确定一条直线B.过一点有且只有一条直线与已知直线平行C.同角(或等角)的余角相等D.两点之间的所有连线中,线段最短6.如图,小于平角的角共有()A.10个B.9个C.8个D.4个7.已知:α、β都是钝角,甲、乙、丙、丁四人计算有一人算正确,那么算得正确答案的是()的结果依次为12°,44°,66°,88°,其中只A.甲B.乙C.丙D.丁8.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°,则∠COE=()A.80°B.75°C.70°D.65°9.在时刻8:30时,时钟上的时针与分针之间的所成的夹角是()A.60°B.70°C.75°D.85°10.若∠AOB=90º,∠BOC=40º,则∠AOB的平分线与∠BOC的平分线的夹角等于()A.65ºB.25ºC.65º或25ºD.60º或20º11.如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cmB.4cmC.3cmD.2cm12.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.2cmB.cmC.cmD.1cm二、填空题13.要在墙上固定一根木条,至少需要________根钉子,理由是:________.14.已知⊙O的内接正六边形周长为12cm,则这个圆的半经是________cm.15.如图,从小华家去学校共有4条路,第③条路最近,理由是________.16.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AB的长是________17.如图,用三个大写字母表示∠1为________;∠2为________;∠3为________18.已知线段AB=16cm,点C在直线AB上,且AC=10cm,O为AB的中点,则线段OC的长度是________.19.如图,∠AOB中,OD是∠BOC的平分线,OE是∠AOC的平分线,若∠AOB=135°,则∠EOD=________°.20.已知A、B、C三点在同一条直线上,M、N分别为线段AB、BC的中点,且AB=60,BC=40,则MN的长为________.21.人们喜欢把弯弯曲曲的公路改为直道,其中隐含着数学道理的是________22.如图所示,AB+CD________AC+BD.(填“<”,“>”或“=”)三、解答题23.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.24.如图,已知线段AB和CD的公共部分BD=10cm,求AB,CD的长.AB=CD,线段AB、CD的中点E,F之间距离是25.如图,∠AOB=∠COD=900,OC平分∠AOB,∠BOD=3∠DOE.(1)∠DOE的度数;(2)试求∠COE的度数;26.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本平面图形选择题练习题库
一、概念题
1.给出下列图形,其表示方法不正确的是( )
2.下列语句正确的是( )
A.延长线段AB到C,使BC=AC
B.反向延长线段AB,得到射线BA
C.取直线AB的中点
D.连接A,B两点,并使直线AB经过C点
3.下列说法正确的是( )
A.两点之间的连线中,直线最短
B.若P是线段AB的中点,则AP=BP
C.若AP=BP,则P是线段AB的中点
D.两点之间的线段叫作这两点之间的距离
4.下列说法正确的是( )
A.画射线OA=3cm;
B.线段AB和线段BA不是同一条线段
C.点A和直线L的位置关系有两种;
D.三条直线相交有3个交点
5.下列说法中正确的是()
A.经过两点有且只有一条线段
B.经过两点有且只有一条直线
C.经过两点有且只有一条射线
D.经过两点有无数条直线
6.延长线段AB到C,下列说法中正确的是()
A.点C在线段AB上
B.点C在直线AB上
C.点C不在直线AB上
D.点C在直线AB的延长线上
7.下列说法正确的是( )
A.到线段两个端点距离相等的点叫做线段的中点;
B.线段的中点到线段两个端点的距离相等;
C.线段的中点可以有两个;
D.线段的中点有若干个。

8.如图,下列几何语句不正确的是( )
A.直线AB与直线BA是同一条直线
B.射线OA与射线OB是同一条射线
C.射线OA与射线AB是同一条射线
D.线段AB与线段BA是同一条线段
9.下列说法正确的是()
A.线段AB和线段BA表示的不是同一条线段
B.射线AB和射线BA表示的是同一条射线
C.若点P是线段AB的中点,则PA=AB
D.线段AB 叫做A 、B 两点间的距离
10.下列画图语句中正确的是( )
A.画射线OP=5cm
B.连结A 、B 两点
C.画出A 、B 两点的中点
D.画出A 、B 两点的距离
11.下列画图的语句正确的是( )
A .画直线A
B =10厘米 B .画射线AB =10厘米
C .已知A ,B ,C 三点,过这三点画一条直线
D .画线段AB =10厘米
12.下列各直线的表示法中,正确的是( )
A .直线A B.直线A
B
C .直线ab D.直线Ab
13.下列说法中,正确的有( )
A 过两点有且只有一条直线 B.连结两点的线段叫做两点的距离
C.两点之间,线段最短
D.AB =BC ,则点B 是线段AC 的中点
14.在有理数的运算中,我们学习了数轴,那么数轴是( )
A .一条直线
B .一条射线
C .两条射线
D .一条线段
15.图中给出的直线、射线、线段,根据各自的性质,能相交的是( )
C A
D B
16.如图所示,A 、B 、C 、D 四个图形中各有一条射线和一条线段,它们能相交的是( )
.
17. 如果点C 在线段AB 上,则下列各式中:AC=12AB,AC=CB,AB=2AC,AC+CB=AB,能说明C 是线段AB 中点的有( )
A.1个
B.2个
C.3个
D.4个
18.下列说法中,错误的有( )
①射线是直线的一部分;②画一条射线,使它的长度为3 cm ;③线段AB 和线段BA 是同一条线段;④射线AB 和射线BA 是同一条射线;⑤直线AB 和直线BA 是同一条直线。

A .1个
B .2个
C .3个
D .4个
19.下列说法中,正确的有( )
(1)过两点有且只有一条线段(2)连结两点的线段叫做两点的距离
(3)两点之间,线段最短 (4)AB=BC,则点B 是线段AC 的中点
(5) 射线比直线短。

相关文档
最新文档