高中数学3.1.3二倍角的正弦、余弦、正切公式教案新人教A版必修4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省恩施巴东县第一高级中学高中数学 3.1.3二倍角的正弦、余弦、正切公
式教案 新人教A 版必修4
一、教学分析
“二倍角的正弦、余弦、正切公式”是在研究了两角和与差的三角函数的基础上,进一步研究具有“二倍角”关系的正弦、余弦、正切公式的,它既是两角和与差的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简、证明提供了非常有用的理论工具、通过对二倍角的推导知道,二倍角的内涵是:揭示具有倍数关系的两个三角函数的运算规律、通过推导还让学生加深理解了高中数学由一般到特殊的化归思想、因此本节内容也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力、发现问题和解决问题的能力都有着十分重要的意义.
本节课通过教师提出问题、设置情境及对和角公式中α、β关系的特殊情形α=β时的简化,让学生在探究中既感到自然、易于接受,还可清晰知道和角的三角函数与倍角公式的联系,同时也让学生学会怎样发现规律及体会由一般到特殊的化归思想.这一切教师要引导学生自己去做,因为,《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验”.
在实际教学过程中不要过多地补充一些高技巧、高难度的练习,更不要再补充一些较为复杂的积化和差或和差化积的恒等变换,否则就违背了新课标在这一章的编写意图和新课改精神. 二、教学目标
1.知识与技能:
通过让学生探索、发现并推导二倍角公式,了解它们之间、以及它们与和角公式之间的内在联系,并通过强化题目的训练,加深对二倍角公式的理解,培养运算能力及逻辑推理能力,从而提高解决问题的能力.
2.过程与方法:
通过二倍角的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明.体会化归这一基本数学思想在发现中和求值、化简、恒等证明中所起的作用.使学生进一步掌握联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.
3.情感态度与价值观:
通过本节学习,引导学生领悟寻找数学规律的方法,培养学生的创新意识,以及善于发现和勇于探索的科学精神. 三、重点难点
教学重点:二倍角公式推导及其应用.
教学难点:如何灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式. 四、课时安排
1课时 五、教学设想
(一)导入新课
思路1.(复习导入)请学生回忆上两节共同探讨的和角公式、差角公式,并回忆这组公式的来龙去脉,然后让学生默写这六个公式.教师引导学生:和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?今天,我们进一步探讨一下二倍角的问题,请同学们思考一下,应解决哪些问题呢?由此展开新课. 思路2.(问题导入)出示问题,让学生计算,若sin α=
5
3,α∈(
2
,π),求sin2α,cos2α的值.学生
会很容易看出:sin2α=sin(α+α)=sin αcos α+cos αsin α=2sin αcos α的,以此展开新课,并由此展开联想推出其他公式.
(二)推进新课、新知探究、提出问题
①还记得和角的正弦、余弦、正切公式吗?(请学生默写出来,并由一名学生到黑板默写) ②你写的这三个公式中角α、β会有特殊关系α=β吗?此时公式变成什么形式? ③在得到的C 2α公式中,还有其他表示形式吗? ④细心观察二倍角公式结构,有什么特征呢?
⑤能看出公式中角的含义吗?思考过公式成立的条件吗?
⑥让学生填空:老师随机给出等号一边括号内的角,学生回答等号另一边括号内的角,稍后两人为一
组,做填数游戏:sin( )=2sin( )cos( ),cos( )=cos 2( )-sin 2
( ).
⑦思考过公式的逆用吗?想一想C 2α还有哪些变形?
⑧请思考以下问题:sin2α=2sin α吗?cos2α=2cos α吗?tan2α=2tan α?
活动:问题①,学生默写完后,教师打出课件,然后引导学生观察正弦、余弦的和角公式,提醒学生注意公式中的α,β,既然可以是任意角,怎么任意的?你会有些什么样的奇妙想法呢?并鼓励学生大胆试一试.如果学生想到α,β会有相等这个特殊情况,教师就此进入下一个问题,如果学生没想到这种特殊情况,教师适当点拨进入问题②,然后找一名学生到黑板进行简化,其他学生在自己的座位上简化、教师再与学生一起集体订正黑板的书写,最后学生都不难得出以下式子,鼓励学生尝试一下,对得出的结论给出解释.这个过程教师要舍得花时间,充分地让学生去思考、去探究,并初步地感受二倍角的意义.同时开拓学生的思维空间,为学生将来遇到的3α或3β等角的探究附设类比联想的源泉.
sin(α+β)=sin αcos β+cos αsin βα=2sin αcos α(S 2α);
cos(α+β)=cos αcos β-sin αsin βα=cos 2α-sin 2
α(C 2α);
tan(α+β)=
)(tan
1tan 22tan tan tan 1tan tan 22
αα
ααβ
αβαT -=
⇒-+
这时教师适时地向学生指出,我们把这三个公式分别叫做二倍角的正弦,余弦,正切公式,并指导学生阅读教科书,确切明了二倍角的含义,以后的“倍角”专指“二倍角”、教师适时提出问题③,点拨学
生结合sin 2α+cos 2
α=1思考,因此二倍角的余弦公式又可表示为以下右表中的公式.
这时教师点出,这些公式都叫做倍角公式(用多媒体演示).倍角公式给出了α的三角函数与2α的三角函数之间的关系.
问题④,教师指导学生,这组公式用途很广,并与学生一起观察公式的特征与记忆,首先公式左边角是右边角的2倍;左边是2α的三角函数的一次式,右边是α的三角函数的二次式,即左到右→升幂缩角,右到左→降幂扩角、二倍角的正弦是单项式,余弦是多项式,正切是分式.
问题⑤,因为还没有应用,对公式中的含义学生可能还理解不到位,教师要引导学生观察思考并初步感性认识到:(Ⅰ)这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去;(Ⅱ)通过二倍角公式,可以用单角的三角函数表示二倍角的三角函数;(Ⅲ)二倍角公式是两角和的三角函数公式的特殊情况;(Ⅳ)公式(S 2α),(C 2α)中的角α没有限制,都是α∈R .但公式(T 2α)需在α≠2
1k π+
4
π
和
α≠k π+
2
π
(k∈Z )时才成立,这一条件限制要引起学生的注意.但是当α=k π+
2
π
,k∈Z 时,虽然tan α不
存在,此时不能用此公式,但tan2α是存在的,故可改用诱导公式.
问题⑥,填空是为了让学生明了二倍角的相对性,即二倍角公式不仅限于2α是α的二倍的形式,其他如4α是2α的二倍,
2
a 是
4
a 的二倍,3α是
2
3a 的二倍,
3
a 是
6
a 的二倍,
2
π
-α是
4
π
-
2
a 的二倍等,所有