北京中考西城一模数学(含答案)电子版

合集下载

2023年北京市西城区中考一模数学试卷(含答案解析)

2023年北京市西城区中考一模数学试卷(含答案解析)

2023年北京市西城区中考一模数学试卷学校:___________姓名:___________班级:___________考号:___________....根据地区生产总值统一核算的结果,年北京市全年地区生产总值41610.9亿元,按不变价格计算,年增长0.7%4161090000000用科学记数法表示应为(.41.610910⨯.4.16109⨯ 4.1610910⨯134.1610910⨯.如图,点O 上,OC ⊥50AOC = ,则的度数是(A .120B .130 140 4.下列图形都是轴对称图形,其中恰有条对称轴的图形是(A .B ...5.a ,b 在数轴上的对应点的位置如图所示,则正确的结论是(A .2a >-B .a b <0ab >a b <-6.平面直角坐标系xOy 中,若点12(,A x ,4)在反比例函数0)k >图像上,则下列关系式正确的是()A .120x x >>B .210x x >>120x x <<210x x <<7.x 的方程231mx x +-=有两个不相等的实数根,则实数m 的取值范围是()A .94m >-B .94m ≥-94m >-且m 94m ≥-且m ≠8.设备每年都需要检修,该设备使用年数n (单位:年,n 为正整数且110n ≤≤)与每年至第n 年该设备检修支出的费用总和y (单位:万元)满足关系式 1.40.5y n =-,下列结论正确的是()A .从第2年起,每年的检修费用比上一年增加1.4万元B .从第2年起,每年的检修费用比上一年减少0.5万元C .第1年至第5年平均每年的检修费用为3.7万元D .第6年至第10年平均每年的检修费用为1.4万元二、填空题FD14.“圆”是中国文化的一个重要精神元素,在中式建筑中有着广泛的应用,例如古典园林中的门洞,如图,某地园林中的一个圆弧形门洞的高为门洞的半径为__________m .15.有6张看上去无差别的卡片,上面分别写着放回并混合在一起,再随机抽取的概率是__________.16.A ,B ,C 三种原料每袋的重量(单位:万元)依次是3,2,5.现生产某种产品需要A ,B ,C 这三种原料的袋数依次为123,,x x x (123,,x x x 均为正整数),则生产这种产品时需要的这三类原料的总重量W (单位:kg )=__________(用含123,,x x x 的代数式表示):为了提升产品的品质,要求13W ≥,当123,,x x x 的值依次是_______时,这种产品的成本最低.方法一证明:如图,过点E 作∥MN AB21.在ABC 中,AD 是在线段AD 上,点F 在线段上,CE FB ∥,连接BE (1)如图1,求证:四边形BFCE 是平行四边形.b.丙家民宿“综合满意度”评分:,,,,,,,,,2.64.74.55.04.54.84.53.84.53.1c.甲、乙、丙三家民宿“综合满意度”评分的平均数、中位数:甲乙丙平均数m 4.5 4.2(1)求证:DE AB ∥;(2)若5OA =,3sin 5A =,求线段25.如图1,利用喷水头喷出的水对小区草坪进行喷灌作业是养护草坪的一种方法,如图2,点O 处由一个喷水头,距离喷水头棵树10m 的N 处有一面高灌时,喷水头喷出的水柱的竖直高度函数关系2(y ax bx c a =++(1)某次喷水浇灌时,测得x 与y 的几组数据如下:x 02610121416y0.882.162.802.882.802.56①根据上述数据,求这些数据满足的函数关系;②判断喷水头喷出的水柱能否越过这棵树,并说明理由.(2)某次喷水浇灌时,已知喷水头喷出的水柱的竖直高度y 与水平距离系20.04y x bx =-+,假设喷水头喷出的水柱能够越过这棵树,且不会浇到墙外,下面有四个关于b 的不等式:A .20.0488 2.3b -⨯+>;B .20.041818 2.2b -⨯+>;(1)求证:MEN AOC ∠=∠;(2)点F 在线段NO 上,点G 在线段NO 延长线上,连接补全图形,用等式表示线段NF ,OG ,OM 之间的数量关系,并证明.28.在平面直角坐标系xOy 中,给定图形W 和点T 满足2ST PM =.其中点M 为线段ST 的中点,则称点(1)已知点(2A ,0)①在点12341133(,),(1,3),(,),(2,1)2222P P P P --中,线段②若直线y x b =+上存在线段OA 的相关点,求(2)已知点(3Q -,0),线段CD 的长度为d ,当线段能在线段CD 上找到一点K ,使得在y 轴上存在以的取值范围.参考答案:共有36种等可能的结果,其中第二次取出的数字是第一次取出数字的整数倍的有方法二证明:如图,延长AE ,交CD 于点F ,∵AB CD ,∴A AFC ∠=∠.∵AEC AFC C ∠=∠+∠,∴AEC A C ∠=∠+∠.【点睛】本题考查了平行线的判定和性质,三角形外角的性质,熟练掌握平行线的性质是解题的关键.21.(1)见解析(2)①见解析;②见解析【分析】(1)证明BDF CDE ≌,可得FB CE =,再根据CE FB ∥,即可得出结论;(2)由A ABC CB =∠∠,可得AB AC =,再由等腰三角形的性质可证AD BC ⊥,再利用菱形的判定即可得出结论.【详解】(1)证明:∵CE FB ∥,∴BFE CEF ∠=∠,∵AD 是BC 边上的中线,∴BD DC =,∵BDF CDE =∠∠,∴BDF CDE ≌,∴FB CE =,∴四边形BFCE 是平行四边形.(2)解:①依题意补全图2,如图;②证明:∵ABC ∠∴AB AC =,∵AD 是BC 边上的中线,∴AD BC ⊥,由(1)证明方法可得∴四边形BFCE 为菱形.【点睛】本题考查平行四边形的判定与性质、平行线的性质及菱形的判定,22.(1)4.5,4.5(2)2s 乙<2s 甲<2s 丙(3)推荐乙,理由见解析【分析】(1)根据折线统计图得出甲家民宿“综合满意度”评分,重新排序,求得中位数即可求解;(2)根据数据的波动范围即可求解;(3)根据平均数与方差两方面分析即可求解.【详解】(1)解:甲家民宿∴(1 3.2 4.210m =+丙家民宿“综合满意度2.64.74.55.04.5,,,,,从小到大排列为:∴中位数 4.52n +=故答案为:4.5,(2)解:作BH DE ⊥于∴90BHD BHE ∠∠︒==.∵OD DE ⊥,90AOD ∠=4【点睛】本题考查了切线的性质,正方形的判定和性质,圆周角定理及推论,锐角三角函数之间的转化,关键是连接过切点的半径,得垂直于半径的直线,过点形.25.(1)①2=-+y x0.020.48(2)A,C【分析】(1)①设抛物线解析式为即可.②根据抛物线的对称性解答即可.(2)根据题意,得到当x∴[]2121()()211a x x x x t a a -+-⨯⨯≥≥,∴3a ≥,又∵0a >,∴03a <≤.∴a 的取值范围是03a <≤.【点睛】本题考查了二次函数的图象和性质,关键是根据抛物线上的点与抛物线顶点的关系,结合图象求解.27.(1)见解析(2)OM NF OG =+,理由见解析【分析】(1)先根据角的平分线的性质,过点E 作EH CD ⊥,EK AB ⊥,垂足分别是H ,K ,得EH EK =,再根据三角形全等的判定,证明Rt EHN Rt EKM ≌即可得结论.(2)作辅助线,在线段OM 上截取1OG OG =,连接EG 1,先证明1EOG EOG ≌,得1EG EG =,1EG O EGF ∠=∠,再证明1ENF EMG ≌,得1NF MG =,再推导得出结论.【详解】(1)(1)证明:作EH CD ⊥,EK AB ⊥,垂足分别是H ,K ,如图.∵OE 是BOC ∠的平分线,∴EH EK =.∵ME NE =,∴Rt EHN Rt EKM ≌.∴ENH EMK ∠∠=.记ME 与OC 的交点为P ,∴EPN OPM ∠∠=.∴MEN AOC ∠∠=.(2)(2)OM NF OG =+.证明:在线段OM 上截取1OG OG =,连接EG 1,如图.∵OE 是BOC ∠的平分线,∴EON EOB ∠∠=.∵MOF DOB ∠∠=,∴EOM EOD ∠∠=.∵OE OE =,∴1EOG EOG ≌.∴1EG EG =,1EG O EGF ∠=∠.∵EF EG =,∴1EF EG =,EFG EGF ∠=∠.∴1EFG EG O ∠=∠.∴1EFN EG M ∠=∠.∵1ENF EMG ∠=∠.∴1ENF EMG ≌.∴1NF MG =.∵11OM MG OG =+,∴OM NF OG =+.【点睛】此题考查了角平分线的性质、全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.故答案为:1P,3P.(2A ,0),∴(1H ,0).当直线y x b =+与H 相切,且将直线y x b =+与x 轴的交点分别记为则点B 的坐标是(b -,0).∴1BH b =+.BH =2,∴12b +=,解得21b =-.当直线y x b =+与H 相切,且同理可求得21b =--.所以b 的取值范围是21--b ≤(2)解:设点K 是直线2x =-上一点,且点一相关点,设()2,K k -,则以QK 为直径的圆上两点如图所示,设以QK 为直径的圆,圆心是C .则C ⎛- ⎝∴52CP =M 是ST 的中点,2ST PM =,∴2SP PM=当ST CP ⊥且ST PC =时,y 轴上存在以QK 在Rt CSM 中,22552224CS CP ==⨯=∴5222QK CS ==,∴2225246122KB KQ QB ⎛⎫=-=-=⎪ ⎪⎝⎭根据对称性可得当K 点在x 轴的下方时,也符合题意,∴d ≥46.【点睛】本题考查了几何新定义,切线的性质,垂径定理,勾股定理,理解新定义是解题的。

西城数学一模试卷初三答案

西城数学一模试卷初三答案

一、选择题(每题4分,共24分)1. 已知函数f(x) = x^2 - 2x + 1,那么f(x)的对称轴是()A. x = 1B. x = -1C. y = 1D. y = -1答案:A解析:这是一个标准的二次函数,其一般形式为f(x) = ax^2 + bx + c。

对称轴的公式为x = -b/2a。

在本题中,a = 1,b = -2,所以对称轴为x = -(-2)/21 = 1。

2. 在直角坐标系中,点A(2,3),点B(5,1),则线段AB的中点坐标是()A. (3,2)B. (4,2)C. (3,1)D. (4,1)答案:B解析:线段的中点坐标可以通过计算两端点坐标的平均值得到。

即中点坐标为((x1 + x2)/2, (y1 + y2)/2)。

将点A和点B的坐标代入,得到中点坐标为((2 + 5)/2, (3 + 1)/2) = (4, 2)。

3. 如果a + b = 5,ab = 6,那么a^2 + b^2的值为()A. 19B. 25C. 36D. 35答案:A解析:这是一个关于a和b的二次方程的问题。

根据公式(a + b)^2 = a^2 + 2ab + b^2,可以得到a^2 + b^2 = (a + b)^2 - 2ab。

将a + b = 5和ab = 6代入,得到a^2 + b^2 = 5^2 - 26 = 25 - 12 = 19。

4. 在△ABC中,∠A = 90°,∠B = 45°,则△ABC的周长与面积之比为()A. 1:1B. 2:1C. 3:1D. 4:1答案:B解析:由于∠A = 90°,∠B = 45°,因此△ABC是一个等腰直角三角形。

在等腰直角三角形中,斜边长度是直角边长度的√2倍。

设直角边长度为a,则斜边长度为a√2。

周长为2a + a√2,面积为(1/2)aa = a^2/2。

周长与面积之比为(2a + a√2) / (a^2/2) = 4/(a^2/2) = 8/a^2。

西城区初三一模数学试题及答案.doc

西城区初三一模数学试题及答案.doc

参考答案一、选择题ACAB CCDB二、填空题 9.2(3)y x - 10.8 11.①③ 12.5;5n三、解答题13.12-14.-3<x ≤1;3x =不是其解 15.2y x =-+;1AOP S =16.略17.由根的判别式得22b a =,代入原式化简得2 18.(1)300;60;99;132;9 (2)72°19.抢险车20km/时,吉普车30km/时。

注意分式方程要检验20.(1)BN=5;(2)163(25)922S =+⨯=21.(1)连接BO ,证明略;(2)易证△ABO 为正三角形,于是∠E=∠C=30°,所以△BFE ∽△AFC由cos ∠BFA=23BF AF =设△AOC 面积为S ,因此有239()824S ==,解得S=18 22.(1)1:2;121 (2)正三角形、正六边形 (3)如图A 3A 2A 1A23.略24.(1)30°;60°(2)2182y x =-+;(3)5个;222(3,)33;222(3,)33-;416(3,)33- 25.(1)如图,PEFC ABD过点E 作EF ⊥AE ,使EF=BD ,构造全等三角形,易证△DCA ≌△AEF (SAS )从而△AFD 是等腰直角三角形 再利用四边形EFDB 是平行四边形得EB ∥FD ,于是∠APE=∠ADF=45° (2)如图FPEDCAB方法同(1),构造相似,判断含30°的直角三角形,从而得∠APE 是30°注:本试卷答案仅为参考答案,系本人仓促间所作,错漏之处请批评指正。

另外本人对23题存有异议,故答案暂略。

2022-2022学年北京市西城区初三一模数学试卷(WORD版含答案)

2022-2022学年北京市西城区初三一模数学试卷(WORD版含答案)

2022-2022学年北京市西城区初三一模数学试卷(WORD版含答案)北京市西城区2022年初三一模试卷数学2022.4一、选择题(本题共30分,每小题3分)1.的相反数是1311B.C.3D.3332.据市烟花办相关负责人介绍,2022年除夕零时至正月十五24时,全市共销售烟花爆竹约196000箱,同比下降了32%.将196000用科学记数法表示应为A.A.1.96105B.1.96104C.19.6104D.0.1961063.下列运算正确的是A.3a3b6abB.a3aa2C.a23a6D.a6a3a24.如图是一个几何体的直观图,则其主视图是5.甲、乙、丙、丁四名选手参加100米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道.若甲首先抽签,则甲抽到1号跑道的概率是A.1B.111C.D.2346.下列图形中,既是轴对称图形又是中心对称图形的是7.如图,线段AB是⊙O的直径,弦CD丄AB,如果∠BOC=70°,那么∠BAD等于A.20°B.30°C.35°D.70°8.在平面直角坐标系某Oy中,第一象限内的点P在反比例函数的图象上,如果点P的纵坐标是3,OP=5,那么该函数的表达式为1212B.y某某1515C.yD.y某某A.y9.为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.这组数据的众数和中位数分别是A.6,4B.6,6C.4,4D.4,610.如图,过半径为6的⊙O上一点A作⊙O的切线l,P为⊙O上的一个动点,作PH⊥l于点H,连接PA.如果PA=某,AH=y,那么下列图象中,能大致表示y与某的函数关系的是二、填空题(本题共18分,每小题3分)11.如果分式有意义,那么某的取值范围是.某512.半径为4cm,圆心角为60°的扇形的面积为cm2.13.分解因式:12m23=.14.如图,△ABC中,AB=AC,点D,E在BC边上,当时,△ABD≌△ACE.(添加一个适当的条件即可)15.如图是跷跷板的示意图,立柱OC与地面垂直,以O为横板AB的中点,AB绕点O上下转动,横板AB..的B端最大高度h是否会随横板长度的变化而变化呢?一位同学做了如下研究:他先设AB=2m,OC=0.5m,通过计算得到此时的h1,再将横板AB换成横板A′B′,O为横板A′B′的中点,且A′B′=3m,此时B′点的最大高度为h2,由此得到h1与h2的大小关系是:h1h2(填“>”、“=”或“<”).可进一步得出,h随横板的长度的变化而(填“不变”或“改变”).16.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,,按照这种移动方式进行下去,点A4表示的数是An与原点的距离不小于20,那么n的最小值是.三、解答题(本题共30分,每小题5分)17π2022()16tan30.18.如图,∠C=∠E,∠EAC=∠DAB,AB=AD.求证:BC=DE.122某0,19.解不等式组35某14某8.a23aa3120.先化简,再求值:2,其中a2.a2a1a1a121.从北京到某市可乘坐普通列车或高铁.已知高铁的行驶路程是400千米,普通列车的行驶路程是520千米.如果高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁比乘坐普通列车少用3小时.求高铁的平均速度是多少千米/时.22.已知关于某的一元二次方程某22(m1)某m(m2)0.(1)求证:此方程总有两个不相等的实数根;(2)若某2是此方程的一个根,求实数m的值.四、解答题(本题共20分,每小题5分)23.如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.\24.在北京,乘坐地铁是市民出行时经常采用的一种交通方式.据调查,新票价改革政策的实施给北京市轨道交通客流带来很大变化.根据2022年1月公布的调价后市民当时乘坐地铁的相关调查数据,制作了以下统计表以及统计图.根据以上信息解答下列问题:(1)补全扇形图;(2)题目所给出的线路中,调价后客流量下降百分比最高的线路是,调价后里程某(千米)在范围内的客流量下降最明显.对于表中客流量不降反增而且增长率最高的线路,如果继续按此变化率增长,预计2022年1月这条线路的日均客流量将达到万人次;(精确到0.1)(3)小王同学上学时,需要乘坐地铁15.9公里到达学校,每天上下学共乘坐两次.问:调价后小王每周(按5天计算)乘坐地铁的费用比调价前多支出元.(不考虑使用市政一卡通刷卡优惠,调价前每次乘坐地铁票价为2元)25.如图,AB为⊙O的直径,M为⊙O外一点,连接MA与⊙O交于点C,连接MB并延长交⊙O于点D,经过点M的直线l与MA所在直线关于直线MD对称.作BE⊥l于点E,连接AD,DE.(1)依题意补全图形;(2)在不添加新的线段的条件下,写出图中与∠BED相等的角,并加以证明.26.阅读下面的材料:小敏在数学课外小组活动中遇到这样一个问题:如果α,β都为锐角,且tan11,tan,求的度数.23小敏是这样解决问题的:如图1,把,放在正方形网格中,使得ABD,CBE,且BA,BC在直线BD的两侧,连接AC,可证得△ABC是等腰直角三角形,因此可求得=∠ABC°.请参考小敏思考问题的方法解决问题:如果,都为锐角,当tan4,tan画出∠MON=,由此可得=______°.3时,在图2的正方形网格中,利用已作出的锐角α,5五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)227、已知二次函数y1某b某c的图象C1经过(1,0),(0,3)两点.(1)求C1对应的函数表达式;(2)将C1先向左平移1个单位,再向上平移4个单位,得到抛物线C2,将C2对应的函数表达式记2为y2某m某n,求C2对应的函数表达式;(3)设y32某3,在(2)的条件下,如果在2≤某≤a内存在某一个某的值,使得y2≤y3成立,..利用函数图象直接写出a的取值范围.28、△ABC中,AB=AC.取BC边的中点D,作DE⊥AC于点E,取DE的中点F,连接BE,AF交于点H.(1)如图1,如果BAC90,那么AHB,(2)如图2,如果BAC60,猜想AHB的度数和(3)如果BAC,那么AF;BEAF的值,并证明你的结论;BEAF(用含的表达式表示)BE29、给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系某Oy中,O为坐标原点.(1)点A的坐标为A(1,0),则点B(2,3)和射线OA之间的距离为________,点C(2,3)和射线OA之间的距离为________;(2)如果直线y=某和双曲线yk,那么k(可在图1中进行研究)某(3)点E的坐标为(1,3),将射线OE绕原点O逆时针旋转60,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.①请在图2中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示)②将射线OE,OF组成的图形记为图形W,抛物线y某22与图形M的公共部分记为图形N,请直接写出图形W和图形N之间的距离.北京市西城区2022年初三一模试卷数学试卷参考答案及评分标准2022.4一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分)17π2022()16tan3012=23126=232334分3=3.5分18.证明:如图1.∵∠EAC=∠DAB,∴EAC1DAB1.即∠BAC=∠DAE.1分在△ABC和△ADE中,CE,BACDAE,3分ABAD,∴△ABC≌△ADE.4分∴BC=DE.5分19.解:由①,得某2.2分由②,得15某34某8.移项,合并,得11某11.系数化1,得某1.4分所以原不等式组的解集为某2.5分2某0,35某14某8.a23aa3120.解:2a2a1a1a1=aa3a12a312分a1a1==aa3a112a3a1a1a13分a1a1a1.4分a1211.5分213当a2时,原式=21.解:设普通列车的平均速度为某千米/时.1分则高铁的平均速度是2.5某千米/时.依题意,得4005203.2分2.5某某解得某120.3分经检验,某120是原方程的解,且符合题意.4分所以2.5某300.答:高铁的平均速度是300千米/时.5分22.(1)证明:2(m1)4m(m2)24m28m44m28m8m24.1分∵8m2≥0,∴8m24>0.2分∴方程总有两个不相等的实数根.3分(2)解:∵某2是此方程的一个根,2∴(2)2(2)(m1)m(m2)0.整理得m22m0.解得m10,m22.5分四、解答题(本题共20分,每小题5分)23.(1)证明:∵ADEBAD,∴AB∥ED.1分∵BD垂直平分AC,垂足为F,∴BDAC,AF=FC.又∵AEAC,∴EACDFC90.∴AE∥BD.∴四边形ABDE是平行四边形.2分(2)解:如图2,连接BE交AD于点O.∵DA平分∠BDE,∴∠ADE=∠1.又∵ADEBAD,∴∠1=∠BAD.∴AB=BD.3分∴ABDE是菱形.∵AB=5,AD=6,∴BD=AB=5,ADBE,OA2AD3.在Rt△OAB中,OB4.∵S1VABD2ADOB12BDAF,∴645AF.解得AF4.8.4分∵BD垂直平分AC,∴AC2AF9.6.5分注:其他解法相应给分.24.解:(1)补全扇形图如图3所示.1分(2)2号线,52<某≤72,22.2.(各1分)4分(3)30.5分25.解:(1)依题意,补全图形如图4.1分(2)BAD.2分证明:如图5,连接BC,CD.∵直线l与直线MA关于直线MD对称,∴12.3分∵AB为⊙O的直径,∴ACB90,即BCMA.又∵BEl,∵MCMBco1,MEMBco2,∴MC=ME.又∵C,E两点分别在直线MA与直线l上,可得C,E两点关于直线MD对称.∴3BED.4分又∵3BAD,∴BADBED.5分26.解:45.1分画图见图6.3分45.5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)27.解:(1)∵二次函数y1某2b某c的图象C1经过(1,0),(0,3)1bc0,∴1分c3.b2,解得2分c3.∴抛物线C1的函数表达式为y1某22某3.3分(2)∵y1某22某3=(某1)24,∴抛物线C1的顶点为(1,4).4分∴平移后抛物线C2的顶点为(0,0),它对应的函数表达式为y2某2.5分(3)a≥1(见图7).7分28.解:(1)90,.2分2(2)结论:AHB90,AF.BE证明:如图8,连接AD.∵AB=AC,∠BAC=60°,∴△ABC是等边三角形.∵D为BC的中点,∴AD⊥BC.∴∠1+∠2=90°.又∵DE⊥AC,∴∠DEC=90°.∴∠2+∠C=90°.∴∠1=∠C=60°.设AB=BC=k(k0),则CE1kCD,DE.24∵F为DE的中点,∴DF1DE,ADAB.2ADDF,BCCE∴ADDF.3分BCCE又∵∠1=∠C,∴△ADF∽△BCE.4分∴AFAD,5分BEBC∠3=∠4.又∵∠4+∠5=90°,∠5=∠6,∴∠3+∠6=90°.∴AHB90.6分(3)tan(9021co注:写或其他答案相应给分.2in12).7分29.解:(1)3.(每空各1分)2分(2)1.4分(3)①如图9,过点O分别作射线OE、OF的垂线OG、OH,则图形M 为:y轴正半轴,∠GOH的边及其内部的所有点(图中的阴影部分).7分说明:(画图2分,描述1分)(图形M也可描述为:y轴正半轴,直线y下方重叠的部分(含边界))②33某下方与直线y某334.……………………………………………8分3。

2024年北京西城区九年级初三一模数学试卷及答案

2024年北京西城区九年级初三一模数学试卷及答案

北 京 市 西 城 区 九 年 级 统 一 测 试 试 卷数 学 2024.4考生须知1. 本试卷共7页,共两部分, 28道题。

满分 100分。

考试时间120分钟。

2. 在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。

3. 试题答案一律填涂或书写在答题卡上, 在试卷上作答无效。

4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束, 将本试卷、答题卡和草稿纸一并交回。

第一部分 选择题一、选择题 (共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.右图是某几何体的展开图,该几何体是 (A) 圆锥 (B)三棱柱 (C)三棱锥 (D)四棱锥2. 2024年5.5G 技术正式开始商用,它的数据下载的最高速率从5G 初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps 表示每秒传输10000000000 位(bit)的数据. 将 10000000000用科学记数法表示应为(A )0.1×10¹¹ (B )1×10¹⁰ (C )1×10¹¹ (D) 10×10⁹3.下列图形中,既是中心对称图形也是轴对称图形的是4. 直尺和三角板如图摆放,若∠1=55°,则∠2的大小为 (A)35° (B)55° (C) 135° (D) 145°北京市西城区九年级统一测试试卷 数学2024.4 第1页 (共7页)15.如图,两个边长相等的正六边形的公共边为BD,点A,B,C在同一直线上, 点O₁, O₂分别为两个正六边形的中心. 则tan∠O₂AC的值为.16. 将1, 2, 3, 4, 5, …, 37这37个连续整数不重不漏地填入37个空格中. 要求: 从左至右,第1个数是第2个数的倍数,第1个数与第2个数之和是第3个数的倍数,第1,2,3个数之和是第4个数的倍数,…,前36个数的和是第37个数的倍数.若第 1 个空格填入 37,则第 2 个空格所填入的数为,第 37 个空格所填入的数为 .37三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:|−3|−+2sin60∘−12.18.解不等式组: 2(+1)<x+5, x+23≥x−12.19. 已知x²−x−4=0,求代数式 (x−2)²+(x−1)(x+3)的值.20. 如图,点E在▱ABCD的对角线DB的延长线上,AE=AD.AF⊥BD于点F,EG∥BC交AF的延长线于点G, 连接DG.(1) 求证: 四边形AEGD是菱形;(2)若AF=BF,tan∠AEF=12,AB=4,求菱形AEGD的面积.21.某学校组织学生社团活动,打算恰好用1000元经费购买围棋和象棋,其中围棋每套40元,象棋每套30元.所购买围棋的套数能否是所购买象棋套数的2倍?若能,请求出所购买的围棋和象棋的套数,若不能,请说明理由.22. 在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(3,5), B(-2,0), 且与y轴交于点 C.(1)求该函数的解析式及点C的坐标;(2)当x<2时, 对于x的每一个值, 函数y=-3x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.北京市西城区九年级统一测试试卷 数学2024.4 第3页 (共7页)24. 如图, AB 为⊙O 的直径, 弦CD⊥AB 于点H, OO 的切线CE 与BA 的延长线交于点E, AF∥CE, AF 与⊙O 的交点为F.(1) 求证: AF=CD;(2) 若⊙O 的半径为6, AH=2OH,求AE 的长.25. 如图,点O 为边长为1的等边三角形ABC 的外心. 线段PQ 经过点O,交边AB 于点P, 交边AC 于点Q. 若 AP =x,AQ =y 1,S APQ :S ABC =y 2,下表给出了x, y ₁, y ₂的一些数据 (近似值精确到0.0001).x 0.50.550.60.650.70.750.80.850.90.951y ₁10.84620.750.68420.63640.60.57140.54840.52940.51350.5y ₂0.46540.450.44470.44550.450.45710.46610.47650.48780.5(1)补全表格;(2)在同一平面直角坐标系xOy 中描出了部分点( x ,y ₁,x ,y ₂..请补全表格中数据的对应点,并分别画出y ₁与y ₂关于x 的函数图象;(3)结合函数图象,解决下列问题:①当△APQ 是等腰三角形时, y ₁关于x 的函数图象上的对应点记为(a ,b),请在x轴上标出横坐标为a 的点;C ②当y ₂取最大值时,x 的值为 .北京市西城区九年级统一测试试卷 数学2024.4 第5页 (共7页)5.不透明袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再从中随机摸出一个小球,则两次都摸到蓝球的概率为(A) 14(B) 13(C) 12(D)236. 已知-2<a<-1, 则下列结论正确的是(A) a<1<-a<2 (B) 1<a<-a<2 (C) 1<-a<2<a (D) -a<1<a<27.若关于x 的一元二次方程 lnx²+x−2=0有两个实数根,则实数k 的取值范围是(A )k ≤−18 (B )k >−18且k≠0 (C )k ≥−18且k≠0 (D )k ≥−14且k≠08. 如图, 在Rt△ABC 中, ∠ACB=90°, BC=a, AC=b(其中a<b). CD⊥AB 于点D,点E 在边AB 上, BE=BC. 设CD=h, AD=m, BD=n, 给出下面三个结论:①n²+h²<(m+n)²;②2h²>m²+n²;③AE 的长是关于 x 的方程 x²+2ax−b²=0的一个实数根.上述结论中,所有正确结论的序号是(A)① (B) ①③ (C) ②③ (D) ①②③第二部分 非选择题二、填空题 (共16分,每题2分)9. 若 x−3在实数范围内有意义,则实数x 的取值范围是 .10. 分解因式:x²y-12xy+36y= .11. 方程43x−1=3x−2的解为 .12.在平面直角坐标系xOy 中,若函数 y =kx(k ≠0)的图象经过点(-1,8)和(2,n), 则n 的值为.13. 如图, 在▱ABCD 中, 点E 在边AD 上, BA, CE 的延长线交于点F. 若AF=1, AB=2, 则 AEED =¯.14. 如图, 在⊙O 的内接四边形ABCD 中, 点A 是 ⌢BD 的中点,连接AC, 若∠DAB=130°, 则∠ACB= °.北京市西城区九年级统一测试试卷 数学2024.4 第2页 (共7页)23.某学校组织学生采摘山楂制作冰糖葫芦(每串冰糖葫芦由5颗山楂制成).同学们经过采摘、筛选、洗净等环节,共得到7.6kg的山楂.甲、乙两位同学各随机分到了15颗山楂,他们测量了每颗山楂的重量(单位:g),并对数据进行整理、描述和分析.下面给出了部分信息.a.甲同学的山楂重量的折线图:b.乙同学的山楂重量:8, 8.8, 8.9, 9.4, 9.4, 9.4, 9.6, 9.6, 9.6, 9.8, 10, 10, 10, 10,10c.甲、乙两位同学的山楂重量的平均数、中位数、众数:平均数中位数众数甲9.5m9.2乙9.59.6n根据以上信息,回答下列问题:(1)写出表中m, n的值;(2)对于制作冰糖葫芦,如果一串冰糖葫芦中5颗山楂重量的方差越小,则认为这串山楂的品相越好.①甲、乙两位同学分别选择了以下5颗山楂制作冰糖葫芦.据此推断:品相更好的是(填写“甲”或“乙”);甲9.29.29.29.29.1乙9.49.49.48.98.8②甲同学从剩余的 10颗山楂中选出5颗山楂制作一串冰糖葫芦参加比赛,首先要求组成的冰糖葫芦品相尽可能好,其次要求冰糖葫芦的山楂重量尽可能大.他已经选定的三颗山楂的重量分别为9.4,9.5,9.6,则选出的另外两颗山楂的重量分别为和 ;(3)估计这些山楂共能制作多少串冰糖葫芦.北京市西城区九年级统一测试试卷 数学2024.4 第4页 (共7页)26. 在平面直角坐标系xOy中,点A−2y₁,B2y₂,C m y₃在抛物线y=ax²+bx+3(a⟩0)上.设抛物线的对称轴为直线x=t.(1)若y₁=3,,求t的值;(2) 若当t+1<m<t+2时,都有y₁>y₃>y₂,求t的取值范围.27. 在△ABC中,∠ABC=∠ACB=45°,AM⊥BC于点M.D是射线AB上的动点 (不与点 A, B重合), 点 E 在射线 AC 上且满足.AE=AD,,过点D 作直线 BE 的垂线交直线BC于点F, 垂足为点 G, 直线BE交射线AM于点P.(1) 如图1, 若点D在线段AB上, 当AP=AE时,求∠BDF的大小;(2)如图2,若点D在线段AB的延长线上,依题意补全图形,用等式表示线段CF,MP, AB的数量关系, 并证明.北京市西城区九年级统一测试试卷 数学2024.4第6页 (共7页)28.在平面直角坐标系xOy 中,已知⊙O 的半径为1.对于⊙O 上的点 P 和平面内的直线l:y =ax 给出如下定义:点P 关于直线l 的对称点记为 P¹,,若射线OP 上的点Q 满足 OQ =PP ′,则称点Q 为点P 关于直线l 的“衍生点”.(1)当a=0时,已知⊙O 上两点 PP 2−22,在点Q ₁(1,2), QQ 3(−1,−1),Q 4(−2,−2)中,点P ₁关于直线l 的“衍生点”是 ,点P ₂关于直线l 的“衍生点”是 ;(2) P 为⊙O 上任意一点, 直线y=x+m (m≠0)与x 轴, y 轴的交点分别为点 A,B.若线段AB 上存在点S ,T ,使得点S 是点P 关于直线l 的“衍生点”,点T 不是点P 关于直线l 的“衍生点”,直接写出m 的取值范围;(3) 当-1≤a≤1时,若过原点的直线s 上存在线段 MN,对于线段 MN 上任意一点R,都存在⊙O 上的点P 和直线l ,使得点R 是点P 关于直线l 的“衍生点”. 将线段MN 长度的最大值记为D(s),对于所有的直线s ,直接写出D(s)的最小值.北京市西城区九年级统一测试试卷 数学2024.4 第7页 (共7页)北 京 市 西 城 区 九 年 级 统 一 测 试 试 卷数学答案及评分参考 2024.4一、选择题(共16分,每题2分)题号12345678答案C B D D A A C B二、填空题(共16分,每题2分)9. x≥3 10.y(x−6)² 11. x=-1 12. -413.1214. 25 15.3516. 1, 19三、解答题(共68分, 第17-22题, 每题5分, 第23-26题, 每题6分, 第27-28题,每题7分)17. 解: |−3|−+2sin60∘−12=3−5+2×32−23 4分 =-5 . 5分18.解:原不等式组为2(x+1)<x+5, x+23≥x−12.解不等式①, 得x<3. ·2分 解不等式②, 得x≤7. 4分 ∴ 原不等式组的解集为x<3. 5分19. 解: (x−2)²+(x−1)(x+3)=(x²−4x+4)+(x²+2x−3)=2x²−2x+1.…… 3分∵x²−x−4=0,∴x²−x=4.∴原式=2(x²−x)+1=9. ·5分20. (1) 证明: 如图1.∵ AE=AD, AF⊥BD于点F,∴ ∠EAG=∠DAG, EF=DF.∵ 四边形 ABCD 是平行四边形,北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第1页(共6页)①②∴ AD∥BC.∵ EG∥BC,∴ AD∥EG.∴ ∠AGE=∠DAG.∴ ∠EAG=∠AGE.∴ AE=EG.∴ AD=EG.∴ 四边形AEGD 是平行四边形.又∵ AE=AD,∴四边形AEGD是菱形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2) 解: 在Rt△ABF中, ∠AFB=90°, AF=BF, AB=4,∴ ∠ABF=45° , AF=AB·sin45°=22.在Rt△AEF中,∠AFE=90∘,tan∠AEF=12,AF=22,∴EF=AFtan∠AEF=4 2.∵ 四边形 AEGD 是菱形,∴AG=2AF=42,DE=2EF=8 2.∴S差πAEGD =12AG×DE=12×42×82=32. …5分21.解:设购买x套围棋,y套象棋 (1)假设所购买围棋的套数能是所购买象棋套数的2倍,①则40x+30y=1000,x=2y.② 3分解得y=10011. 4分此时 y不为正整数,不合题意.答:所购买围棋的套数不能是所购买象棋套数的2倍.⋯⋯⋯⋯⋯⋯⋯⋯5分22. 解: (1) ∵ 函数y=kx+b (k≠0) 的图象经过点 A(3,5), B(-2,0),∴3k+b=5,−2k+b=0.解得k=1,b=2.∴该函数的解析式为y=x+2,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分点C的坐标为C(0,2).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)n≥10.……………………………………………………………………………5分北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第2页 (共6页)23.解:(1)9.4,10;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)①甲;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分②9.3,9.6;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(3)76009.5×5=160(串).答:估计这些山楂共能制作160串糖葫芦.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分24. (1) 证明: 如图2, 连接OC, OC与AF交于点 G.∵ CE 与⊙O 相切, 切点为C,∴CE⊥OC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分∴ ∠OCE=90° .∵ AF∥CE,∴ ∠OGA=∠OCE=90° .∴ OC⊥AF于点 G.∴ AF=2AG.∵ CD⊥AB 于点 H,∴ ∠OHC=90° , CD=2CH .∴ ∠OGA=∠OHC.又∵ ∠AOG=∠COH, OA=OC,∴ △OAG≌△OCH.∴ AG=CH.∴AF=CD.…………………………………………………… 3分(2) 解: ∵ ⊙O的半径为6, AH=2OH,∴ OH=2, AH=4.在Rt△OCH中,∠OHC=90∘,cos∠COH=OHOC =13.在Rt△OCE中,∠OCE=90∘,cos∠COE=13,OC=6,∴OE=OCcos∠COE=18.∴AE=OE-OA=18-6=12.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第3页(共6页)25. 解: (1)0.5; ……………………… 1分(2)3分(3)①见图3; ·4分 ②0.5, 1. …6分26. 解: (1) 抛物线 y =ax²+bx +3与y 轴的交点的坐标为(0,3).∵ 抛物线. y =ax²+bx +3过A(-2,y ₁), y ₁=3,∴ A(-2,3)与(0,3)关于直线x=t 对称.∴t =−2+02=−1. 2分(2) ∵ a>0,∴ 当x≤t 时, y 随x 的增大而减小; 当x≥t 时, y 随x 的增大而增大.A(-2,y ₁), B(2,y ₂), C(m,y ₃).①当t≤-2时,∵ t≤-2<2,|.y₁<y₂,不合题意.②当-2<t<2时, A(-2,y ₁)关于对称轴x=t 的对称点为 A ′(2t +2,y ₁).∵ 当t+1<m<t+2时, 都有 y₁>y₃>y₂,∴t +1≥2,t +2≤2t +2.解得 t≥1.∴ 1≤t<2.③当t≥2时,A(-2,y ₁),B(2,y ₂)关于对称轴x=t 的对称点分别为 A ′(2t +2,y ₁), B ′(2t−2,y ₂).北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第4页(共6页)∵当t+1<m<t+2时, 都有. y₁>y₃>y₂,∴t +1≥2t−2,t +2≤2t +2.解得 0≤t≤3.∴ 2≤t≤3.综上所述,t 的取值范围是1≤t≤3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分27. 解: (1) 如图4.∵在△ABC 中, ∠ABC=∠ACB=45° ,∴ AB=AC, ∠BAC=90° , ∠1+∠2=90°.∵ AM⊥BC 于点 M,∴∠3=∠BAC 2=45∘,BM =CM.∵ AP=AE, ∴∠2=180∘−∠32=180∘−45∘2=67.5∘.∵ DF⊥BE 于点 G,∴ ∠1+∠BDF=90°.∴∠BDF=∠2=67.5°.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)补全图形见图5.CF =2MP +2AB.证明: 如图4, 作 CQ∥AP 交BE 于点 Q.∵ CQ∥AP, BM=CM, AM⊥BC, ∴MP CQ =BM BC =12,∠BCQ =∠AMC =90∘ ∴CQ =2MP,∠5=180°−∠ACB−∠BCQ =45°.∵∠4=∠ABC =45°,∴ ∠4=∠5.北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第5页 (共6页)∵∠DBG=∠ABE,DG⊥BE于点 G,∠BAC=90°,∴ ∠D=∠E.∵AD=AE,AB=AC,∴AD−AB=AE−AC, 即BD=CE.∴△BDF≅△CEQ.:.BF=CQ.∵CF=BF+BC,BC=2AB,∴CF=CQ+2AB=2MP+2AB. ……………… 7分28. 解: (1)Q₂,Q₃; · ·2分(2)−22≤m≤−2或 2≤m≤22; ·5分(3)2−2. 7分北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第6页(共6页)。

2020年北京市西城区中考数学一模试卷(解析版)

2020年北京市西城区中考数学一模试卷(解析版)

2020年北京市西城区中考数学一模试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)北京大兴国际机场目前是全球建设规模最大的机场,2019年9月25日正式通航,预计到2022年机场旅客吞吐量将达到45000000人次,将45000000用科学记数法表示为()A.45×106B.4.5×107C.4.5×108D.0.45×1082.(2分)如图是某个几何体的三视图,该几何体是()A.圆锥B.圆柱C.长方体D.正三棱柱3.(2分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(2分)在数轴上,点A,B表示的数互为相反数,若点A在点B的左侧,且AB=2,则点A,点B表示的数分别是()A.﹣,B.,﹣C.0,2D.﹣2,2 5.(2分)如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB=65°,则∠ADC的度数为()A.65°B.35°C.32.5°D.25°6.(2分)甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为甲,乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.甲=乙,s甲2>s乙2B.甲=乙,s甲2<s乙2C.甲>乙,s甲2>s乙2D.甲<乙,s甲2<s乙27.(2分)如图,在数学实践活动课上,小明同学打算通过测量树的影长计算树的高度.阳光下他测得长1.0m的竹竿落在地面上的影长为0.9m.在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙面上.他测得这棵树落在地面上的影长BD为2.7m,落在墙面上的影长CD为1.0m,则这棵树的高度是()A.6.0m B.5.0m C.4.0m D.3.0m8.(2分)设m是非零实数,给出下列四个命题:①若﹣1<m<0,则<m<m2;②若m>1,则<m2<m;③若m<<m2,则m<0;④若m2<m<,则0<m<1.其中命题成立的序号是()A.①③B.①④C.②③D.③④二、填空题(本题共16分,每小题2分)9.(2分)若在实数范围内有意义,则x的取值范围是.10.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.11.(2分)已知y是以x为自变量的二次函数,且当x=0时,y的最小值为﹣1,写出一个满足上述条件的二次函数表达式.12.(2分)如果a2+a=1,那么代数式﹣的值是.13.(2分)如图,在正方形ABCD中,BE平分∠CBD,EF⊥BD于点F.若DE=,则BC的长为.14.(2分)如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,BD⊥AC 于点D,则AC的长为,BD的长为.15.(2分)如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为.16.(2分)某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.每日接待游客人数(单位:万人)游玩环境评价0≤x<5好5≤x<10一般10≤x<15拥挤15≤x<20严重拥挤根据以上信息,以下四个判断中,正确的是(填写所有正确结论的序号).①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在5~10万人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)17.(5分)计算:()﹣1+(1﹣)0+|﹣|﹣2sin60°.18.(5分)解不等式组:19.(5分)关于x的一元二次方程x2﹣(2m+1)x+m2=0有两个实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.20.(5分)如图,在▱ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC 于点E.(1)求证:▱ABCD是矩形;(2)若AD=2,cos∠ABE=,求AC的长.21.(5分)先阅读下列材料,再解答问题.尺规作图已知:△ABC,D是边AB上一点,如图1,求作:四边形DBCF,使得四边形DBCF是平行四边形.小明的做法如下:(1)设计方案先画一个符合题意的草图,如图2,再分析实现目标的具体方法,依据:两组对边分别平行的四边形是平行四边形.(2)设计作图步骤,完成作图作法:如图3,①延长BC至点E;②分别作∠ECP=∠EBA,∠ADQ=∠ABE;③DQ与CP交于点F.∴四边形DBCF即为所求.(3)推理论证证明:∵∠ECP=∠EBA,∴CP∥BA.同理,DQ∥BE.∴四边形DBCF是平行四边形.请你参考小明的做法,再设计一种尺规作图的方法(与小明的方法不同),使得画出的四边形DBCF是平行四边形,并证明.22.(6分)运用语音识别输入软件可以提高文字输入的速度.为了解A,B两种语音识别输入软件的准确性,小秦同学随机选取了20段话,其中每段话都含100个文字(不计标点符号).在保持相同语速的条件下,他用标准普通话朗读每段话来测试这两种语音识别输入软件的准确性.他的测试和分析过程如下,请补充完整.(1)收集数据两种软件每次识别正确的字数记录如下:A 98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58B 99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55(2)整理、描述数据根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据两组样本数据的平均数、众数、中位数、方差如表所示:平均数众数中位数方差A84.784.588.91B83.796184.01(4)得出结论根据以上信息,判断种语音识别输入软件的准确性较好,理由如下:(至少从两个不同的角度说明判断的合理性).23.(6分)如图,四边形OABC中,∠OAB=90°,OA=OC,BA=BC.以O为圆心,以OA为半径作⊙O.(1)求证:BC是⊙O的切线;(2)连接BO并延长交⊙O于点D,延长AO交⊙O于点E,与BC的延长线交于点F,若=,①补全图形;②求证:OF=OB.24.(6分)如图,在△ABC中,AB=4cm,BC=5cm.P是上的动点,设A,P两点间的距离为xcm,B,P两点间的距离为y1cm,C,P两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm01234y1/cm 4.00 3.69 2.130y2/cm 3.00 3.91 4.71 5.235(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),点(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,①当△PBC为等腰三角形时,AP的长度约为cm;②记所在圆的圆心为点O,当直线PC恰好经过点O时,PC的长度约为cm.25.(5分)在平面直角坐标系xOy中,直线l1:y=kx+2k(k>0)与x轴交于点A,与y轴交于点B,与函数y=(x>0)的图象的交点P位于第一象限.(1)若点P的坐标为(1,6),①求m的值及点A的坐标;②=;(2)直线l2:y=2kx﹣2与y轴交于点C,与直线l1交于点Q,若点P的横坐标为1,①写出点P的坐标(用含k的式子表示);②当PQ≤P A时,求m的取值范围.26.(6分)已知抛物线y=ax2+bx+a+2(a≠0)与x轴交于点A(x1,0),点B(x2,0)(点A在点B的左侧),抛物线的对称轴为直线x=﹣1.(1)若点A的坐标为(﹣3,0),求抛物线的表达式及点B的坐标;(2)C是第三象限的点,且点C的横坐标为﹣2,若抛物线恰好经过点C,直接写出x2的取值范围;(3)抛物线的对称轴与x轴交于点D,点P在抛物线上,且∠DOP=45°,若抛物线上满足条件的点P恰有4个,结合图象,求a的取值范围.27.(7分)如图,在等腰直角△ABC中,∠ACB=90°.点P在线段BC上,延长BC至点Q,使得CQ=CP,连接AP,AQ.过点B作BD⊥AQ于点D,交AP于点E,交AC于点F.K是线段AD上的一个动点(与点A,D不重合),过点K作GN⊥AP于点H,交AB于点G,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.28.(7分)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A与点B可以重合),在图形W2上存在两点M,N(点M与点N可以重合),使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(1,0),D(﹣1,0),E(0,),点P在线段DE上运动(点P 可以与点D,E重合),连接OP,CP.①线段OP的最小值为,最大值为,线段CP的取值范围是;②在点O,点C中,点与线段DE满足限距关系;(2)如图2,⊙O的半径为1,直线y=x+b(b>0)与x轴、y轴分别交于点F,G.若线段FG与⊙O满足限距关系,求b的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两点,分别以H,K为圆心,1为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r 的取值范围.2020年北京市西城区中考数学一模试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)北京大兴国际机场目前是全球建设规模最大的机场,2019年9月25日正式通航,预计到2022年机场旅客吞吐量将达到45000000人次,将45000000用科学记数法表示为()A.45×106B.4.5×107C.4.5×108D.0.45×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将数据45000000用科学记数法可表示为:4.5×107.故选:B.2.(2分)如图是某个几何体的三视图,该几何体是()A.圆锥B.圆柱C.长方体D.正三棱柱【分析】由主视图和左视图确定是柱体、锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是圆柱.故选:B.3.(2分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、不是轴对称图形,是中心对称图形,故此选项不合题意;C、既是轴对称图形又是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.4.(2分)在数轴上,点A,B表示的数互为相反数,若点A在点B的左侧,且AB=2,则点A,点B表示的数分别是()A.﹣,B.,﹣C.0,2D.﹣2,2【分析】根据相反数的定义即可求解.【解答】解:由A、B表示的数互为相反数,且AB=2,点A在点B的左边,得点A、B表示的数是﹣,.故选:A.5.(2分)如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB=65°,则∠ADC的度数为()A.65°B.35°C.32.5°D.25°【分析】首先利用直径所对的圆周角是直角确定∠ACB=90°,然后根据∠CAB=65°求得∠ABC的度数,利用同弧所对的圆周角相等确定答案即可.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠CAB=65°,∴∠ABC=90°﹣∠CAB=25°,∴∠ADC=∠ABC=25°,故选:D.6.(2分)甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为甲,乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.甲=乙,s甲2>s乙2B.甲=乙,s甲2<s乙2C.甲>乙,s甲2>s乙2D.甲<乙,s甲2<s乙2【分析】分别计算平均数和方差后比较即可得到答案.【解答】解:(1)甲=(8×4+9×2+10×4)=9;=(8×3+9×4+10×3)=9;乙s甲2=[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8;s乙2=[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7;∴甲=乙,s甲2>s乙2,故选:A.7.(2分)如图,在数学实践活动课上,小明同学打算通过测量树的影长计算树的高度.阳光下他测得长1.0m的竹竿落在地面上的影长为0.9m.在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙面上.他测得这棵树落在地面上的影长BD为2.7m,落在墙面上的影长CD为1.0m,则这棵树的高度是()A.6.0m B.5.0m C.4.0m D.3.0m【分析】根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似进而解答即可.【解答】解:根据物高与影长成正比得:,即解得:DE=1.0,则BE=2.7+1.0=3.7米,同理,即:,解得:AB≈4.答:树AB的高度为4米,故选:C.8.(2分)设m是非零实数,给出下列四个命题:①若﹣1<m<0,则<m<m2;②若m>1,则<m2<m;③若m<<m2,则m<0;④若m2<m<,则0<m<1.其中命题成立的序号是()A.①③B.①④C.②③D.③④【分析】判断一个命题是假命题,只需举出一个反例即可.【解答】解:①若﹣1<m<0,则<m<m2;,当m=﹣时,,是真命题;②若m>1,则<m2<m,当m=2时,,原命题是假命题;③若m<<m2,则m<0,当m=﹣时,,原命题是假命题;④若m2<m<,则0<m<1,当m=时,,是真命题;故选:B.二、填空题(本题共16分,每小题2分)9.(2分)若在实数范围内有意义,则x的取值范围是x≥1.【分析】直接利用二次根式有意义的条件进而得出答案.【解答】解:若在实数范围内有意义,则x﹣1≥0,解得:x≥1.故答案为:x≥1.10.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形的边数为6.故答案为:6.11.(2分)已知y是以x为自变量的二次函数,且当x=0时,y的最小值为﹣1,写出一个满足上述条件的二次函数表达式y=x2﹣1.【分析】直接利用二次函数的性质得出其顶点坐标,进而得出答案.【解答】解:∵y是以x为自变量的二次函数,且当x=0时,y的最小值为﹣1,∴二次函数对称轴是y轴,且顶点坐标为:(0,﹣1),故满足上述条件的二次函数表达式可以为:y=x2﹣1.故答案为:y=x2﹣1.12.(2分)如果a2+a=1,那么代数式﹣的值是1.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a2+a的值整体代入即可得.【解答】解:原式=﹣===,当a2+a=1时,原式=1,故答案为:1.13.(2分)如图,在正方形ABCD中,BE平分∠CBD,EF⊥BD于点F.若DE=,则BC的长为.【分析】根据正方形的性质、角平分线的性质及等腰直角三角形的三边比值为1:1:来解答即可.【解答】解:∵四边形ABCD为正方形,∴∠C=90°,∠CDB=45°,BC=CD.∴EC⊥CB.又∵BE平分∠CBD,EF⊥BD,∴EC=EF.∵∠CDB=45°,EF⊥BD,∴△DEF为等腰直角三角形.∵DE=,∴EF=1.∴EC=1.∴BC=CD=DE+EC=+1.故答案为:+1.14.(2分)如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,BD⊥AC 于点D,则AC的长为5,BD的长为3.【分析】根据图形和三角形的面积公式求出△ABC的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.【解答】解:如图所示:由勾股定理得:AC==5,S△ABC=BC×AE=×BD×AC,∵AE=3,BC=5,即,解得:BD=3.故答案为:5,3.15.(2分)如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为(6,6).【分析】由题意得出M在AB、BC的垂直平分线上,则BN=CN,求出ON=OB+BN=6,证△OMN是等腰直角三角形,得出MN=ON=6,即可得出答案.【解答】解:如图所示:∵⊙M是△ABC的外接圆,∴点M在AB、BC的垂直平分线上,∴BN=CN,∵点A,B,C的坐标分别是(0,4),(4,0),(8,0),∴OA=OB=4,OC=8,∴BC=4,∴BN=2,∴ON=OB+BN=6,∵∠AOB=90°,∴△AOB是等腰直角三角形,∵OM⊥AB,∴∠MON=45°,∴△OMN是等腰直角三角形,∴MN=ON=6,∴点M的坐标为(6,6);故答案为:(6,6).16.(2分)某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.每日接待游客人数(单位:万人)游玩环境评价0≤x<5好5≤x<10一般10≤x<15拥挤15≤x<20严重拥挤根据以上信息,以下四个判断中,正确的是①④(填写所有正确结论的序号).①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在5~10万人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为.【分析】根据统计图与统计表,结合相关统计或概率知识逐个选项分析即可.【解答】解:①根据题意每日接待游客人数10≤x<15为拥挤,15≤x<20为严重拥挤,由统计图可知,游玩环境评价为“拥挤或严重拥挤”,1日至5日有2天,25日﹣30日有2天,共4天,故①正确;②本题中位数是指将30天的游客人数从小到大排列,第15与第16位的和除以2,根据统计图可知0≤x<5的有16天,从而中位数位于0≤x<5范围内,故②错误;③从统计图可以看出,接近10的有6天,大于10而小于15的有2天,15以上的有2天,10上下的估算为10,则(10×8+15×2﹣5×10)÷16=3.25,可以考虑为给每个0至5的补上3.25,则大部分大于5,而0至5范围内有6天接近5,故平均数一定大于5,故③错误;④由题意可知“这两天游玩环境评价均为好”的可能性为:×=,故④正确.故答案为:①④.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)17.(5分)计算:()﹣1+(1﹣)0+|﹣|﹣2sin60°.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=2+1+﹣2×=3+﹣=3.18.(5分)解不等式组:【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x<4,由②得:x>,则不等式组的解集为<x<4.19.(5分)关于x的一元二次方程x2﹣(2m+1)x+m2=0有两个实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.【分析】(1)先根据方程有两个实数根得出△=[﹣(2m+1)]2﹣4×1×m2>0,解之可得;(2)在以上所求m的范围内取一值,如m=0,再解方程即可得.【解答】解:(1)∵方程有两个实数根,∴△=[﹣(2m+1)]2﹣4×1×m2>0,解得m≥﹣;(2)取m=0,此时方程为x2﹣x=0,∴x(x﹣1)=0,则x=0或x﹣1=0,解得x=0或x=1(答案不唯一).20.(5分)如图,在▱ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC 于点E.(1)求证:▱ABCD是矩形;(2)若AD=2,cos∠ABE=,求AC的长.【分析】(1)根据平行四边形的性质得到OA=OC,OB=OD,求得AC=BD,于是得到结论;(2)根据矩形的性质得到∠BAD=∠ADC=90°,求得∠CAD=∠ABE,解直角三角形即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴OA=OB=OC=OD,∴AC=BD,∴▱ABCD是矩形;(2)解:∵▱ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠BAC+∠CAD=90°,∵BE⊥AC,∴∠BAC+∠ABE=90°,∴∠CAD=∠ABE,在Rt△ACD中,AD=2,cos∠CAD=cos∠ABE=,∴AC=5.21.(5分)先阅读下列材料,再解答问题.尺规作图已知:△ABC,D是边AB上一点,如图1,求作:四边形DBCF,使得四边形DBCF是平行四边形.小明的做法如下:(1)设计方案先画一个符合题意的草图,如图2,再分析实现目标的具体方法,依据:两组对边分别平行的四边形是平行四边形.(2)设计作图步骤,完成作图作法:如图3,①延长BC至点E;②分别作∠ECP=∠EBA,∠ADQ=∠ABE;③DQ与CP交于点F.∴四边形DBCF即为所求.(3)推理论证证明:∵∠ECP=∠EBA,∴CP∥BA.同理,DQ∥BE.∴四边形DBCF是平行四边形.请你参考小明的做法,再设计一种尺规作图的方法(与小明的方法不同),使得画出的四边形DBCF是平行四边形,并证明.【分析】根据平行四边形的判定方法即可作图并证明.【解答】解:(1)设计方案先画一个符合题意的草图,如图2,再分析实现目标的具体方法,依据:两组对边分别相等的四边形是平行四边形.(2)设计作图步骤,完成作图作法:如图,①以点C为圆心,BC长为半径画弧;②以点D为圆心,BC长为半径画弧,;③两弧交于点F.∴四边形DBCF即为所求.(3)推理论证证明:∵CF=BD,DF=BC.∴四边形DBCF是平行四边形.22.(6分)运用语音识别输入软件可以提高文字输入的速度.为了解A,B两种语音识别输入软件的准确性,小秦同学随机选取了20段话,其中每段话都含100个文字(不计标点符号).在保持相同语速的条件下,他用标准普通话朗读每段话来测试这两种语音识别输入软件的准确性.他的测试和分析过程如下,请补充完整.(1)收集数据两种软件每次识别正确的字数记录如下:A 98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58B 99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55(2)整理、描述数据根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据两组样本数据的平均数、众数、中位数、方差如表所示:平均数众数中位数方差A84.784.588.91B83.796184.01(4)得出结论根据以上信息,判断A种语音识别输入软件的准确性较好,理由如下:∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴A种语音的平均数>B种语音的平均数,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91<184,01,∴A种语音识别输入软件的准确性较好.(至少从两个不同的角度说明判断的合理性).【分析】(2)根据题意补全频数分布直方图即可;(3)根据众数和中位数的定义即可得到结论;(4)根据A,B两种语音识别输入软件的准确性的方差的大小即可得到结论.【解答】解:(2)根据题意补全频数分布直方图如图所示;(3)补全统计表;平均数众数中位数方差A84.79284.588.91B83.79688.5184.01(4)A种语音识别输入软件的准确性较好,理由如下:∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴A种语音的平均数>B种语音的平均数,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91<184,01,∴A种语音识别输入软件的准确性较好.故答案为:A,∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴A种语音的平均数>B种语音的平均数,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91<184,01,∴A种语音识别输入软件的准确性较好.23.(6分)如图,四边形OABC中,∠OAB=90°,OA=OC,BA=BC.以O为圆心,以OA为半径作⊙O.(1)求证:BC是⊙O的切线;(2)连接BO并延长交⊙O于点D,延长AO交⊙O于点E,与BC的延长线交于点F,若=,①补全图形;②求证:OF=OB.【分析】(1)连接AC,根据等腰三角形的性质得到∠OAC=∠OCA,∠BAC=∠BCA,得到∠OCB=∠OAB=90°,根据切线的判定定理证明;(2)①根据题意画出图形;②根据切线长定理得到BA=BC,得到BD是AC的垂直平分线,根据垂径定理、圆心角和弧的关系定理得到∠AOC=120°,根据等腰三角形的判定定理证明结论.【解答】(1)证明:如图1,连接AC,∵OA=OC,∴∠OAC=∠OCA,∵BA=BC,∴∠BAC=∠BCA,∴∠OAC+∠BCA=∠OCA+∠BCA,即∠OCB=∠OAB=90°,∴OC⊥BC,∴BC是⊙O的切线;(2)①解:补全图形如图2;②证明:∵∠OAB=90°,∴BA是⊙O的切线,又BC是⊙O的切线,∴BA=BC,∵BA=BC,OA=OC,∴BD是AC的垂直平分线,∴=,∵=,∴==,∴∠AOC=120°,∴∠AOB=∠COB=∠COE=60°,∴∠OBF=∠F=30°,∴OF=OB.24.(6分)如图,在△ABC中,AB=4cm,BC=5cm.P是上的动点,设A,P两点间的距离为xcm,B,P两点间的距离为y1cm,C,P两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm012342.130y1/cm 4.00 3.69 3.09(答案不唯一)y2/cm 3.00 3.91 4.71 5.235(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),点(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,①当△PBC为等腰三角形时,AP的长度约为0.83或2.49(答案不唯一)cm;②记所在圆的圆心为点O,当直线PC恰好经过点O时,PC的长度约为 5.32(答案不唯一)cm.【分析】(1)利用图象法解决问题即可;(2)描点绘图即可;(3)①分PB=PB、PC=BC、PB=BC三种情况,分别求解即可;②当直线PC恰好经过点O时,PC的长度取得最大值,观察图象即可求解.【解答】解:(1)由画图可得,x=4时,y1≈3.09cm(答案不唯一).故答案为:3.09(答案不唯一).(2)描点绘图如下:(3)①由y1与y2的交点的横坐标可知,x≈0.83cm时,PC=PB,当x≈2.49cm时,y2=5cm,即PC=BC,观察图象可知,PB不可能等于BC,故答案为:0.83或2.49(答案不唯一).②当直线PC恰好经过点O时,PC的长度取得最大值,从图象看,PC=y2≈5.32cm,故答案为5.32(答案不唯一).25.(5分)在平面直角坐标系xOy中,直线l1:y=kx+2k(k>0)与x轴交于点A,与y轴交于点B,与函数y=(x>0)的图象的交点P位于第一象限.(1)若点P的坐标为(1,6),①求m的值及点A的坐标;②=;(2)直线l2:y=2kx﹣2与y轴交于点C,与直线l1交于点Q,若点P的横坐标为1,①写出点P的坐标(用含k的式子表示);②当PQ≤P A时,求m的取值范围.【分析】(1)①把P(1,6)代入函数y=(x>0)即可求得m的值,直线l1:y=kx+2k (k>0)中,令y=0,即可求得x的值,从而求得A的坐标;②把P的坐标代入y=kx+2k即可求得k的值,进而求得B的坐标,然后根据勾股定理求得PB和P A,即可求得的值;(2)①把x=1代入y=kx+2k,求得y=3k,即可求得P(1,3k);②分别过点P、Q作PM⊥x轴于M,QN⊥x轴于N,则点M、点N的横坐标1,2+,若PQ=P A,则=1,根据平行线分线段成比例定理则==1,得出MN=MA=3,即可得到2+﹣1=3,解得k=1,根据题意即可得到当=≤1时,k≥1,则m =3k≥3.【解答】解:(1)①令y=0,则kx+2k=0,∵k>0,解得x=﹣2,∴点A的坐标为(﹣2,0),∵点P的坐标为(1,6),∴m=1×6=6;②∵直线l1:y=kx+2k(k>0)函数y=(x>0)的图象的交点P,且P(1,6),∴6=k+2k,解得k=2,∴y=2x+4,令x=0,则y=4,∴B(0,4),∵点A的坐标为(﹣2,0),∴P A==,PB==,∴==,故答案为;(2)①把x=1代入y=kx+2k得y=3k,∴P(1.3k);②由题意得,kx+2k=2kx﹣2,解得x=2+,∴点Q的横坐标为2+,∵2+>1(k>0),∴点Q在点P的右侧,如图,分别过点P、Q作PM⊥x轴于M,QN⊥x轴于N,则点M、点N的横坐标1,2+,若PQ=P A,则=1,∴==1,∴MN=MA,∴2+﹣1=3,解得k=1,∵MA=3,∴当=≤1时,k≥1,∴m=3k≥3,∴当PQ≤P A时,m≥3.26.(6分)已知抛物线y=ax2+bx+a+2(a≠0)与x轴交于点A(x1,0),点B(x2,0)(点A在点B的左侧),抛物线的对称轴为直线x=﹣1.(1)若点A的坐标为(﹣3,0),求抛物线的表达式及点B的坐标;(2)C是第三象限的点,且点C的横坐标为﹣2,若抛物线恰好经过点C,直接写出x2的取值范围;(3)抛物线的对称轴与x轴交于点D,点P在抛物线上,且∠DOP=45°,若抛物线上满足条件的点P恰有4个,结合图象,求a的取值范围.【分析】(1)抛物线的对称轴为x=﹣1=﹣,求出b=2a,将点A的坐标代入抛物线的表达式,即可求解;(2)点C在第三象限,即点A在点C和函数对称轴之间,故﹣2<x1<﹣1,即可求解;(3)满足条件的P在x轴的上方有2个,在x轴的下方也有2个,则抛物线与y轴的交点在x轴的下方,即可求解.【解答】解:(1)抛物线的对称轴为x=﹣1=﹣,解得:b=2a,故y=ax2+bx+a+2=a(x+1)2+2,将点A的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x+1)2+2=﹣x2﹣x+;令y=0,即﹣x2﹣x+=0,解得:x=﹣3或1,故点B的坐标为:(1,0);(2)由(1)知:y=a(x+1)2+2,点C在第三象限,即点C在点A的下方,即点A在点C和函数对称轴之间,故﹣2<x1<﹣1,而(x1+x2)=﹣1,即x2=﹣2﹣x1,故﹣1<x2<0;(3)∵抛物线的顶点为(﹣1,2),∴点D(﹣1,0),∵∠DOP=45°,若抛物线上满足条件的点P恰有4个,∴抛物线与x轴的交点在原点的左侧,如下图,∴满足条件的P在x轴的上方有2个,在x轴的下方也有2个,则抛物线与y轴的交点在x轴的下方,当x=0时,y=ax2+bx+a+2=a+2<0,解得:a<﹣2,故a的取值范围为:a<﹣2.27.(7分)如图,在等腰直角△ABC中,∠ACB=90°.点P在线段BC上,延长BC至点Q,使得CQ=CP,连接AP,AQ.过点B作BD⊥AQ于点D,交AP于点E,交AC于点F.K是线段AD上的一个动点(与点A,D不重合),过点K作GN⊥AP于点H,交AB于点G,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.【分析】(1)根据题意补全图1即可;(2)根据等腰三角形的性质得到AP=AQ,求得∠APQ=∠Q,求得∠MFN=∠Q,同理,∠NMF=∠APQ,等量代换得到∠MFN=∠FMN,于是得到结论;(3)连接CE,根据线段垂直平分线的性质得到AP=AQ,求得∠P AC=∠QAC,得到∠CAQ=∠QBD,根据全等三角形的性质得到CP=CF,求得AM=CF,得到AE=BE,推出直线CE垂直平分AB,得到∠ECB=∠ECA=45°,根据全等三角形的性质即可得到结论.【解答】解:(1)依题意补全图1如图所示;(2)∵CQ=CP,∠ACB=90°,∴AP=AQ,∴∠APQ=∠Q,∵BD⊥AQ,∴∠QBD+∠Q=∠QBD+∠BFC=90°,∴∠Q=∠BFC,。

北京市西城区中考数学一模试卷(含解析)

北京市西城区中考数学一模试卷(含解析)

中考数学一模试卷一、选择题(本题共 30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的. 1春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验 等精品文化活动,共接待旅游总人数9 608 000人次,将9 608 000用科学记数法表示为( )A. 96 08 X 103 B . 960.8 X 104C. 96.08 X 105D. 9.608 X 1062.在数轴上,实数a , b 对应的点的位置如图所示, 且这两个点关于原点对称, 下列结论中,正确的是()■■ li d Ya 0 I bA.三棱柱 B .长方体 C.圆锥 D .圆柱 5.若正多边形的一个外角是40°,则这个正多边形是( )A.正七边形 B .正八边形 C .正九边形 D .正十边形 6.用配方法解一元二次方程 X 2 - 6x - 5=0,此方程可化为( )A. ( x - 3) 2=4 B.( x - 3) 2=14 C. ( x - 9) 2=4 D. ( X - 9)2=147. 如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶 部,此时小明与平面镜的水平距离为2m 旗杆底部与平面镜的水平距离为16m 若小明的眼睛与地面距离为1.5m ,则旗杆的高度为(单位:m )(4.如图是某几何体的三视图, 该几何体是(D . 55°,则/ D 的度数为(A. a+b=0 B . a - b=0 C. |a| v |b| D . ab > 0A. 25° B . 35° C . 45°A. B. 9 C. 12 D.3 3&某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20元” •若某商品的原价为x元(x> 100),则购买该商品实际付款的金额(单位:元)是()A. 80%x- 20 B . 80% (x- 20)C . 20%x- 20 D . 20% (x-20)9.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.平均数、方差C.众数、中位数D .众数、方差10 .汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数. “燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正A. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多B. 以低于80km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少C. 以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油D. 以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升二、填空题(本题共 18分,每小题3分) 11.分解因式:ax 2- 2ax+a=.12.若函数的图象经过点 A (1, 2),点B(2, 1),写出一个符合条件的函数表达式投篮次数n 100 150 300 500 800 1000 投中次数m 58 96 174 302 484 601 投中频率—n0.5800.6400.5800.6040.6050.60115.在平面直角坐标系 xOy 中,以原点0为旋转中心,将厶AOB 顺时针旋转90°得到△ A'OB', 其中点A'与点A 对应,点B'与点B 对应.若点 A (- 3, 0), B (- 1, 2),则点A'的坐标16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程 已知:如图1,直线l 和直线l 外一点P. 求作:直线1的平行直线,使它经过点 P.作法:如图2.若/ BAC=30 , / CBD=80 ,则/ BCD 勺度数为这名球员投篮一次,投中的概率约是为 ___ ,点B'的坐标为(1)过点P作直线m与直线I交于点O;(2)在直线m上取一点A (OA< Op,以点O为圆心,OA长为半径画弧,与直线I交于点B;(3)以点P为圆心,OA长为半径画弧,交直线m于点C,以点C为圆心,AB长为半径画弧,两弧交于点D;(4)作直线PD.所以直线PD就是所求作的平行线.请回答:该作图的依据是该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率.为了解21. (5分)某科研小组计划对某一品种的西瓜采用两种种植技术种植. 在选择种植技术时,三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程17.18(5 分)计算:(=;)1—(2—仁)° —2sin60 °+| 仁—2|(5分)解不等式组:19.(5分)已知x=2y,求代数式(厶-)y K的值.20.(5分)如图,在△ ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE 求证:/ BCE=/ A+Z ACB这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1甲种种植技术种出的西瓜质量统计表(1)若将质量为4.5〜5.5 (单位:kg)的西瓜记为优等品,完成下表:(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.22. (5分)在平面直角坐标系xOy,直线y=x- 1与y轴交于点A,与双曲线交于点Bx(m 2).(1)求点B的坐标及k的值;(2)将直线AB平移,使它与x轴交于点C,与y轴交于点。

北京市西城区九年级数学一模试卷含答案

北京市西城区九年级数学一模试卷含答案

2022年北京市西城区初三一模试卷数学一、选择题..1.计算:2=( )A .-1B .3C .3D .52.我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为( ) A .316710⨯B .416.710⨯C .51.6710⨯D .60.16710⨯ 3.,如图,AD 与BC 相交于点O ,AB ∥CD ,如果∠B =20°,∠D =40°,那么∠BOD 为( )A .40°B.50°C.60°D.70°4.因式分解()219x --的结果是( )A .()()24x x +-B .()()81x x ++C .()()24x x -+D .()()108x x -+5.如图,是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数有( )A .2个B .3个C .4个D .6个 6.抛一枚均匀硬币正面朝上的概率为12,以下说法正确的选项是( ) A .连续抛一枚均匀硬币2次必有1次正面朝上B .连续抛一枚均匀硬币10次都可能正面朝上C .大量反复抛一枚均匀硬币,平均每100次出现下面朝上50次D .通过抛一枚均匀硬币确定谁先发球的比赛规那么是公平的7.如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC =AOC 为( ) A .120°B.130°C.140°D.150°8.如图,在△ABC 中,∠ACB =90°,AC =BC =2.E 、F 分别是射线AC、CB 上的动点,且AE =BF ,EF 与AB 交于点G ,EH ⊥AB 于点H ,设AE =x ,GH =y ,下面能够反映y 与x 之间函数关系的图象是( ) 二、填空题(此题共16分,每题4分)9.函数y =__________. 10.如图,点P 在双曲线(0)ky k x=≠上,点(12)P ',与点P 关于y 轴对称,那么此双曲线的解析式为.11.如图,在平面直角坐标系中,等边三角形ABC 的顶点B ,C 的坐标分别为(1,0),(3,0),过坐标原点的一条直线分别与边AB ,AC 交于点M ,N ,假设OM =MN ,那么点M 的坐标为______________.2),A C BO DCBA12.如图,点A 1,A 2,A 3,A 4,…,A n 在射线OA 上,点B 1,B 2,B 3,…,B n ―1在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3∥…∥A n ―1B n ―1,A 2B 1∥A 3B 2∥A 4B 3∥…∥A n B n ―1,△A 1A 2B 1,△A 2A 3B 2,…,△A n ―1A n B n ―1为阴影三角形,假设△A 2B 1B 2,△A 3B 2B 3的面积分别为1、4,那么△A 1A 2B 1的面积为__________;面积小于2022的阴影三角形共有__________个.三、解答题(此题共30分,每题5分) 13.计算:102124sin 60(3)-+-︒--.14.〔1〕解不等式:112x x >+; 〔2〕解方程组20328x y x y -=⎧⎨+=⎩15.:如图,A 点坐标为302⎛⎫- ⎪⎝⎭,,B 点坐标为()03,. 〔1〕求过A B ,两点的直线解析式;〔2〕过B 点作直线BP 与x 轴交于点P ,且使2OP OA =,求ABP ∆的面积.16.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .∠BAC =30º,EF ⊥AB ,垂足为F ,连结DF .〔1〕求证:AC =EF ;〔2〕求证:四边形ADFE 是平行四边形.17.先化简:2313(1)2349223x x x x ÷⋅++--;假设结果等于23,求出相应x 的值.18.在某市举办的“读好书,讲礼仪〞活动中,东华学校积极行动,各班图书角的新书、好书不断增多,除学校购置 外,还有师生捐献的图书.下面是七年级〔1〕班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答以下问题:〔1〕该班有学生多少人〔2〕补全条形统计图; 〔3〕七〔1〕班全体同学所捐献图书的中位数和众数分别是多少四、解答题(此题共20分,每题5分) 19.某批发商以每件50元的价格购进800件T 恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调A BCDEF BO A A 1 A2A 3 A 4 A 5B 1 B 2 B 3B 441xyOABCMN查,单价每降低1元,可多售出10件,但最低单位应高于购进的价格;第二个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x 元. 〔1〕填表(不需要化简)时间 第一个月 第二个月 清仓时 单价(元) 80 ▲ 40 销售量(件) 200 ▲ ▲〔2〕如果批发商希望通过销售这批T 恤获利9000元,那么第二个月的单价应是多少元 20.如图,等腰梯形ABCD 中,AD ∥BC ,AD =AB =CD =2,∠C =60°,M 是BC 的中点. 〔1〕求证:△MDC 是等边三角形;〔2〕将△MDC 绕点M 旋转,当MD (即MD ′)与AB 交于一点E ,MC (即MC ′)同时与AD 交于一点F 时,点E ,F 和点A 构成△AEF .试探究△AEF 的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.21.如图,ABC △,以BC 为直径,O 为圆心的半圆交AC 于点F ,点E 为弧CF 的中点,连接BE 交AC 于点M ,AD 为△ABC 的角平分线,且AD BE ⊥,垂足为点H . 〔1〕求证:AB 是半圆O 的切线;〔2〕假设3AB =,4BC =,求BE 的长.22.:如图1,矩形ABCD 中,AB =6,BC =8,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 四条边上的点(且不与各边顶点重合),设m =AB +BC +CD +DA ,探索m 的取值范围.〔1〕如图2,当E 、F 、G 、H 分别是AB 、BC 、CD 、DA 四边中点时,m =________. 〔2〕为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD 为对称轴翻折,接着再连续翻折两次, 从而找到解决问题的途径,求得m 的取值范围.①请在图1中补全小贝同学翻折后的图形;②m 的取值范围是__________. 五、解答题(此题共22分,第23题7分,第24题7分,第25题8分)23.一元二次方程x 2+ax +a -2=0.〔1〕求证:不管a 为何实数,此方程总有两个不相等的实数根;〔2〕设a <0,当二次函数y =x 2+ax +a -2的图象与x〔3〕在〔2〕的条件下,假设此二次函数图象与x 轴交于A 、B 两点,在函数图象上是否存在点P ,使得△PAB 的面积,假设存在求出P 点坐标,假设不存在请说明理由.24.如图,在△ABC 中,点D 是BC 上一点,∠B =∠DAC =45°.〔1〕如图1,当∠C =45°时,请写出图中一对相等的线段;_________________〔2〕如图2,假设BD =2,BAAD 的长及△ACD 的面积.25.巳知二次函数y =a (x 2-6x +8)(a >0)的图象与x 轴分别交于点A 、B ,与y 轴交于点C .点D 是抛物线的顶点. 〔1〕如图①.连接AC ,将△OAC 沿直线AC 翻折,假设点O 的对应点0'恰好落在该抛物线的对称轴上,求实数a 的值; 〔2〕如图②,在正方形EFGH 中,点E 、F 的坐标分别是(4,4)、(4,3),边HG 位于边EF 的右侧.小林同学经过探索后发现了一个正确的命题:“假设点P 是边EH 或边HG 上的任意一点,那么四条线段PA 、PB 、PC 、PD 不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“假设点P 是边EF 或边FG 上的任意一点,刚刚的结论是否也成立请你积极探索,并写出探索过程;〔3〕如图②,当点P 在抛物线对称轴上时,设点P 的纵坐标l 是大于3的常数,试问:是否存在一个正数a ,使得四条线段PA 、PB 、PC 、PD 与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)请说明理由.2022年北京市西城区初三一模试卷参考答案1.A .2.C .3.C .4.A .5.C .6.A .7.A .8.C .9.x ≥3.10.2y x -=.11.(54,34)12.12;6.13.解:原式=1412+--=12-.14.〔1〕解:112x x ->,112x >,所以2x >.A A A〔2〕21x y =⎧⎨=⎩15.〔1〕23y x =+;〔2〕设P 点坐标为()0x ,,依题意得3x =±,所以P 点坐标分别为()()123030P P -,,,. 1132733224ABP S ∆⎛⎫=⨯+⨯=⎪⎝⎭,213933224ABP S ∆⎛⎫=⨯-⨯= ⎪⎝⎭,所以ABP ∆的面积为274或94. 17.原式=(23)(23)1233)233223x x x x x x +--+⋅⋅⋅+-=23x ;由23x =23,可,解得x19.〔1〕80-x ,200+10x ,800-200-(200+10x );〔2〕根据题意,得80×200+(80-x )(200+10x )+40[800-200-(200+10x )]-50×800=9000.整理,得x 2-20x +100=0,解这个方程得x 1=x 2=10, 当x =10时,80-x =70>50. 答:第二个月的单价应是70元. 20.解:〔1〕证明:过点D 作DP ⊥BC ,于点P ,过点A 作AQ ⊥BC于点Q ,∵∠C =∠B =60°∴CP =BQ =12AB ,CP +BQ =AB ,又∵ADPQ 是矩形,AD =PQ , 故BC =2AD ,由,点M 是BC 的中点, BM =CM =AD =AB =CD ,即△MDC 中,CM =CD ,∠C =60°, 故△MDC 是等边三角形.〔2〕解:△AEF 的周长存在最小值,理由如下: 连接AM ,由〔1〕平行四边形ABMD 是菱形, △MAB ,△MAD 和△MC ′D ′是等边三角形,∠BMA =∠BME +∠AME =60°,∠EMF =∠AMF +∠AME =60°, ∴∠BME =∠AMF ,在△BME 与△AMF 中,BM =AM ,∠EBM =∠FAM =60°, ∴△BME ≌△AMF (ASA ),∴BE =AF ,ME =MF ,AE +AF =AE +BE =AB ,∵∠EMF =∠DMC =60°,故△EMF 是等边三角形,EF =MF ,∵MF 的最小值为点M 到ADEF, △AEF 的周长=AE +AF +EF =AB +EF , △AEF 的周长的最小值为2答:存在,△AEF 的周长的最小值为221.〔1〕连结CE ,过程略;〔2〕∵3AB =,4BC =.由〔1〕知,90ABC ∠=,∴5AC =.在ABM △中,AD BM ⊥于H ,AD 平分BAC ∠, ∴3AM AB ==,∴2CM =. 由CME △∽BCE △,得12EC MC EB CB ==. ∴2EB EC =,∴BE =. 22.〔1〕20;〔2〕如下列图(虚线可以不画),20≤m <28.23.解:〔1〕因为△=a 2-4(a -2)=(a -2)2+4>0,所以不管a 为何实数,此方程总有两个不相等的实数根.〔2〕设x 1、x 2是y =x 2+ax +a -2=0的两个根,那么x 1+x 2=-a ,x 1•x 2=a -2, 所以|x 1-x 2|(x 1-x 2)2=13H GFE CDB A变形为:(x 1+x 2)2-4x 1•x 2=13所以:(-a )2-4(a -2)=13 整理得:(a -5)(a +1)=0解方程得:a =5或-1 又因为:a <0,所以:a =-1所以:此二次函数的解析式为y =x 2-x -3.〔3〕设点P 的坐标为(x 0,y 0),因为函数图象与x 轴的两个交点间的距离等于13,所以:AB =13所以:S △PAB =12AB •|y 0|=132所以:013||2y =132即:|y 0|=3,那么y 0=±3当y 0=3时,x 02-x 0-3=3,即(x 0-3)(x 0+2)=0 解此方程得:x 0=-2或3当y 0=-2时,x 02-x 0-3=-3,即x 0(x 0-1)=0 解此方程得:x 0=0或1综上所述,所以存在这样的P 点,P 点坐标是(-2,3),(3,3),(0,-3)或(1,-3). 24.〔1〕AB =AC 或AD =BD =CD ;〔2〕AD =61-,S △ACD =964+.提示:过点A 作AE ⊥BC ,可以求出AD 的长.过D 作平行线或过C 作垂线,可以利用两次相似求面积.25.解:〔1〕令y =0,由2(68)0a x x -+=解得122,4x x ==;令x =0,解得y =8a .∴点A 、B 、C 的坐标分别是(2,0)、(4,0)、(0,8a ), 该抛物线对称轴为直线x =3. ∴OA =2.如图①,设抛物线对称轴与x 轴交点为M ,那么AM =1. 由题意得:2O A OA '==.∴2O A AM '=,∴∠O ′AM =60°.∴323OC AO =⋅=,即823a =.∴34a =. 〔2〕假设点P 是边EF 或边FG 上的任意一点,结论同样成立.(Ⅰ)如图②,设点P 是边EF 上的任意一点(不与点E 重合),连接PM . ∵点E (4,4)、F (4,3)与点B (4,0)在一直线上,点C 在y 轴上, ∴PB <4,PC ≥4,∴PC >PB . 又PD >PM >PB ,PA >PM >PB , ∴PB ≠PA ,PB ≠PC ,PB ≠PD .∴此时线段PA 、PB 、PC 、PD 不能构成平行四边形. (Ⅱ)设P 是边FG 上的任意一点(不与点G 重合), ∵点F 的坐标是(4,3),点G 的坐标是(5,3). ∴FB =3,10GB =PB 10 ∵PC ≥4,∴PC >PB .图①CMD BO'AxyOBAyO (图③)x DCE FGH PBA yO(图②)xDCE F GHM〔3〕存在一个正数a ,使得线段PA 、PB 、PC 能构成一个平行四边形. 如图③,∵点A 、B 时抛物线与x 轴交点,点P 在抛物线对称轴上, ∴PA =PB .∴当PC =PD 时,线段PA 、PB 、PC 能构成一个平行四边形. ∵点C 的坐标是(0,8a ),点D 的坐标是(3,-a ). 点P 的坐标是(3,t ),∴PC 2=32+(t -8a )2,PD 2=(t +a )2.整理得7a 2-2ta +1=0,∴Δ=4t 2-28.∵t 是一个常数且t >3,∴Δ=4t 2-28>0∴方程7a 2-2ta +1=0有两个不相等的实数根2147t t a ±±==.显然0a =>,满足题意.∵当t 是一个大于3的常数,存在一个正数7t a =,使得线段PA 、PB 、PC 能构成一个平行四边形.。

2024北京西城区初三一模数学试卷和答案

2024北京西城区初三一模数学试卷和答案

2024北京西城初三一模数 学考生须知:1. 本试卷共7页,共两部分, 28道题.满分 100分.考试时间120分钟.2. 在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号.3. 试题答案一律填涂或书写在答题卡上, 在试卷上作答无效.4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5. 考试结束, 将本试卷、答题卡和草稿纸一并交回.第一部分 选择题一、选择题 (共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 如图是某几何体的展开图,该几何体是( )A. 圆锥B. 三棱柱C. 三棱锥D. 四棱锥2. 2024年5.5G 技术正式开始商用,它的数据下载的最高速率从5G 初期的1Gbps 提升到10Gbps ,给我们的智慧生活“提速”.其中10Gbps 表示每秒传输10000000000 位(bit )的数据. 将10000000000用科学记数法表示应为( )A.110.110⨯ B. 10110⨯ C. 11110⨯ D. 91010⨯3. 下列图形中,既是中心对称图形也是轴对称图形的是( )A. B. C. D.4. 直尺和三角板如图摆放,若155∠=︒,则2∠的大小为( )A. 35︒B. 55︒C. 135︒D. 145︒5. 不透明袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再从中随机摸出一个小球,则两次都摸到蓝球的概率为( )A.14B.13C. 12D.236. 已知21a -<<-, 则下列结论正确的是( )A. 12a a <<-< B. 12a a <<-< C. 12a a <-<<D.12a a -<<<7. 若关于x 的一元二次方程 220kx x +-=有两个实数根,则实数k 的取值范围是( )A. 18k ≤- B. 18k >-且0k ≠ C. 18k ≥-且0k ≠ D. 14k ≥-且0k ≠8. 如图,在Rt ABC 中,90ACB ∠=︒,BC a =,AC b = (其中a b <).CD AB ⊥于点D ,点E 在边AB 上,.BE BC = 设CD h =,AD m =,BD n =, 给出下面三个结论∶①()²²²n h m n +<+;②2222h m n >+;③AE 的长是关于 x 的方程 2220x ax b +-=的一个实数根.上述结论中,所有正确结论的序号是( )A. ①B. ①③C. ②③D. ①②③第二部分 非选择题二、填空题 (共16分,每题2分)9. 在实数范围内有意义,则实数x 的取值范围是______.10. 分解因式:21236x y xy y -+=______.11. 方程43312x x =--的解为______.12. 在平面直角坐标系xOy 中,若函数()0ky k x=≠的图象经过点()1,8-和()2,n , 则n 的值为______.13. 如图, 在ABCD Y 中,点E 在边AD 上,BA ,CE 的延长线交于点F .若1AF =,2AB =, 则AEED= .14. 如图, 在O 的内接四边形ABCD 中, 点A 是 BD的中点,连接AC , 若130DAB ∠=︒,则ACB =∠_______︒.15. 如图,两个边长相等的正六边形的公共边为BD ,点A ,B ,C 在同一直线上, 点1O ,2O 分别为两个正六边形的中心. 则2tan O AC ∠的值为______.16. 将1,2,3,4,5,…,37这37个连续整数不重不漏地填入37个空格中.要求:从左至右,第1个数是第2个数的倍数,第1个数与第2个数之和是第3个数的倍数,第1,2,3个数之和是第4个数的倍数,…,前36个数的和是第37个数的倍数.若第1个空格填入37,则第2个空格所填入的数为______,第37个空格所填入的数为______.3717. 计算: 112sin605-⎛⎫-+︒- ⎪⎝⎭.18. 解不等式组: ()21521.32x x x x ⎧+<+⎪⎨+-≥⎪⎩,19. 已知 240x x --=,求代数式2(2)(1)(3)x x x -+-+的值.20.如图,点E 在ABCD Y 的对角线DB 的延长线上,AE AD =,AF BD ⊥于点F ,EG BC ∥交AF 的延长线于点G ,连接DG .(1)求证: 四边形AEGD 是菱形;(2)若 1tan 42AF BF AEF AB =∠==,,求菱形AEGD 的面积.21. 某学校组织学生社团活动,打算恰好用1000元经费购买围棋和象棋,其中围棋每套40元,象棋每套30元.所购买围棋的套数能否是所购买象棋套数的2倍?若能,请求出所购买的围棋和象棋的套数,若不能,请说明理由.22. 在平面直角坐标系xOy 中,函数()0y kx b k =+≠的图象经过点()()3,5,2,0A B -, 且与y 轴交于点 C .(1)求该函数的解析式及点C 的坐标;(2)当2x <时, 对于x 的每一个值, 函数3y x n =-+的值大于函数()0y kx b k =+≠的值,直接写出n 的取值范围.23. 某学校组织学生采摘山楂制作冰糖葫芦(每串冰糖葫芦由5颗山楂制成).同学们经过采摘、筛选、洗净等环节,共得到7.6kg 的山楂.甲、乙两位同学各随机分到了15颗山楂,他们测量了每颗山楂的重量(单位:g ),并对数据进行整理、描述和分析.下面给出了部分信息.a . 甲同学的山楂重量的折线图:b . 乙同学的山楂重量:8, 8.8, 8.9, 9.4, 9.4, 9.4, 9.6, 9.6, 9.6, 9.8, 10, 10, 10, 10, 10c . 甲、乙两位同学的山楂重量的平均数、中位数、众数:平均数中位数众数甲9.5m 9.2乙9.59.6n根据以上信息,回答下列问题:(1)写出表中m , n 的值;(2)对于制作冰糖葫芦,如果一串冰糖葫芦中5颗山楂重量的方差越小,则认为这串山楂的品相越好.①甲、乙两位同学分别选择了以下5颗山楂制作冰糖葫芦.据此推断:品相更好的是 (填写“甲”或“乙”);甲9.29.29.29.29.1乙9.49.49.48.98.8②甲同学从剩余的 10颗山楂中选出5颗山楂制作一串冰糖葫芦参加比赛,首先要求组成的冰糖葫芦品相尽可能好,其次要求冰糖葫芦的山楂重量尽可能大.他已经选定的三颗山楂的重量分别为9.4,9.5,9.6,则选出的另外两颗山楂的重量分别为 和 ;(3)估计这些山楂共能制作多少串冰糖葫芦.24. 如图, AB 为O 的直径, 弦CD AB ⊥于点H ,O 的切线CE 与BA 的延长线交于点E , AF CE ∥, AF 与O 的交点为F .(1)求证: AF CD =;(2)若O 的半径为6, 2AH OH =,求AE 的长.25. 如图,点O 为边长为1的等边三角形ABC 的外心. 线段PQ 经过点O ,交边AB 于点P , 交边AC 于点Q . 若 12:APQ ABC AP x AQ y S S y ===,,,下表给出了x ,1y ,2y 的一些数据 (近似值精确到0.0001).x0.50.550.60.650.70.750.80.850.90.9511y 10.84620.750.68420.63640.60.57140.54840.52940.51350.52y 0.46540.450.44470.44550.450.45710.46610.47650.48780.5(1)补全表格;(2)在同一平面直角坐标系xOy 中描出了部分点()()12,,x y x y ,.请补全表格中数据的对应点,并分别画出1y 与2y 关于x 的函数图象;(3)结合函数图象,解决下列问题:①当APQ △是等腰三角形时,1y 关于x 的函数图象上的对应点记为(),a b ,请在x 轴上标出横坐标为a 的点;②当2y 取最大值时,x 的值为 .26. 在平面直角坐标系xOy 中,点 ()()()2,2,,A y B y C m y -₁,₂,₃在抛物线 ²3y ax bx =++(0)a >上.设抛物线的对称轴为直线x =t .(1)若 3y =₁,求t 的值;(2)若当 12t m t +<<+时,都有 y y y >>₁₃₂,求t 的取值范围.27. 在 ABC 中, 45ABC ACB ∠=∠=︒,AM BC ⊥于点M .D 是射线AB 上的动点 (不与点 A , B 重合), 点 E 在射线AC 上且满足 AE AD =,过点D 作直线BE 的垂线交直线BC 于点F , 垂足为点 G , 直线BE 交射线AM 于点P .(1)如图1, 若点D 在线段AB 上, 当 AP AE =时,求 BDF ∠的大小;(2)如图2,若点D 在线段AB 的延长线上,依题意补全图形,用等式表示线段CF ,MP ,AB 的数量关系, 并证明.28. 在平面直角坐标系xOy 中,已知O 的半径为1.对于O 上的点 P 和平面内的直线:l y ax =给出如下定义:点P 关于直线l 的对称点记为P ',若射线OP 上的点Q 满足OQ PP =',则称点Q 为点P 关于直线l 的“衍生点”.(1)当0a =时,已知O 上两点 121.2P P ⎛⎛ ⎝⎭⎝⎭,在点()112Q ,,232Q ⎫⎪⎪⎭, ()(341,1Q Q --,中,点1P 关于直线l 的“衍生点”是 ,点2P 关于直线l 的“衍生点”是 ;(2)P 为O 上任意一点, 直线y x m =+ ()0m ≠与x 轴, y 轴的交点分别为点 A ,B . 若线段AB 上存在点S ,T ,使得点S 是点P 关于直线l 的“衍生点”,点T 不是点P 关于直线l 的“衍生点”,直接写出m 的取值范围;(3)当11a -≤≤时,若过原点的直线s 上存在线段 MN ,对于线段 MN 上任意一点R ,都存在O 上的点P 和直线l ,使得点R 是点P 关于直线l 的“衍生点”. 将线段MN 长度的最大值记为()D s ,对于所有的直线s ,直接写出()D s 的最小值.参考答案第一部分 选择题一、选择题 (共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 【答案】C【分析】本题考查了几何体的侧面展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.根据侧面展开图为4个三角形,所以该几何体是三棱锥.【详解】解:∵侧面展开图为4个三角形,∴该几何体是三棱锥,故选C .2. 【答案】B【分析】此题考查科学记数法的表示方法:10n a ⨯,110a ≤<,n 是整数,大于10的数的整数位数减去1即是n 的值,据此解答.【详解】1010000000000110=⨯,故选:B .3. 【答案】D【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.本题考查了中心对称图形和轴对称图形,熟练掌握中心对称图形和轴对称图形的概念是解题的关键.【详解】解:A .不是中心对称图形,是轴对称图形,故本选项不符合题意;B .是中心对称图形,不是轴对称图形,故本选项不合题意;C .不是中心对称图形,是轴对称图形,故本选项符合题意;D .既是中心对称图形也是轴对称图形,故本选项合题意.故选:D .4. 【答案】D【分析】本题主要考查了平行线的性质,三角板中角度的计算,熟知两直线平行,内错角相等是解题的关键.根据平行线的性质得到3435∠∠==︒,再由邻补角互补即可得出结果.【详解】解:如图所示:1+3=90∠∠︒,∵155∠=︒,∴335∠=︒,由题意得,直尺的两边平行,∴3435∠∠==︒,∴21804145=︒-=︒∠∠,故选D .5. 【答案】A【分析】本题考查列表法与树状图法,列表可得出所有等可能的结果数以及两次都摸到蓝球的结果数,再利用概率公式可得出答案.【详解】解:列表如下:红蓝红(红,红)(红,蓝)蓝(蓝,红)(蓝,蓝)共有4种等可能的结果,其中两次都摸到蓝球的结果有1种,∴两次都摸到蓝球的概率为14.故选:A .6. 【答案】A【分析】本题考查了不等式的性质.熟练掌握不等式的性质是解题的关键.由21a -<<-,可得12a <-<,然后判断作答即可.【详解】解:∵21a -<<-,∴12a <-<, ∴12a a <<-<,故选:A .7. 【答案】C【分析】本题主要考查了一元二次方程的定义,一元二次方程根的判别式,解题的关键在于能够熟练掌握一元二次方程的定义和一元二次方程根的判别式.根据一元二次方程的定义以及根的判别式的意义可得()2Δ1420k =-⨯-≥ 且0k ≠,求出k 的取值范围即可.【详解】解:∵一元二次方程220kx x +-=有两个实数根,∴()2Δ14200k k ⎧=-⨯-≥⎨≠⎩,∴18k ≥-且0k ≠,故选C .8. 【答案】B【分析】本题主要考查了勾股定理,公式法解一元二次方程,关键在于找出各边的几何关系.【详解】解:∵在Rt BDC 中,222BD CD BC +=,即222n h a +=,在Rt ABC 中,222BC AC AB +=,即()222a b m n +=+,∴()222222n h a a b m n +=<+=+ ,即()²²²n h m n +<+,故①正确.∵在Rt BDC 中,222n a h =-,在Rt ADC 中,222m b h =-,∴222222n m a b h +=+-,又∵在Rt ABC 中,()222a b m n +=+,∴()22222n m m n h +=+-,即2222222n m n m mn h +=++-,即222mn h =,∴()()()222222220m nh m n mn m n m n +-=+-=->≠,∴2222m n h +>,故②错误.∵DE BE BD BC BD a n =-=-=-,∴()AE AD DE m a n m n a =-=--=+-,∵2220x ax b +-=的实数根为:()()222a m n x a m n -±+===-±+,∴AE 的长是关于 x 的方程 2220x axb +-=的一个实数根,故③正确.综上①③正确,故选:B .第二部分 非选择题二、填空题 (共16分,每题2分)9. 【答案】3x ≥【分析】此题主要考查了分式有意义及二次根式有意义的条件,正确掌握相关定义是解题关键.由分式有意义及二次根式有意义的条件,进而得出x 的取值范围.【详解】由二次根式的概念,可知30x -≥,解得3x ≥.故答案为:3x ≥10. 【答案】()26y x -【分析】本题考查了因式分解,熟练掌握因式分解的方法是解题的关键.先提取公因式,再运用完全平方公式进行分解即可.【详解】解:()()222123612366x y xy y y x x y x -+=-+=-.故答案为:()26y x -.11. 【答案】=1x -【分析】本题考查了解分式方程,熟练掌握解法是解决本题的关键.先去分母,转化为一元整式方程,再求解即可.【详解】解:()()42331x x -=-,4893x x -=-,解得:=1x -,经检验:=1x -是原方程的根,所以,原方程的根为:=1x -,故答案为:=1x -.12. 【答案】4-【分析】本题考查了反比例函数的性质,根据题意,()1,8-和点()2,n ,都满足解析式()0k y k x=≠,即可求解.熟练掌握反比例函数的性质是解题的关键.【详解】解:∵反比例函数()0k y k x =≠的图象经过点()1,8-和()2,n ,∴182n -⨯=,解得:n =-4故答案为:4-.13. 【答案】12【分析】本题考查平行四边形的性质,相似三角形的判定和性质,关键是由FAE CDE ∽,推出AE AF DE CD=.由平行四边形的性质得到AB CD ∥,2CD AB ==,推出FAE CDE ∽,得到AE AF DE CD=,而1AF =,于是得到12AE DE =.【详解】解: 四边形ABCD 是平行四边形,AB CD ∴∥,2CD AB ==,FAE CDE ∴∽,∴AE AF DE CD=,1AF =Q ,∴12AE DE =.故答案为:12.14. 【答案】25【分析】本题考查了圆的内接四边形性质,圆周角定理等知识,利用圆的内接四边形的性质求出BCD ∠的性质,然后利用圆周角定理求解即可.【详解】解:∵O 的内接四边形ABCD 中,130DAB ∠=︒,∴18500DA BCD B ∠︒∠==︒-,∵点A 是 BD的中点,∴ AD AB =,∴1252ACD ACB BCD ∠=∠=∠=︒,故答案为:25.15. 【分析】本题考查正多边形和圆,掌握正六边形的性质,直角三角形的边角关系以及锐角三角函数的定义是正确解答的关键.连接2O C ,过2O 点作2O E BC ⊥,垂足为E ,根据正六边形的性质,直角三角形的边角关系以及锐角三角函数的定义进行计算即可.【详解】解:如图,连接2O C ,过2O 点作2O E BC ⊥,垂足为E ,设正六边形的边长为a ,则112O A O B O C a ===,在2Rt O CE 中,22,3606230O C a CO E =∠=︒÷÷=︒,∴21122EC O C a BE ===,22O E C ==,∴15222AE a a a =+=,∴22tan O E O AC AE ∠==.16. 【答案】 ①. 1 ②. 19【分析】本题考查了有理数四则混合运算的应用,熟练掌握四则运算法则是解题关键.根据第1个数是第2个数的倍数可得第2个空格所填入的数;先得出这37个数的和也是第37个数的倍数,再求出这37个数的和,由此即可得.【详解】解:∵第1个空格填入37,第1个数是第2个数的倍数,∴第2个空格所填入的数为1,∵前36个数的和是第37个数的倍数,∴这37个数的和也是第37个数的倍数,又∵12337++++ ()()()137236182019=+++++++ 381819=⨯+703=3719=⨯,∴第37个空格所填入的数为19,故答案为:1,19.17. 【答案】5-【分析】本题考查的是含特殊角的三角函数值的混合运算,掌握运算顺序是解本题的关键,先计算绝对值,负整数指数幂,代入三角函数值,化简二次根式,再合并即可.【详解】解∶112sin605-⎛⎫-+︒⎪⎝⎭52=+-=5-.18. 【答案】3x<【分析】本题考查了解一元一次不等式组,熟练掌握一元一次不等式组的解法是解题的关键.分别求出两个不等式的解,再求公共解,即得答案.【详解】原不等式组为()2152132x xx x⎧+<+⎪⎨+-≥⎪⎩①②解不等式①,得3x<,解不等式②,得7x≤,∴原不等式组的解集为3x<.19. 【答案】9【分析】本题考查了整式的化简求值,利用整体代入法解答是解题的关键.先化简原式,再将²40x x--=变形为24x x-=,最后将24x x-=以整体的形式代入原式,即得答案.【详解】2(2)(1)(3)x x x-+-+22(44)(23)x x x x=-+++-2221x x=-+,²40x x--=,24x x∴-=,∴原式22()19x x=-+=.20. 【答案】(1)见详解(2)32【分析】(1)根据等腰三角形三线合一的性质得出EF DF=,再证GEF△和ADF△全等,得出EF DF=,于是根据对角线相互平分的四边形AEGD是平行四边形,再根据一组邻边相等的平行四边形是菱形即可得出四边形AEGD是菱形;(2)分别求出AF 、EF 的长,即可得出对角线AG 、ED 的长,根据菱形的面积公式计算即可.【小问1详解】证明:AE AD = ,AF BD ⊥,EF DF ∴=,四边形ABCD 是平行四边形,AD BC ∴∥,EG BC ∥,AD EG ∴∥,GEF ADF ∴∠=∠,在GEF △和ADF △中,GEF ADFEF DF EFG DFA∠=∠⎧⎪=⎨⎪∠=∠⎩,(ASA)GEF ADF ∴△≌△,∴=GF AF ,EF DF = ,∴四边形AEGD 是平行四边形,AE AD = ,∴四边形AEGD 是菱形;【小问2详解】解:AF BD ⊥ ,AF BF =,AFB ∴ 是等腰直角三角形,4AB = ,∴由勾股定理得,4AF BF AB ====1tan 2AEF ∠= ,∴12AFEF =,12=,EF ∴=,四边形AEGD 是菱形,2AG AF ∴==2ED EF ==∴菱形AEGD 32=.【点睛】本题考查了菱形的判定与性质,平行四边形的性质,勾股定理,锐角三角函数,菱形的面积等,熟练掌握这些知识点是解题的关键.21. 【答案】购买围棋的套数不能是所购买象棋套数的2倍,理由见解析【分析】本题考查了二元一次方程组的应用.熟练掌握二元一次方程组的应用是解题的关键.设购买x 套围棋,y 套象棋,假设所购买围棋的套数能是所购买象棋套数的2倍,依题意得,403010002x y x y +=⎧⎨=⎩,计算求解,然后判断作答即可.【详解】解:设购买x 套围棋,y 套象棋,假设所购买围棋的套数能是所购买象棋套数的2倍,依题意得,403010002x y x y +=⎧⎨=⎩, 解得,10011y =,∵y 不为正整数,∴不合题意.答:所购买围棋的套数不能是所购买象棋套数的2倍.22. 【答案】(1)函数的解析式为2y x =+,点C 的坐标为()0,2(2)10n ≥【分析】本题考查了待定系数法求函数解析式及解不等式,(1)利用待定系数法即可求得函数解析式,当0x =时,求出2y =即可求解.(2)根据题意结合解出不等式32x n x -+>+结合2x <,即可求解.【小问1详解】解:将()()3,5,2,0A B -,代入函数解析式得,3520k b k b +=⎧⎨-+=⎩,解得12k b =⎧⎨=⎩,∴函数的解析式为:2y x =+,当0x =时,2y =,∴点C 的坐标为()0,2.【小问2详解】解:由题意得,32x n x -+>+,即24n x -<,又2x <,∴224n -≥,解得:10n ≥,∴n 的取值范围为10n ≥.23.【答案】(1)9.4,10(2)①甲,②9.3,9.6(3)160串【分析】(1)根据中位数和众数的概念,即可求解;(2)①根据方差的定义,即可求解;②根据题意可知,剩余两个山楂的重量应该尽可能大,且接近已有的三个山楂的重量,以保证方差最小,据此解答即可.(3)已知总重量和调查的平均数,用总数量除以调查的平均数先求出大概有多少个山楂,再用山楂数除以每串冰糖葫芦的山楂数即可求出能制作多少串冰糖葫芦.【小问1详解】解:根据甲的折线图可以看出,这组数据从小到大排列,中间第8个数为9.4,也就是说这组数据的中位数为9.4,所以9.4m =;根据乙同学的山楂重量数据可以发现,重量为10克出现的次数最多,也就是说这组数据的众数为10,所以10n =.【小问2详解】解:①根据题意可知甲同学的5个冰糖葫芦重量分布于9.19.2-之间,乙同学的5个冰糖葫芦重量分布于8.89.4-,从中可以看出,甲同学的5个数据比乙同学的5个数据波动较小,所以,甲同学的5个冰糖葫芦重量的方差较小,故甲同学冰糖葫芦品相更好.② 要求数据的差别较小,山楂重量尽可能大,∴可供选择的有9.3、9.6、9.9,当剩余两个为9.3、9.6,这组数据的平均数为9.48,方差为:222221[(9.39.48)(9.49.48)(9.59.48)(9.69.48)(9.69.48)]0.01365-+-+-+-+-⨯=,当剩余两个为9.6、9.9,这组数据的平均数为9.6,方差为:222221[(9.49.6)(9.59.6)(9.69.6)(9.69.6)(9.99.6)]0.0285-+-+-+-+-⨯=,当剩余两个为9.3、9.9,这组数据平均数为9.54,方差为:222221[(9.39.54)(9.49.54)(9.59.54)(9.69.54)(9.99.54)]0.04245-+-+-+-+-⨯=,据此,可发现当剩余两个为9.3、9.6,方差最小,山楂重量也尽可能大.【小问3详解】解:7.6千克7600=克,76009.5800÷=(个),8005160÷=(串),答:能制作160串冰糖葫芦.【点睛】本题考查了折线统计图,平均数,众数,中位数和方差,熟记方差的计算公式以及方差的意义是解题的关键.24. 【答案】(1)见解析 (2)12【分析】本题考查切线的性质,全等三角形的判定和性质,解直角三角形,掌握切线的性质是解题的关键.(1) 连接OC ,OC 与AF 交于点G ,根据切线的性质得到90OCE ∠=︒,根据垂径定理得到 2AF AG =,然后证明OAG OCH ≌即可得到结论;(2)在Rt OCH 和Rt OCE 运用解直角三角形得到OE 长,然后利用AE OE OA =-解题即可.【小问1详解】证明: 如图, 连接OC ,OC 与AF 交于点 G .∵ CE 与O 相切, 切点为C ,∴CE OC ⊥.∴90OCE ∠=︒ .∵ AF CE ∥,∴ 90OGA OCE ∠∠==︒ .∴ OC AF ⊥于点 G .∴ 2AF AG =.∵CD AB ⊥ 于点 H ,∴90OHC ∠=︒, 2CD CH =.∴OGA OHC ∠∠=.又∵ AOG COH ∠∠=,OA OC =,∴ OAG OCH ≌.∴AG CH =.∴A F CD =;【小问2详解】解: ∵ O 的半径为6, 2AH OH =,∴2OH =, 4AH =.在Rt OCH 中, 190cos .3OHOHC COH OC ∠=︒∠==,在Rt OCE 中, 190cos 63OCE COE OC ∠=︒∠==,,,18cos OCOE COE ∴==∠,∴18612AE OE OA =-=-=.25. 【答案】(1)见解析 (2)见解析(3)①见解析;②0.5或1【分析】(1)根据等边三角形的性质,得出此时点Q 在点C 处,从而得出12APQ ABC S S =△△,即可得出答案;(2)根据解析(1)得出的数据,先描点,再连线即可;(3)①连接AO 并延长交BC 于点D ,连接OB ,根据等边三角形的性质求出23OA AD ==,当APQ △是等腰三角形时,AP AQ =,根据60PAQ ∠=︒,证明PAQ △为等边三角形,解直角三角形求出23a =,23b =,在函数图象上描出该点即可;②根据函数图象,得出2y 取最大值时x 的值即可.【小问1详解】解:当0.5x =时,点P 为AB 的中点,∵点O 为边长为1的等边三角形ABC 的外心,∴此时点Q 在点C 处,如图所示:∵ABC 为等边三角形,点P 为AB 的中点,点Q 在点C 处,∴12APQ ABC S S =△△,∴20.5APQABCS y S == ;填报如下:x 0.50.550.60.650.70.750.80.850.90.9511y 10.84620.750.68420.63640.60.57140.54840.52940.51350.52y 0.50.46540.450.44470.44550.450.45710.46610.47650.48780.5【小问2详解】解:如图所示:【小问3详解】解:①连接AO 并延长交BC 于点D ,连接OB ,如图所示:∵ABC 为等边三角形,点O 为ABC 外心,∴30OBD BAD ∠=∠=︒,AD BC ⊥,1122BD BC ==,OA OB =,∴12OD OB =,AD ===,∴23OA AD ==,当APQ △是等腰三角形时,AP AQ =,∵60PAQ ∠=︒,∴PAQ △为等边三角形,∴60APQ ∠=︒,∴APQ ABC ∠=∠,∴PQ BC ∥,∴90AOP ADB ∠=∠=︒,∴2cos303AOAP ===︒,∴23AQ AP ==,∴23a =,23b =,∴此时在1y 关于x 的函数图象上标出点22,33⎛⎫⎪⎝⎭,如图所示:②根据函数图象可知,函数2y 的最大值为0.5,此时0.5x =或1x =.26. 【答案】(1)1-(2)13t ≤≤【分析】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.(1)把A 点的坐标代入解析式求得2b a =,然后利用对称轴公式即可求得;(2)由题意可知点1(2,)A y -在对称轴的左侧,3(,)C m y 在对称轴的右侧,点1(2,)A y -关于直线x t =的对称点为(22)t +,2(2,)B y 关于直线x t =的对称点为(22)t -,分两种情况讨论,得到关于t 的不等式组,解不等式组从而求得t 的取值范围.【小问1详解】解: 点(2,3)A -在抛物线23(0)y ax bx a =++>上,3423a b ∴=-+,2b a ∴=,12b t a∴=-=-;【小问2详解】解:0a > ,∴抛物线23(0)y ax bx a =++>开口向上,当x t >时,y 随x 的增大而增大,当12t m t +<<+时,都有132y y y >>,∴点1(2,)A y -在对称轴的左侧,3(,)C m y 在对称轴的右侧,点1(2,)A y -,2(2,)B y ,3(,)C m y 在抛物线23(0)y ax bx a =++>上,∴点1(2,)A y -关于直线x t =的对称点为(22)t +,2(2,)B y 关于直线x t =的对称点为(22)t -,当2t ≥时,则222221t t t t +>+⎧⎨-≤+⎩,解得03t <≤,23t ∴≤≤;当2t <时,则22212t t t +>+⎧⎨+≥⎩,解得12t ≤<,综上所述,t 的取值范围为13t ≤≤.27. 【答案】(1)67.5︒(2)2CF MP =,证明见解析【分析】(1)根据等腰三角形的性质求得345∠=︒,再根据等腰三角形性质与三我内角和定理求得267.5∠=︒,然后由余角性质得出2BDF ∠=∠,即可求解.(2)作CQ AP ∥交BE 于点 Q ,利用相似三角形的性质求得2CQ MP =,证明BDF CEQ ≌,得到BF CQ =,由勾股定理得BC ,即可由CF BF BC CQ =+=,得出结论.【小问1详解】解∶如图4.∵在ABC 中,45ABC ACB ∠=∠=︒,∴AB AC =,90BAC ∠=︒,1290∠+∠=︒.∵AM BC ⊥于点 M , 3452BAC BM CM ∠∴∠==︒=,.∵AP AE =, 180318045267.522︒-∠︒-︒∴∠===︒.∵DF BE ⊥于点 G ,∴190BDF ∠+∠=︒,∴267.5BDF ∠=∠=︒.【小问2详解】解:补全图形,如图5.2CF MP =+.证明∶ 如图5, 作CQ AP ∥交BE 于点 Q .∵CQ AP ∥,∴BMP BCQ∽∴MP BM CQ BC=,∵BM =CM , AM ⊥BC , 1902MP BM BCQ AMC CQ BC ∴==∠=∠=︒ 2518045CQ MP ACB BCQ ∴=∠=︒-∠-∠=︒,.445ABC ∠=∠=︒ ,∴45∠=∠,DBG ABE DG BE ∠=∠⊥ ,于点 G , 90BAC ∠=︒,∴D E∠=∠ AD AE AB AC == ,,AD AB AE AC ∴-=-, 即BD CE =.∴BDF CEQ≌BF CQ =∶..CF BF BC BC =+= ,,2CF CQ MP ∴=+=+.【点睛】本题考查等腰直角三角形的性质,勾股定理,三角形内角和定理,角平分线有关的角的计算,全等三角形的判定与性质,相似三角形的判定与性质.熟练掌握等腰直角三角形的性质是解题的关键.28. 【答案】(1)23Q Q ,(2)2m ≤≤2m -≤≤-(3)2-【分析】(1)先得出直线l 为0y =,根据轴对称得出121,.2P P ''⎛⎛ ⎝⎭⎝⎭,进而可得11PP '=,22P P '=,勾股定理求得点1234,,,Q Q Q Q 与原点的距离,进而根据新定义即可求解;(2)依题意,02PP '≤≤当线段AB 上存在一个点到原点的距离为2时,则符合题意,进而分0,0m m ><画出图形,即可求解;(3)根据题意,画出图形,就点P 的位置,分类讨论,根据新定义即可求解.【小问1详解】解:∵当0a =时,直线l 为0y =,即x 轴,∵121.2P P ⎛⎛ ⎝⎭⎝⎭,∴121,.2P P ''⎛⎛ ⎝⎭⎝⎭,∴11PP '=22P P '=,∵()112Q ,, 232Q ⎫⎪⎪⎝⎭, ()(341,1Q Q --,∴1OQ ==,2OQ ==3OQ ==,42OQ ==,∴点1P 关于直线l 的“衍生点”是2Q ,点2P 关于直线l 的“衍生点”是3Q ,故答案为:23Q Q ,.【小问2详解】解:依题意,02PP '≤≤,由(2)可得当点S 是点P 关于直线l 的“衍生点”则2OS ≤,∵P 为O 上任意一点, 直线y x m =+ ()0m ≠与x 轴, y 轴的交点分别为点 A ,B .∴OA OB m ==,∴当线段AB 上存在一个点到原点的距离为2时,当0m >时,如图所示,当2OS =时,即S 与B 点重合时,存在点S 是点P 关于直线l 的“衍生点”,则2m =则AB (除端点外)上所有的点到O 的距离都2<,∵对称轴为直线y ax =,不能为y 轴,则()0,2和()2,0-不是点P 关于直线l 的“衍生点”,则2m =符合题意,∵线段AB 上存在点S ,T ,使得点S 是点P 关于直线l 的“衍生点”,点T 不是点P 关于直线l 的“衍生点”,∴m 2≥,当OS y x m '⊥=+,此时OS '最短,则当2OS '=时,m =,此时只有1个点到O 的距离为2,其他的点都不是点P 关于直线l 的“衍生点”,∴2m ≤≤根据对称性,当0m <时,可得2m -≤≤-;综上所述,2m ≤≤2m -≤≤-【小问3详解】∵11a -≤≤时∴随着a 的变化,点P 关于直线l 的对称点P '始终在圆上,如图所示,依题意,直线l 是经过圆心,且经过 AB 的直线,s 经过圆心,①当点P 在 AB (包括边界)上时,当,P P '重合时,当PP '为直径时,则2OQ PP '==,根据新定义可得02PP '≤≤,∴()2D s =,②当P 点在 AD 的内部的圆弧上时(不包括边界),当PP '为直径时,则2OQ PP '==,则对于线段 MN 上任意一点R ,都存在O 上的点P 和直线l ,使得点R 是点P 关于直线l 的“衍生点”.当P 在y 轴上时,两条边界线的正中间,则PP ',2PP OQ '≤=≤即()2D s =-综上所述,()2D s =.【点睛】本题考查了一次函数,圆的定义,轴对称的性质,勾股定理求线段长,理解新定义,熟练掌握几何变换是解题的关键.。

2020年北京市西城区中考数学一模试卷(解析版)

2020年北京市西城区中考数学一模试卷(解析版)

2020年北京市西城区中考数学一模试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)北京大兴国际机场目前是全球建设规模最大的机场,2019年9月25日正式通航,预计到2022年机场旅客吞吐量将达到45000000人次,将45000000用科学记数法表示为()A.45×106B.4.5×107C.4.5×108D.0.45×1082.(2分)如图是某个几何体的三视图,该几何体是()A.圆锥B.圆柱C.长方体D.正三棱柱3.(2分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(2分)在数轴上,点A,B表示的数互为相反数,若点A在点B的左侧,且AB=2,则点A,点B表示的数分别是()A.﹣,B.,﹣C.0,2D.﹣2,2 5.(2分)如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB=65°,则∠ADC的度数为()A.65°B.35°C.32.5°D.25°6.(2分)甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为甲,乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.甲=乙,s甲2>s乙2B.甲=乙,s甲2<s乙2C.甲>乙,s甲2>s乙2D.甲<乙,s甲2<s乙27.(2分)如图,在数学实践活动课上,小明同学打算通过测量树的影长计算树的高度.阳光下他测得长1.0m的竹竿落在地面上的影长为0.9m.在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙面上.他测得这棵树落在地面上的影长BD为2.7m,落在墙面上的影长CD为1.0m,则这棵树的高度是()A.6.0m B.5.0m C.4.0m D.3.0m8.(2分)设m是非零实数,给出下列四个命题:①若﹣1<m<0,则<m<m2;②若m>1,则<m2<m;③若m<<m2,则m<0;④若m2<m<,则0<m<1.其中命题成立的序号是()A.①③B.①④C.②③D.③④二、填空题(本题共16分,每小题2分)9.(2分)若在实数范围内有意义,则x的取值范围是.10.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.11.(2分)已知y是以x为自变量的二次函数,且当x=0时,y的最小值为﹣1,写出一个满足上述条件的二次函数表达式.12.(2分)如果a2+a=1,那么代数式﹣的值是.13.(2分)如图,在正方形ABCD中,BE平分∠CBD,EF⊥BD于点F.若DE=,则BC的长为.14.(2分)如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,BD⊥AC 于点D,则AC的长为,BD的长为.15.(2分)如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为.16.(2分)某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.每日接待游客人数(单位:万人)游玩环境评价0≤x<5好5≤x<10一般10≤x<15拥挤15≤x<20严重拥挤根据以上信息,以下四个判断中,正确的是(填写所有正确结论的序号).①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在5~10万人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)17.(5分)计算:()﹣1+(1﹣)0+|﹣|﹣2sin60°.18.(5分)解不等式组:19.(5分)关于x的一元二次方程x2﹣(2m+1)x+m2=0有两个实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.20.(5分)如图,在▱ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC 于点E.(1)求证:▱ABCD是矩形;(2)若AD=2,cos∠ABE=,求AC的长.21.(5分)先阅读下列材料,再解答问题.尺规作图已知:△ABC,D是边AB上一点,如图1,求作:四边形DBCF,使得四边形DBCF是平行四边形.小明的做法如下:(1)设计方案先画一个符合题意的草图,如图2,再分析实现目标的具体方法,依据:两组对边分别平行的四边形是平行四边形.(2)设计作图步骤,完成作图作法:如图3,①延长BC至点E;②分别作∠ECP=∠EBA,∠ADQ=∠ABE;③DQ与CP交于点F.∴四边形DBCF即为所求.(3)推理论证证明:∵∠ECP=∠EBA,∴CP∥BA.同理,DQ∥BE.∴四边形DBCF是平行四边形.请你参考小明的做法,再设计一种尺规作图的方法(与小明的方法不同),使得画出的四边形DBCF是平行四边形,并证明.22.(6分)运用语音识别输入软件可以提高文字输入的速度.为了解A,B两种语音识别输入软件的准确性,小秦同学随机选取了20段话,其中每段话都含100个文字(不计标点符号).在保持相同语速的条件下,他用标准普通话朗读每段话来测试这两种语音识别输入软件的准确性.他的测试和分析过程如下,请补充完整.(1)收集数据两种软件每次识别正确的字数记录如下:A 98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58B 99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55(2)整理、描述数据根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据两组样本数据的平均数、众数、中位数、方差如表所示:平均数众数中位数方差A84.784.588.91B83.796184.01(4)得出结论根据以上信息,判断种语音识别输入软件的准确性较好,理由如下:(至少从两个不同的角度说明判断的合理性).23.(6分)如图,四边形OABC中,∠OAB=90°,OA=OC,BA=BC.以O为圆心,以OA为半径作⊙O.(1)求证:BC是⊙O的切线;(2)连接BO并延长交⊙O于点D,延长AO交⊙O于点E,与BC的延长线交于点F,若=,①补全图形;②求证:OF=OB.24.(6分)如图,在△ABC中,AB=4cm,BC=5cm.P是上的动点,设A,P两点间的距离为xcm,B,P两点间的距离为y1cm,C,P两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm01234y1/cm 4.00 3.69 2.130y2/cm 3.00 3.91 4.71 5.235(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),点(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,①当△PBC为等腰三角形时,AP的长度约为cm;②记所在圆的圆心为点O,当直线PC恰好经过点O时,PC的长度约为cm.25.(5分)在平面直角坐标系xOy中,直线l1:y=kx+2k(k>0)与x轴交于点A,与y轴交于点B,与函数y=(x>0)的图象的交点P位于第一象限.(1)若点P的坐标为(1,6),①求m的值及点A的坐标;②=;(2)直线l2:y=2kx﹣2与y轴交于点C,与直线l1交于点Q,若点P的横坐标为1,①写出点P的坐标(用含k的式子表示);②当PQ≤P A时,求m的取值范围.26.(6分)已知抛物线y=ax2+bx+a+2(a≠0)与x轴交于点A(x1,0),点B(x2,0)(点A在点B的左侧),抛物线的对称轴为直线x=﹣1.(1)若点A的坐标为(﹣3,0),求抛物线的表达式及点B的坐标;(2)C是第三象限的点,且点C的横坐标为﹣2,若抛物线恰好经过点C,直接写出x2的取值范围;(3)抛物线的对称轴与x轴交于点D,点P在抛物线上,且∠DOP=45°,若抛物线上满足条件的点P恰有4个,结合图象,求a的取值范围.27.(7分)如图,在等腰直角△ABC中,∠ACB=90°.点P在线段BC上,延长BC至点Q,使得CQ=CP,连接AP,AQ.过点B作BD⊥AQ于点D,交AP于点E,交AC于点F.K是线段AD上的一个动点(与点A,D不重合),过点K作GN⊥AP于点H,交AB于点G,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.28.(7分)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A与点B可以重合),在图形W2上存在两点M,N(点M与点N可以重合),使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(1,0),D(﹣1,0),E(0,),点P在线段DE上运动(点P 可以与点D,E重合),连接OP,CP.①线段OP的最小值为,最大值为,线段CP的取值范围是;②在点O,点C中,点与线段DE满足限距关系;(2)如图2,⊙O的半径为1,直线y=x+b(b>0)与x轴、y轴分别交于点F,G.若线段FG与⊙O满足限距关系,求b的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两点,分别以H,K为圆心,1为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r 的取值范围.2020年北京市西城区中考数学一模试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)北京大兴国际机场目前是全球建设规模最大的机场,2019年9月25日正式通航,预计到2022年机场旅客吞吐量将达到45000000人次,将45000000用科学记数法表示为()A.45×106B.4.5×107C.4.5×108D.0.45×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将数据45000000用科学记数法可表示为:4.5×107.故选:B.2.(2分)如图是某个几何体的三视图,该几何体是()A.圆锥B.圆柱C.长方体D.正三棱柱【分析】由主视图和左视图确定是柱体、锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是圆柱.故选:B.3.(2分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、不是轴对称图形,是中心对称图形,故此选项不合题意;C、既是轴对称图形又是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.4.(2分)在数轴上,点A,B表示的数互为相反数,若点A在点B的左侧,且AB=2,则点A,点B表示的数分别是()A.﹣,B.,﹣C.0,2D.﹣2,2【分析】根据相反数的定义即可求解.【解答】解:由A、B表示的数互为相反数,且AB=2,点A在点B的左边,得点A、B表示的数是﹣,.故选:A.5.(2分)如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB=65°,则∠ADC的度数为()A.65°B.35°C.32.5°D.25°【分析】首先利用直径所对的圆周角是直角确定∠ACB=90°,然后根据∠CAB=65°求得∠ABC的度数,利用同弧所对的圆周角相等确定答案即可.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠CAB=65°,∴∠ABC=90°﹣∠CAB=25°,∴∠ADC=∠ABC=25°,故选:D.6.(2分)甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为甲,乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.甲=乙,s甲2>s乙2B.甲=乙,s甲2<s乙2C.甲>乙,s甲2>s乙2D.甲<乙,s甲2<s乙2【分析】分别计算平均数和方差后比较即可得到答案.【解答】解:(1)甲=(8×4+9×2+10×4)=9;=(8×3+9×4+10×3)=9;乙s甲2=[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8;s乙2=[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7;∴甲=乙,s甲2>s乙2,故选:A.7.(2分)如图,在数学实践活动课上,小明同学打算通过测量树的影长计算树的高度.阳光下他测得长1.0m的竹竿落在地面上的影长为0.9m.在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙面上.他测得这棵树落在地面上的影长BD为2.7m,落在墙面上的影长CD为1.0m,则这棵树的高度是()A.6.0m B.5.0m C.4.0m D.3.0m【分析】根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似进而解答即可.【解答】解:根据物高与影长成正比得:,即解得:DE=1.0,则BE=2.7+1.0=3.7米,同理,即:,解得:AB≈4.答:树AB的高度为4米,故选:C.8.(2分)设m是非零实数,给出下列四个命题:①若﹣1<m<0,则<m<m2;②若m>1,则<m2<m;③若m<<m2,则m<0;④若m2<m<,则0<m<1.其中命题成立的序号是()A.①③B.①④C.②③D.③④【分析】判断一个命题是假命题,只需举出一个反例即可.【解答】解:①若﹣1<m<0,则<m<m2;,当m=﹣时,,是真命题;②若m>1,则<m2<m,当m=2时,,原命题是假命题;③若m<<m2,则m<0,当m=﹣时,,原命题是假命题;④若m2<m<,则0<m<1,当m=时,,是真命题;故选:B.二、填空题(本题共16分,每小题2分)9.(2分)若在实数范围内有意义,则x的取值范围是x≥1.【分析】直接利用二次根式有意义的条件进而得出答案.【解答】解:若在实数范围内有意义,则x﹣1≥0,解得:x≥1.故答案为:x≥1.10.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形的边数为6.故答案为:6.11.(2分)已知y是以x为自变量的二次函数,且当x=0时,y的最小值为﹣1,写出一个满足上述条件的二次函数表达式y=x2﹣1.【分析】直接利用二次函数的性质得出其顶点坐标,进而得出答案.【解答】解:∵y是以x为自变量的二次函数,且当x=0时,y的最小值为﹣1,∴二次函数对称轴是y轴,且顶点坐标为:(0,﹣1),故满足上述条件的二次函数表达式可以为:y=x2﹣1.故答案为:y=x2﹣1.12.(2分)如果a2+a=1,那么代数式﹣的值是1.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a2+a的值整体代入即可得.【解答】解:原式=﹣===,当a2+a=1时,原式=1,故答案为:1.13.(2分)如图,在正方形ABCD中,BE平分∠CBD,EF⊥BD于点F.若DE=,则BC的长为.【分析】根据正方形的性质、角平分线的性质及等腰直角三角形的三边比值为1:1:来解答即可.【解答】解:∵四边形ABCD为正方形,∴∠C=90°,∠CDB=45°,BC=CD.∴EC⊥CB.又∵BE平分∠CBD,EF⊥BD,∴EC=EF.∵∠CDB=45°,EF⊥BD,∴△DEF为等腰直角三角形.∵DE=,∴EF=1.∴EC=1.∴BC=CD=DE+EC=+1.故答案为:+1.14.(2分)如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,BD⊥AC 于点D,则AC的长为5,BD的长为3.【分析】根据图形和三角形的面积公式求出△ABC的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.【解答】解:如图所示:由勾股定理得:AC==5,S△ABC=BC×AE=×BD×AC,∵AE=3,BC=5,即,解得:BD=3.故答案为:5,3.15.(2分)如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为(6,6).【分析】由题意得出M在AB、BC的垂直平分线上,则BN=CN,求出ON=OB+BN=6,证△OMN是等腰直角三角形,得出MN=ON=6,即可得出答案.【解答】解:如图所示:∵⊙M是△ABC的外接圆,∴点M在AB、BC的垂直平分线上,∴BN=CN,∵点A,B,C的坐标分别是(0,4),(4,0),(8,0),∴OA=OB=4,OC=8,∴BC=4,∴BN=2,∴ON=OB+BN=6,∵∠AOB=90°,∴△AOB是等腰直角三角形,∵OM⊥AB,∴∠MON=45°,∴△OMN是等腰直角三角形,∴MN=ON=6,∴点M的坐标为(6,6);故答案为:(6,6).16.(2分)某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.每日接待游客人数(单位:万人)游玩环境评价0≤x<5好5≤x<10一般10≤x<15拥挤15≤x<20严重拥挤根据以上信息,以下四个判断中,正确的是①④(填写所有正确结论的序号).①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在5~10万人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为.【分析】根据统计图与统计表,结合相关统计或概率知识逐个选项分析即可.【解答】解:①根据题意每日接待游客人数10≤x<15为拥挤,15≤x<20为严重拥挤,由统计图可知,游玩环境评价为“拥挤或严重拥挤”,1日至5日有2天,25日﹣30日有2天,共4天,故①正确;②本题中位数是指将30天的游客人数从小到大排列,第15与第16位的和除以2,根据统计图可知0≤x<5的有16天,从而中位数位于0≤x<5范围内,故②错误;③从统计图可以看出,接近10的有6天,大于10而小于15的有2天,15以上的有2天,10上下的估算为10,则(10×8+15×2﹣5×10)÷16=3.25,可以考虑为给每个0至5的补上3.25,则大部分大于5,而0至5范围内有6天接近5,故平均数一定大于5,故③错误;④由题意可知“这两天游玩环境评价均为好”的可能性为:×=,故④正确.故答案为:①④.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)17.(5分)计算:()﹣1+(1﹣)0+|﹣|﹣2sin60°.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=2+1+﹣2×=3+﹣=3.18.(5分)解不等式组:【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x<4,由②得:x>,则不等式组的解集为<x<4.19.(5分)关于x的一元二次方程x2﹣(2m+1)x+m2=0有两个实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.【分析】(1)先根据方程有两个实数根得出△=[﹣(2m+1)]2﹣4×1×m2>0,解之可得;(2)在以上所求m的范围内取一值,如m=0,再解方程即可得.【解答】解:(1)∵方程有两个实数根,∴△=[﹣(2m+1)]2﹣4×1×m2>0,解得m≥﹣;(2)取m=0,此时方程为x2﹣x=0,∴x(x﹣1)=0,则x=0或x﹣1=0,解得x=0或x=1(答案不唯一).20.(5分)如图,在▱ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC 于点E.(1)求证:▱ABCD是矩形;(2)若AD=2,cos∠ABE=,求AC的长.【分析】(1)根据平行四边形的性质得到OA=OC,OB=OD,求得AC=BD,于是得到结论;(2)根据矩形的性质得到∠BAD=∠ADC=90°,求得∠CAD=∠ABE,解直角三角形即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴OA=OB=OC=OD,∴AC=BD,∴▱ABCD是矩形;(2)解:∵▱ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠BAC+∠CAD=90°,∵BE⊥AC,∴∠BAC+∠ABE=90°,∴∠CAD=∠ABE,在Rt△ACD中,AD=2,cos∠CAD=cos∠ABE=,∴AC=5.21.(5分)先阅读下列材料,再解答问题.尺规作图已知:△ABC,D是边AB上一点,如图1,求作:四边形DBCF,使得四边形DBCF是平行四边形.小明的做法如下:(1)设计方案先画一个符合题意的草图,如图2,再分析实现目标的具体方法,依据:两组对边分别平行的四边形是平行四边形.(2)设计作图步骤,完成作图作法:如图3,①延长BC至点E;②分别作∠ECP=∠EBA,∠ADQ=∠ABE;③DQ与CP交于点F.∴四边形DBCF即为所求.(3)推理论证证明:∵∠ECP=∠EBA,∴CP∥BA.同理,DQ∥BE.∴四边形DBCF是平行四边形.请你参考小明的做法,再设计一种尺规作图的方法(与小明的方法不同),使得画出的四边形DBCF是平行四边形,并证明.【分析】根据平行四边形的判定方法即可作图并证明.【解答】解:(1)设计方案先画一个符合题意的草图,如图2,再分析实现目标的具体方法,依据:两组对边分别相等的四边形是平行四边形.(2)设计作图步骤,完成作图作法:如图,①以点C为圆心,BC长为半径画弧;②以点D为圆心,BC长为半径画弧,;③两弧交于点F.∴四边形DBCF即为所求.(3)推理论证证明:∵CF=BD,DF=BC.∴四边形DBCF是平行四边形.22.(6分)运用语音识别输入软件可以提高文字输入的速度.为了解A,B两种语音识别输入软件的准确性,小秦同学随机选取了20段话,其中每段话都含100个文字(不计标点符号).在保持相同语速的条件下,他用标准普通话朗读每段话来测试这两种语音识别输入软件的准确性.他的测试和分析过程如下,请补充完整.(1)收集数据两种软件每次识别正确的字数记录如下:A 98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58B 99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55(2)整理、描述数据根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据两组样本数据的平均数、众数、中位数、方差如表所示:平均数众数中位数方差A84.784.588.91B83.796184.01(4)得出结论根据以上信息,判断A种语音识别输入软件的准确性较好,理由如下:∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴A种语音的平均数>B种语音的平均数,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91<184,01,∴A种语音识别输入软件的准确性较好.(至少从两个不同的角度说明判断的合理性).【分析】(2)根据题意补全频数分布直方图即可;(3)根据众数和中位数的定义即可得到结论;(4)根据A,B两种语音识别输入软件的准确性的方差的大小即可得到结论.【解答】解:(2)根据题意补全频数分布直方图如图所示;(3)补全统计表;平均数众数中位数方差A84.79284.588.91B83.79688.5184.01(4)A种语音识别输入软件的准确性较好,理由如下:∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴A种语音的平均数>B种语音的平均数,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91<184,01,∴A种语音识别输入软件的准确性较好.故答案为:A,∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴A种语音的平均数>B种语音的平均数,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91<184,01,∴A种语音识别输入软件的准确性较好.23.(6分)如图,四边形OABC中,∠OAB=90°,OA=OC,BA=BC.以O为圆心,以OA为半径作⊙O.(1)求证:BC是⊙O的切线;(2)连接BO并延长交⊙O于点D,延长AO交⊙O于点E,与BC的延长线交于点F,若=,①补全图形;②求证:OF=OB.【分析】(1)连接AC,根据等腰三角形的性质得到∠OAC=∠OCA,∠BAC=∠BCA,得到∠OCB=∠OAB=90°,根据切线的判定定理证明;(2)①根据题意画出图形;②根据切线长定理得到BA=BC,得到BD是AC的垂直平分线,根据垂径定理、圆心角和弧的关系定理得到∠AOC=120°,根据等腰三角形的判定定理证明结论.【解答】(1)证明:如图1,连接AC,∵OA=OC,∴∠OAC=∠OCA,∵BA=BC,∴∠BAC=∠BCA,∴∠OAC+∠BCA=∠OCA+∠BCA,即∠OCB=∠OAB=90°,∴OC⊥BC,∴BC是⊙O的切线;(2)①解:补全图形如图2;②证明:∵∠OAB=90°,∴BA是⊙O的切线,又BC是⊙O的切线,∴BA=BC,∵BA=BC,OA=OC,∴BD是AC的垂直平分线,∴=,∵=,∴==,∴∠AOC=120°,∴∠AOB=∠COB=∠COE=60°,∴∠OBF=∠F=30°,∴OF=OB.24.(6分)如图,在△ABC中,AB=4cm,BC=5cm.P是上的动点,设A,P两点间的距离为xcm,B,P两点间的距离为y1cm,C,P两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm012342.130y1/cm 4.00 3.69 3.09(答案不唯一)y2/cm 3.00 3.91 4.71 5.235(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),点(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,①当△PBC为等腰三角形时,AP的长度约为0.83或2.49(答案不唯一)cm;②记所在圆的圆心为点O,当直线PC恰好经过点O时,PC的长度约为 5.32(答案不唯一)cm.【分析】(1)利用图象法解决问题即可;(2)描点绘图即可;(3)①分PB=PB、PC=BC、PB=BC三种情况,分别求解即可;②当直线PC恰好经过点O时,PC的长度取得最大值,观察图象即可求解.【解答】解:(1)由画图可得,x=4时,y1≈3.09cm(答案不唯一).故答案为:3.09(答案不唯一).(2)描点绘图如下:(3)①由y1与y2的交点的横坐标可知,x≈0.83cm时,PC=PB,当x≈2.49cm时,y2=5cm,即PC=BC,观察图象可知,PB不可能等于BC,故答案为:0.83或2.49(答案不唯一).②当直线PC恰好经过点O时,PC的长度取得最大值,从图象看,PC=y2≈5.32cm,故答案为5.32(答案不唯一).25.(5分)在平面直角坐标系xOy中,直线l1:y=kx+2k(k>0)与x轴交于点A,与y轴交于点B,与函数y=(x>0)的图象的交点P位于第一象限.(1)若点P的坐标为(1,6),①求m的值及点A的坐标;②=;(2)直线l2:y=2kx﹣2与y轴交于点C,与直线l1交于点Q,若点P的横坐标为1,①写出点P的坐标(用含k的式子表示);②当PQ≤P A时,求m的取值范围.【分析】(1)①把P(1,6)代入函数y=(x>0)即可求得m的值,直线l1:y=kx+2k (k>0)中,令y=0,即可求得x的值,从而求得A的坐标;②把P的坐标代入y=kx+2k即可求得k的值,进而求得B的坐标,然后根据勾股定理求得PB和P A,即可求得的值;(2)①把x=1代入y=kx+2k,求得y=3k,即可求得P(1,3k);②分别过点P、Q作PM⊥x轴于M,QN⊥x轴于N,则点M、点N的横坐标1,2+,若PQ=P A,则=1,根据平行线分线段成比例定理则==1,得出MN=MA=3,即可得到2+﹣1=3,解得k=1,根据题意即可得到当=≤1时,k≥1,则m =3k≥3.【解答】解:(1)①令y=0,则kx+2k=0,∵k>0,解得x=﹣2,∴点A的坐标为(﹣2,0),∵点P的坐标为(1,6),∴m=1×6=6;②∵直线l1:y=kx+2k(k>0)函数y=(x>0)的图象的交点P,且P(1,6),∴6=k+2k,解得k=2,∴y=2x+4,令x=0,则y=4,∴B(0,4),∵点A的坐标为(﹣2,0),∴P A==,PB==,∴==,故答案为;(2)①把x=1代入y=kx+2k得y=3k,∴P(1.3k);②由题意得,kx+2k=2kx﹣2,解得x=2+,∴点Q的横坐标为2+,∵2+>1(k>0),∴点Q在点P的右侧,如图,分别过点P、Q作PM⊥x轴于M,QN⊥x轴于N,则点M、点N的横坐标1,2+,若PQ=P A,则=1,∴==1,∴MN=MA,∴2+﹣1=3,解得k=1,∵MA=3,∴当=≤1时,k≥1,∴m=3k≥3,∴当PQ≤P A时,m≥3.26.(6分)已知抛物线y=ax2+bx+a+2(a≠0)与x轴交于点A(x1,0),点B(x2,0)(点A在点B的左侧),抛物线的对称轴为直线x=﹣1.(1)若点A的坐标为(﹣3,0),求抛物线的表达式及点B的坐标;(2)C是第三象限的点,且点C的横坐标为﹣2,若抛物线恰好经过点C,直接写出x2的取值范围;(3)抛物线的对称轴与x轴交于点D,点P在抛物线上,且∠DOP=45°,若抛物线上满足条件的点P恰有4个,结合图象,求a的取值范围.【分析】(1)抛物线的对称轴为x=﹣1=﹣,求出b=2a,将点A的坐标代入抛物线的表达式,即可求解;(2)点C在第三象限,即点A在点C和函数对称轴之间,故﹣2<x1<﹣1,即可求解;(3)满足条件的P在x轴的上方有2个,在x轴的下方也有2个,则抛物线与y轴的交点在x轴的下方,即可求解.【解答】解:(1)抛物线的对称轴为x=﹣1=﹣,解得:b=2a,故y=ax2+bx+a+2=a(x+1)2+2,将点A的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x+1)2+2=﹣x2﹣x+;令y=0,即﹣x2﹣x+=0,解得:x=﹣3或1,故点B的坐标为:(1,0);(2)由(1)知:y=a(x+1)2+2,点C在第三象限,即点C在点A的下方,即点A在点C和函数对称轴之间,故﹣2<x1<﹣1,而(x1+x2)=﹣1,即x2=﹣2﹣x1,故﹣1<x2<0;(3)∵抛物线的顶点为(﹣1,2),∴点D(﹣1,0),∵∠DOP=45°,若抛物线上满足条件的点P恰有4个,∴抛物线与x轴的交点在原点的左侧,如下图,∴满足条件的P在x轴的上方有2个,在x轴的下方也有2个,则抛物线与y轴的交点在x轴的下方,当x=0时,y=ax2+bx+a+2=a+2<0,解得:a<﹣2,故a的取值范围为:a<﹣2.27.(7分)如图,在等腰直角△ABC中,∠ACB=90°.点P在线段BC上,延长BC至点Q,使得CQ=CP,连接AP,AQ.过点B作BD⊥AQ于点D,交AP于点E,交AC于点F.K是线段AD上的一个动点(与点A,D不重合),过点K作GN⊥AP于点H,交AB于点G,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.【分析】(1)根据题意补全图1即可;(2)根据等腰三角形的性质得到AP=AQ,求得∠APQ=∠Q,求得∠MFN=∠Q,同理,∠NMF=∠APQ,等量代换得到∠MFN=∠FMN,于是得到结论;(3)连接CE,根据线段垂直平分线的性质得到AP=AQ,求得∠P AC=∠QAC,得到∠CAQ=∠QBD,根据全等三角形的性质得到CP=CF,求得AM=CF,得到AE=BE,推出直线CE垂直平分AB,得到∠ECB=∠ECA=45°,根据全等三角形的性质即可得到结论.【解答】解:(1)依题意补全图1如图所示;(2)∵CQ=CP,∠ACB=90°,∴AP=AQ,∴∠APQ=∠Q,∵BD⊥AQ,∴∠QBD+∠Q=∠QBD+∠BFC=90°,∴∠Q=∠BFC,。

2022年北京市西城区九年级一模数学试卷(word版,含答案)

2022年北京市西城区九年级一模数学试卷(word版,含答案)

2022年北京市西城区九年级一模数学试卷数学2022.4考生须知1.本试卷共8页,共两部分,28道题。

满分100分。

考试时间120分钟.2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.第一部分选择题一、选择题(共16分,每题2分第1-8题均有四个选项,符合题意的选项只有一个.1.右图是某几何体的三视图,该几何体是(A)圆柱 (B)五棱柱(C)长方体 (D)五棱锥2.国家速滑馆“冰丝带”上方镶嵌着许多光伏发电玻璃,据测算,“冰丝带”屋顶安装的光伏电站每年可输出约44.8万度清洁电力.将448 000用科学记数法表示应为(A) 60.44810⨯ (B) 444.810⨯ (C) 54.4810⨯ (D) 64.4810⨯3.如图,直线AB∥CD,直线EF分别与直线AB,CD交于点E,F,点G在直线CD上,GE⊥EF.若∠1=55°,则∠2的大小为(A)145° (B)135°(C)125° (D)120°4.实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是(A) a>b (B) |b|<|c| (C)a+c<0 (D)ab>c5.若正多边形的一个外角是60°,则该正多边形的内角和是(A)360° (B)540° (C)720° (D)900°6.△ABC和△DEF是两个等边三角形,AB=2,DE=4,则△ABC与△DEF的面积比是(A)1:2 (B)1:4 (C)1:8 (D)1:27.若关于x 的一元二次方程()2140x m x +++=有两个不相等的实数根,则m 的值可以是 (A ) 1 (B )-1 (C ) -5 (D ) -68.如图,在平面直角坐标系xOy 中,点A 的坐标是(5,0),点B 是函数y=6x(x >0)图象上的一个动点,过点B 作BC ⊥y 轴交函数y =2x-(x <0)的图象于点C ,点D 在x 轴上(D 在A 的左侧),且AD =BC ,连接AB ,CD .有如下四个结论: ①四边形ABCD 可能是菱形; ②四边形ABCD 可能是正方形; ③四边形ABCD 的周长是定值; ④四边形ABCD 的面积是定值. 所有正确结论的序号是(A )①② (B )③④ (C )①③ (D )①④第二部分 非选择题二、填空题(共16分,每题2分)9.若6x -在实数范围内有意义,则实数x 的取值范围是 10.分解因式:a 3-9a =11.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上.若∠CBA =50°, 则∠CDB = ° 12.方程23111x xx x -=-++的解为 13.在平面直角坐标系xOy 中,反比例函数y =kx的图象经过点P (4,m ),且在每一个象限内,y 随x 的增大而增大,则点P 在第 象限14.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,点 F ,G 在边BC 上,且DG =EF ,只需添加一个条件即可 证明四边形DFGE 是矩形,这个条件可以是 (写出一个即可)15.某校学生会在同学中招募志愿者作为校庆活动讲解员,并设置了“即兴演讲”“朗诵短文”“电影片段配音”三个测试项目,报名的同学通过抽签的方式从这三个项目中随机抽取一项进行测试.甲、乙两位同学报名参加测试,恰好都抽到“即兴演讲”项目的概率是16.叶子是植物进行光合作用的重要部分,研究植物的生长情况会关注叶面的面积.在研究水稻等农作物的生长时,经常用一个简洁的经验公式s =abk来估算叶面的面积,其中a ,b 分别是稻叶的长和宽(如图1),k 是常数,则由图1可知k 1 (填“>”“=”或“<”).试验小组采集了某个品种的稻叶的一些样本,发现绝大部分稻叶的形状比较狭长(如图2),大致都在稻叶的47处“收尖”.根据图2进行估算,对于此品种的稻叶,经验公式中k 的值约为 (结果保留小数点后两位)图1 图2三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程 17.计算()0tan 6024π︒+-18.解不等式组: ()5131829x x x x +-⎧⎪⎨+⎪⎩>>19.已知2270a ab --=,求代数式()()245a b b a b +-++的值20.已知:如图,线段AB求作:点C ,D ,使得点C ,D 在线段AB 上, 且AC =CD =DB作法:①作射线AM ,在射线AM 上顺次截取线段AE =EF =FG ,连接BG ;②以点E 为圆心,BG 长为半径画弧,再以点B 为圆心,EG 长为半径画弧,两弧在AB 上方交于点H ; ③连接BH ,连接EH 交AB 于点C ,在线段CB 上截取线段CD =AC .所以点C ,D 就是所求作的点(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:∵EH=BG,BH=EG,∴四边形EGBH是平行四边形.( )(填推理的依据) ∴EH∥BG,即EC∥BG∴AC: =AE:AG∵AE=EF=FG∴AE= AG.∴AC=13AB=CD.∴DB=13 AB∴AC=CD=DB21.如图,在△ABC中,BA=BC,BD平分∠ABC交AC于点D,点E在线段BD上,点F在BD的延长线上,且DE=DF,连接AE,CE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BA⊥AF,AD=4,BC求BD和AE的长22.2022年北京冬奥会的举办促进了冰雪旅游,小明为了解寒假期间冰雪旅游的消费情况,从甲、乙两个滑雪场的游客中各随机抽取了50人,获得了这些游客当天消费额(单位:元)的数据,并对数据进行整理、描述和分析.下面给出部分信息:a.甲滑雪场游客消费额的数据的频数分布直方图如下(数据分成6组:0≤x<200, 200≤x<400,400≤x<600,600≤x<800,800≤x<1000,1000≤x<1200):b .甲滑雪场游客消费额的数据在400≤x <600这一组的是: 410 430 430 440 440 440 450 450 520 540c .甲、乙两个滑雪场游客消费额的数据的平均数、中位数如下:根据以上信息,回答下列问题: (1)写出表中m 的值;(2)一名被调查的游客当天的消费额为380元,在他所在的滑雪场,他的消费额超过了一半以上的被调査的游客,那么他是哪个滑雪场的游客?请说明理由;(3)若乙滑雪场当天的游客人数为500人,估计乙滑雪场这个月(按30天计算)的游客消费总额.23.在平面直角坐标系xOy 中,直线l 1:y =kx +b 与坐标轴分别交于A (2,0),B (0,4)两点.将直线l 1在x 轴上方的部分沿x 轴翻折,其余的部分保持不变,得到一个新的图形,这个图形与直线l 2: y =m (x -4)(m ≠0)分别交于点C ,D . (1)求k ,b 的值;(2)横、纵坐标都是整数的点叫做整点.记线段AC ,CD ,DA 围成的区域(不含边界)为W . ①当m =1时,区域W 内有 个整点;②若区域W 内恰有3个整点,直接写出m 的取值范围.24.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,点F 在BC 上,AF 与CD 交于点G ,点H 在DC 的延长线上,且HG =HF ,延长HF 交AB 的延长线于点M . (1)求证:HF 是⊙O 的切线; (2)若4sin 5M ,BM =1,求AF 的长.25.要修建一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,记喷出的水与池中心的水平距离为xm ,距地面的高度为ym .测量得到如下数值:小腾根据学习函数的经验,发现y 是x 的函数,并对y 随x 的变化而变化的规律进行了探究. 下面是小腾的探究过程,请补充完整:(1)在平面直角坐标系xOy 中,描出表中各组数值所对应的点(x ,y ),并画出函数的图象;(2)结合函数图象,出水口距地面的高度为 m ,水达到最高点时与池中心的水平距离约为 m (结果保留小数点后两位);(3)为了使水柱落地点与池中心的距离不超过 3.2m ,如果只调整水管的高度,其他条件不变,结合函数图象,估计出水口至少需要 (填“升高”或“降低”) m (结果保留小数点后两位)26.在平面直角坐标系xOy 中,抛物线()243y ax a x =-++经过点(2,m ).(1)若m =-3,①求此抛物线的对称轴;②当1<x <5时,直接写出y 的取值范围;(2)已知点()11,x y ,()22,x y 在此抛物线上,其中12x x <.若m >0,且125514x x +≥,比较y 1,y 2的大小,并说明理由.27.已知正方形ABCD ,将线段BA 绕点B 旋转α (0°<α<90°),得到线段BE ,连接EA ,EC .(1)如图1,当点E 在正方形ABCD 的内部时,若BE 平分∠ABC ,AB =4,则∠AEC = °,四边形ABCE 的面积为 ;(2)当点E 在正方形ABCD 的外部时,①在图2中依题意补全图形,并求∠AEC 的度数;②作∠EBC 的平分线BF 交EC 于点G ,交EA 的延长线于点F ,连接CF ,用等式表示线段AE ,FB ,FC 之间的数量关系,并证明.图1 图228.在平面直角坐标系xOy 中,对于△ABC 与⊙O ,给出如下定义:若△ABC 与⊙O 有且只有两个公共点,其中一个公共点为点A ,另一个公共点在边BC 上(不与点B ,C 重合),则称△ABC 为⊙O 的“点A 关联三角形”. (1)如图,⊙O 的半径为1,点C (0,2). △AOC 为⊙O 的“点A 关联三角形”.①在()11,0P -, 222P⎛ ⎝⎭这两个点中,点A 可以与点 重合; ②点A 的横坐标的最小值为 ;(2)⊙O 的半径为1,点A (1,0),点B 是y 轴负半轴上的一个动点,点C 在x 轴下方,△ABC 是等边三角形,且△ABC为⊙O 的“点A 关联三角形”.设点C 的横坐标为m ,求m 的取值范围;(3)⊙O 的半径为r ,直线y =x 与⊙O 在第一象限的交点为A ,点C (4,0).若平面直角坐标系xOy 中存在点B ,使得△ABC 是等腰直角三角形,且△ABC 为⊙O 的“点A 关联三角形”,直接写出r 的取值范围.2022年北京市西城区九年级一模数学试卷参考答案一、选择题(共16分,每题2分)题号 1 2 3 4 5 6 7 8 答案BCABCBDD二、填空题(共16分,每题2分) 9.6x ≥10.()()3 3a a a +-11.40.12. 2x =13.四 14. 答案不唯一,如:DE FG =. 15.1916.>,1.27.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)17.解:12tan 60|32|(4)π-︒+-+-︒233231=-+-+3=18.解:513(1) 82 9x x x x +>-⎧⎪⎨+>⎪⎩①②解不等式①,得x>-2. 解不等式②,得x<2.所以原不等式组的解集为-2<x<2. 19.解:2()(4)5a b b a b +-++222245a ab b ab b =++--+ 225a ab =-+ 2270a ab --= 227a ab ∴-=∴原式7512=+=20.解:(1)补全图形如图所示:..............2分 (2)两组对边分别相等的四边形是平行四边形,1,3AB ...............5分21.(1)证明:BA BC =,BD 平分ABC ∠,AD DC ∴=,BD AC ⊥. ..............1分 DE DF =,∴四边形AECF 是平行四边形...............2分 ∵EF AC ⊥,∴四边形AECF 是菱形...............3分 (2)解:∵90,45,4ADB BA BC AD ∠=︒===. ∴在 Rt ADB △中,228BD BA AD =-=................4分∴1tan 2AD ABD BD ∠==. ∵BA AF ⊥, ∴90BAF ∠=︒ ∴1tan 2AF ABF BA ∠==. ∴25AF =..............5分 ∵四边形AECF 是菱形,∴25AE AF ==..............6分 22.解: (1)430;.............1分(2)他是乙滑雪场的游客.理由如下:假设他是甲滑雪场的游客,因为甲滑雪场游客消费额的数据的中位数为430.而380<430,这与他的消费额超过了一半以上的被调查的游客矛盾,所以他一定不是甲滑雪场的游客,只能是乙滑雪雪场的游客..............3分 (3) 390500305800000⨯⨯=(元).答:乙滑雪场这个月的游客消费总额约为5850000元.5分 23.解: (1) ∴直线1:l y kx b =+经过点()()2,0,0,4A B , ∴20,4.k b b +=⎧⎨=⎩解得,2,4.k b =-⎧⎨=⎩.............2分(2)①1;.............3分 ②514m <≤..............5分 24. (1)证明:连接OF ,如图1.OA OF =,FAO AFO ∴∠=∠.1分 HG HF =,HGF HFG ∴∠=∠, HGF AGE ∠=∠,AGE HFG ∴∠=∠..............2分 CD AB ⊥90AEG ∴∠=︒90AGE GAE ∴∠+∠=︒90HFG AFO ∴∠+∠=︒90HFO ∴∠=︒OF HF ∴⊥HF ∴是=O 的切线...............3分(2)解:连接FB ,如图2.OF FM ⊥,90OFM ∴∠=︒.在Rt OFM △中,4sin 5OF M OM ==. 设4OF x =,则5OM x =.4,1,OB OF x BM OM OB BM ====+,541x x ∴=+,解得1x =.4OB OF ∴==,5OM =...............4分 223FM OM OF ∴=-=9AM AB BM =+=13BM FM FM AM ∴== M M ∠=∠,BFM FAM ∴△△...............5分 13FB AF ∴=,即3AF FB =. AB 是O 的直径,90AFB ∴∠=︒.在Rt AFB △中,22108AB AF FB FB =+==. 4105FB ∴=12105AF ∴=...............6分 25.解:(1)如图所示:..............2分.(2) 2.44, 1.20;..............4分(3)降低,0.52...............6分26.解:(1)①∵抛物线()243y ax a x =-++经过点(2)3-,, ()42433a a ∴-++=-,解得1a =.∴此抛物线的对称轴为4522a x a +==...............2分 ②1334y -<;..............4分 (2) ∵抛物线()243y ax a x =-++经过点()2,m , ()424325m a a a ∴=-++=-.0m >,250a ∴->,解得52a >. 设地物线的对称轴为x t =,则41222a t a a +==+. ∴113210t <<. ∴13125t <<, ∵125514x x +,∴12145x x + ∵0a >若12x x t <≤,则12135x x +<,不符合题意; 若12t x x ≤<,可得12y y <;若()()121212,20x t x t x x t t x x <<---=-+<,则12t x x t -<-,可得12y y < 综上,12y y <.6分27.解:(1)135,82;...............2分(2)①补全图形,如图1.∵正方形ABCD 的边BA 绕点B 旋转α得到线段BE , BE BA BC ∴==,90ABC ∠=︒,ABE α∠=.902BEA BAE α︒∴∠=∠=-452BEC BCE α∠=∠=︒-.45AEC BEA BEC ∴∠=∠-∠=︒................4分 ②22FB FC AE =-.证明:过点B 作// BH EC 交FC 的延长线于点H ,如图2.∵BE BC =,BF 平分EBC ∠,∴BF 垂直平分EC .,90FE FC FGC ∴=∠=︒45FEC FCE ∴∠=∠=︒45GFC ∴∠=︒//BH EC90,45FBH FGC H FCG ∴∠=∠=︒∠=∠=︒ ∴tan 45,2sin 45FB BF BH BH FH FB =⋅︒===︒∵90,90ABF FBC CBH FBC ∠=︒-∠∠=︒-∠,∴ABF CBH ∠=∠∴AB CB =,∴ABF CBH ≅△△∴AF CH =∵2FH FC CH FC AF FC FE AE FC AE =+=+=+-=- ∴22FB FC AE =-.................7分28.解:(1)①2P ;................1分 ②32-;................2分(2)ABC △是等边三角形,,60AB AC BC ABC ACB BAC ∴==∠=∠=∠=︒. 当30OAB ∠=︒时,如图1,则90OAC OAB BAC ∠=∠+∠=︒.∴CA 与O 相切于点A .∴1m =.当45OAB ∠=︒时,过点C 作CD x ⊥轴于点D ,连接OC 交AB 于点E ,如图2, 则90CDO ∠=︒.90AOB ∠=︒45OBA OAB ∴∠=∠=︒1OB OA ∴==CB CA =OC ∴垂直平分AB .90BEO BEC ∴∠=∠=︒,45BOC AOC ∠=∠=︒. 2sin 452OE BE OB ∴==⋅︒=.∴6tan 602CE BE =⋅︒=.∴262OC OE CE +=+=.∴13cos 452OD OC +=⋅︒=.∴132m +=.∴m 的取值范围是1312m +<.5分(3)42422r -<或4r >.7分。

2021年北京市西城区中考数学一模试卷(学生版+解析版)

2021年北京市西城区中考数学一模试卷(学生版+解析版)

2021年北京市西城区中考数学一模试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个。

1.(2分)如图是某几何体的三视图,该几何体是( )A .圆柱B .三棱锥C .三棱柱D .正方体2.(2分)2021年2月27日,由嫦娥五号带回的月球样品(月壤)正式入藏中国国家博物馆,盛放月球样品的容器整体造型借鉴自国家博物馆馆藏的系列青铜“尊”造型,以体现稳重大方之感,它的容器整体外部造型高38.44cm ,象征地球与月亮的平均间距约384400km .将384400用科学记数法表示应为( )A .438.4410⨯B .53.84410⨯C .43.84410⨯D .60.384410⨯3.(2分)下列图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .4.(2分)若实数a ,b 在数轴上的对应点的位置如图所示,则以下结论正确的是( )A .0a b ->B .0ab >C .b a >-D .2a b <5.(2分)如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形的边数是( )A .4B .5C .6D .86.(2分)如图,AB 是O 的直径,CD 是弦(点C 不与点A ,点B 重合,且点C 与点D 位于直径AB 两侧),若110AOD ∠=︒,则BCD ∠等于( )A .25︒B .35︒C .55︒D .70︒7.(2分)春回大地万物生,“微故宫”微信公众号设计了互动游戏,与大家携手走过有故宫猫陪伴的四季.游戏规则设计如下:每次在公众号对话框中回复【猫春图】,就可以随机抽取7款“猫春图”壁纸中的一款,抽取次数不限,假定平台设置每次发送每款图案的机会相同,小春随机抽取了两次,她两次都抽到“东风纸鸢”的概率是( )A .17B .27C .149D .2498.(2分)风寒效应是一种因刮风所引起的使体感温度较实际气温低的现象,科学家提出用风寒温度描述刮风时的体感温度,并通过大量实验找出了风寒温度和风速的关系.下表中列出了当气温为5C ︒时,风寒温度(C)T ︒和风速(/)v km h 的几组对应值,那么当气温为5C ︒时,风寒温度T 与风速v 的函数关系最可能是( )风速v (单位:/)km h0 10 20 30 40 风寒温度T (单位:C)︒5 3 1 1- 3- A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系 二、填空题(本题共16分,每小题2分)9.(2分)如果分式32x x -+的值为0,那么x 的值为 .2222aa 10.(2分)将一副直角三角板如图摆放,点A 落在DE 边上,//AB DF ,则1∠= ︒.11.(2分)比7大的整数中,最小的是 .12.(2分)如图所示的网格是正方形网格,A ,B ,C ,D 是网格线的交点,那么DAC ∠与ACB ∠的大小关系为:DAC ∠ ACB ∠(填“>”,“ =”或“<” ).13.(2分)已知方程组2521x y x y +=⎧⎨+=⎩,则x y +的值为 . 14.(2分)某公司销售一批新上市的产品,公司收集了这个产品15天的日销售额的数据,制作了如下的统计图.关于这个产品销售情况有以下说法:①第1天到第5天的日销售额的平均值低于第6天到第10天的日销售额的平均值; ②第6天到第10天日销售额的方差小于第11天到第15天日销售额的方差;③这15天日销售额的平均值一定超过2万元.所有正确结论的序号是 .15.(2分)将二次函数2y x =的图象向右平移3个单位得到一个新函数的图象,请写出一个自变量x 的取值范围,使得在所写的取值范围内,上述两个函数中,恰好其中一个函数的图象从左往右上升,而另一个函数的图象从左往右下降,写出的x 的取值范围是 .16.(2分)某商家需要更换店面的瓷砖,商家打算用1500元购买彩色和单色两种地砖进行搭配,并且把1500元全部花完.已知每块彩色地砖25元,每块单色地砖15元,根据需要,购买的单色地砖数要超过彩色地砖数的2倍,并且单色地砖数要少于彩色地砖数的3倍,那么符合要求的一种购买方案是 .三、解答题(本题共68分,第17~21题,毎小题5分,第22题6分,第23题5分,第24~26题,每小题5分,第27~28题,每小题5分)解答题应写出文字说明、演算步骤或证明过程。

北京市西城区2020年初三一模数学试卷(含答案)

北京市西城区2020年初三一模数学试卷(含答案)

西城区2020年初三一模数学试卷2020.5第1-8题均有四个选项,符合题意的选项只有一个.1.北京大兴国际机场目前是全球建设规模最大的机场,2019年9月25日正式通航,预计到2022年机场旅客吞吐量将达到45000000人次,将45000000用科学记数法表示为 (A)45×106(B)4.5×107(C)4.5×108(D)0.45×1082.右图是某个几何体的三视图,该几何体是(A)圆锥 (B)圆柱 (C)长方体(D)正三棱柱3.下面的图形中,既是轴对称图形又是中心对称图形的是4.在数轴上,点A,B 表示的数互为相反数,若点A 在点B 的左侧,且AB =2√2,则点A 点B 表示的数分别是(A)−√2,√2 (B)√2,−√2 (C)0,2√2(D)−2√2,2√25.如图,AB 是⊙O 的直径,C,D 是⊙O 上的两点,若∠CAB =65°,则∠ADC 的度数为(A)65°(B)35°(C)32.5°(D)25°6. 甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x̅甲,x̅乙,射击成绩的方差依次记为S 甲2,S 乙2,则下列关系中完全正确的是(A )x̅甲=x̅乙, S 甲2>S 乙2 (B )x̅甲=x̅乙, S 甲2<S 乙2(C )x̅甲>x̅乙, S 甲2>S 乙2(D )x̅甲<x̅乙, S 甲2<S 乙27.如图,在数学实践活动课上,小明同学打算通过测量树的影长计算树的高度,阳光下他测得长1.0m 的竹竿落在地面上的影长为0.9m .在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙面上.他测得这棵树落在地面上的影长BD 为2.7m ,落在墙面上的影长CD 为1.0m ,则这棵树的高度是(A)6.0m (B)5.0m (C)4.0m(D)3.0m8.设m 是非零实数,给出下列四个命题:①若−1<m <0,则1m <m <m 2②m >1,则1m<m 2<m③m <1m<m 2,则m <0④m 2<m <1m,则0<m <1其中命题成立的序号是 (A )①③(B )①④(C )②③(D )③④二、填空题(本题共16分,每小题2分)9. 若√x −1在实数范围内有意义,则实数x 的取值范围是10.若多边形的内角和市外角和的2倍,则该多边形是边形11.已知y 是以x 为自变量的二次函数,且当x =0,时,y 的最小值为−1,写出一个满足上述条件的二次函数表达式12.如果a 2+a =1,那么代数式1a −a−1a 2−1的值是13. 如图,在正方形ABCD ,BE 评分∠CBD ,EF ⊥BD 于点F ,若DE =√2,则BC 的长为14. 如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,BD⊥AC于点D,则AC的长为,BD的长为15.如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为.16.某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.根据以上信息,以下四个判断中,正确的是(填写所有正确结论的序号).①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在5~10万人之间;③该景区这个月平均每日接待游客人数低于5万人:④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为3/10三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:(12)−1+(1−√3)0+|−√3|−2sin60°18.解不等式组:{3(x−2)<2x−2, 2x+54<x19.关于x的一元二次方程x2−(2m+1)x+m2=0有两个实数根(1)求m的取值范围:(2)写出一个满足条件的m的值,并求此时方程的根20.如图,在□ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC于点E.(1)求证:□ABCD是矩形;(2)若AD=2√5,cos∠ABE=2√55,求AC的长21.先阅读下列材料,再解答问题.尺规作图已知:△ABC,D是边AB上一点,如图1,求作:四边形DBCF,使得四边形DBCF是平行四边形小明的做法如下:是平行四边形,并证明22.运用语音识别输入软件可以提高文字输入的速度。

2024年北京西城中考数学试题及答案(1)

2024年北京西城中考数学试题及答案(1)

2024年北京西城中考数学试题及答案考生须知:1.本试卷共6页,共两部分.三道大题,28道小题。

满分100分。

考试时间120分钟。

2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上.选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D.2.如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒3.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .1b >-B .2b >C .0a b +>D .0ab >4.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .165.不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( )A .34B .12C .13D .146.为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯7.下面是“作一个角使其等于AOB ”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD 长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等8.如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2013年初三一模试卷数 学 2013. 5一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.3-的相反数是A .31- B .31C .3D .3-2.上海原世博园区最大单体建筑“世博轴”被改造成一个综合性商业中心,该项目营业面积约130 000平方米,130 000用科学记数法表示应为A .1.3×105B .1.3×104C .13×104D .0.13×106 3.如图,AF 是∠BAC 的平分线,EF ∥AC 交AB 于点E .若∠1=25°,则BAF ∠的度数为 A .15° B .50° C .25° D .12.5°4.在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到黄球的概率为A .21B .31C .61D .15.若菱形的对角线长分别为6和8,则该菱形的边长为 A .5B .6C .8D .10 6则该队队员年龄的众数和中位数分别是A .16,15B .15,15.5C .15,17D .15,167.由一些大小相同的小正方体搭成的一个几何体的三视图如图所示,则构成这个几何体的小正方体共有 A .6个B .7个C .8个D .9个8.如图,在矩形ABCD 中,AB=2,BC=4.将矩形ABCD 绕点C 沿顺时针方向旋转90°后,得到矩形FGCE(点A、B、D的对应点分别为点F、G、E).动点P从点B开始沿BC-CE 运动到点E后停止,动点Q从点E开始沿EF-FG运动到点G后停止,这两点的运动速度均为每秒1个单位.若点P和点Q同时开始运动,运动时间为x(秒),△APQ的面积为y,则能够正确反映y与x之间的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9.函数y=x的取值范围是.10.分解因式:32816a a a-+= .11.如图,在梯形ABCD中,AD∥BC,BD⊥DC,∠C=45°.若AD=2,BC=8,则AB的长为.12.在平面直角坐标系xOy中,有一只电子青蛙在点A(1,0)处.第一次,它从点A先向右跳跃1个单位,再向上跳跃1个单位到达点A1;第二次,它从点A1先向左跳跃2个单位,再向下跳跃2个单位到达点A2;第三次,它从点A2先向右跳跃3个单位,再向上跳跃3个单位到达点A3;第四次,它从点A3先向左跳跃4个单位,再向下跳跃4个单位到达点A4;……依此规律进行,点A6的坐标为;若点A n的坐标为(2013,2012),则n= .三、解答题(本题共30分,每小题5分)13.计算:10345sin2)13(8-+︒--+.14.解不等式组4(1)78,25,3x xxx+≤-⎧⎪-⎨-<⎪⎩并求它的所有整数解.15.如图,点C在线段AB上,△DAC和△DBE都是等边三角形≤(1) 求证:△DAB ≌△DCE ;(2) 求证:DA ∥EC .16.已知3=y x ,求22222()x y x y xy xy y--÷-的值.17.如图,在平面直角坐标系xOy 中,正比例函数错误!未指定书签。

32y x =-与反比例函数k y x =的图象在第二象限交于点A ,且点A 的横坐标为 . (1) 求反比例函数的解析式;(2) 点B 的坐标为(-3,0),若点P 在y 轴上, 且△AOB 的面积与△AOP 的面积相等, 直接写出点P 的坐标.18.列方程(组)解应用题:某工厂原计划生产2400台空气净化器,由于天气的影响,空气净化器的需求量呈上升趋势,生产任务的数量增加了1200台.工厂在实际生产中,提高了生产效率,每天比原计划多生产10台,实际完成生产任务的天数是原计划天数的1.2倍.求原计划每天生产多少台空气净化器.19.如图,平行四边形ABCD 的对角线AC 、BD 交于点O-2AC ⊥AB ,AB =2,且AC ︰BD =2︰3. (1) 求AC 的长;(2) 求△AOD 的面积.20.如图,在△ABC 中,AB=AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作FE ⊥AB 于点E ,交AC 的延长线于点F . (1) 求证:EF 与⊙O 相切; (2) 若AE=6,sin ∠CFD=35,求EB 的长.21.近年来,北京郊区依托丰富的自然和人文资源,大力开发建设以农业观光园为主体的多类型休闲旅游项目,京郊旅游业迅速崛起,农民的收入逐步提高.以下是根据北京市统计局2013年1月发布的“北.请根据以上信息解答下列问题:(1) 北京市2010年农业观光园经营年收入的年增长率是 ;(结果精确到1%) (2) 请补全条形统计图并在图中标明相应数据;(结果精确到0.1)(3) 如果从2012年以后,北京市农业观光园经营年收入都按30%的年增长率增长,请 你估算,若经营年收入要不低于2008年的4倍,至少要到 年.(填写年份)22.先阅读材料,再解答问题:小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图,点A 、B 、C 、D 均 为⊙O 上的点,则有∠C =∠D .小明还发现,若点E 在⊙O 外,且与点D 在直线AB 同侧, 则有∠D >∠E .请你参考小明得出的结论,解答下列问题:(1) 如图1,在平面直角坐标系xOy 中,点A 的坐标为(0,7),点B 的坐标为(0,3), 点C 的坐标为(3,0).①在图1中作出△ABC 的外接圆(保留必要的作图痕迹,不写作法);②若在x 轴的正半轴上有一点D ,且∠ACB =∠ADB ,则点D 的坐标为 ;(2) 如图2,在平面直角坐标系xOy 中,点A 的坐标为(0,m ),点B 的坐标为(0,n ),其中m >n >0.点P 为x 轴正半轴上的一个动点,当∠APB 达到最大时,直接写出此时点P 的坐标.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的一元二次方程22(4)0x a x a +++=.(1) 求证:无论a 为任何实数,此方程总有两个不相等的实数根;(2) 抛物线21:2(4)C y x a x a =+++与x 轴的一个交点的横坐标为2a,其中0a ≠,将抛物线1C 向右平移14个单位,再向上平移18个单位,得到抛物线2C .求抛物线2C 的解析式;(3) 点A (m ,n )和B (n ,m )都在(2)中抛物线C 2上,且A 、B 两点不重合,求代数式33222m mn n -+的值.24.在Rt △ABC 中,∠ACB =90°,∠ABC =α,点P 在△ABC 的内部.(1) 如图1,AB =2AC ,PB =3,点M 、N 分别在AB 、BC 边上,则cos α=_______, △PMN 周长的最小值为_______;(2) 如图2,若条件AB =2AC 不变,而P A =2,PB =10,PC =1,求△ABC 的面积; (3) 若P A =m ,PB =n ,PC =k ,且cos sin k m n αα==,直接写出∠APB 的度数.25.如图1,在平面直角坐标系xOy 中,直线l :34y x m =+与x 轴、y 轴分别交于点A 和点B (0,-1),抛物线212y x bx c =++经过点B ,且与直线l 的另一个交点为C (4,n ). (1) 求n 的值和抛物线的解析式;(2) 点D 在抛物线上,且点D 的横坐标为t (0< t <4).DE ∥y 轴交直线l 于点E ,点F 在直线l 上,且四边形DFEG 为矩形(如图2).若矩形DFEG 的周长为p ,求p 与t 的函数关系式以及p 的最大值;(3) M 是平面内一点,将△AOB 绕点M 沿逆时针方向旋转90°后,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,请直接写出点A 1的横坐标....北京市西城区2013年初三一模试卷数学答案及评分参考2013. 5三、解答题(本题共30分,每小题5分) 13.解:原式=11223-⨯+. ………………………………………………4分 43. ………………………………………………… 5分14.解:由①得4x ≥. …………………………………………………………1分 由②得132x <. …………………………………………………………3分 ∴ 原不等式组的解集是1342x ≤<. ………………………………… 4分 ∴ 它的整数解为4,5,6. ………………………………………… 5分 15. 证明:(1)如图1.∵△DAC 和△DBE 都是等边三角形,∴DA =DC ,DB =DE , …………1分 ∠ADC =∠BDE =60º .∴∠ADC +∠CDB =∠BDE +∠CDB , 即∠ADB =∠CDE . ……………2分 在△DAB 和△DCE 中,⎪⎩⎪⎨⎧=∠=∠=,,,DE DB CDE ADB DC DA∴ △DAB ≌△DCE. ………………………………………… 3 分 (2)∵△DAB ≌△DCE ,∴ ∠A =∠DCE=60° . ……………………………………… 4分 ∵∠ADC=60°, ∴ ∠DCE =∠ADC .∴DA ∥EC . ………………………………………………… 5分4(1)78253x x x x +≤-⎧⎪-⎨-<⎪⎩AB DE图116. 解:原式=()()2()()2y x y x y x y xy x y -+-⋅- ..….….….…. …..…………..……………………2分 =2x y x+. ………………………………………………………… 3分 ∵3xy=, ∴ 3x y =. ∴ 原式=32233y y y +=⨯. ……………………………………………… 5分 17. 解:(1)∵正比例函数32y x =-的图象经过点A ,且点A 的横坐标为2-, ∴点A 的纵坐标为3. …………………………………………… 1分 ∵反比例函数k y x =的图象经过点A (2,3-),∴32k =-. ∴6k =-. … 2分∴6y x=-. ………… 3分 (2)点P 的坐标为9(0,)2或9(0,)2-. ……………………………… 5分18.解:设原计划每天生产空气净化器x 台. ……………………………………1分 依题意得 2400120024001.210x x +=⨯+. …………………………………… 2分解得40=x . …………………………………………………………… 3分 经检验,40=x 是原方程的解,并且符合题意. ……………………… 4分答: 原计划每天生产空气净化器40台. ……………………………………………5分 四、解答题(本题共20分,每小题5分) 19.解:(1)如图2.∵平行四边形ABCD 的对角线AC 、BD 交于点∴OA = 12AC ,OB = 12BD . …………… 1分∵AC ︰BD =2︰3,∴OA ︰OB =2︰3 .设OA =2x (x >0),则OB =3x . ∵AC ⊥AB , ∴∠BAC =90°.在Rt △OAB 中,OA 2+AB 2=OB 2. ……………… 2分 ∵AB =2, ∴(2x )2+22=(3x )2 . 解得x =±255(舍负).∴AC=2OA= 855. …………………………………………………… 3分(2)∵平行四边形ABCD的对角线AC、BD交于点O,∴OB=OD.∴S△AOD= S△AOB=12AO·AB =12×455×2=455. ……………………… 5分20.(1)证明:连接OD . (如图3)∵OC=OD,∴∠OCD=∠ODC.∵AB=AC,∴∠ACB=∠B.∴∠ODC=∠B.∴OD∥AB.…………………………………………………………… 1分∴∠ODF=∠AEF.∵EF⊥AB,∴∠ODF =∠AEF =90°.∴OD⊥EF .∵OD为⊙O的半径,∴EF与⊙O相切. ………………………………………………2分(2)解:由(1)知:OD∥AB,OD⊥EF .在Rt△AEF中,sin∠CFD =AEAF=35,AE=6.∴AF=10. ………………………………………………………………3分∵OD∥AB,∴△ODF∽△AEF.∴AEODAFOF=.设⊙O的半径为r,∴10-r10=r6.解得r=154. …………………… 4分∴AB= AC=2r =152. ∴EB=AB-AE=152-6=32. (5)21.解:(1)17%;……………………………2分(2)所补数据为21.7;……………………3分补全统计图如图4;………………… 4分(3)2015.………………………… 5分22.解:(1)①如图5;………………………… 1分②点D的坐标为()70,;………………… 3分(2)点P的坐标为)0.……………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题E B图323.(1)证明:∵22(4)4216a a a ∆=+-⨯=+, …………………………………1分 而20a ≥, ∴2160a +>,即0∆>.∴无论a 为任何实数,此方程总有两个不相等的实数根. …………2分(2)解:∵当2ax =时,0y =, ∴22()(4)022a a a a ⨯++⨯+=. ∴230a a +=,即(3)0a a +=.∵0a ≠,∴3a =-. ………………… 3分 ∴抛物线1C 的解析式为22125232()48y x x x =+-=+-. ∴抛物线1C 的顶点为125(,)48--.∴抛物线2C 的顶点为(0,3)-. ∴抛物线2C 的解析式为223y x =-. …………………………4分 (3)解:∵点A (m ,n )和B (n ,m )都在抛物线2C 上,∴223n m =-,且223m n =-. ∴222()n m m n -=-.∴2()()n m m n m n -=-+ ∴()[2()1]0m n m n -++=.∵A 、B 两点不重合,即m n ≠,∴2()10m n ++=. ∴12m n +=-. ……………………………………………………… 5分 ∵223m n =+,223n m =+,∴33222m mn n -+22222m m mn n n =⋅-+⋅ n m mn m n ⋅++-⋅+=)3(2)3().(3n m += ……6分 32=-. ………7分 24.解:(1)cos αPMN 周长的最小值为 3 ; ………………………2分 (2)分别将△P AB 、△PBC 、△P AC 沿直线AB 、BC 、AC 翻折,点P 的对称点分别是点D 、E 、F ,连接DE 、DF ,(如图6)则△P AB ≌△DAB ,△PCB ≌△ECB ,△P AC ≌△F AC . ∴AD =AP =AF , BD =BP =BE ,CE =CP =CF .∵由(1)知∠ABC =30°,∠BAC =60°,∠ACB =90°, ∴∠DBE =2∠ABC =60°,∠DAF =2∠BAC =120°, ∠FCE =2∠ACB =180°.PBAC DE F∴△DBE 是等边三角形,点F 、C 、E 共线. ∴DE =BD =BPEF =CE +CF =2CP =2. ∵△ADF 中,AD =AF,∠DAF =120°, ∴∠ADF =∠AFD =30°.∴DF.∴22210EF DF DE +==.∴∠DFE =90°. ………………………………………………………4分 ∵2ABC DBE DFE DAF BDAFE S S S S S ∆∆∆∆==++多边形,∴2112222ABC S ∆=++=∴ABC S ∆=. ……………………………………………5分 (3)∠APB =150°. ………………………………………………………… 7分说明:作BM ⊥DE 于M ,AN ⊥DF 于N .(如图7) 由(2)知∠DBE =2α,∠DAF =1802α-. ∵BD =BE=n ,AD =AF=m , ∴∠DBM =α,∠DAN =90α-.∴∠1=90α-,∠3=α. ∴DM =sin n α,DN =cos m α.∴DE =DF =EF . ∴∠2=60°.∴∠APB =∠BDA =∠1+∠2+∠3=150°.25.解:(1)∵直线l :34y x m =+经过点B (0,1-),∴1m =-.∴直线l 的解析式为314y x =-.321NMP ACD EB∵直线l :314y x =-经过点C (4,n ),∴34124n =⨯-=. ………………………………………………1分 ∵抛物线212y x bx c =++经过点C (4,2)和点B (0,1-),∴21244,21.b c c ⎧=⨯++⎪⎨⎪-=⎩ 解得5,41.b c ⎧=-⎪⎨⎪=-⎩ ∴抛物线的解析式为215124y x x =--. …………………………2分(2)∵直线l :314y x =-与x 轴交于点A∴点A 的坐标为(43,0). ∴OA=43.在Rt △OAB 中,OB=1, ∴AB53.∵DE ∥y 轴,∴∠OBA =∠FED ∵矩形DFEG 中,∠DFE =90°,∴∠DFE =∠AOB =90°.∴△OAB ∽△FDE .∴OA OB AB FD FE DE ==∴45OA FD DE DE AB =⋅=,35OB FE DE DE AB =⋅=. …………………………………………4分∴p =2(FD+ FE )=43142()555DE DE ⨯+=.∵D (t ,215124t t --),E (t ,314t -),且04t <<,∴223151(1)(1)24242DE t t t t t =----=-+.∴22141728(2)5255p t t t t =⨯-+=-+. …………………………… 5分∵2728(2)55p t =--+,且705-<,∴当2t =时,p 有最大值285. …………………………………… 6分(3)点A 1的横坐标为34或712-. ……………………………………………8分说明:两种情况参看图9和图10,其中O 1B 1与x 轴平行,O 1A 1与y 轴平行.。

相关文档
最新文档