北京市西城区2016-2017学年上学期初中七年级期末考试数学试卷含答案

合集下载

北京西城初二年级下学期期末考试数学试题 含答案

北京西城初二年级下学期期末考试数学试题 含答案

北京市西城区2016-2017学年度第二学期期末试卷八 年 级 数 学试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 函数11y x =+中,自变量x 的取值范围是( ).A. x ≠1-B. x ≠1C. x >1-D. x ≥1- 2. 一次函数+3y x =的图象不经过...的象限是( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 如图,矩形ABCD 的对角线AC ,BD 的交点为O ,点E 为BC 边的中点,30OCB ∠=︒,如果OE =2,那么对角线BD 的长为( ).A. 4C. 8D. 105. 如果关于x 的方程220x x k --=有两个相等的实数根,那么以下结论正确的是( ).A. 1k =-B. 1k =C. k >1-D. k >16. 下列命题中,不正确...的是( ). A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直且平分C. 菱形的对角线互相垂直且平分D. 正方形的对角线相等且互相垂直平分7. 北京市6月某日10个区县的最高气温如下表:(单位:℃)则这10个区县该日最高气温的中位数是( ).A. 32 C. 308. 如图,在Rt△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A ′B ′C ,使得点A ′恰好落在AB 边上,则α等于( ).A. 150°B. 90°C. 60°D. 30°9. 教育部发布的统计数据显示,近年来越来越多的出国留学人员学成后选择回国发展,留学回国与出国留学人数“逆差”逐渐缩小.2014年各类留学回国人员总数为万人,而2016年各类留学回国人员总数为万人.如果设2014年到2016年各类留学回国人员总数的年平均增长率为x,那么根据题意可列出关于x的方程为().A. 36.48(1)=43.25xx++ B. 36.48(12)=43.25C. 2x36.48(1)=43.25-36.48(1)=43.25+ D. 2x路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是().二、填空题(本题共26分,其中第18题5分,其余每小题3分)11. 如果关于x的方程2320-++=有一个根为0,那么m的值等于 .x x m12. 如果平行四边形的一条边长为4cm,这条边上的高为3cm,那么这个平行四边形的面积等于2cm.13. 在平面直角坐标系xOy中,直线24=-+与x轴的交点坐标为,y x与y轴的交点坐标为,与坐标轴所围成的三角形的面积等于 .14.如图,在Y ABCD中,CH⊥AD于点H,CH与BD的交点为E.如果1=70ADC∠∠,那么=∠°.ABC∠︒,=3215.如图,函数2=-的图象交于点P,那y kx=+与函数1y x b么点P的坐标为_______,关于x的不等式12->+的解集kx x b是.16. 写出一个一次函数的解析式,满足以下两个条件:①y随x的增大而增大;②它的图象经过坐标为(0,2)-的点. 你写出的解析式为 .17. 如图,正方形ABCD的边长为2cm,正方形AEFG的边长为1cm.正方形AEFG绕点A旋转的过程中,线段CF的长的最小值为_______cm.18. 利用勾股定理可以在数轴上画出表示图,并保留画图痕迹:第一步:(计算)=,使其中a,b都为正整数.你取的正整数a=____,b= ;以第一步中你所取的正整数a,b为两条直第二步:∠︒,则斜边OFOEF=90请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)M,并描述第三步:第三步...的画图步骤:.三、解答题(本题共44分,第19、20、22题各5分,第21、23、24题各7分,第25题8分)19. 解方程:2610--=.x x20.如图,在四边形ABCD中,AD21.《九章算术》卷九“勾股”中记载:今有户不知高广,竿不知长短.横之不出四尺,纵之不出二尺,斜之适出注.问户斜几何.注释:横放,竿比门宽长出四尺;竖放,竿比门高长出二尺;斜放恰好能出去.解决下列问题:(1)示意图中,线段CE的长为尺,线段DF的长为尺;(2)求户斜多长.22. 2016年9月开始,初二年级的同学们陆续到北京农业职业技术学院进行了为期一周的学农教育活动.丰富的课程开阔了同学们的视野,其中“酸奶的制作”课程深受同学们喜爱.学农1班和学农2班的同学们经历“煮奶—降温—发酵—后熟”四步,制作了“凝固型”酸奶.现每班随机抽取10杯酸奶做样本(每杯100克),记录制作时所添加蔗糖克数如表1、表2所示.表 1 学农1班所抽取酸奶添加蔗糖克数统计表(单位:克)表 2 学农2班所抽取酸奶添加蔗糖克数统计表(单位:克)据研究发现,若蔗糖含量在5%~8%,即100克酸奶中,含糖5~8克的酸奶口感最佳.两班所抽取酸奶的相关统计数据如表3所示.表3 两班所抽取酸奶的统计数据表根据以上材料回答问题:(1)表3中,x=:(2)根据以上信息,你认为哪个学农班的同学制作的酸奶整体..口感较优?请说明理由.23. (1)阅读以下内容并回答问题:小雯用这个方法进行了尝试,点(1,2)A -向上平移3个单位后的对应点A '的坐标为 ,过点A '的直线的解析式为 .(2)小雯自己又提出了一个新问题请全班同学一起解答和检验此方法,请你也试试看:将直线2y x =-向右平移1个单位,平移后直线的解析式为 ,另外直接将直线2y x =-向 (填“上”或“下”)平移 个单位也能得到这条直线.(3)请你继续利用这个方法解决问题:对于平面直角坐标系xOy 内的图形M ,将图形M 上所有点都向上平移3个单位,再向右平移1个单位,我们把这个过程称为图形M 的一次..“斜平移”. 求将直线2y x =-进行两次..“斜平移”后得到的直线的解析式.(3)解:24.(1)画图-连线-写依据:先分别完成以下画图..(不要求尺规作图),再与判断四边形DEMN形状的相应结论连线..,并写出判定依据(只将最后一步判定特殊平行..........四边形的依据......填在横线上).①如图1,在矩形ABEN中,D为对角线的交点,过点N画直线NP∥DE,过点E画直线EQ∥DN,NP与EQ的交点为点M,得到四边形DEMN;②如图2,在菱形ABFG中,顺次连接四边AB,BF,FG,GA的中点D,E,M,N,得到四边形DEMN.(2)请从图1、图2的结论中选择一个进行证明.证明:25. 如图所示,在平面直角坐标系x O y中,B,C两点的坐标分别为(4,0)B,(4,4)C,CD⊥y轴于点D,直线l 经过点D.(1)直接写出点D的坐标;(2)作CE⊥直线l于点E,将直线CE绕点C逆时针旋转45°,交直线l于点F,连接BF.①依题意补全图形;②通过观察、测量,同学们得到了关于直线BF与直线l的位置关系的猜想,请写出你的猜想;③通过思考、讨论,同学们形成了证明该猜想的几种思路:思路1:作CM⊥CF,交直线l于点M,可证△CBF≌△CDM,进而可以得出45∠=︒,从而证明结论.CFB思路2:作BN⊥CE,交直线CE于点N,可证△BCN≌△CDE,进而证明四边形BFEN为矩形,从而证明结论.……请你参考上面的思路完成证明过程.(一种方法即可)解:(1)点D的坐标为.(2)①补全图形.②直线BF与直线l的位置关系是.③证明:北京市西城区2016-2017学年度第二学期期末试卷八 年 级 数 学 附 加 题试卷满分:20分一、填空题(本题6分)1. 如图,在平面直角坐标系xOy 中,点1(2,2)A 在直线y x =上,过点1A 作11A B ∥y 轴,交直线12y x =于点1B ,以1A 为直角顶点,11A B 为直角边,在11A B 的右侧作等腰直角三角形111A B C ;再过点1C 作22A B ∥y轴,分别交直线y x =和12y x =于2A ,2B 两点,以2A 为直角顶点,22A B 为直角边,在22A B 的右侧作等腰直角三角形222A B C ,…,按此规律进行下去,点1C 的横坐标为 ,点2C 的横坐标为 ,点 n C 的横坐标为 .(用含n 的式子表示,n 为正整数)二、操作题(本题6分)2.如图,在由边长都为1个单位长度的小正方形组成的66⨯正方形网格中,点A ,B ,P 都在格点上.请画出以AB 为边的格点四边形(四个顶点都在格点的四边形),要求同时满足以下条件: 条件1:点P 到四边形的两个顶点的距离相等; 条件2:点P 在四边形的内部或其边上; 条件3:四边形至少一组对边平行.(1)在图①中画出符合条件的一个Y ABCD , 使点P 在所画四边形的内部; (2)在图②中画出符合条件的一个四边形ABCD ,使点P 在所画四边形的边上;(3)在图③中画出符合条件的一个四边形ABCD,使∠D=90°,且∠A≠90°.三、解答题(本题8分)3.如图,在平面直角坐标系xOy中,动点A(a,0)在x轴的正半轴上,定点B(m, n)在第一象限内(m<2≤a).在△OAB外作正方形ABCD和正方形OBEF,连接FD,点M为线段FD的中点.作BB1⊥x轴于点B1,作FF1⊥x轴于点F1.(1)填空:由△≌△,及B(m, n)可得点F的坐标为,同理可得点D的坐标为;(说明:点F,点D的坐标用含m,n,a的式子表示)(2)直接利用(1)的结论解决下列问题:①当点A在x轴的正半轴上指定范围内运动时,点M总落在一个函数图象上,求该函数的解析式(不必写出自变量x的取值范围);②当点A在x轴的正半轴上运动且满足2≤a≤8时,求点M所经过的路径的长.解:①②北京市西城区2016-2017学年度第二学期期末试卷八年级数学参考答案及评分标准一、选择题(本题共30分,每小题3分)题号12345678910答案A D B C A B A C C D二、填空题(本题共26分,其中第18题5分,其余每小题3分)11. 2-. 12. 12. 13. (2,0),(0,4),4.(各1分)14. 60. 15.(1,2)-(2分),x<1(1分).16. 答案不唯一,如2=-等.(只满足一个条件的y x得2分)17. 2.18. 第一步:a= 4 ,b= 2 (或a= 2 ,b= 4 );…………2分第二步:如图1. ……………………………………… 3分第三步:如图1,在数轴上画出点M. ………………………………………………………4分第三步的画图步骤:以原点O为圆心,OF长为半径作弧,弧与数轴正半轴的交点即为点M. ………………………………………………………………………………………… 5分说明:其他正确图形相应给分,如2OE =,4EF =.三、解答题(本题共44分,第19、20、22题各5分,第21、23、24题各7分,第25题8分)19. (本题5分) 解:1a =,6b =-,1c =-. …………………………………………………………………… 1分224(6)41(1)40b ac ∆=-=--⨯⨯-=>0. …………………………………………………2分 方程有两个不相等的实数根x = ……………………………………………………………………… 3分(6)6322--±±===所以原方程的根为13x =+,23x =-………………………………………… 5分20.(本题5分)解:(1)如图2.∵ △ABC 中,AB=10,BC=6,AC =8,∴222AC BC AB. ……………………… 1分+=∴△ABC是直角三角形,=90∠︒.……2分ACB(2)∵AD==90∠∠︒…………………………………………………………… 3分CAD ACB∵在Rt△ACD中,=90∠︒,AC=AD=8,CAD∴CD=…………………………………………………………… 4分=………… 5分21.(本题7分)解:(1)4,2.…………………………………………………………………………………2分(2)设户斜x尺.…………………………………… 3分则图3中BD=x,BC BE CE x=-=-,(x>4)4=-=-.(x>2)2CD CF DF x又在Rt△BCD中,=90∠︒,BCD由勾股定理得222BC CD BD.+=所以222(4)+(2)=x x x--.………………… 4分整理,得212200x x-+=.因式分解,得(10)(2)=0x x--.解得110x=,22x=.……………………………………………………………… 5分因为x> 4 且x>2,所以2x=舍去,10x=.…………………………………… 6分答:户斜为10尺.…………………………………………………………………… 7分22.(本题5分)解:(1)6.…………………………………………………………………………………………1分(2)学农2班的同学制作的酸奶整体口感较优.………………………………………… 2分理由如下:所抽取的样本中,两个学农班酸奶口感最佳的杯数一样,每杯酸奶中所添加蔗糖克数的平均值基本相同,学农2班的方差较小,更为稳定.……………………5分23.(本题7分)解:(1)(1,1),y x=-+.…………………………………………………………………… 2分23(2)22=-+,上,2.(各1y x 分)…………………………………………………………5分(3)直线2=-上的点(1,2)A-进行一次“斜平移”后的对应点的坐标为y x(2,1),进行两次“斜平移”后的对应点的坐标为(3,4).设经过两次“斜平移”后得到的直线的解析式为2=-+.y x b 将(3,4)点的坐标代入,得234-⨯+=.b解得10b=.所以两次“斜平移”后得到的直线的解析式为210=-+.y x……………………… 7分说明:其他正确解法相应给分.24.(本题7分)解:(1)见图4,图5,连线、依据略. ……………………………5分(两个画图各1分,连线1分,两个依据各1分,所写依据的答案不唯一)(2)①如图4.∵ NP ∥DE ,EQ ∥DN ,NP 与EQ 的交点为点M ,∴ 四边形DEMN 为平行四边形.∵ D 为矩形ABEN 对角线的交点,∴ AE=BN ,12DE AE =,12DN BN =.∴ DE= DN .∴ 平行四边形DEMN 是菱形.……………………………………………………… 7分②如图6,连接AF ,BG ,记交点为H .∵ D ,N 两点分别为AB ,GA 边的中点,∴ DN ∥BG ,12DN BG =.同理,EM ∥BG ,12EM BG =,DE ∥AF ,12DE AF =.∴ DN ∥EM ,DN =EM .∴ 四边形DEMN 为平行四边形.∵ 四边形ABFG 是菱形,∴ AF ⊥BG .∴90∠=︒.AHB∴118090∠=︒-∠=︒.AHB∴2180190∠=︒-∠=︒.∴平行四边形DEMN是矩形. ………………………………………………………7分25.(本题8分)解:(1)(0,4).……………………………………………………………………………………1分(2)①补全图形见图7.……………………………………………………………………… 2分②BF⊥直线l.…………………………………………………………………………… 3分③法1:证明:如图8,作CM⊥CF,交直线l于点M.∵(4,0)D,C,(0,4)B,(4,4)∴==4BCD∠=︒.==,90OB BC DC OD∵CE⊥直线l,CM⊥CF,45∠=︒,ECF可得△CEF,△CEM 为等腰直角三角形,=45∠∠=︒,CMD CFECF=CM.①∵=90∠︒-∠,DCM DCFBCF DCF∠︒-∠,=90∴=∠∠.②BCF DCM又∵CB=CD,③∴△CBF≌△CDM.…………………………………………………………6分∴∠∠=︒.……………………………………………………7分CFB CMD=45∴=90∠∠+∠=︒.BFE CFB CFE∴BF⊥直线l.………………………………………………………………8分法2:证明:如图9,作BN⊥CE,交直线CE于点N.∵(4,0)D,C,(0,4)B,(4,4)∴==4BCD∠=︒.==,90OB BC CD OD∵CE⊥直线l,BN⊥CE,∴90BNC CED∠=∠=︒.①∴1390∠+∠=︒.∠+∠=︒,2390∴12∠=∠.②又∵CB=DC,③∴△BCN≌△CDE.………………6分∴BN= CE.又∵45∠=︒,ECF可得△CEF为等腰直角三角形,EF = CE.∴BN= EF.又∵180BNE NED∠+∠=︒,∴BN∥FE.∴四边形BFEN为平行四边形.又∵90CEF∠=︒,∴平行四边形BFEN为矩形.…………………………………………………7分∴=90BFE∠︒.∴BF⊥直线l.……………………………………………………………… 8分北京市西城区2016-2017学年度第二学期期末试卷八年级数学附加题参考答案及评分标准一、填空题(本题6分)1.解:3,92,322n⎛⎫⨯ ⎪⎝⎭.(各2分)二、操作题(本题6分)2. 解:(1)答案不唯一,如:或其他.(2)答案不唯一,如:或其他.(3)说明:每图2分,答案不唯一时,其他正确答案相应给分.三、解答题(本题8分)3.解:(1)如图 1.由△OFF≌1△1BOB ,及B (m, n )可得点F 的坐标为(,)n m -,同理可得点D 的坐标为(,)a n a m +-. (全等1分,两个坐标各1分)…………………3分(2)①设点M 的坐标为(,)M x y .∵ 点M 为线段FD 的中点,(,)F n m -,(,)D a n a m +-,可得点M 的坐标为(,)22a a . …………………………………………………… 5分 ∴ ,2.2a x a y ⎧=⎪⎪⎨⎪=⎪⎩消去a ,得y x =.所以,当点A 在x 轴的正半轴上指定范围内运动时,相应的点M 在运动时总落在直线y x =上,即点M 总落在函数y x =的图象上. ………………………6分②如图2,当点A 在x 轴的正半轴上运动且满足2≤a ≤8时,点A 运动的路径为线段12A A ,其中1(2,0)A ,2(8,0)A ,相应地,点M 所经过的路径为直线y x =上的一条线段12M M ,其中1(1,1)M ,2(4,4)M .……………………………… 7分 而12M M =∴ 点M 所经过的路径的长为……………………………………………8分。

2017-2018学年北京市西城区初一第二学期期末数学试卷(含答案)

2017-2018学年北京市西城区初一第二学期期末数学试卷(含答案)

北京市西城区2017— 2018学年度第二学期期末试卷七年级数学 2018.7试卷满分:100分,考试时间:100分钟一、选择题(本题30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 8的立方根等于( ).A. -2B. 2C. -4D. 4 2. 已知a b <,下列不等式中,正确的的是( ). A .44a b +>+ B .33->-b a C .b a 2121< D .22a b -<- 3. 下列计算中,正确的是( ).A. 246m m m +=B. 248m m m ⋅=C. 22(3)3m m = D. 42222m m m ÷=4. 如图,直线a ∥b ,三角板的直角顶点放在直线b 上, 两直角边与直线a 相交,如果∠1=60°,那么∠2等于( ). A. 30° B .40° C .50° D .60°5. 如果点P (5,y )在第四象限,那么y 的取值范围是( ).A. y ≤0B. y ≥0C. y <0D. y >06. 为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游; 方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客; 方案四:在上述四个景区各随机调查400名游客. 在这四种调查方案中,最合理的是( ).A. 方案一B. 方案二C. 方案三D. 方案四 7. 下列运算中,正确的是( ).A. 222()a b a b +=+B. 2211()24a a a -=-+C. 222()2a b a ab b -=+-D. 222(2)22a b a ab b +=++ 8. 下列命题中,是假命题的是( ).A. 在同一平面内,过一点有且只有一条直线与已知直线垂直B. 同旁内角互补,两直线平行C. 两条直线被第三条直线所截,同位角相等D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行9. 某品牌电脑的成本为2 400元,售价为2 800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x 折销售,则下列不等式中能正确表示该商店的促销 方式的是( ). A.280024005%x ≥⨯ B .2800240024005%x -≥⨯C .280024005%10x ⨯≥⨯ D .2800240024005%10x⨯-≥⨯ 10.为倡导绿色发展,避免浪费能源,某市准备对居民用电量采用阶梯收费的方法,计划实施三档的阶梯电价:第一档、第二档和第三档的电价分别覆盖全市居民家庭的80%,15%和5%.为了合理确定各档之间的界限,相关部门在该市随机调查了20 000户居民6月份的用电量(单位:kw .h ),并将收集的样本数据进行排序整理(排序样本),绘制了如下频数分布直方图(每段用电量均含最小值,不含最大值).根据以上信息,下面有四个推断:① 抽样调查6月份的用电量,是因为6月份的用电量在一年12个月的用电量中处于中等偏上水平② 在调查的20 000户居民中,6月份的用电量的最大值与最小值的差小于500③ 月用电量小于160kw .h 的该市居民家庭按第一档电价交费,月用电量不小于310kw .h 的该市居民家庭按第三档电价交费④ 该市居民家庭月用电量的中间水平(50%的用户)为110kw .h 其中合理的是( ).A. ①②③ B .①②④ C .①③④ D .②③④二、填空题(本题共18分,第11~16题每小题2分,第17,18题每小题3分)11. 不等式组1,2xx>-⎧⎨<⎩的解集是___________.12.如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段P A,PB,PC,PD,PE中,最短的一条线段是_______,理由是.13. 右图中的四边形均为长方形,根据图形,写出一个正确的等式:_________________________________.14. 如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于点D.BE⊥AD于点E,若∠CAB=50°,则∠DBE=_________°.15.如图,AB∥CD,CE交AB于F,∠C=55°,∠AEC=15°,则∠A=°.16.七巧板又称智慧板,是中国民间流传的智力玩具,它由七块板组成(如图1),用这七块板可拼出许多图形(1600种以上). 例如:三角形、平行四边形以及不规则的多边形,它还可以拼出各种人物、动物、建筑等. 请你用七巧板中标号为①②③的三块板(如图2)经过平移、旋转拼出下列图形(相邻两块板之间无空隙,无重叠;示意图的顶点画在小方格顶点上):(1)拼成长方形,在图3中画出示意图;(2)拼成等腰直角三角形,在图4中画出示意图.17. 如图,在平面直角坐标系xOy 中,平行四边形ABCD 的四个顶点 A ,B ,C ,D 是整点(横、纵坐标都是整数),则四边形ABCD 的面积是 .18. 若一个整数能表示成22a b +(a ,b 是整数)的形式,则称这个数为“完美数”.例如,因为22521=+,所以5是一个“完美数”.(1)请你再写一个大于10且小于20的“完美数” ;(2)已知M 是一个“完美数”,且224512M x xy y y k =++-+(x ,y 是两个任意整数,k 是常数),则k 的值为 .三、解答题(本题共17分,第19题5分,第20,21题每小题6分) 19.计算:035(523)23(3)π-++-+- 解:20.解不等式:2231132x x ++->,并把解集表示在数轴上. 解:21.先化简,再求值:22(2)(2)(4)ab ab a b ab ab +-++÷,其中10a =,15b =. 解:四、解答题(本题共27分,第24题6分,其余每小题7分)22. 在平面直角坐标系xOy 中,△ABC 的三个顶点分别是A (-2,0),B (0,3),C (3,0).(1)在所给的图中,画出这个平面直角坐标系;(2)点A 经过平移后对应点为D (3,-3),将△ABC 作同样的平移得到△DEF ,画出平移后的△DEF ;(3)在(2)的条件下,点M 在直线CD 上,若2CM DM =,直接写出点M 的坐标.解:(3)M 点的坐标为 .23. 如图,点O 在直线AB 上,OC ⊥OD ,∠EDO 与∠1互余. (1)求证:ED//AB ;(2)OF 平分∠COD 交DE 于点F ,若∠OFD =70︒,补全图形,并求∠1的度数. (1)证明:(2)解:1DC ABE24.某地需要将一段长为180米的河道进行整修,整修任务由A ,B 两个工程队先、后接力完成.已知A 工程队每天整修12米,B 工程队每天整修8米,共用时20天.问A ,B 两个工程队整修河道分别工作了多少天? (1)以下是甲同学的做法:设A 工程队整修河道工作了x 天,B 工程队整修河道工作了y 天.根据题意,得方程组: . 解得x y =⎧⎨=⎩请将甲同学的上述做法补充完整;(2)乙同学说:本题还有另外一种解法,他列出了不完整的方程组如下:⎪⎩⎪⎨⎧=+=+812y x y x①在乙同学的做法中,x 表示 ,8y表示 ; ②请将乙同学所列方程组补充完整.25.阅读下列材料:2017年,我国全年水资源总量为28675亿m3.2016年,我国全年水资源总量为32466.4亿m3. 2015年,我国全年水资源总量为27962.6亿m3,全年平均降水量为660.8mm.我国水资源的消费结构包含工业用水、农业用水、生态用水、生活用水四类. 2017年全国用水总量6040亿m3,其中工业用水占用水总量的22%,农业用水占用水总量的62%,生态用水占用水总量的2%,生活用水844.5亿m3.根据上述材料,解答下列问题:(1)根据材料画适当的统计图,直观地表示2015~2017年我国全年水资源总量情况;(2)2017年全国生活用水占用水总量的%,并补全扇形统计图;(3)2012~2017年全国生活用水情况统计如下图所示,根据统计图中提供的信息,①请你估计2018年全国生活用水量为亿m3,你的预估理由是.②谈谈节约用水如何从我做起?.五、解答题(本题共8分)26.如图,在直角三角形ABC 中,∠ACB=90°.(1)如图1,点M 在线段CB 上,在线段BC 的延长线上取一点N ,使得∠NAC=∠MAC . 过点B作BD ⊥AM ,交AM 延长线于点D ,过点N 作NE ∥BD ,交AB 于点E ,交AM 于点F .判断∠ENB 与∠NAC 有怎样的数量关系,写出你的结论,并加以证明;(2)如图2,点M 在线段CB 的延长线上,在线段BC 的延长线上取一点N ,使得∠NAC=∠MAC .过点B 作BD ⊥AM 于点D ,过点N 作NE ∥BD ,交BA 延长线于点E ,交MA 延长线于点F . ①依题意补全图形;②若∠CAB =45°,求证:∠NEA =∠NAE .图1 图2N北京市西城区2017— 2018学年度第二学期期末试卷七年级数学附加题2018.7试卷满分:20分一、填空题(本题共8分)1. 分别观察下列三组图形,并填写表格:如图1所示,在由一些三角形组成的图形中,每条边上都排列了一些点,其中每个图形中所有点的总.数.记为S n,S n叫做第n个“三角形数”(n为整数,且n>1). 类似的也可以用点排出一些“四边形数”,“五边形数”,如图2,图3所示.第n个多边形数n=2 n=3 n=4 n=5 n=6 n=7 …n=k 类型三角形数 3 6 10 15 28 … a四边形数 4 9 16 25 49 … b五边形数 5 12 22 35 70 …(1)请你将第6个“三角形数”,第6个“四边形数”,第6个“五边形数”,填写在上面的表格中;(2)若第k个“三角形数”a,第k个“四边形数”为b,请用含a,b的代数式表示第k个“五边形数”,并填入表格中.二、解答题(本题共12分,每小题6分)2. 食品中的维生素含量以及食品加工问题维生素又名维他命,通俗来讲,即维持生命的物质,是保持人体健康的重要活性物质,一般由食物中取得. 现阶段发现的维生素有几十种,如维生素A、维生素B、维生素C等.食品加工是一种专业技术,就是把原料经过人为处理形成一种新形式的可直接食用的产品,这个过程就是食品加工. 比如用小麦经过碾磨,筛选,加料搅拌,成型烘干,成为饼干,就是属于食品加工的过程.下表给出了甲、乙、丙三种原料中的维生素A,B的含量(单位:单位/kg).将甲、乙、丙三种原料共100kg混合制成一种新食品,其中原料甲x kg,原料乙y kg,(1)这种新食品中:原料丙含有kg,维生素B的含量是单位;(用含x,y的式子表示)(2)若这种新食品中,维生素A的含量至少为44000单位,维生素B的含量至少为48000单位,请你证明:x+y ≥ 50.(1)解:原料丙有kg,维生素B的含量是单位.(2)证明:3.在平面直角坐标系xOy错误!未指定书签。

2016—2017学年度北京版七年级语文第一学期期末测试卷及答案

2016—2017学年度北京版七年级语文第一学期期末测试卷及答案

2016—2017学年度第一学期期末测试卷初一语文2017.01(一)选择。

下面各题均有四个选项,其中只有一个符合题意,选出答案后在答题卡上用铅笔把对应题目的选项字母涂黑涂满。

(共14分)1.阅读下面的文字,完成第(1)-(3)题。

(共6分)北方风筝的制作历史悠久,在长期发展、借鉴、溶合的过程中,逐渐形成一定的规模,但真正形成流派,还是从曹雪芹所著的《南鹞北鸢考工志》开始的。

书中图文并茂、深入浅出地介绍了风筝的制作工艺。

这部书激发了广大手工艺人的热忱,受到他们的推许;那些身无长技的贫苦者也沉尽其中。

一时间,北京前门附近出现了很多受益于《南鹞北鸢考工志》的风筝艺人,他们所扎的风筝被称为“曹氏风筝”。

“以天为纸,书画琳琅于青笺;将云拟水,”,是曹氏风筝动态美的精髓所在。

在制作上,曹氏风筝将传统的扎糊手法演变成了一门综合性艺术,通过扎、糊、绘、放四个工艺流程,最终达到形神兼备的效果。

(1)文中加点字的注音和字形都正确的一项是(2分)A.热忱(zhěn)悠久B.热忱(chén)溶合C.精髓(suí)沉尽D.精髓(suǐ)演变(2)文中“推许”中加点的“推”字正确的义项是(2分)A.推迟 B.推崇 C. 推搡 D.推测(3)在文中画线处填入下列语句,恰当的一项是(2分)A.泼洒笔墨于纸端 B.飞燕翱翔于蓝天C.鱼蟹游行于碧波 D.小船飘荡于江海2. 下面关于《闻王昌龄左迁龙标遥有此寄》这首诗的理解有误的一项是(2分)A. “杨花落尽子规啼”一句选取两种令人伤感的事物,描绘出暮春的景象,烘托出一种凄凉的气氛。

B. “闻道龙标过五溪”一句表达了作者在听说王昌龄走过了“五溪”艰难之地后的欣慰之情。

C.“我寄愁心与明月,随风直到夜郎西”这两句诗作者将明月人格化,让明月去传送自己对朋友的劝勉和安慰。

D. 这是一首怀念友人的诗,无论是写景,还是叙事,字里行间都饱含作者对友人的关切之情。

3. 学校举办拔河比赛,各班同学都积极行动起来。

2016-2017学年七年级(上)期中数学试卷及答案解析

2016-2017学年七年级(上)期中数学试卷及答案解析

2016-2017学年七年级(上)期中数学试卷一、选择题1.﹣3的相反数是()A. B.3 C.± D.﹣32.图中不是正方体的展开图的是()A.B.C. D.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个 B.2个 C.3个 D.4个5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是() A.6 B.7 C.11 D.126.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A .15B .16C .21D .17 二、填空题7.计算:(﹣1)2015+(﹣1)2016= . 8.若3a 2bc m 为七次单项式,则m 的值为 .9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n 个三角形,则需要 根火柴棍.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为 米.. 11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 .12.如果3x 2n ﹣1y m 与﹣5x m y 3是同类项,则m= ,n= .13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= .14.如果(x+1)2=a 0x 4+a 1x 3+a 2x 2+a 3x+a 4(a 0,a 1,a 2,a 3,a 4都是有理数)那么a 04+a 13+a 22+a 3+a 4;a 04﹣a 13+a 22﹣a 3+a 4;a 04+a 22+a 4的值分别是 ; ; .三、解答题15.(5分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16.(5分)由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.17.(12分)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].18.(8分)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9增减(单位:个)(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.20.(8分)若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].21.(9分)我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是;(3)请说明(2)中猜想的结论是正确的.22.(9分)小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.23.(10分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A 县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?24.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案与试题解析一、选择题1.﹣3的相反数是()A.B.3 C.± D.﹣3【考点】相反数.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:﹣3的相反数是3.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.图中不是正方体的展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题:正方体的每一个面都有对面,可得答案.【解答】解:由正方体的表面展开图的特点可知,只有A,C,D这三个图形,经过折叠后能围成正方体.故选B.【点评】本题考查了几何体的展开图,只要有“田”字格的展开图都不是正方体的表面展开图.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式【考点】单项式.【分析】根据单项式及单项式的次数的定义即可解答.【解答】解:A、根据单项式的定义可知,x是单项式,故本选项不符合题意;B、根据单项式的定义可知,0是单项式,故本选项不符合题意;C、根据单项式的系数的定义可知,﹣x的系数是﹣1,故本选项符合题意;D、根据单项式的定义可知,不是单项式,故本选项不符合题意.故选C.【点评】本题考查了单项式及单项式的次数的定义,比较简单.单项式的系数的定义:单项式中的数字因数叫做单项式的系数.4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个B.2个C.3个D.4个【考点】有理数.【分析】根据小于或等于零的数是非正数,可得答案.【解答】解:﹣(﹣2)=2>0,﹣|﹣7|=﹣7<0,﹣12001×0=0,﹣(﹣1)3=1>0,=﹣<0,﹣24=﹣16<0,故选:D.【点评】本题考查了有理数,小于或等于零的数是非正数,化简各数是解题关键.5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.12【考点】代数式求值.【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【解答】解:∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=11.故选C【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.6.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A.15 B.16 C.21 D.17【考点】专题:正方体相对两个面上的文字.【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【解答】解:由题意可得,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故选D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题7.计算:(﹣1)2015+(﹣1)2016= 0 .【考点】有理数的乘方.【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.8.若3a2bc m为七次单项式,则m的值为 4 .【考点】多项式.【分析】单项式3a2bc m为七次单项式,即是字母的指数和为7,列方程求m的值.【解答】解:依题意,得2+1+m=7,解得m=4.故答案为:4.【点评】单项式的次数是指各字母的指数和,字母指数为1时,省去不写.9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n个三角形,则需要2n+1 根火柴棍.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:因为第一个三角形需要三根火柴棍,再每增加一个三角形就增加2根火柴棒,所以有n个三角形,则需要2n+1根火柴棍.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.【点评】本题考查了有理数的乘方,正确理解问题中的数量关系,总结问题中隐含的规律是解题的关键.11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 4.23×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 230 000=4.23×106,故答案为:4.23×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.如果3x2n﹣1y m与﹣5x m y3是同类项,则m= 3 ,n= 2 .【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可列出关于m 、n 的方程组,求出m 、n 的值.【解答】解:由题意,得,解得.故答案分别为:3、2.【点评】此题考查的知识点是同类项, 关键要明确同类项定义中的两个“相同”: (1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= ﹣1 .【考点】规律型:数字的变化类.【分析】依次求出a 2,a 3,a 4,判断出每3个数为一个循环组依次循环,用2016除以3,根据商和余数的情况解答即可.【解答】解:a 1=,a 2===2,a 3===﹣1,a 4===,…,依此类推,每3个数为一个循环组依次循环, ∵2016÷3=672,∴a 2016为第672循环组的第三个数, ∴a 2016=a 3=﹣1. 故答案为:﹣1.【点评】本题是对数字变化规律的考查,读懂题目信息,求出各数并判断出每3个数为一个循环组依次循环是解题的关键.14.如果(x+1)2=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4都是有理数)那么a04+a13+a22+a3+a4;a04﹣a13+a22﹣a3+a4;a04+a22+a4的值分别是 4 ;0 ; 2 .【考点】代数式求值.【分析】由原式可得x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,可得a0=a1=0,a2=1,a3=2,a4=1,再分别代入所求代数式即可.【解答】解:∵(x+1)2=a0x4+a1x3+a2x2+a3x+a4,∴x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,∴a0=a1=0,a2=1,a3=2,a4=1,则a04+a13+a22+a3+a4=1+2+1=4,a04﹣a13+a22﹣a3+a4=1﹣2+1=0,a04+a22+a4=1+1=2,故答案为:4; 0; 2.【点评】本题主要考查代数式的求值,根据已知等式得出a0=a1=0,a2=1,a3=2,a4=1是解题的关键.三、解答题15.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【考点】作图-三视图.【分析】通过仔细观察和想象,再画它的三视图即可.【解答】解:几何体的三视图如图所示,【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.16.由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.【考点】有理数大小比较;数轴.【分析】(1)数轴上原点左边的数就是负数,右边的数就是正数,离开原点的距离就是这个数的绝对值;(2)数轴上的数右边的数总是大于左边的数,即可求解.【解答】解:(1)A:﹣4;B:1.5;C:0;D:﹣1.5;E:4;(2)用“<”把这些数连接起来为:﹣4<﹣1.5<0<1.5<4.【点评】本题主要考查了数轴上点表示的数的确定方法,以及数轴上的数的关系,右边的数总是大于左边的数.17.(12分)(2016秋•崇仁县校级期中)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].【考点】有理数的混合运算.【分析】(1)先将减法转化为加法,再根据有理数的加法法则计算即可;(2)先算乘除,再算加法即可;(3)先求原式的倒数,再求解即可;(4)先算乘方,再算乘除,最后算加减.有括号,要先做括号内的运算.【解答】(1)解:原式=﹣7﹣5﹣4+10=﹣6;(2)解:原式=﹣1+5×(﹣4)×(﹣4)=﹣1+80=79;(3)解:因为(﹣+﹣)÷=(﹣+﹣)×64=﹣16+8﹣4=﹣12,所以÷(﹣+﹣)=﹣;(4)解:原式=9﹣×(﹣)×(4+16)=9+×20=9+16=25.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.19.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.【考点】正数和负数.【分析】(1)由表格可以求得该厂星期一生产工艺品的数量;(2)由表格可以求得本周产量中最多的一天比最少的一天多生产多少个工艺品;(3)由表格可以求得该工艺厂在本周实际生产工艺品的数量.【解答】解:(1)由表格可得,周一生产的工艺品的数量是:300+5=305(个)即该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天是星期六,最少的一天是星期五,16+300﹣[(﹣10)+300]=26个,即本周产量中最多的一天比最少的一天多生产26个;(3)2100+[5+(﹣2)+(﹣5)+15+(﹣10)+16+(﹣9)]=2100+10=2110(个).即该工艺厂在本周实际生产工艺品的数量是2110个.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的含义.20.若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].【考点】有理数的混合运算.【分析】原式各项利用题中的新定义计算即可得到结果.【解答】解:(1)﹣3△5=﹣3×5﹣[(﹣3)+5]=﹣15﹣2=﹣17;(2)(﹣4)△(﹣5)=﹣4×(﹣5)﹣[(﹣4)+(﹣5)]=20+9=29,则2△[(﹣4)△(﹣5)]=2×29﹣(2+29)=58﹣31=27.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.21.我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是4×=4﹣;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是n×=n﹣;(3)请说明(2)中猜想的结论是正确的.【考点】规律型:数字的变化类.【分析】观察已知算式可以发现:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;由此可以解决(1)和(2);(3)根据(2)中算式左侧和右侧进行分式运算比较即可.【解答】解:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;(1)第4个等式:4×=4﹣,(2)第n个等式:n×=n﹣,(3)证明:n×=,n﹣==,∴n×=n﹣,∴(2)中猜想的结论是正确的.【点评】此题主要考察运算规律的探索应用与证明,观察已知算式找出规律是解题的关键.22.小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.【考点】整式的加减.【分析】(1)因为A﹣B=﹣7x2+10x+12,且B=4x2﹣5x﹣6,所以可以求出A,再进一步求出A+B.(2)根据(1)的结论,把x=3代入求值即可.【解答】解:(1)A=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,A+B=(﹣3x2+5x+6)+(4x2﹣5x﹣6)=x2;(2)当x=3时,A+B=x2=32=9.【点评】本题解题的关键是读懂题意,并正确进行整式的运算.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.23.(10分)(2015秋•无锡期中)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车12﹣x 辆,乙仓库调往A县农用车10﹣x 辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?【考点】列代数式;代数式求值.【分析】(1)根据题意列出代数式;(2)到甲的总费用=甲调往A的车辆数×甲到A调一辆车的费用+乙调往A的车辆数×乙到A调一辆车的费用,同理可求出到乙的总费用;(3)把x=4代入代数式计算即可.总费用=到甲的总费用+到乙的总费用.【解答】解:(1)设从甲仓库调往A县农用车x辆,则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340,到B的总费用=760﹣30×4=640故总费用=340+640=980.【点评】根据题意列代数,再求代数式的值.24.(12分)(2015秋•常熟市期中)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ﹣2 ,b= 1 ,c= 7 ;(2)若将数轴折叠,使得A点与C点重合,则点B与数 4 表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= 3t+3 ,AC= 5t+9 ,BC= 2t+6 .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】数轴;两点间的距离.【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)由 3BC﹣2AB=3(2t+6)﹣2(3t+3)求解即可.【解答】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.【点评】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。

北京市西城区17-18学年上七年级第1次月考试试卷--数学

北京市西城区17-18学年上七年级第1次月考试试卷--数学

北京市西城区2017-2018学年上学期七年级第1次月考试数学试卷数据的收集、整理与描述一、精心选一选(每小题3分,共30分)1.下列各项调查:①调查中央电视台《新闻联播》节目的收视率;②某校学生订做一套校服,对学生的胸围、腰围进行的测量;③一批罐头产品的质量检查;④对河水污染情况的调查.其中适合用全面调查的是( ).A.②B.②③④C.①②③D.①②③④2.为了了解恩施市七年级学生体重的大致情况,想抽取1000名七年级学生进行调查,应该( ).A.从身体肥胖的同学中抽取B.从身体瘦弱的同学中抽取C.从某初中学校在课外活动时,抽取正在进行体育活动的同学D.对全市所有初中学校在校园里随机调查七年级同学3.计算机上为了直观地看出磁盘“已用空间”与“可用空间”各占整个磁盘空间的百分比,选用的统计图是( ).A.频率分布直方图B.折线统计图C.扇形统计图D.以上三种都可以4.一个扇形统计图中,扇形A、B、C、D 的面积之比为2∶1∶4∶5,则最大扇形的圆心角为( ).A.80°B.100°C.120°D.150°5.现有一组数据,最大值为93,最小值为22,现要把它分成6组,则下列组距中,合适的是( ).A.9 B.12 C.15 D.186.下列调查中:①为了了解七年级学生每天做作业的时间,对某学校七年级⑴班的学生进行调查;②爱心中学美术爱好小组拟组织一次郊外写生活动,为了确定写生地点,对美术爱好小组全体成员进行调查;③为了了解观众对电视剧的喜爱程度,数学兴趣小组调查了某小区的100位居民,其中属于抽样调查的有()A. 3个B. 2个C. 1个D. 0个7.如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),则下列结论中错误的是( )A.该班总人数为50人B.骑车人数占总人数的20%C.步行人数为30人D.乘车人数是骑车人数的2.5倍8.如图是某班40名学生一分钟跳绳测试成绩(次数为整数)的频数分布直方图,从左起第一、二、三、四个小长方形的高的比为1∶4∶3∶2,那么该班一分钟跳绳次数在100次以上的学生有( )A.6人B.8人C.16人D.20人9.随着经济的发展,人们的生活水平不断提高。

北京市西城区2018-2019学年七年级(上)期末数学试卷(含解析)

北京市西城区2018-2019学年七年级(上)期末数学试卷(含解析)

七年级(上)期末数学试卷一、选择题(本题共24分,第1-4题每小题3分,第5-10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.(3分)2018年11月6日上午,在上海召开的首届中国国际进口博览会北京主题活动上,北京市交易团重点发布了2022北京冬奥会、北京大兴国际机场等北京未来发展的重要规划及采购需求,现场签约金额总计超过50000000000元人民币,将50000000000科学记数法表示应为()A.0.5×1010B.5×1010C.5×1011D.50×1092.(3分)下列计算正确的是()A.b﹣5b=﹣4B.2m+n=2mn C.2a4+4a2=6a6D.﹣2a2b+5a2b=3a2b 3.(3分)如果x=3是关于x的方程2x+m=7的解,那么m的值为()A.1B.2C.﹣1D.﹣24.(3分)用四舍五入法将3.694精确到0.01,所得到的近似数为()A.3.6B.3.69C.3.7D.3.705.(2分)如果2x2﹣x﹣2=0,那么6x2﹣3x﹣1的值等于()A.5B.3C.﹣7D.﹣96.(2分)如图1,南非曾发行过一个可折叠邮政包装箱的邮票小全张,将其中包装箱的展开图截下,并按图1中左下角所示方法进行折叠,使画面朝外,那么与图2中图案所在的面相对的面上的图案是()A .B .C .D .7.(2分)以下说法正确的是()A.两点之间直线最短B.延长直线AB到点E,使BE=ABC.钝角的一半一定不会小于45°D.连接两点间的线段就是这两点的距离8.(2分)下列解方程的步骤正确的是()A.由2x+4=3x+1,得2x+3x=1+4B.由0.5x﹣0.7x=5﹣1.3x,得5x﹣7=5﹣13xC.由3(x﹣2)=2(x+3),得3x﹣6=2x+6D .由=2,得2x﹣2﹣x+2=129.(2分)如图,数轴上A,B两点对应的数分别是a和b,对于以下四个式子:①2a﹣b;②a+b;③|b|﹣|a|:④,其中值为负数的是()A.①②B.③④C.①③D.②④10.(2分)南水北调工程中线自2014年12月正式通水以来,沿线多座大中城市受益,河南、河北、北京及天津四个省(市)的水资源紧张态势得到缓解,有效促进了地下水资源的涵养和恢复,若与上年同期相比,北京地下水的水位下降记为负,回升记为正,记录从2013年底以来,北京地下水水位的变化得到下表:以下关于2013年以来北京地下水水位的说法不正确的是()A.从2014年底开始,北京地下水水位的下降趋势得到缓解B.从2015年底到2016年底,北京地下水水位首次回升C.2013年以来,每年年底的地下水位与上年同比的回升量最大的是2018年D.2018年9月底的地下水水位低于2012年底的地下水水位二、填空题(本題共20分,其中第11、13、14、16、17题每小题2分,第12、15题每小题2分,第18题4分)11.(2分)﹣6的相反数等于.12.(3分)如果|m+3|+(n﹣2)2=0,那么m=,n=,m n=.13.(2分)45°25′的余角等于°′.14.(2分)写出一个次数为4的单项式,要求其中所含字母只有x,y:.15.(3分)如图,在以下建筑物的图片上做标记得到三个角α,β,γ,将这三个角按从大到小的顺序排列:,,.16.(2分)一个由9个大小相同的正方体组成的立体图形如图所示,从左面观察这个立体图形,将得到的平面图形的示意图画在如下的画图区中.17.(2分)线段AB=6,在直线AB上截取线段BC=3AB,D为线段AB的中点,E为线段BC的中点,那么线段DE的长为.18.(4分)我国现行的二代身份证号码是18位数字,由前17位数字本体码和最后1位校验码组成.校验码通过前17位数字根据一定规则计算得出,如果校验码不符合这个规则,那么该号码肯定是假号码,现将前17位数字本体码记为A1A2A3…A16A17,其中A i(i=1,…,17)表示第i位置上的身份证号码数字值,按下表中的规定分别给出每个位置上的一个对应的值W i.现以号码N=440524************为例,先将该号码N的前17位数字本体码填入表中(现已填好),依照以下操作步骤计算相应的校验码进行校验:(1)对前17位数字本体码,按下列方式求和,并将和记为S:S=A1×W1+A2×W2+……+A17×W17.现经计算,已得出A1×W1+A2×W2+…+A13×W13=189,继续求得S=;(2)计算S÷11,所得的余数记为Y,那么Y=;(3)查阅下表得到对应的校验码(其中X为罗马数字,用来代替10):所得到的校验码为,与号码N中的最后一位进行对比,由此判断号码N是(填“真”或“假”)身份证号.三、解答题(本题共56分)19.(8分)计算:(1)﹣8+12﹣25+6(2)﹣9×(﹣)220.(8分)计算:(1)[﹣(﹣)+2]÷(﹣).(2)﹣4+(﹣2)4÷4﹣(﹣0.28)×.21.(5分)先化简,再求值:3(x2﹣xy﹣2y)﹣2(x2﹣3y),其中x=﹣1,y=2.22.(5分)解方程:﹣=223.(5分)解方程组:.24.(5分)已知:如图,点A,点B,点D在射线OM上,点C在射线ON上,∠O+∠OCA =90°,∠O+∠OBC=90°,CA平分∠OCD.求证:∠ACD=∠OBC.请将下面的证明过程补充完整:证明:∠O+∠OCA=90°,∠O+∠OBC=90°,∴∠OCA=∠.(理由:)∵CA平分∠OCD∴∠ACD=.(理由:)∴∠ACD=∠OBC.(理由:).25.(4分)任务画图已知:如图,在正方形网格中,∠AOB=α.任务:在网格中画出一个顶点为O且等于180°﹣2α的角.要求:画图并标记符合要求的角,写出简要的画图步骤.(说明:可以借助网格、量角器)26.(5分)阅读下面材料两位同学在用标有数字1,2,…,9的9张卡片做游戏.甲同学:“你先从这9张卡片中随意抽取两张(按抽取的先后顺序分别称为“卡片A”和“卡片B”),别告诉我卡片上是什么数字,然后你把卡片A上的数字乘以5,加上7,再乘以2,再加上卡片B上的数字,把最后得到的数M的值告诉我,我就能猜出你抽出的是哪两张卡片啦!”乙同学:“这么神奇?我不信”……试验一下:(1)如果乙同学抽出的卡片A上的数字为2,卡片B上的数字为5,他最后得到的数M =;(2)若乙同学最后得到的数M=57,则卡片A上的数字为,卡片B上的数字为.解密:请你说明:对任意告知的数M,甲同学是如何猜到卡片的.27.(5分)列方程(组)解决问题某校初一年级组织了数学嘉年华活动,同学们踊跃参加,活动共评出三个奖项,年级购买了一些奖品进行表彰,为此组织活动的老师设计了如下表格进行统计.已知获得二等奖的人数比一等奖的人数多5人.问:获得三种奖项的同学各多少人?28.(6分)如图,数轴上A,B两点对应的有理数分别为x A=﹣5和x B=6,动点P从点A 出发,以每秒1个单位的速度沿数轴在A,B之间往返运动,同时动点Q从点B出发,以每秒2个单位的速度沿数轴在B,A之间往返运动.设运动时间为t秒.(1)当t=2时,点P对应的有理数x P=,PQ=;(2)当0<t≤11时,若原点O恰好是线段PQ的中点,求t的值;(3)我们把数轴上的整数对应的点称为“整点”,当P,Q两点第一次在整点处重合时,直接写出此整点对应的数.参考答案与试题解析一、选择题(本题共24分,第1-4题每小题3分,第5-10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.【解答】解:50000000000=5×1010,故选:B.2.【解答】解:A、b﹣5b=﹣4b,错误;B、2m与n不是同类项,不能合并,错误;C、2a4与4a2不是同类项,不能合并,错误;D、﹣2a2b+5a2b=3a2b,正确;故选:D.3.【解答】解:把x=3代入方程2x+m=7得:6+m=7,解得:m=1,故选:A.4.【解答】解:3.694≈3.69(精确到0.01).故选:B.5.【解答】解:∵2x2﹣x﹣2=0,∴2x2﹣x=2,则6x2﹣3x﹣1=3(2x2﹣x)﹣1=3×2﹣1=6﹣1=5,故选:A.6.【解答】解:根据正方体的展开图,可得与图2中图案所在的面相对的面上的图案为:故选:A.7.【解答】解:A、两点之间线段最短,故原来的说法错误,不符合题意;B、延长线段AB到点E,使BE=AB,故原来的说法错误,不符合题意;C、说法正确,符合题意;D、连接两点间的线段的长度,叫作这两点间的距离,故说法错误,不符合题意.故选:C.8.【解答】解:A、2x+4=3x+1,2x﹣3x=1﹣4,故本选项错误;B、0.5x﹣0.7x=5﹣1.3x,5x﹣7x=50﹣13x,故本选项错误;C、3(x﹣2)=2(x+3),3x﹣6=2x+6,故本选项正确;D、=2,3x﹣3﹣x﹣2=12,故本选项错误;故选:C.9.【解答】解:根据图示,可得b<﹣3,0<a<3,①2a﹣b>0;②a+b<0;③|b|﹣|a|>0;④<0.故其中值为负数的是②④.故选:D.10.【解答】解:A、从2014年底开始,北京地下水水位的下降趋势得到缓解,正确;B、从2015年底到2016年底,北京地下水水位首次回升,正确;C、2013年以来,每年年底的地下水位与上年同比的回升量最大的是2018年,正确;D、∵2018年9月底的地下水水位与2012年底的地下水水位无法比较,∴2018年9月底的地下水水位低于2012年底的地下水水位错误.故选:D.二、填空题(本題共20分,其中第11、13、14、16、17题每小题2分,第12、15题每小题2分,第18题4分)11.【解答】解:﹣6的相反数等于:6.故答案为:6.12.【解答】解:∵|m+3|+(n﹣2)2=0,∴m+3=0,n﹣2=0,解得:m=﹣3,n=2,故m n=(﹣3)2=9.故答案为:﹣3,2,9.13.【解答】解:45°25′的余角等于90°﹣45°25′=44°35'.故答案为:44,35.14.【解答】解:由题意得,答案不唯一:如x2y2等.故答案为:如x2y2等.15.【解答】解:由图可得,β>γ>α.∴三个角按从大到小的顺序排列为:β,γ,α.故答案为:β,γ,α.16.【解答】解:从左面观察这个立体图形,分别是2个正方形,1个正方形,1个正方形,如图所示:17.【解答】解:C在线段AB的延长线上,如图1:∵AB=6,BC=3AB,∴BC=18,∵D为线段AB的中点,E为线段BC的中点,BD=AB=3,BE=BC=9,DE=BD﹣BE=9﹣3=6;C在线段AB的反向延长线上,如图2:∵AB=6,BC=3AB,∴BC=18,∵D为线段AB的中点,E为线段BC的中点,BD=AB=3,BE=BC=9,DE=BD﹣BE=9+3=12.故线段DE的长为6或12.故答案为:6或12.18.【解答】解:(1)根据求和规律可得到A14×W14=5,A15×W15=0,A16×W16=0,A17×W17=2,从而得到S=189+5+0+0+2=196;(2)S÷11=196÷11=17……9;(3)查表得,所得到的校验码为3,再与原身份证的最后一位是6比较,判断号码N是假身份证号.三、解答题(本题共56分)19.【解答】解:(1)原式=4+6﹣25=10﹣25=﹣15;(2)原式=﹣9××=﹣.20.【解答】解:(1)原式=(++)×(﹣)=×(﹣)+×(﹣)+×(﹣)=﹣2﹣﹣6=﹣8;(2)原式=﹣4+16÷4+0.07=﹣4+4+0.07=0.07.21.【解答】解:原式=3x2﹣3xy﹣6y﹣2x2+6y=x2﹣3xy,把x=﹣1,y=2代入x2﹣3xy=(﹣1)2﹣3×(﹣1)×2=7.22.【解答】解:去分母得:4(2x﹣1)﹣3(3x﹣5)=24,8x﹣4﹣9x+15=24,8x﹣9x=24+4﹣15,﹣x=13,x=﹣13.23.【解答】解:,①+②×3得:11x=33,解得:x=3,把x=3代入②得:y=﹣1,则方程组的解为.24.【解答】证明:∠O+∠OCA=90°,∠O+∠OBC=90°,∴∠OCA=∠OBC.(理由:同角的余角相等)∵CA平分∠OCD∴∠ACD=∠OCA.(理由:角平分线的定义)∴∠ACD=∠OBC.(理由:等量代换).故答案为:OBC,同角的余角相等,∠OCA,角平分线的定义,等量代换.25.【解答】解:如图所示,①利用OB边上的格点C,在网格中画出∠AOB关于直线OA的对称的∠AOD,则∠AOD=∠AOB=α,∠COD=2α;②画平角∠DOE,那么∠BOE=180°﹣2α.26.【解答】解:(1)M=(2×5+7)×2+5=39,故答案为:39;(2)设卡片A上的数字为x,卡片B上的数字为y,则(5x+7)×2+y=57,10x+14+y=57,10x+y=43,∵x、y都是1至9这9个数字,∴x=4,y=3,故答案为:4,3;解密:设卡片A上的数字为x,卡片B上的数字为y(其中x、y为1,2,…,9这9个数字),则M=2(5x+7)+y=(10x+y)+14,得:M﹣14=10x+y,其中十位数字是x,个位数字是y,所以由给出的M的值减去14,所得两位数十位上的数字为卡片A上的数字x,个位数上的数字为卡片B上的数字y.27.【解答】解:设一等奖的人数有x人,根据题意得:4x+3(x+5)+2(35﹣2x)=100,解得:x=5,则二等奖的人数有x+5=5+5=10人,三等奖的人数有35﹣2x=35﹣2×5=25人,答:一等奖的人数有5人,二等奖的人数有10人,三等奖的人数有25人;故答案为:x,x+5,40﹣x﹣(x+5),4x,3(x+5),2(35﹣2x).28.【解答】解:(1)当t=2时,点P对应的有理数x P=﹣5+1×2=﹣3,点Q对应的有理数x Q=6﹣2×2=2,∴PQ=2﹣(﹣3)=5.故答案为﹣3,5;(2)∵x A=﹣5,x B=6,∴OA=5,OB=6.由题意可知,当0<t≤11时,点P运动的最远路径为数轴上从点A到点B,点Q运动的最远路径为数轴上从点B到点A并且折返回到点B.对于点P,因为它的运动速度v P=1,点P从点A运动到点O需要5秒,运动到点B需要11秒.对于点Q,因为它的运动速度v Q=2,点Q从点B运动到点O需要3秒,运动到点A需要5.5秒,返回到点B需要11秒.要使原点O恰好是线段PQ的中点,需要P,Q两点分别在原点O的两侧,且OP=OQ,此时t≠5.5.①当0<t<5.5时,点Q运动还未到点A,有AP=t,BQ=2t.此时OP=|5﹣t|,OQ=|6﹣2t|.∵原点O恰好是线段PQ的中点,∴OP=OQ,∴|5﹣t|=|6﹣2t|,解得t=1或t=.检验:当t=时,P,Q两点重合,且都在原点O左侧,不合题意舍去;t=1符合题意.∴t=1;②当5.5<t≤11时,点P在数轴上原点右侧,点Q已经沿射线BA方向运动到点A后折返,要使原点O恰好是线段PQ的中点,点Q必须位于原点O左侧,此时P,Q两点的大致位置如下图所示.此时,OP=AP﹣OA=t﹣5,OQ=OA﹣AQ=5﹣2(t﹣5.5)=16﹣2t.∵原点O恰好是线段PQ的中点,∴OP=OQ,∴t﹣5=16﹣2t,解得t=7.检验:当t=7时符合题意.∴t=7.综上可知,t=1或7;(3)①当0<t<5.5时,点Q运动还未到点A,当P,Q两点重合时,P与Q相遇,此时需要的时间为:秒,相遇点对应的数为﹣5+=﹣,不是整点,不合题意舍去;②当5.5<t≤11时,点P在数轴上原点右侧,点Q已经沿射线BA方向运动到点A后折返,当P,Q两点重合时,点Q追上点P,AQ=AP,2(t﹣5.5)=t,解得t=11,追击点对应的数为﹣5+11=6.故当P,Q两点第一次在整点处重合时,此整点对应的数为6.。

2016-2017年七年级上学期期末考试数学试题及答案

2016-2017年七年级上学期期末考试数学试题及答案

2015-2016学年第一学期七年级期末测试数学试题(本试题共4页,满分为120分,考试时间为90分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的绝对值是()1A.6B.﹣6C.±6D.62.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×1023.计算23-的结果是()A.9B.9-C.6D.6-4.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A.数B.学C.活D.的5.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是( )A .32523x x x =+B .1222=-b a b aC .0=--ab ab D.022=+-xy xy7.如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )A .35°B .45°C .55°D .65°8. 下列说法中错误的是( )A .y x 232-的系数是32- B .0是单项式 C .xy 32的次数是1 D .x -是一次单项式 9. 方程x =+-32▲,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是( ) A .2 B .3 C .4 D .610. 如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M,N 分别为AB ,BC 的中点,那么M,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x ﹣1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x ﹣1)=1312.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m 、n 的值分别为( )7题图A .4,3B .3,3C .3,4D .4,413.钟表在8:25时,时针与分针的夹角是( )度.A .101.5B .102.5C .120D .12514.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为( )A .88元B .98元C .108元D .118元15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( )1+8=? 1+8+16=? 1+8+16+24=?A.(2n+1)2B.(2n-1)2C.(n+2)2D.n 2二、填空题(本大题共6个小题,每小题3分,共18分.只要求填写最后结果,把答案填在题中的横线上.)16.比较大小:30.15° 30°15′(用>、=、<填空)17.若代数式123--x a 和243+x a 是同类项,则x=_______. 18.若()521||=--m x m 是一元一次方程,则m= .19.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°, 则∠AOD= °.20.已知3x+1和2x+4互为相反数,则x= .21.小明与小刚规定了一种新运算△:,则a△b = b a 23-.小明计算出2△5= -4,请你帮小刚计算2△(-5)=________________.19题图三、解答题:(本大题共7小题,共57分.解答要写出必要的文字说明、证明过程或演算步骤。

数学2016-2017学年度第一学期期末考试试题

数学2016-2017学年度第一学期期末考试试题

2016-2017学年度第一学期期末考试试题一、细心选一选.(每小题3分,共30分)1.在下列各式的计算中,正确的是 ( ).A .5x 3·(-2x 2)=-10x 5B .4m 2n-5mn 2 = -m 2nC .(-a)3÷(-a) =-a 2D .3a+2b=5ab2.点M 1(a-1,5)和M 2(2,b-1)关于x 轴对称,则a,b 的值分别为( ).A .3,-2B .-3,2C .4,-3D .3,-4 3.下列图案是轴对称图形的有 ( ).A. 1个 B .2个 C .3个 D .4个4.下列说法正确的是( ).A .等腰三角形任意一边的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的一边不可以是另一边的两倍D .等腰三角形的两底角相等5.如图所示,下列图中具有稳定性的是( ).6.下列各组线段中,能组成三角形的是( ).A . a=2,b=3,c=8B .a=7,b=6,c=13C . a=12,b=14,c=18D .a=4,b=5,c=67.下列多项式中,能直接用完全平方公式因式分解的是( ).A. x 2+2xy- y 2B. -x 2+2xy+ y 2C. x 2+xy+ y 2D. 42x -xy+y 28.在△ABC 和△DEF 中,给出下列四组条件:(1) AB=DE, BC=EF, AC=DF(2) AB=DE, ∠B=∠E, BC=EF (3)∠B=∠E , BC=EF, ∠C=∠FDC B A(4) AB=DE, AC=DF, ∠B=∠E 其中能使△ABC ≌△DEF 的条件共有 ( ).A.1组B.2组C.3组D.4组9.已知 a=833, b=1625, c=3219, 则有( ).A .a <b <cB .c <b <aC .c <a <bD .a <c <b10.如图,在直角△ABC 中,∠ACB=90°,∠A 的平分线交BC 于D .过C 点作CG ⊥AB 于G, 交AD 于E, 过D 点作DF ⊥AB 于F.下列结论:(1)∠CED=∠CDE (2)∠ADF=2∠FDB (3)CE=DF (4)△AEC 的面积与△AEG 的面积比等于AC:AG其中正确的结论是( ).A .(1)(3)(4)B .(2)(3)C .(2) (3)(4)D .(1)(2)(3)(4)二、耐心填一填.(每小题3分,共30分)11.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,这个数用科学记数法表示为__________ m. 12. 如果把分式yx x+2中的x 和y 都扩大5倍,那么分式的值 . 13.已知ab=1,m =a +11+b+11 ,则m 2016的值是 . 14.如果一个多边形的边数增加一条,其内角和变为1260°,那么这个多 边形为 边形.15.如图,若△ACD 的周长为19cm , DE为AB 边的垂直平分线,则 AC+BC= cm.16.若(x-1)0-2(3x-6)-2有意义,则x 的取值范围是 .17.如图,在直角△ABC 中,∠BAC=90°,AD ⊥BC 于D ,将AB 边沿AD 折叠, 发现B 的对应点E 正好在AC 的垂 直平分线上,则∠C= .18.如图,在△ABC 中,∠A=50°,点D 、E 分别在AB ,AC 上,EF 平分∠CED ,DF 平分∠BDE ,则 ∠F = .19.已知等腰△ABC ,AB=AC,现将△ABC 折叠,使A 、B 两点重合,折痕所在的直 线与直线AC 的夹角为40°,则∠B 的 度数为 .E DCBAGFEDCBAF EDC BA EDCBA20.如图,在△ABC 中,AB=AC,点D 在AB 上,过点D 作DE ⊥AC 于E ,在BC 上取一点F , 且点F 在DE 的垂直平分线上,连接DF , 若∠C=2∠BFD ,BD=5,CE=11,则BC 的 长为 . 三、用心答一答.(60分) 21.(9分)(1) 分解因式: 8xy+ (2x-y)2(2)先化简,再求值:(a+b)2- b(2a+b)- 4b ,其中a=-2, b=-43;(3)先化简,再求值:(4482+-+x x x -x -21)÷xx x 232-+,其中 x=-222.(6分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长为1,点A 、点B 和点C 在小正方形的顶点上, 请在图1、图2中各画一个四边形,满足以下要求:(1)在图1中画出以A 、B 、C 和D 为顶点的四边形,此四边形为轴 对称图形,并画出一条直线将此四边形分割为两个等腰三角形;(2)在图2中画出以A 、B 、C 和E 为顶点的四边形,此四边形为 轴对称图形,并画出此四边形的对称轴; (3)两个轴对称图形不全等.FEDCB A图1图223.(9分)已知关于x 的方程21++x x - 1-x x = )(+1-)2(x x a的解是正数, 求a 的取值范围.24.(6分) 如图,△ABC 与△ABD 都是等边三角形,点E 、F 分别在BC ,AC 上,BE=CF,AE 与BF 交于点G.(1)求∠AGB 的度数;(2)连接DG,求证:DG=AG+BG.25.(10分)百姓果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完;由于水果畅销,第二次购买时,每千克进价比第一次提高10%,用1452元所购买的数量比第一次多20kg ,以每千克9元出售100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元?(2)该果品店在这次销售中,总体是盈利还是亏损?盈利或亏损了多少元?G F E DC B A26.(10分)(1)已知3x =4y =5z ,求yx y z 5332+-的值.(2)已知6122---x x x =2+x A +3-x B,其中A 、B 为常数, 求2A+5B 的值.(3)已知 x+y+z ≠0,a 、b 、c 均不为0,且zy x+=a, x z y +=b , yx z +=c 求证:a a +1+b b +1+cc +1=127.(10分)如图1,AD//BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E在线段AB 上.(1)求∠ADE 的度数; (2)求证:AB=BC ;(3)如图2,若F 为线段CD 上一点,∠FBC=30°,求DF:FC 的值.D图1E CBA D图2FE CBA。

2023-2024学年北京市西城区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市西城区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市西城区七年级(上)期末数学试卷一、选择题:本题共8小题,每小题2分,共16分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.的绝对值是.()A.3B.C.D.2.特色产业激发乡村发展新活力.据报道,截至2023年10月9日,全国已建设180个优势特色乡村产业集群,全产业链产值超过4600000000000元,辐射带动1000多万户农民.数字4600000000000用科学记数法表示为.()A. B. C. D.3.下图是某个几何体的展开图,则这个几何体是。

()A.三棱柱B.圆柱C.四棱柱D.圆锥4.下列各式计算中正确的是.()A. B.C. D.5.如果一个角等于它的余角的2倍,那么这个角的度数是.()A. B. C. D.6.有理数a,b在数轴上的对应点的位置如图所示,下列结论正确的是()A. B. C. D.7.下列解方程的变形过程正确的是()A.方程,移项得B.方程,系数化为1得C.方程,去括号得D.方程,去分母得8.如图,某乡镇的五户居民依次居住在同一条笔直的小道边的A处,B处,C处,D处,E处,且这五户居民的人数依次有1人,2人,3人,3人,2人.乡村扶贫改造期间,该乡镇打算在这条小道上新建一个便民服务点M,使得所有居民到便民服务点的距离之和每户所有居民均需要计算最小,则便民服务点M应建在.()A.A处B.B处C.C处D.D处二、填空题:本题共8小题,每小题2分,共16分。

9.如果向东走5米记作米,那么向西走10米可记作__________米.10.比较大小:__________11.如图所示的网格是正方形网格,则__________填“>”“<”“=”12.如果单项式与单项式的和仍是单项式,那么m的值是__________,n的值是__________.13.若是关于x的方程的解,则a的值为__________.14.若代数式的值为2,则代数式的值为__________.15.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房.设有x间客房,可列方程为:__________.16.“幻方”最早记载于春秋时期的《大戴礼》中,现将1,2,3,4,5,7,8,9这八个数字填入如图1所示的“幻方”中,使得每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等.若按同样的要求重新填数如图2所示,则的值是__________,的值是__________.三、计算题:本大题共2小题,共20分。

2016-2017西城区初一数学期末试卷及答案(北区)

2016-2017西城区初一数学期末试卷及答案(北区)

北京市西城区(北区)2016— 2017学年度第一学期期末试卷七年级数学 2017.1(试卷满分100分,考试时间100分钟)一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.6-的绝对值等于( ).A. 6-B. 6C. 16- D.162.根据北京市公安交通管理局网站的数据显示,截止到2016年2月16日,北京市机动车保有量比十年前增加了3 439 000 辆,将3 439 000 用科学记数法表示应为( ).A .70.343 910⨯B .63.43910⨯C .73.43910⨯D .534.3910⨯3.下列关于多项式22521ab a bc --的说法中,正确的是( ). A.它是三次三项式 B.它是四次两项式 C.它的最高次项是22a bc - D.它的常数项是14.已知关于x 的方程72kx x k -=+的解是2x =,则k 的值为( ).A.3-B.45C. 1D.545. 下列说法中,正确的是( ).A .任何数都不等于它的相反数B .互为相反数的两个数的立方相等C .如果a 大于b ,那么a 的倒数一定大于b 的倒数D .a 与b 两数和的平方一定是非负数A B CD7.下列关于几何画图的语句正确的是 A .延长射线AB 到点C ,使BC =2ABB .点P 在线段AB 上,点Q 在直线AB 的反向延长线上C .将射线OA 绕点O 旋转180︒,终边OB 与始边OA 的夹角为一个平角D . 已知线段a ,b 满足20a b >>,在同一直线上作线段2AB a =,BC b =,那么线段8.将下列图形画在硬纸片上,剪下并折叠后能围成三棱柱的是A B CDA.①,④B. ①,③C. ②,③D. ②,④10.右图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几 何体应是二、填空题(本题共20分,11~14题每小题2分,15~18题每小题3分)11.用四舍五入法将1.893 5取近似数并精确到0.001,得到的值是 .12.计算:135459116''︒-︒= .13.一件童装每件的进价为a元(0a >),商家按进价的3倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为元.14.将长方形纸片ABCD 折叠并压平,如图所示,点C ,点D 的对应点分别为点C ',点D ',折痕分别交AD ,BC 边于点E ,点F .若30BFC '∠=︒,则CFE ∠= °.15.对于有理数a ,b ,我们规定a b a b b ⊗=⨯+.(1)(3)4-⊗= ; (2)若有理数x 满足 (4)36x -⊗=,则x 的值为 .A B C D16.如图,数轴上A ,B 两点表示的数分别为2-和6,数轴上的点C 满足AC BC =,点D 在线段AC 的延长线上, 若32AD AC =,则BD = ,点D 表示的数为 .17.右边球体上画出了三个圆,在图中的六个□里分别填入1,2,3,4,5,6,使得每个圆周上四个数相加的和都相等. (1)这个相等的和等于 ; (2)在图中将所有的□填完整.18.如图,正方形ABCD 和正方形DEFG 的边长都是3 cm ,点P 从点D 出发,先到点A ,然后沿箭头所指方向运动 (经过点D 时不拐弯),那么从出发开始连续运动2016 cm 时,它离点 最近,此时它距该点 cm .三、计算题(本题共12分,每小题4分)19.2742()(12)(4)32⨯-÷--÷-. 解:20.3212(3)4()23-÷⨯-.解:21.211312()49(5)64828-⨯+-÷-.解:四、先化简,再求值(本题5分)22.222225(3)(3)2a b ab ab a b ab --++,其中21=a ,3b =. 解:五、解下列方程(组)(本题共10分,每小题5分)23.321123x x x --+=-. 解:24.231445 6.x y x y +=⎧⎨-=⎩,解:六、解答题(本题4分)25. 问题:如图,线段AC 上依次有D ,B ,E 三点,其中点B 为线段AC 的中点,AD BE =, 若4DE =,求线段AC 的长. 请补全以下解答过程.解:∵ D ,B ,E 三点依次在线段AC 上,∴ DE BE =+. ∵ AD BE =,∴ DE DB AB =+=. ∵ 4DE =, ∴ 4AB =.∵ , ∴ 2 AC AB ==.七、列方程(或方程组)解应用题(本题共6分)26. 有甲、乙两班学生,已知乙班比甲班少4人,如果从乙班调17人到甲班,那么甲班人数比乙班人数的3倍还多2人,求甲、乙两班原来各有多少人. 解:八、解答题(本题共13分,第27题6分,第27题7分)27.已知当1x =-时,代数式3236mx nx -+的值为17.(1)若关于y 的方程24my n ny m +=--的解为2y =,求n m 的值;(2)若规定[]a 表示不超过a 的最大整数,例如[]4.34=,请在此规定下求32n m ⎡⎤-⎢⎥⎣⎦的值.解:28.如图,50DOE ∠=︒,OD 平分∠AOC ,60AOC ∠=︒,OE 平分∠BOC . (1)用直尺、量角器画出射线OA ,OB ,OC 的准确位置; (2)求∠BOC 的度数,要求写出计算过程;(3)当DOE α∠=,2AOC β∠=时(其中0βα︒<<,090αβ︒<+<︒),用α,β的代数式表示∠BOC 的度数.(直接写出结果即可) 解:EOD七年级数学参考答案及评分标准 2017.1一、选择题(本题共30分,每小题3分)阅卷说明:15~18题中,第一个空为1分,第二个空为2分;17题第(2)问其他正确答案相应给分.三、计算题(本题共12分,每小题4分)19.2742()(12)(4)32⨯-÷--÷-. 解:原式2242337=-⨯⨯- ………………………………………………………………2分83=-- ………………………………………………………………………3分 11=-.…………………………………………………………………………4分20.3212(3)4()23-÷⨯-.解:原式2227()99=-⨯⨯- ………………………………………………………………3分113=. …………………………………………………………………………4分(阅卷说明:写成43不扣分)21.211312()49(5)64828-⨯+-÷-.解:原式1125(1212)(50)2564828=-⨯-⨯--÷11(2)(2)428=---- ……………………………………………………… 2分1122428=---+114()428=---3414=--3414=-. ………………………………………………………………………4分四、先化简,再求值(本题5分)22.解: 222225(3)(3)2a b ab ab a b ab --++ 22222(155)(3)2a b ab ab a b ab =--++2222215532a b ab ab a b ab =---+ ………………………………………………… 2分 (阅卷说明:去掉每个括号各1分)22124a b ab =-. ……………………………………………………………………3分 当21=a ,3b =时, 原式221112()34322=⨯⨯-⨯⨯ …………………………………………………… 4分9189=-=-. …………………………………………………………………5分 五、解下列方程(组)(本题共10分,每小题5分)23.321123x x x --+=-.解:去分母,得 3(3)2(21)6(1)x x x -+-=-. …………………………………… 2分去括号,得 394266x x x -+-=-.…………………………………………… 3分 移项,得 346926x x x +-=+-. …………………………………………… 4分 合并,得 5x =. ………………………………………………………………… 5分24.231445 6.x y x y +=⎧⎨-=⎩,解法一:由①得 2143x y =-.③ ………………………………………………… 1分 把③代入②,得 2(143)56y y --=.………………………………………2分 去括号,得 28656y y --=. 移项,合并,得 1122y =.系数化为1,得 2y =. …………………………………………………… 3分 把2y =代入③,得 28x =.系数化为1,得 4.x = ………………………………………………………4分所以,原方程组的解为 42.x y =⎧⎨=⎩,……………………………………………5分解法二:①×2得 4628x y +=.③ ………………………………………………… 1分③-②得 6(5)286y y --=-.………………………………………………2分 合并,得 1122y =.系数化为1,得 2y =. …………………………………………………… 3分 ① ②系数化为1,得 4.x = ………………………………………………………4分所以,原方程组的解为 42.x y =⎧⎨=⎩,……………………………………………5分六、解答题(本题4分)25.解:∵ D ,B ,E 三点依次在线段AC 上,∴ DE DB BE =+. ………………………………………………………… 1分 ∵ AD BE =,∴ DE DB AD AB =+=. …………………………………………………… 2分 ∵ 4DE =, ∴ 4AB =.∵ 点B 为线段AC 的中点 , …………………………………………………… 3分 ∴ 2 8 AC AB ==. ……………………………………………………………4分 七、列方程(或方程组)解应用题(本题共6分)26.解:设甲班原来有x 人.……………………………………………………………… 1分 则乙班原来有 (4)x -人.依题意得 []173(4)172x x +=--+.…………………………………………… 3分 去括号,得 17312512x x +=--+. 移项,合并,得 278x =.系数化为1,得 39x =.……………………………………………………………4分 439435x -=-=. ……………………………………………………………… 5分答:甲班原来有39人,乙班原来有35人.……………………………………………6分 八、解答题(本题共13分,第27题6分, 第28题7分)27.解:∵ 当1x =-时,代数式3236mx nx -+的值为17, ∴ 将1x =-代入,得 23617m n -++=.整理,得 3211n m -=. ① ……………………………………………………1分 (1)∵ 关于y 的方程24my n ny m +=--的解为 2y =, ∴ 把2y =代入以上方程,得 442m n n m +=--.整理,得 534m n +=. ② ……………………………………………… 2分由①,②得 321153 4.n m m n -=⎧⎨+=⎩,②-①,得 77m =-.系数化为1,得 1m =-.把1m =-代入①,解得 3n =.∴ 原方程组的解为 13.m n =-⎧⎨=⎩, ……………………………………………… 4分此时3(1)1n m =-=-.…………………………………………………………5分 ①②∴ []32311 5.56222n m n m -⎡⎤⎡⎤⎡⎤-==-=-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.………………………… 6分 阅卷说明:直接把第(1)问的1m =-,3n =代入得到第(2)问结果的不 给第(2)问的分.28.解:(1)①当射线OA 在DOE ∠外部时,射线OA ,OB ,OC 的位置如图1所示. ②当射线OA 在DOE ∠内部时,射线OA ,OB ,OC 的位置如图2所示. ……………………………………………………………………… 2分 (阅卷说明:画图每种情况正确各1分,误差很大的不给分)(2)①当射线OA 在DOE ∠外部时,此时射线OC 在DOE ∠内部,射线OA ,OD ,OC ,OE ,OB 依次排列,如图1.∵ OD 平分∠AOC ,60AOC ∠=︒,∴ 1302DOC AOC ∠=∠=︒.…………………………………………… 3分∵ 此时射线OA ,OD ,OC ,OE ,OB 依次排列,∴ DOE DOC COE ∠=∠+∠.∵ 50DOE ∠=︒,∴ 503020COE DOE DOC ∠=∠-∠=︒-︒=︒.∵ OE 平分∠BOC ,∴ 222040BOC COE ∠=∠=⨯︒=︒.…………………………………… 4分②当射线OA 在DOE ∠内部时,此时射线OC 在DOE ∠外部,射线OC ,OD ,OA ,OE ,OB 依次排列,如图2.∵ OD 平分∠AOC ,60AOC ∠=︒,∴ 1302COD AOC ∠=∠=︒. ∵ 此时射线OC ,OD ,OA ,OE ,OB 依次排列,50DOE ∠=︒,∴ 305080COE COD DOE ∠=∠+∠=︒+︒=︒.∵ OE 平分∠BOC ,∴ 2280160BOC COE ∠=∠=⨯︒=︒.………………………………… 5分阅卷说明:无论学生先证明哪种情况,先证明的那种情况正确给2分,第二种 情况正确给1分.(3)当射线OA 在DOE ∠外部时,22BOC αβ∠=-;当射线OA 在DOE ∠内部时,22BOC αβ∠=+.……………………………………………7分阅卷说明:两种情况各1分;学生若直接回答22BOC αβ∠=-或22αβ+不扣分.。

北京市西城区20162017学年七年级上学期期末考试地理试卷含答案

北京市西城区20162017学年七年级上学期期末考试地理试卷含答案

北京市西城区2016-2017学年上学期初中七年级期末考试地理试卷试卷总分值:100分,考试时刻:60分钟一、你能选对吗?(40分)以下各小题均有四个选项,其中只有一项符合题意要求;每题2分。

生活中很多事物都包括着丰硕的地理知识。

读图,完成第一、2题。

1. 图1邮票中的少数民族及其要紧散布省区为A. 满族吉林省B. 回族宁夏回族自治区C. 傣族云南省D. 维吾尔族新疆维吾尔自治区2. 图1汽车牌照所属省区为A. 四川省B. 湖北省C. 湖南省D. 江西省某校学生去颐和园春游。

图2为颐和园导游示用意(局部)和某同窗身旁的指示牌。

读图,完成第3、4题。

3. 某同窗的大致位置是示用意中的A. ①地B. ②地C. ③地D. ④地4. 颐和园景福阁距佛香阁的距离大约400米,那么图2中导游图的比例尺约为A. 1:10B. 1:100C. 1:10000D. 1:10000002016年7月23日至9月5日,第十一届二十国集团(G20)领导人系列会议在中国杭州召开。

图3中城市都曾经主办过G20会议。

读图,完成5~7题。

5. 图中四城市的经纬度位置正确的选项是A. ①——20°N,130°EB. ②——80°N,40°WC. ③——52°N,0°D. ④——30°S,153°W6. 图中城市A. 都在北半球B. 都位于温带C. ①纬度最低D. ③在西半球7. 杭州A. 与①城市没有时差B. 在③城市东北方向C. 闭会时正值暮秋D. 会期内昼长夜短图4是我国某日部份省区天气预报图。

读图,完成第八、9题。

8. 图中部份省区的天气预报状况为A. 京津地域:霾B. 内蒙古自治区中部:6级东南风C. 黑龙江省:中雪D. 新疆维吾尔自治区西部:多云9. 一名北京的中学生该日预备外出,应注意A. 穿棉衣B. 带雨具C. 戴口罩D. 在树下躲避10. 关于我国的自然环境,以下因果关系表达正确的选项是A. 位于亚洲东部、太平洋西岸——海陆兼备B. 大部份国土位于北温带——自然环境不同大C. 国土面积居世界第三位——季风气候显著D. 陆上邻国众多——资源丰硕,交通便利我国地形复杂多样。

西城七年级上学期期末数学试题B卷

西城七年级上学期期末数学试题B卷

∴∠AOF=∠FOE-∠AOE=90°-60°=30°
∴∠COF=∠AOC-∠AOF=60°-30°=30°
∴∠AOF=∠COF
3分 4分
(2)∵O 是直线 AB 上一点,∴∠AOE+∠BOE=180°
∵∠AOE=60°,∴∠BOE=180°-60°=120°
5分
30.解:设小长方形的宽为 x,则小长方形的长为
2分
当 a − b = 2 , ab = −1时
原式 = 2 × 2 − 6 × (−1)
3分
= 10
4分
五、解方程(本题 5 分)
2x −1 − 10x + 1 = 2x +1 −1
26. 3
6
4
解:去分母,得 4(2x − 1) − 2(10x + 1) = 3(2x + 1) − 12
1分
去括号,得8x − 4 − 20x − 2 = 6x + 3 −12
为 22150 000 000m3,这个数用科学记数法表示为( ).
A.221.5×108 m 3 B.22.15×109 m 3
C.2.215×1010 m 3 D.2.215×1011 m 3
3.已知|a|=|-3|,则 a 等于( ).
A.3
B.-3
C.0
D.±3
4.现规定一种运算:a*6=ab+a-b,其中 a,b 为有理数,则 3*5 的值为( ).
D.OD 的方向是北偏东 60°
7.甲、乙两人练习赛跑,甲每秒钟跑 7 米,乙每秒钟跑 6.5 米,他俩从同一地点起跑,乙先跑 5 米后,
甲出发追赶乙.设甲出发 x 秒后追上乙,则下列四个方程中正确的是( ).

2016-2017学年北京市海淀区七年级(上)期末数学试卷及答案解析

2016-2017学年北京市海淀区七年级(上)期末数学试卷及答案解析

2016-2017学年北京市海淀区七年级(上)期末数学试卷一、单项选择题(本题共36分,每小题3分)1.(3分)根据国家旅游局数据中心综合测算,今年国庆期间全国累计旅游收入4 822亿元,用科学记数法表示4 822亿正确的是()A.4822×108B.4.822×1011C.48.22×1010D.0.4822×10122.(3分)从正面观察如图的两个立体图形,得到的平面图形是()A.B.C.D.3.(3分)若a+3=0,则a的相反数是()A.3B.C.﹣D.﹣34.(3分)将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.5.(3分)下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣4b+b=﹣3b D.a2b﹣ab2=06.(3分)西山隧道段是上庄路南延工程的一部分,将穿越西山山脉,隧道全长约4km.隧道贯通后,往来海淀山前山后地区较之前路程有望缩短一半,其主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点7.(3分)已知线段AB=10cm,点C在直线AB上,且AC=2cm,则线段BC的长为()A.12 cm B.8 cmC.12 cm或8 cm D.以上均不对8.(3分)若关于x的方程2x+a﹣4=0的解是x=2,则a的值等于()A.﹣8B.0C.2D.89.(3分)如表为某用户银行存折中2015年11月到2016年5月间代扣水费的相关数据,其中扣缴水费最多的一次的金额为()日期摘要币种存/取款金额余额操作员备注151101北京水费RMB钞﹣125.45874.55010005B25折160101北京水费RMB钞﹣136.02738.53010005Y03折160301北京水费RMB钞﹣132.36606.17010005D05折160501北京水费RMB钞﹣128.59477.5801000K19折A.738.53元B.125.45元C.136.02元D.477.58元10.(3分)如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0B.a+b>0C.|a|﹣|b|<0D.a﹣b<0 11.(3分)已用点A、B、C、D、E的位置如图所示,下列结论中正确的是()A.∠AOB=130°B.∠AOB=∠DOEC.∠DOC与∠BOE互补D.∠AOB与∠COD互余12.(3分)小博表演扑克牌游戏,她将两副牌分别交给观众A和观众B,然后背过脸去,请他们各自按照她的口令操作:a.在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;b.从第2堆拿出4张牌放到第1堆里;c.从第3堆牌中拿出8张牌放在第1堆里;d.数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e.从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A说5张,观众B说8张,小博猜两人最初每一堆里放的牌数分别为()A.14,17B.14,18C.13,16D.12,16二、填空题(本题共24分,每小题3分)13.(3分)用四舍五入法,精确到百分位,对2.017取近似数是.14.(3分)请写出一个只含有字母m、n,且次数为3的单项式.15.(3分)已知|x+1|+(2﹣y)2=0,则x y的值是.16.(3分)已知a﹣b=2,则多项式3a﹣3b﹣2的值是.17.(3分)若一个角比它的补角大36°48′,则这个角为°′.18.(3分)下面的框图表示解方程3x+20=4x﹣25的流程.第1步的依据是.19.(3分)如图,在正方形网格中,点O、A、B、C、D均是格点.若OE平分∠BOC,则∠DOE的度数为°.20.(3分)下面是一道尚未编完的应用题,请你补充完整,使列出的方程为2x+4(35﹣x)=94.七年级一班组织了“我爱阅读”读书心得汇报评比活动,为了倡导同学们多读书,读好书,老师为所有参加比赛的同学都准备了奖品,.三、解答题(本题共40分,第21题8分,每小题各4分,第22-26题,每小题8分,第27题7分)21.(8分)计算:(1)(+﹣)×12.(2)(﹣1)10÷2+(﹣)3×16.22.(5分)解方程:﹣3=.23.(5分)设A=﹣x﹣4(x﹣y)+(﹣x+y).(1)当x=﹣,y=1时,求A的值;(2)若使求得的A的值与(1)中的结果相同,则给出的x、y的条件还可以是.24.(5分)如图,平面上有四个点A,B,C,D.(1)根据下列语句画图:①射线BA;②直线AD,BC相交于点E;③在线段DC的延长线上取一点F,使CF=BC,连接EF.(2)图中以E为顶点的角中,小于平角的角共有个.25.(5分)以下两个问题,任选其一作答.如图,OD是∠AOC的平分线,OE是∠BOC的平分线.问题一:若∠AOC=36°,∠BOC=136°,求∠DOE的度数.问题二:若∠AOB=100°,求∠DOE的度数.26.(5分)如图1,由于保管不善,长为40米的拔河比赛专用绳AB左右两端各有一段(AC和BD)磨损了,磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米.只利用麻绳AB和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF.请你按照要求完成下列任务:(1)在图1中标出点E、点F的位置,并简述画图方法;(2)说明(1)中所标EF符合要求.27.(7分)在数轴上,把表示数1的点称为基准点,记作点.对于两个不同的点M和N,若点M、点N到点的距离相等,则称点M与点N互为基准变换点.例如:图1中,点M表示数﹣1,点N表示数3,它们与基准点的距离都是2个单位长度,点M与点N互为基准变换点.(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=;若a=4,则b=;②用含a的式子表示b,则b=;(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换点,则点A表示的数是;(3)点P在点Q的左边,点P与点Q之间的距离为8个单位长度.对P、Q两点做如下操作:点P沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到P3,P4为P3的基准变换点,…,依此顺序不断地重复,得到P5,P6,…,P n.Q1为Q的基准变换点,将数轴沿原点对折后Q1的落点为Q2,Q3为Q2的基准变换点,将数轴沿原点对折后Q3的落点为Q4,…,依此顺序不断地重复,得到Q5,Q6,…,Q n.若无论k为何值,P n与Q n两点间的距离都是4,则n=.2016-2017学年北京市海淀区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共36分,每小题3分)1.(3分)根据国家旅游局数据中心综合测算,今年国庆期间全国累计旅游收入4 822亿元,用科学记数法表示4 822亿正确的是()A.4822×108B.4.822×1011C.48.22×1010D.0.4822×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 822亿元,用科学记数法表示4.822×1011,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.属于基础题。

2019-2020学年北京市西城区七年级(上)期末数学试卷与答案解析

2019-2020学年北京市西城区七年级(上)期末数学试卷与答案解析

2019-2020学年北京市西城区七年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)1.(3分)﹣4的倒数是()A.B.﹣C.4 D.﹣42.(3分)在国庆70周年的联欢活动中,参与表演的3290名群众演员,每人手持一个长和宽都为80厘米的光影屏,每一块光影屏上都有1024颗灯珠,约3369000颗灯珠共同构成流光溢彩的巨幅光影图案,给观众带来了震撼的视觉效果.将3369000用科学记数法表示为()A.0.3369×10B.3.369×10C.3.369×10D.3369×103.(3分)下列计算正确的是()A.5a+6b=11ab B.9a﹣a=8C.a+3a=4a D.3ab+4ab=7ab4.(3分)如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是()A.两点之间,线段最短 B.两点确定一条直线C.两点之间,直线最短 D.直线比线段长5.(3分)下列解方程的步骤中正确的是()A.由x﹣5=7,可得x=7﹣5B.由8﹣2(3x+1)=x,可得8﹣6x﹣2=xC.由x=﹣1,可得x=﹣D.由,可得2(x﹣1)=x﹣36.(3分)已知3a﹣a=1,则代数式6a﹣2a﹣5的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣77.(3分)有理数a,b,c在数轴上的对应点的位置如图所示,有如下四个结论:①|a|>3;②ab>0;③b+c<0;④b﹣a>0.上述结论中,所有正确结论的序号是()A.①② B.②③ C.②④ D.③④8.(3分)下列说法中正确的是()A.如果|x|=7,那么x一定是7B.﹣a表示的数一定是负数C.射线AB和射线BA是同一条射线D.一个锐角的补角比这个角的余角大90°9.(3分)下列图形中,可能是右面正方体的展开图的是()A.B.C.D.10.(3分)居民消费价格指数是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.据统计,从2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率如图所示:根据上图提供的信息,下列推断中不合理的是()A.2018年12月的增长率为0.0%,说明与2018年11月相比,全国居民消费价格保持不变B.2018年11月与2018年10月相比,全国居民消费价格降低0.3%C.2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是﹣0.4% D.2019年1月到2019年8月,全国居民消费价格每月比上个月的增长率一直持续变大二、填空题(本题共16分,第11~15题每小题2分,第16~18题每小题2分)11.(2分)如图所示的网格式正方形网格,∠ABC∠DEF(填“>”,“=”或“<”)12.(2分)用四舍五入法将0.0586精确到千分位,所得到的近似数为.13.(2分)已知x=3是关于x的一元一次方程ax+b=0的解,请写出一组满足条件的a,b的值:a=,b=.14.(2分)若(x+1)+|y﹣2020|=0,则x=.15.(2分)《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”.《九章算术》大约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的,全书按题目的应用范围与解题方法划分为“方田”、“粟米”、“衰分”等九章.《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为.16.(3分)我们把称为二阶行列式,且=ad﹣bc如:=1×(﹣4)﹣3×2=﹣10.(1)计算:=;(2)若=6,则m的值为.17.(3分)已知线段AB如图所示,延长AB至C,使BC=AB,反向延长AB至D,使AD=BC,点E是线段CD的中点.(1)依题意补全图形;(2)若AB的长为30,则BE的长为.18.(3分)一件商品的包装盒是一个长方体(如图1),它的宽和高相等.小明将四个这样的包装盒放入一个长方体大纸箱中,从上面看所得图形如图2所示,大纸箱底面长方形未被覆盖的部分用阴影表示.接着小明将这四个包装盒又换了一种摆放方式,从上面看所得图形如图3所示,大纸箱底面未被覆盖的部分也用阴影表示.设图1中商品包装盒的宽为a,则商品包装盒的长为,图2中阴影部分的周长与图3中阴影部分的周长的差为(都用含a的式子表示).三、计算题(本题共16分,每小题8分)19.(8分)计算:(1)(﹣5)+12﹣(﹣8)﹣21(2)20.(8分)计算:(1)(2)四、解答题(本题共35分,第24题4分,第26题6分,其余每小题5分)21.(5分)先化简,再求值:6y+4(x﹣2xy)﹣2(3y﹣xy),其中x=﹣2,y=3.22.(5分)解方程:.23.(5分)解方程组:.24.(4分)24、已知:如图,O是直线AB上一点,OD是∠AOC的平分线,∠COD与∠COE互余.求证:∠AOE与∠COE互补.请将下面的证明过程补充完整:证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=°∵OD是∠AOC的平分线∴∠AOD=∠(理由:)∴∠BOE=∠COE(理由:)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补25.(5分)某同学模仿二维码的方式为学校设计了一个身份识别图案系统:在4×4的正方形网格中,黑色正方形表示数字1,白色正方形变式数字0.如图1是某个学生的身份识别图案.约定如下:把第i行,第j列表示的数字记为a(其中i,j=1,2,3,4),如图1中第2行第1列的数字a=0;对第i行使用公式A=8a+4a+2a+a进行计算,所得结果A表示所在年级,A表示所在班级,A表示学号的十位数字,A表示学号的个位数字.如图1中,第二行A=8×0+4×1+2×0+1=5,说明这个学生在5班.(1)图1代表的学生所在年级是年级,他的学号是;(2)请仿照图1,在图2中画出八年级4班学号是36的同学的身份识别图案26.(6分)学校计划在某商店购买秋季运动会的奖品,若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170元.(1)篮球和足球的单价各是多少元?(2)实际购买时,正逢该商店进行促销.所有体育用品都按原价的八折优惠出售,学校购买了若干个篮球和足球,恰好花费1760元.请直接写出学校购买篮球和足球的个数各是多少.27.(5分)点O为数轴的原点,点A、B在数轴上的位置如图所示,点A表示的数为5,线段AB的长为线段OA长的1.2倍.点C在数轴上,M为线段OC的中点.(1)点B表示的数为;(2)若线段BM的长为4.5,则线段AC的长为;(3)若线段AC的长为x,求线段BM的长(用含x的式子表示).一、填空题(本题6分)28.观察下列等式,探究其中的规律并解答问题:(1)第4个等式中,k=;(2)写出第5个等式:;(3)写出第n个等式:(其中n为正整数)二、解答题(本题共14分,每小题0分)29.我们熟知的七巧板,是由宋代黄伯思设计的“燕几图”(“燕几”就是“宴几”,也就是宴请宾客的案几)演变而来.到了明代,严澄将“燕几图”里的方形案几改为三角形,发明了“蝶翅几”.而到了清代初期,在“燕几图”和“蝶翅几”的基础上,兼有三角形、正方形和平行四边形,能拼出更加生动、多样图案的七巧板就问世了(如图1网格中所示)(1)若正方形网格的边长为1,则图1中七巧板的七块拼板的总面积为.(2)使用图1中的七巧板可以拼出一个轮廓如图2所示的长方形,请在图2中画出拼图方法(要求:画出各块拼板的轮廓).(3)随着七巧板的发展,出现了一些形式不同的七巧板,如图3所示的是另一种七巧板.利用图3中的七巧板可以拼出一个轮廓如图4所示的图形;大正方形的中间去掉一个小正方形,请在图4中画出拼图的方法(要求:画出各块拼板的轮廓).30.对于平面内给定射线OA,射线OB及∠MON,给出如下定义:若由射线OA、OB组成的∠AOB的平分线OT落在∠MON的内部或边OM、ON上,则称射线OA与射线OB关于∠MON内含对称.例如,图1中射线OA与射线OB关于∠MON内含对称.已知:如图2,在平面内,∠AOM=10°,∠MON=20°.(1)若有两条射线OB,OB的位置如图3所示,且∠BOM=30°,∠BOM=15°,则在这两条射线中,与射线OA关于∠MON内含对称的射线是;(2)射线OC是平面上绕点O旋转的一条动射线,若射线OA与射线OC关于∠MON 内含对称,设∠COM=x°,求x的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH=20°,现将射线OH绕点O以每秒1°的速度顺时针旋转,同时将射线OE和OF绕点O都以每秒3°的速度顺时针旋转.设旋转的时间为t秒,且0<t<60.若∠FOE的内部及两边至少存在一条以O为顶点的射线与射线OH关于∠MON内含对称,直接写出t的取值范围.2019-2020学年北京市西城区七年级(上)期末数学试卷试题解析一、选择题(本题共30分,每小题3分)1.【答案】B解:﹣4的倒数是﹣.故选:B.2.【答案】B解:将3369000用科学记数法表示为3.369×10,故选:B.3.【答案】D解:A.5a与6b不是同类项,所以不能合并,故本选项不合题意;B.9a﹣a=8a,故本选项不合题意;D.3ab+8ab=7ab,正确,故本选项符合题意.故选:D.4.【答案】A解:点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是:两点之间,线段最短,故选:A.5.【答案】B解:A、由x﹣5=7,可得x=7+5,不符合题意;B、由8﹣2(3x+1)=x,可得8﹣6x﹣2=x,符合题意;C、由x=﹣1,可得x=﹣6,不符合题意;D、由=﹣3,可得2(x﹣1)=x﹣12,不符合题意,故选:B.6.【答案】A解:∵3a﹣a=1,∴原式=2(3a﹣a)﹣5=2﹣5=﹣3,故选:A.7.【答案】C解:∵﹣3<a<﹣2,∴|a|<3,∵a<8,b<0,∴选项②符合题意;∴b+c>0,∵b>a,∴选项④符合题意,故选:C.8.【答案】D解:A、∵|x|=7,∴x=±7,故本选项不符合题意.B、﹣a不是的数不一定是负数,本选项不符合题意.C、射线AB和射线BA不是同一条射线,本选项不符合题意.D、一个锐角的补角比这个角的余角大90°,正确,本选项符合题意,故选:D.9.【答案】C解:A、折叠后,圆不是与两个空白小正方形相邻,故与原正方体不符,故此选项错误;B、折叠后,圆与三角形成对面,与原正方体不符,故此选项错误;C、折叠后与原正方体相同,与原正方体符和,故此选项正确;D、折叠后,两个三角形的短边不是与两个空白小正方形相邻,与原正方体不符,故此选项错误.故选:C.10.【答案】D解:由统计图可知,2018年12月的增长率为0.0%,说明与2018年11月相比,全国居民消费价格保持不变,故选项A合理;2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是﹣0.4%,故选项C合理;故选:D.二、填空题(本题共16分,第11~15题每小题2分,第16~18题每小题2分)11.【答案】见试题解答内容解:由图可得,∠ABC=45°,∠DEF<45°,∴∠ABC>∠DEF,故答案为:>.12.【答案】见试题解答内容解:0.0586≈0.059(精确到千分位).故答案为0.059.13.【答案】见试题解答内容解:把x=3代入关于x的一元一次方程ax+b=0得到3a+b=0,则一组满足条件的a,b的值:a=4,b=﹣3.故答案为:1,﹣3(答案不唯一).14.【答案】见试题解答内容解:∵(x+1)+|y﹣2020|=0,∴x+1=0,y﹣2020=0,所以x=(﹣1)=1.故答案为:1.15.【答案】见试题解答内容解:设有x个人,依题意,得:400x﹣3400=300x﹣100.故答案为:400x﹣3400=300x﹣100.16.【答案】见试题解答内容解:(1)=2×7﹣(﹣3)×6=28∴﹣4m﹣2×4=6,∴m=﹣5.故答案为:28、﹣5.17.【答案】见试题解答内容解:(1)如图所示;(2)∵AB=30,BC=AB,∵AD=BC=10,∵点E是线段CD的中点,∴BE=BD﹣DE=5,故答案为:5.18.【答案】见试题解答内容解:根据摆放情况可得,包装盒的一个长等于两个宽,即长为2a,大纸箱的长为4a,宽为3a,图3中阴影部分的周长为:4a×8+2a=10a,故答案为:2a,2a.三、计算题(本题共16分,每小题8分)19.【答案】见试题解答内容解:(1)(﹣5)+12﹣(﹣8)﹣21=7+7﹣21=﹣6=(﹣4)÷(﹣)=20.【答案】见试题解答内容解:(1)=1×(﹣)﹣×(﹣)+×(﹣)=﹣1=(9+2﹣19)×(﹣4)=32四、解答题(本题共35分,第24题4分,第26题6分,其余每小题5分)21.【答案】见试题解答内容解:原式=6y+4x﹣8xy﹣6y+4xy=4x﹣6xy,当x=﹣2,y=3时,原式=﹣32+36=4.22.【答案】见试题解答内容解:去分母得:9x+6=15+10x﹣5,移项合并得:﹣x=4,解得:x=﹣4.23.【答案】见试题解答内容解:,①+②×3得:10x=30,把x=3代入②得:y=﹣2,则方程组的解为.24.【答案】见试题解答内容证明:∵O是直线AB上一点∴∠AOB=180°∴∠COD+∠COE=90°∵OD是∠AOC的平分线∴∠BOE=∠COE(理由:等式性质)∴∠AOE+∠COE=180°故答案为:90;COD;角平分线的定义;等式性质.25.【答案】见试题解答内容解:(1)A=8×0+4×1+2×4+1=7,A=3×0+4×0+2×1+2=2,A=8×1+4×0+2×6+0=8,故答案为7,28;26.【答案】见试题解答内容解:(1)设篮球的单价为x元,足球的单价为y元,依题意,得:,答:篮球的单价为80元,足球的单价为75元.依题意,得:0.8(80m+75n)=1760,∵m,n均为非负整数,答:学校购买篮球20个、足球8个或者篮球5个、足球24个.27.【答案】见试题解答内容解:(1)∵点A表示的数为5,线段AB的长为线段OA长的1.2倍,∴AB=2.2×5×=×6∴OB=AB﹣OA=1,故答案为﹣1;∴OM=4.5﹣1=6.5(点M在原点右侧)∵M为线段OC的中点∴AC=7﹣5=2(点C在原点右侧)∴线段AC的长为5或16.(3)当AC=x,OC=5+x∴BM=OB+OM=1+(5+x)=x+OC=AC﹣OA=x﹣5∴BM=OM﹣OB=(x﹣5)﹣1=x﹣答:线段BM的长为:x+或x﹣.一、填空题(本题6分)28.【答案】见试题解答内容解:(1)由所给式子可知,k=7,故答案为7;故答案为4+6+7+8+9+10+11+12+13=9;故答案为n+(n+3)+(n+2)+…+(3n﹣3)+(3n﹣2)=(6n﹣1).二、解答题(本题共14分,每小题0分)29.【答案】见试题解答内容解:(1)七块拼板的总面积=(2)×2=4,故答案为8.(2)答案如图所示.(8)答案如图所示.30.【答案】(1)OB;(2)10≤x≤50;(3)20≤t≤32.5.解:(1)∵∠AOB在∠MON的外部,∴射线OA、OB组成的∠AOB的平分线在∠MON的外部,∵∠BOM=15°,∠AOM=10°,∴射线OA、OB组成的∠AOB的平分线在∠MON的内部,故答案为:OB;∵∠COM=x°,∠AOM=10°,∠MON=20°,∵射线OA与射线OC关于∠MON内含对称,∴10≤x≤50;∴∠HOM=50°,∠HON=70°,∠EOM=30°,∠FOM=40°,∴50﹣t≤≤70﹣t,若射线OF与射线OH关于∠MON内含对称,∴22.5≤t≤32.5,综上所述:20≤t≤32.5.。

七年级数学上《整式的加减》期末复习知识点+检测试卷

七年级数学上《整式的加减》期末复习知识点+检测试卷

2016-2017学年度七年级上期末复习(整式的加减)知识点1:列代数式 知识回顾:(1)数学中的式子指的是用运算符号把数与字母连接而成的算式,单独的一个数或字母也叫是式子。

可以用式子把数量关系简明地表示出来。

(2)在含有字母的式子中如果出现乘号,通常将乘号写作“⋅”或省略不写。

例如,100×t 可以写成100⋅t 或100t 。

巩固练习: 1.(2015-2016北京市海淀区七上期末)某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,如果设此月人均定额是x 件,那么这4名工人此月实际人均工作量 为 件.(用含x 的式子表示) 2.(2015-2016清远市连州市七上期末)a 与b 的平方的和可表示为( )A .(a+b)2;B .a 2+b 2;C .a 2+b ;D .a+b 2。

3.(2015-2016衡阳市耒阳市七上期末)a 的2倍与b 的和,用代数式表示为( )A .2a+b ;B .a 2+b ; C .2(a+b); D .a+2b 。

4.(2015-2016北京市西城区七上期末)用含a 的式子表示: (1)比a 的6倍小5的数: ;(2)如果北京某天的最低气温为a ℃,中午12点的气温比最低气温上升了10℃,那么中午12点的气温为 ℃. 5.(2015-2016潍坊市寿光市七上期末)甲数为x ,乙数为y ,则甲数的3倍与乙数的和除甲数与乙数的3倍的差,可表示为( ) A .y 3x y x 3-+; B .y 3x y x 3+-; C .y x 3y 3x +-; D .yx 3y3x -+。

6.(2015-2016深圳市龙华新区七上期末)小明每个月收集废电池a 个,小亮比小明多收集20%,则小亮每个月收集的废电池数为( ) A .(a+20%)个; B .a (1+20%)个; C .%201a -个; D .%201a-个。

7.(2015-2016吕梁市孝义市七上期末)一个三位数,个位数是a ,十位数是b ,百位数是c ,这个三位数是( )A .a+b+c ;B .abc ;C .100a+10b+c ;D .100c+10b+a 。

2016-2017学年北师大版七年级数学下册期末试题及答案

2016-2017学年北师大版七年级数学下册期末试题及答案

2016-2017学年北师大版七年级数学下册期末试题及答案2016-2017学年度第二学期期末测试题七年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分。

本试题共8页,满分为120分。

考试时间为120分钟。

答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置。

考试结束后,将本试卷和答题卡一并交回。

本考试不允许使用计算器。

第Ⅰ卷(选择题共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案写在试卷上无效。

一、选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列各式计算正确的是()A.x+x=2xB.xy^4/48=x^3yC.x^2=x^5D.(-x)^5=(-x)^82.下列各式中,不能用平方差公式计算的是( )A.(4x-3y)(-3y-4x)B.(2x-y)(2x+y)C.(a+b-c)(-c-b+a)D.(-x+y)(x-y)3.PM2.5是大气压中直径小于或等于0.xxxxxxxm的颗粒物,将0.xxxxxxx用科学记数法表示为()A.0.25×10^-5B.0.25×10^-6C.2.5×10^-5D.2.5×10^-64.如图,∠1与∠2互补,∠3=135°,则∠4的度数是()A、45°B、55°C、65°D、75°5.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间t(时)变化的图象(全程)如图所示。

有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时甲跑了10千米,乙跑了8千米;③乙的行程y与时间t的关系式为y=10t;④第1.5小时,甲跑了12千米。

北京市西城区2014-2015学年七年级(上)期末考试数学试题及答案

北京市西城区2014-2015学年七年级(上)期末考试数学试题及答案

北京市西城区2014— 2015学年度第一学期期末试卷七年级数学 2015.1试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在1, 0,1-,2-这四个数中,最小的数是( )A. 2-B. 1-C. 0D. 12.2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数 约为13 100 000人,创历史新高.将数字13 100 000用科学记数法表示为 A . 13.1×106B .1.31×107C .1.31×108D .0.131×1083.下列计算正确的是( )A. 235a b ab +=B. 325a a a +=C. 2222a a a --=-D. 22271422a b a b a b -= 4.已知关于x 的方程225x m +=的解是2x =-,则m 的值为( ).A.12 B. 12- C. 92 D. 92- 5.若21(2)02x y -++=,则2015()xy 的值为( ) A. 1 B. 1- C.2015- D. 20156.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )A B CD7.如图,将一个直角三角板AOB 的顶点O 放在直线CD 上, 若∠AOC =35°,则∠BOD 等于 A .155°B .145°C .65°D . 55°8.在某文具店,一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在新年之际举行文具优惠销售活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.设该铅笔卖出x 支,则可列得的一元一次方程为( ) A .0.8 1.20.92(60)87x x ⨯+⨯-= B .0.8 1.20.92(60)87x x ⨯+⨯+= C .0.920.8 1.2(60)87x x ⨯+⨯+= D . 0.920.8 1.2(60)87x x ⨯+⨯-= 9.如图,四个有理数在数轴上的对应点M ,P ,N , Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是A .点MB .点NC .点PD .点Q10.小明制作了一个正方体包装盒,他在这个正方体包装盒的上面设计了一个“ ”标志,并在正方体的每个表面都画了黑色粗线,如右图所示.在下列图形中,是这个正方体包装盒的表面展开图的是A BC D二、填空题(本题共20分,第11~14题每小题3分,第15~18题每小题2分) 11.4-的倒数是 .12. “m 与n 的平方差”用式子表示为 .14.已知多项式22x y +的值是3,则多项式224x y ++的值是 . 15.写出一个只含有字母x ,y 的三次单项式 .16.如图,已知线段AB =10cm ,C 是线段AB 上一点,D 的中点,E 是线段BC 的中点,则DE 的长是 cm .17.如图,把一个圆平均分为若干份,然后把它们全部剪开,拼成一个近似的平行四边形.若这个平行四边形的周长比圆的周长增加了4cm ,则这个圆的半径是 cm ,拼成的平行四边形的面积是 cm 2.18.观察下列等式:12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26,……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52× = ×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b ≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是.三、计算题(本题共16分,每小题4分)19. 3011(10)(12)-+--- 20.51(3)()(1)64-⨯-÷-解: 解:21.21[1(10.5)][10(3)]3--⨯⨯-+- 22.312138()(2)(8)595⨯--⨯-+-⨯解: 解:四、先化简,再求值(本题5分)23.23232(3)3(2)ab a b ab a b ---,其中12a =-,4b =.解:五、解下列方程或方程组(本题共10分,每小题5分)24.4131163x x --=-. 25.32105.x y x y +=⎧⎨-=⎩, 解: 解:六、解答题(本题6分)26. 如图,∠A +∠B =90°,点D 在线段AB 上,点E 在线段AC 上,DF 平分∠BDE ,DF 与BC 交于点F .(1)依题意补全图形;(2)若∠B +∠BDF =90°,求证:∠A =∠EDF . 证明:∵∠A +∠B =90°,∠B +∠BDF =90°,∴ (理由: ) . 又∵ ,∴∠BDF =∠EDF (理由: ) . ∴∠A =∠EDF .七、列方程或方程组解应用题(本题5分)27.电子商务的快速发展逐步改变了人们的购物方式,网购已悄然进入千家万户.李阿姨在某网店买了甲、乙两件商品,已知甲商品的价格比乙商品价格的2倍多108元,乙商品的价格比甲、乙两件商品总价的14少3元.问甲、乙两件商品的价格各多少元?解:八、解答题(本题8分)28.已知A,B,C三点在同一条数轴上.(1)若点A,B表示的数分别为-4,2,且12BC AB=,则点C表示的数是;(2)点A,B表示的数分别为m,n,且m<n.①若AC-AB=2,求点C表示的数(用含m,n的式子表示);②点D是这条数轴上的一个动点,且点D在点A的右侧(不与点B重合),当2AD AC=,14BC BD=,求线段AD的长(用含m,n的式子表示).解:(1)点C表示的数是;(2)①②北京市西城区2014— 2015学年度第一学期期末试卷七年级数学附加题2015.1试卷满分:20分一、填空题(本题共7分,第1题5分,第2题2分)1.1883年,德国数学家格奥尔格·康托尔引入位于一条线段上的一些点的集合,他的做法如下:取一条长度为1的线段,将它三等分,去掉中间一段,余下两条线段,达到第1阶段;将剩下的两条线段再分别三等分,各去掉中间一段,余下四条线段,达到第2阶段;再将剩四条线段,分别三等分,分别去掉中间一段,余下八条线段,达到第3阶段;……;这样的操作一直继续下去,在不断分割舍弃过程中,所形成的线段数目越来越多,把这种分形,称做康托尔点集.下图是康托尔点集的最初几个阶段,当达到第5个阶段时,余下的线段的长度..之和为;当达到第n个阶段时(n为正整数),余下的线段的长度..之和为.2.如图,足球的表面是由若干块黑皮和白皮缝合而成的,其中黑皮为正五边形,白皮为正六边形.已知黑皮和白皮共有32块,每块黑皮周围有5块白皮,每块白皮周围有3块黑皮,设缝制这样一个足球需要x块黑皮,y块白皮,那么根据题意列出的方程组是.二、解答题(本题共4分)3.(1)如图1,D 是线段BC 的中点,三角形ABC 的面积与三角形ABD 的面积比为 ; (2)如图2,将网格图中的梯形ABCD 分成三个三角形,使它们的面积比是1:2:3.4.设x 是有理数,我们规定:(0)0(0)x x x x +≥⎧=⎨<⎩,0(0)(0)x x x x ->⎧=⎨≤⎩.例如:33+=,(2)0+-=;30-=, (2)2--=-.解决如下问题: (1)填空: 1()2+= , (1)--= ,x x +-+= ; (2)分别用一个含||,x x 的式子表示x +,x -.解:(1)1()2+= , (1)--= ,x x +-+= ; (2)北京市西城区2014— 2015学年度第一学期期末试卷七年级数学参考答案及评分标准 2015.1一、选择题(本题共30分,每小题3分)三、计算题(本题共16分,每小题4分) 19.3011(10)(12)-+---解:3011(10)(12)-+---=30111012--+ ···························································································· 1分 =4221- ········································································································· 3分 =21 ················································································································· 4分20. 51(3)()(1)64-⨯-÷-解:51(3)()(1)64-⨯-÷-55364=-⨯÷ ···································································································· 2分 =54365-⨯⨯ ····································································································· 3分=2- ················································································································· 4分21. 21[1(10.5)][10(3)]3--⨯⨯-+-解:21[1(10.5)][10(3)]3--⨯⨯-+-=11[1(1)](109)23--⨯⨯-+ ······················································································ 1分 =5(1)(1)6-⨯- ··········································································································· 3分 =16- ·························································································································· 4分22.312138()(2)(8)595⨯--⨯-+-⨯ 解:312138()(2)(8)595⨯--⨯-+-⨯=1213888595-⨯+⨯-⨯ ···················································································· 2分=12388()559-++ ····························································································· 3分=8249-+=1239- ············································································································ 4分四、先化简,再求值(本题5分)23.23232(3)3(2)ab a b ab a b ---,其中12a =-,4b =.解:23232(3)3(2)ab a b ab a b ---=23236263ab a b ab a b --+ ·············································································· 2分 =3a b ··············································································································· 3分当12a =-,4b =时,原式31()42=-⨯ ···························································································· 4分12=- ······································································································· 5分五、解下列方程或方程组(本题共10分,每小题5分) 24.4131163x x --=-解: 去分母,得 (41)62(31x x -=--. ························································ 1分去括号,得 41662x x -=-+. ····························································· 2分 移项,得 46621x x +=++. ································································· 3分合并同类项,得 109x =. ······································································· 4分 系数化1,得910x =. ················································································ 5分 25.32105.x y x y +=⎧⎨-=⎩,解:由②得 5x y =+.③ ················································································ 1分把③代入①,得 3(5)210y y ++=. ··························································· 2分 解得 1y =-. ······························································································· 3分 把1y =-代入③,得 5(1)4x =+-=. ····················································· 4分① ②所以,原方程组的解为 41.x y =⎧⎨=-⎩,································································ 5分六、解答题(本题6分)26.解:(1)补全图形,如图; ···································· 2分(2)证明:∵∠A +∠B =90°,∠B +∠BDF =90°, ∴ ∠A =∠BDF (理由: 同角的余角相等 ) . ·················································································· 4分 又∵ DF 平分∠BDE , ······················· 5分 ∴∠BDF =∠EDF (理由: 角平分线定义 ) . ·················································································· 6分 ∴∠A =∠EDF .七、列方程或方程组解应用题(本题6分)27.解:设甲商品的价格x 元,乙商品价格y 元. ···················································· 1分由题意,得2108,1() 3.4x y y x y =+⎧⎪⎨=+-⎪⎩········································································ 3分 解得300,96.x y =⎧⎨=⎩································································································ 5分答:甲商品的价格为300元, 乙商品的价格为96元. ····························· 6分八、解答题(本题共8分)28.解:(1)﹣1,5; ·································································································· 2分(2) 设点C 表示的数为x ,由m <n ,可得:点A 在点B 的左侧.AB n m =-.①由AC -AB =2,得AC >AB .以下分两种情况:ⅰ) 当点C 在点B 的右侧时,如图1所示,此时AC = x -m .∵AC -AB =2, ∴(x -m ) -(n -m ) =2. 解得2x n =+.∴点C 表示的数为2n +. ····················································· 4分 ⅱ) 当点C 在点A 的左侧时,如图2所示,此时,AC =m -x .∵AC -AB =2,∴(m -x )-(n -m ) =2解得22x m n =--.∴点C 表示的数为22m n --.综上,点C 表示的数为2n +,22m n --. ························ 6分AB CEDBA 图1图2②由2AD AC =,可得:点C 为线段AD 上或点C 在点A 的左侧. 当动点D 在线段AB 上时,无论点C 在何位置均不合题意; 当动点D 在点B 的右侧时,以下分三种情况:ⅰ)当点C 在线段BD 的延长线上时,点C 为线段AD 的中点,当点C 在线段BD 上时,如图3所示. ∴33AD n m =-.ⅱ)当点C 在线段AB 上时,如图4所示.∴5533AD n m =-.ⅲ)当点C 在点A 左侧时,不合题意.综上所述,线段AD 的长为33n m -或5533n m -. ···························· 8分北京市西城区2014— 2015学年度第一学期期末试卷七年级数学附加题参考答案及评分标准 2015.1一、填空题(本题共7分,第1题5分,第2题2分)1.523⎛⎫⎪⎝⎭; ··················································································································· 3分23n⎛⎫⎪⎝⎭. ················································································································· 5分 2.32,53.x y x y +=⎧⎨=⎩·············································································································· 2分二、解答题(本题共13分,第3题6分,第4题7分)3.解:(1)2:1; ·········································································································· 3分 (2)答案不唯一,如:···························································· 6分4.解:(1)1122+⎛⎫= ⎪⎝⎭,()111--=-,x x x +-+=; ················································ 3分(2)当x ≥0时,x x +=,x x =,∴2x xx ++=. CB DA 图4图3DBC当x <0时,0x +=, ∴2x xx ++=. 综上所述,当x 为有理数时,2x xx ++=. 当x ≥0时, 0x -=,∴2x xx --=. 当x <0时,x x -=,x x =-∴2x xx --=; 综上所述,当x 为有理数时,2x xx --=. ············································ 7分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2016-2017学年上学期初中七年级期末考试数学试卷试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的。

1. 规定海平面的海拔高度为0米,珠穆朗玛峰高于海平面8844.43米,其海拔高度记作+8844.43米,那么吐鲁番盆地低于海平面155米,则其海拔高度记作()A. +155米B. -155米C. +8689.43米D. -8689.43米2. 北京新机场是京津冀协同发展中的重点工程。

2016年,北京新机场主体工程已开工建设,其中T1航站区建筑群总面积为1 430 000平方米,计划于2019年交付使用。

将1 430 000用科学记数法表示为()A. 1430×103B. 143×104C. 14.3×105D. 1.43×1063. 下列运算中,正确的是()A. 4x+3y=7xyB. 3x2+2=5x2C. 6xy-4xy=2xyD. 5x2-x2=44. 下列方程中,解为x=4的方程是().A. x-1=4B. 4x=1C. 4x-1=3x+3D. 2(x-1)=15. 如图所示,用量角器度量一些角的度数。

下列结论中正确的是()A. ∠BOC=60°B. ∠COD=150°C. ∠AOC与∠BOD的大小相等D. ∠AOC与∠BOD互余6. 已知a2+3a=1,则代数式2a2+6a-1的值为()A. 1B. 2C. 3D. 07. 如图,点C在线段AB上,D是线段AC的中点。

若CB=2,CD=3CB,则线段AB的长为()A. 6B. 10C. 14D. 188. 有理数a,b在数轴上的对应点的位置如图所示,则下列式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a-b>a+b。

A. ①②B. ①④C. ②③D. ③④9. 甲、乙两人同时开始采摘樱桃,甲平均每小时采摘8公斤樱桃,乙平均每小时采摘7公斤樱桃。

采摘同时结束后,甲从他采摘的樱桃中取出1公斤给了乙,这时两人的樱桃一样多。

他们采摘樱桃用了多长时间?设他们采摘了x 小时,则下面所列方程中正确的是( )A. 8x-1=7x+1B. 8x-1=7xC. 8x+l=7xD. 8x+l=7x-110. 下列四张正方形硬纸片,分别将阴影部分剪去后,再沿虚线折叠,其中可以围成一个封闭..长方体包装盒的是( )二、填空题(本题共22分,第16、17题每小题2分,其余每小题3分) 11. |-2017|=___________。

12. 用四舍五入法对8.637取近似数并精确到0.01,得到的值是___________。

13. 角度换算:45.6°=___________°___________'。

14. 写出单项式-3a 2b 的一个同类项:___________。

15. 对于有理数m ,n ,我们规定m ○×n=mn-n ,例如3○×5=3×5-5=10,则(-6)○×4=________。

16. 下面的框图表示解方程3x-7(x-1)=3-2(x+3)的流程,其中A 代表的步骤是_________,步骤A 对方程进行变形的依据是________________。

17. “x 与y 的积”用代数式表示为xy ,老师提出单项式“xy ”可以解释为:一件商品的单价为x 元,则购买y 件此商品共需要花费xy 元。

(1)小晨对“xy ”也赋予了一个含义:圆柱的底面积为x 平方米,高为y 米,则它的_______为xy 立方米; (2)请你参照他们的说法对“xy ”再赋予一个含义:_________________________________________________________。

18. 观察下面的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:①1×21=1-21②2×32=2-32③3×43=3-43……(1)在下面给出的四个正方形中画出..第四个图形,并在右边写出与之对应的等式;_______________(2)猜想并写出与第几个图形相对应的等式:______________________________。

三、计算题(本题共15分,第21题3分,其余每小题4分) 19. 13+(-5)-(-21)-19 20. (-131)×(-9)÷(-21)解: 解: 21. 36×(91-61-43) 22. (-2)3×[-7+(3-1.2×65)] 解: 解:四、解答题(本题共15分,每小题5分)23. 求3(4x 2y-2y 2)-(10x 2y-6y 2)的值,其中x=3,y=-2。

解:24. 解方程:32+x +1=42x -. 25. 解方程组:⎩⎨⎧=-=+。

1483,1y x y x解: 解:五、解答题(本题共18分,第26题6分,第27题5分,第28题7分)26. 如图,点C 在射线OA 上,CE 平分∠ACD. OF 平分∠COB 并与射线CD 交于点F 。

(1)依题意补全图形;(2)若∠COB+∠OCD=180°,求证:∠ACE=∠COF 。

请将下面的证明过程补充完整。

证明:∵CE 平分∠ACD ,OF 平分∠C OB , ∴∠ACE=______________,∠COF=21∠COB 。

(理由:_____________________________________) ∵点C 在射线OA 上, ∴∠ACD+∠OCD=180°。

∵∠COB+∠OCD=180°, ∴∠ACD=∠_____________。

(理由:____________________________________) ∴∠ACE=∠COF。

27. 自2014年12月28日北京公交地铁调价以来,人们的出行成本发生了较大的变化. 小林根据新闻,将地铁和公交车的票价绘制成了如下两个表格。

(说明:表格中“6~12公里”指的是大于6公里,小于等于12公里,其他类似)北京地铁新票价里程范围 对应票价 0~6公里 3元 6~12公里 4元 12~22公里 5元 22~32公里 6元32公里以上每增加1元可再乘坐20公里*持市政交通一卡通花费累计满一定金额后可打折加根据以上信息回答下列问题:小林办了一张市政交通一卡通学生卡...,目前乘坐地铁没有折扣。

(1)如果小林全程乘坐地铁的里程为14公里,用他的学生卡需要刷卡交费________元; (2)如果小林全程乘坐公交车的里程为16公里,用他的学生卡需要刷卡交费________元;(3)小林用他的学生卡乘坐一段地铁后换乘公交车,两者累计里程为12公里。

已知他乘坐地铁平均每公里花费0.4元,乘坐公交车平均每公里花费0.25元,此次行程共花费4.5元。

请问小林乘坐地铁和公交车的里程分别是多少公里?(3)解:28. A ,B 两点在数轴上的位置如图所示,其中点A 对应的有理数为-4,且AB=10。

动点P 从点A 出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t 秒(t>0)。

(1)当t=1时,AP的长为_________,点P表示的有理数为_________;(2)当PB=2时,求t的值;(3)M为线段AP的中点,N为线段PB的中点. 在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长。

(2)解:(3)解:附加题试卷满分:20分一、解答题(本题6分)1. 在茫茫宇宙中,存在着一种神秘的天体,任何物质经过它的附近都会被它吸引进去,再也不能出来,这就是黑洞。

在数学中也有这种神秘的黑洞现象,被称为“西西弗斯串”。

“西西弗斯串”是指任意设定一个数字串,数出其中所含偶数数字的个数、奇数数字的个数、数字的总个数,将它们按照“偶—奇—总”的顺序排列成新的数字串,再将新的数字串按照上述规则重复进行下去,……最终总能得到一个不再变化的数字串。

(1)例如,11位的数字串46818957892,其中偶数数字有6个,奇数数字有5个,数字总个数是11个,按上述规则操作得到新的数字串6511;将所得4位数字串6511再次按规则进行操作可得到新的数字串__________;若一直按规则重复进行操作,最终得到的数字串是__________;(2)请你再任意写出一个数字串,按照上述规则重复进行操作,写出操作过程中的结果,并确定最终得到的数字串。

(2)解:二、填空题(本题6分)2. 一个二元码是由0和1组成的数字串x 1x 2…x n (n 为正整数),其中x k (k=1,2,…,n )称为第k 位码元,如:二元码01101的第1位码元为0,第5位码元为1。

(1)二元码100100的第4位码元为__________;(2)二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)。

已知某种二元码x 1x 2…x 7的码元满足如下校验方程组:⎪⎩⎪⎨⎧=⊕⊕⊕=⊕⊕⊕=⊕⊕⊕,1,1,1753176547632x x x x x x x x x x x x 其中运算⊕定义为:0⊕0=0,1⊕1=0,0⊕1=1,1⊕0=1。

①计算:0⊕1⊕1⊕0=___________;②现已知一个这种二元码在通信过程中仅.在第k 位发生码元错误后变成了0101101,那么利用上述校验方程组可判定k 等于__________。

三、解答题(本题8分) 3. 阅读下列材料:《张丘建算经》是一部数学问题集,其内容、范围与《九章算术》相仿。

其中提出并解决了一个在数学史上非常著名的不定方程问题,通常称为“百鸡问题”:“今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一。

凡百钱买鸡百只,问鸡翁、母、雏各几何。

”译文:公鸡每只值五文钱,母鸡每只值三文钱,小鸡每三只值一文钱。

现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?结合你学过的知识,解决下列问题:(1)若设公鸡有x只,母鸡有y只,①则小鸡有____________只,买小鸡一共花费____________文钱;(用含x,y的式子表示)②根据题意列出一个含有x,y的方程:______________________________;(2)若对“百鸡问题”增加一个条件:公鸡数量是母鸡数量的3倍,求此时公鸡、母鸡、小鸡各有多少只?(3)除了问题(2)中的解之外,请你再直接写出两组..符合“百鸡问题”的解。

相关文档
最新文档