函数的单调性教学设计2

合集下载

《函数的单调性》教学设计

《函数的单调性》教学设计

《函数的单调性》教学设计一、教学内容1. 函数单调性的定义:函数单调递增和单调递减的定义及其性质。

2. 单调性的判断方法:利用导数、图像以及定义法判断函数的单调性。

3. 单调性在实际问题中的应用:求解最值问题、不等式问题等。

二、教学目标1. 理解函数单调性的定义,掌握单调递增和单调递减的概念。

2. 学会利用导数、图像以及定义法判断函数的单调性。

3. 能够运用单调性解决实际问题,提高解决问题的能力。

三、教学难点与重点1. 教学难点:单调性的判断方法,特别是利用导数判断单调性。

2. 教学重点:函数单调性的定义,单调性的判断方法以及单调性在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:笔记本、彩笔、函数图像绘制工具。

五、教学过程1. 实践情景引入:通过一个实际问题,引发学生对函数单调性的思考。

例题:某商品的价格随销售量的增加而减少,问销售量为多少时,商品的价格最低?3. 单调性的判断方法:(1)利用导数:讲解导数与函数单调性的关系,引导学生学会利用导数判断函数的单调性。

(2)利用图像:引导学生观察函数图像,判断函数的单调性。

(3)利用定义法:讲解如何利用定义法判断函数的单调性。

4. 单调性在实际问题中的应用:通过例题,讲解单调性在求解最值问题、不等式问题等方面的应用。

5. 随堂练习:让学生通过实际问题,运用所学知识解决,巩固所学内容。

六、板书设计1. 函数单调性的定义。

2. 单调性的判断方法:导数法、图像法、定义法。

3. 单调性在实际问题中的应用。

七、作业设计(1)y = x^2(2)y = x^2(3)y = 2x + 3某商品的价格随销售量的增加而减少,已知销售量为100时,价格为5000元,销售量为200时,价格为4000元。

求销售量为多少时,商品的价格最低?八、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生了解了函数单调性的概念及其应用,通过讲解和练习,使学生掌握了单调性的判断方法。

函数的单调性教学设计

函数的单调性教学设计

函数的单调性教学设计课程名称:函数的单调性目标:通过本课教学,学生将能够理解和应用函数的单调性,包括递增和递减的概念以及如何用图像和导数来确定函数的单调性。

教学内容:一、引入(15分钟)1.导入概念:什么是函数?为什么函数是数学中重要的概念?2.回顾函数的图像和图像上的特点。

例如,曲线上其中一点的斜率和曲线的凹凸性。

3.引入函数的单调性的概念。

二、递增函数和递减函数(30分钟)1.定义递增函数和递减函数。

2.使用一个简单的示例函数来说明递增和递减的概念,并绘制函数图像。

3.引导学生找到图像上的递增和递减的区间。

4.指导学生发现递增函数和递减函数之间的关系。

三、图像判断函数的单调性(30分钟)1.讨论如何通过观察函数的图像来判断函数的单调性。

2.使用不同的函数图像来练习判断函数的递增和递减区间。

3.指导学生发现函数的变化趋势和单调性之间的关系。

四、导数判断函数的单调性(30分钟)1.回顾导数的定义和意义。

2.引导学生理解导数的几何意义,切线的斜率。

3.指导学生通过导数的正负来判断函数的递增和递减区间。

4.使用一个示例函数进行实例演练。

五、综合练习和实际应用(30分钟)1.组织学生进行综合练习,绘制函数图像并判断函数的单调性。

2.引导学生思考如何利用函数的单调性解决实际问题。

六、总结与小结(15分钟)1.回顾本课学习的内容,强调函数的单调性的意义和应用。

2.总结如何用图像和导数来判断函数的单调性。

3.解答学生提出的问题,并答疑。

教学手段与方法:1.讲授引入部分的内容,通过解释和示例帮助学生建立起函数和图像的关系。

2.在递增函数和递减函数的讲解过程中,让学生积极参与,发表自己的观点和意见。

3.使用多个函数的图像让学生进行判断,然后进行讨论和分享。

4.在导数判断函数单调性的部分,通过几何意义的讲解和实例演练来帮助学生理解。

5.在综合练习和应用中,鼓励学生合作,提高解决问题的能力。

评估方法:1.检查学生在课堂讨论和实例中的表现,包括回答问题的准确性和解题的思路。

02 教学设计_ 函数单调性(第2课时)1

02 教学设计_ 函数单调性(第2课时)1

3.1.2 函数单调性(第2课时)
【教学目标】
1.了解函数单调性的概念,会用定义判断或证明函数的单调性
2.会借助图像和定义求函数的单调区间
3.理解函数的最大(小)值及其几何意义,并能借助图像求函数的最大(小)值
4.会借助函数的单调性求最值
5.会根据函数的单调性求参数或解参数不等式
【核心素养】
1.数学抽象:了解函数单调性的概念,理解函数的最大(小)值及其几何意义
2.直观想象:借助图像求函数的单调区间和最值
3.数学运算: 判断函数区间的单调性和求最值
4.数据分析:函数最值在实际生活中的应用 教学重点:
借助平均变化率理解函数的单调性.
教学难点:
借助平均变化率理解函数单调性的应用.
教学过程:
一、问题引入
1.复习函数单调性的概念
一般地,设函数y = f(x)的定义域为D ,且I ∈D:
(1)如果对任意I x x ∈21,,当x 1<x 2时,都有f(x 1)<f(x 2),则称 y= f(x)在Ⅰ上是增函数(也称在Ⅰ上单调递增);
(2)如果对任意I x x ∈21,,当x 1<x 2时,都有f(x 1)>f(x 2),则称 y = f(x)在Ⅰ上是减函数(也称在Ⅰ上单调递减);
问题1:从形的角度理解函数单调性,限制条件的对象是图像上的任意两点。

我们知道,两点确定一条直线。

那么,能否用图象上任意两点连线的相关性质来刻画单调性呢?
2.直线斜率的概念
一般地,对于给定平面直角坐标系中的任意两点 A(x 1,y 1),B(x 2,y 2),当x 1≠ x 2时,
3. 学有余力的同学探究的单调性。

全国高中数学 优秀教案 函数的单调性教学设计 (2)

全国高中数学 优秀教案 函数的单调性教学设计 (2)

函数的单调性一、教学内容解析1.教材内容及地位本节课是北师大版《数学》(必修1)第二章第3节函数单调性的第一课时,主要学习用符号语言(不等式)刻画函数的变化趋势(上升或下降)及简单应用。

它是学习函数概念后研究的第一个、也是最基本的一个性质,为后继学习奠定了理性思维基础。

如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用。

因此,它是高中数学核心知识之一,是函数教学的战略要地。

2.教学重点函数单调性的概念,判断和证明简单函数的单调性。

3.教学难点函数单调性概念的生成,证明单调性的代数推理论证。

二、学生学情分析1.教学有利因素学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“y随x的增大而增大(减小)”描述函数图象的上升(下降)的趋势。

亳州一中实验班的学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力。

2.教学不利因素本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度。

而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强。

另外,他们的代数推理论证能力非常薄弱。

这些都容易产生思维障碍。

三、课堂教学目标1.理解函数单调性的相关概念。

掌握证明简单函数单调性的方法。

2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法。

3.通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量。

4.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力。

四、教学策略分析在学生认识函数单调性的过程中会存在两方面的困难:一是如何把“y随x的增大而增大(减小)”这一描述性语言“翻译”为严格的数学符号化语言,尤其抽象概括出用“任意”刻画“无限”现象;二是用定义证明单调性的代数推理论证。

教学设计2:3.2.1 第1课时 函数的单调性

教学设计2:3.2.1 第1课时  函数的单调性

主要师生活动教师引导:我们知道函数是描述事物变化规律的数学模型,这样我们可以通过研究函数的性质获得对客观世界中事物变化规律的认识.那么什么是函数性质呢?总体而言,函数性质就是“变化中的不变性,变化中的规律性”.研究函数性质,就是要学会在运动变化中发现规律.请大家回顾初中学习过的一次函数、二次函数、反比例函数,我们通过什么来研究它们的性质呢?师生活动:学生回答,师生共同得到结论:通过图象研究函数性质.问题1:请看下面的函数图象,从中能发现什么变化中的规律?师生活动:教师利用PPT展示例子,学生观察图象并回答问题.学生的回答可能涉及很多方面(如升降变化,对称性,最高点或最低点等),教师引导学生关注图象从左到右升降变化的特点.追问:函数图象所反映的这些特点就是函数的性质.你能回顾一下初中的知识,用定性的方法描述前两个图象从左到右的升降变化吗?即y随x的增大是如何变化的?-∞+∞上,y随x 预设:第一个图象从左到右是上升的,即在(,)-∞-及(0.21),两个区间上,从左的增大而增大;第二个函数在(,1)明,要让学生明确,应该是区间(,0]-∞上的所有数对1x ,2x .预设反例:如图象所示函数,我们可以找到<a b 、()()>f a f b ,但很明显函数在区间[,]a b 上并不单调递减.追问4:“所有”又该如何说明?既然“所有”不易操作,可以用什么量词来代替“所有”呢?你能严格的表达出来吗?师生活动:教师引导学生说出用“任意”代替“所有”,帮助学生体会用“任意”处理“无限”的思想.预设:任取1x ,2x ,只要12<x x ,就有12()()>f x f x .教师总结:我们借助数学符号语言,给出了一个与“无限”相关的变化规律的定量描述,即任取1x ,2x ,把“无穷”问题转化为了可操作的有限过程,这就是数学抽象的力量.追问5:你能说出为什么12()()>f x f x 吗?教师引导:要对两个函数值比大小,实质上是不等式的代数证明,具体证明方法我们稍后会说明.追问6:对于函数2=y x ,你能模仿上述方法,给出“在区间[0,)+∞上,y 随x 的增大而增大”的符号语言刻画吗?设计意图:这个环节是本节课的重点,也是难点,其核心是通过从具体到抽象的过程,让学生学会用严格的符号语言刻画“在区间D 上,当x 增大时,相应的()f x 随之减小”.从图象到定性再到定量的不断精确化的过程中,通过问题串,设法引出“任意”,引导学生体会用“任意”刻画“无限”的力量.练习:请你模仿上述过程,用严格的符号语言刻画函数2=-y x 的单调性.2.单调性定义的抽象问题3:请你归纳以上两个函数单调性的刻画方法,给出函数()=y f x 在区间D 上单调性的符号表述.师生活动:先由学生独立完成并交流,再由教师给出严格的单调。

函数的单调性教学设计(完整版)

函数的单调性教学设计(完整版)

函数的单调性教学设计(完整版)(文档可以直接使用,也可根据实际需要修改使用,可编辑欢迎下载)函数的单调性教学设计石嘴山市第十四中学王玲一、大纲分析函数单调性是研究函数概念基础上学习的第一性质,依据普通高中《数学课程标准》和《数学教学大纲》,教学重点确立为:判断或证明函数单调性的方法步骤。

又因为教学对象是高一新生,准确进行逻辑推理比较困难,所以把函数单调性的定义,判断或证明函数单调性确立为教学难点。

二、教材分析1、教材的地位与作用本课是人民教育出版社高中数学第一册第二章第三节的内容。

函数的单调性是函数重要性质之一,应用非常广泛,在教材中起着承上启下的作用一方面,是初中相关内容的深化、提高,使学生对函数单调性从感性认识提高到理性认识;另一方面,通过对函数单调性的学习,可以利用函数单调性的定义判断某些函数的单调性及单调区间;比较两个数的大小;解方程或不等式;求函数的值域、最值等。

三、教学建议分析研究著名的“艾宾浩斯遗忘曲线”问题,充分调动学生积极性,营造亲切活跃的课堂氛围;渗透建模思想,培养学生应用数学的意识,通过实例使学生感受单调性的内涵,缩短心理距离,降低理解难度。

四、教学目标(1)知识目标:使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.(2)能力目标:通过对函数单调性定义的探究,渗透数形结合的数学思想和方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.(3)情感目标:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯;让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.五、教学重点、难点重点:函数单调性的定义;判断、证明函数的单调性.难点:归纳并抽象函数单调性的定义.六、学法、教法分析对学生来说,函数的单调性早已有所了解,然而没有给出过定义,只是从直观上接触过这一性质。

函数的单调性教学设计

函数的单调性教学设计

3.1.3函数的单调性【教学目标】1.理解增函数㊁减函数的定义及增函数㊁减函数的图象特征,初步掌握函数单调性的判定方法.2.能正确地使用符号语言刻画函数的单调性,提升数学表达和数学交流的能力.3.通过对函数单调性的判断和证明,提升直观想象和逻辑推理的核心素养.【教学重点】函数单调性的定义及判断.【教学难点】利用函数单调性的定义判断函数的单调性.【教学方法】本节课主要采用类比教学法和分组教学法.教师用问题引导学生从函数图象的变化趋势得出增函数㊁减函数的定义,然后对图象进行代数分析,得出证明函数单调性的步骤.本节课的主要思路是从形的直观感知到严密的代数分析,引导学生用数形结合的方法研究函数.最后,借助两个证明题,深化学生对函数单调性定义的理解.【教学过程】教学环节教学内容师生互动设计意图导入艾宾浩斯曲线.教师引导学生观察曲线的变化趋势,引入课题.联系实际,激发学生学习兴趣.续表教学环节教学内容师生互动设计意图新课例2证明函数f(x)=3x+2在区间(-ɕ,+ɕ)上是增函数.证明设x1,x2是任意两个不相等的实数,则Δx=x2-x1,Δy=f(x2)-f(x1)=(3x2+2)-(3x1+2)=3(x2-x1),ΔyΔx=3(x2-x1)x2-x1=3>0.因此,函数f(x)=3x+2在区间(-ɕ,+ɕ)上是增函数.总结由函数的解析式判断函数单调性的步骤:S1取Δx,计算Δy.S2计算k=ΔyΔx.当k>0时,函数在这个区间上是增函数;当k<0时,函数在这个区间上是减函数.例3证明函数f(x)=1x在区间(0,+ɕ)上是减函数.证明设x1,x2是任意两个不相等的正实数,则Δx=x2-x1,教师讲解例2,板书详细的解题过程.教师引导学生总结解题步骤,可简记为:一设㊁二求㊁三判定.学生讨论并试解例3.教师解答学生的困惑.通过例题解答,加深学生对函数单调性定义的理解.归纳证明步骤,从而突破难点.教师点拨,帮助学生判断ΔyΔx的正负.巩固用函数解析式来证明函数单调性的步骤.教学环节教学内容师生互动设计意图新课Δy=f(x2)-f(x1)=1x2-1x1=x1-x2x1x2=-x2-x1x1x2.又因为x1x2>0,所以ΔyΔx=-1x1x2<0.因此,函数f(x)=1x在区间(0,+ɕ)上是减函数.练习证明函数f(x)=3x在区间(-ɕ,0)上是减函数.学生练习.巩固函数单调性的证明方法.小结1.函数单调性的定义.2.判定函数单调性的方法.学生阅读本节教材,畅谈本节课的收获.教师引导学生总结本节课的知识点.通过梳理,加深学生对所学知识的理解.作业本节练习A组第2题.本节练习B组题目.学生课后完成.巩固本节内容.。

函数的单调性微课教学设计

函数的单调性微课教学设计

函数的单调性微课教学设计引言函数的单调性是高中数学中的重要概念之一。

掌握函数的单调性对于求解方程、不等式、优化问题等数学应用有着重要的作用。

本文将通过微课教学的方式,针对函数的单调性进行教学设计,帮助学生理解和掌握这一概念。

一、教学目标1. 掌握函数的单调性的定义和判断方法;2. 能够根据函数的导数求解函数的单调性;3. 能够应用函数的单调性解决实际问题。

二、教学内容1. 函数的单调性的定义和判断方法1.1 定义函数单调递增和单调递减的概念;1.2 利用函数值的比较判断函数的单调性;1.3 利用导数判断函数的单调性。

2. 函数的单调性的判断方法的演示2.1 通过图像展示函数的单调递增和单调递减;2.2 通过函数值的比较判断函数的单调性;2.3 通过导数的正负判断函数的单调性。

3. 函数单调性的最值问题3.1 求解函数在定义域内的最大值和最小值;3.2 利用函数的单调性解决最值问题;3.3 通过实例演示函数单调性应用于最值问题。

三、教学过程1. 引入课题1.1 引导学生回顾函数的基本概念;1.2 提出函数的单调性的重要性。

2. 基本知识的讲解2.1 通过教师讲解的方式介绍函数的单调性的定义;2.2 讲解判断函数单调性的方法:函数值的比较和导数的正负。

3. 案例分析3.1 通过具体的函数案例,让学生掌握函数单调性的判断方法;3.2 分析案例中的函数图像,并强调图像与单调性的联系。

4. 计算与推导4.1 教师带领学生通过计算和推导,巩固函数单调性的判断方法;4.2 注重学生的实际操作,培养解题能力。

5. 实例演示5.1 通过实际应用问题的演示,让学生理解函数单调性在实际问题中的应用;5.2 鼓励学生积极思考,提出自己的解题方法。

6. 总结与归纳6.1 整理函数单调性的判断方法;6.2 强调函数单调性在数学应用中的作用。

四、教学评估1. 小组活动1.1 将学生分成小组,让每个小组设计一个函数单调性的问题,互相出题;1.2 通过小组讨论,提高学生的合作能力。

高中数学1.3.1函数的单调性与最大小值第2课时教学设计新人教A版必修1

高中数学1.3.1函数的单调性与最大小值第2课时教学设计新人教A版必修1

1.3.1单调性与最大(小)值(第二课时)教学设计一、学情分析本节课是人教版《数学》(必修Ⅰ)第一章第3节函数的单调性与最大(小)值的第二课时,次要学惯用符号言语刻画函数的的最大(小)值,并能用函数的单调性和函数的图象进行一些常见函数最值的求值.在此之前,先生对函数曾经有了一个初步的了解,同时,由于上一节曾经学习函数单调性的定义,先生能初步理解用数学言语抽象概括函数概念的必要性和表达方式,为函数最值概念的构成提供极大帮助.因而本节课经过函数的图象,先生容易找出相应的最大值和最小值.但这只是感性上的认识.为了让先生有一个从具体到抽象、特殊到普通的认识过程,本节课经过设计成绩串,逐渐让先生用数学言语描述函数最值的概念,并利用对概念的辨析深化了解最值的内涵.二、教学目标:1.知识与技能(1)理解函数的最大(小)值的概念及其几何意义.理解函数的最大(小)值是函数的全体性质.(2)能解决与二次函数有关的最值成绩,和利用函数的单调性和函数的图象求函数的最值,掌握用函数的思想解决一些理论成绩.2.过程与方法经过日常生活实例,引导先生进行分析、归纳、概括函数最值的概念.并借助函数的单调性,从数到形,以形助数,逐渐浸透、培养先生数形结合思想、分类讨论思想、优化思想.3.情感、态度与价值观以丰富的实例背景引入,让先生领会数学与日常生活毫不相关.在概念的构成过程中,培养先生从特殊到普通、从直观到抽象的思想提升过程,让先生感知数学成绩求解途径与方法,享用成功的快乐.三、重点、难点:重点:建构函数最值的概念过程,利用函数的单调性和函数的图象求函数的最值.难点:函数最值概念的构成.高一先生的逻辑思想和抽象概括能力较弱,面对抽象的方式化定义,容易产生思想妨碍.对此,本课紧紧捉住新旧知识间的内在联系,设置一系列成绩,让先生充分参与定义的符号化过程,从图形言语和自然言语向数学符号言语转化,逐渐打破难点.四、教学过程:(一)提出成绩,引入目标背景1:成绩1:求函数2)(x x f -=的最大值.意图:从熟习的二次函数动手,将求函数的最大值转化为研讨函数图象的最高点,引导先生经过图象分析.背景2:请看下图,这是某气象观测站某日00:00—24:00这24小时内的气温变化图.(图)成绩2:.(1)我们常说昼夜温差大,是指一天当中的最高温度和最低温度之差.请问,该天的最高气温是多少?(2)该图象能否建立一个函数关系?如何定义自变量?意图:明确是在函数背景下研讨成绩.回顾函数的定义和函数的表示法(图象法) 师:我们称此时该函数的最大值是32.意图:启发先生明确函数图象中存在最高点与函数存在最大值之间是分歧的,即明确函数图象和函数解析式是反映函数关系的不同表现方式,从而无认识地培养先生以形助数解决成绩的认识,并引出课题——《函数的最大(小)值》(二)层层深化,概念建构成绩3:经过这两个成绩,我们能否用数学言语给出普通函数最大值的定义? 意图:以具体实例为背景,让先生用数学言语来进行归纳表达,引导先生过渡到任意化的符号化表示,呈现知识的自然生成,领会从特殊到普通的思想.定义:普通地,设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≤)(成立;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最大值.(预设:函数最大值定义中的第(1)点成绩不大,第(2)点容易被忽略。

《函数的单调性》教学设计

《函数的单调性》教学设计

《函数的单调性》教学设计一、教材分析函数的单调性是函数的重要特性之一,它把自变量的变化方向和函数值的变化方向定性地联系在一起.在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.这节内容的重点是理解函数单调性的概念以及利用函数的单调性的概念证明函数的单调性,难点是理解函数单调性的概念.二、学法分析在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。

然后通过对函数单调性的概念的学习理解,最终把问题解决。

整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。

三、教学目标知识与技能:1、理解增函数、减函数的概念及其几何意义。

2、学会应用函数的图象理解和研究函数的单调性及其几何意义。

过程与方法:1、通过本节课的教学,渗透数形结合的数学思想,对学生进行辨证唯物主义的教育。

2、通过探究与活动,使学生明白考虑问题要细致,说理要明确。

情感与态度:1、通过本节课的教学,使学生能理性的描述生活中的增长、递减的现象。

2、通过生活实例感受函数单调性的意义,培养学生的识图能力和数形语言转化的能力。

四、教学重点函数单调性的概念、判断及证明.五、教学难点根据定义证明函数的单调性,求简单函数的单调区间.六、教学方法教师启发讲授,学生探究学习.七、教学过程(一)课题引入函数是描述事物运动变化规律的数学模型。

如果了解了函数的变化规律,那么也就基本把握了相应事物的变化规律。

函数的单调性(教学设计)

函数的单调性(教学设计)

3.1.2函数的单调性(教学设计)一、本节内容在教材中的地位与作用:《函数的单调性》系人教版高中数学必修一的内容,该内容包括函数的单调性的定义与判断及其证明。

在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。

二、学情、教法分析:按现行新教材结构体系,学生只学过一次函数、二次函数、反比例函数,所以对函数的单调性研究也只能限于这几种函数。

依据现有认知结构,学生只能根据函数的图象观察出“随着自变量的增大,函数值增大”的变化趋势,而不能用符号语言进行严密的代数证明,只能依据形的直观性进行感性判断而不能进行“思辩”的理性认识。

所以在教学中要找准学生学习思维的“最近发展区”进行有意义的建构教学。

在教学过程中,要注意学生第一次接触代数形式的证明,为使学生能迅速掌握代数证明的格式,要注意让学生在内容上紧扣定义贯穿整个学习过程,在形式上要从有意识的模仿逐渐过渡到独立的证明。

三、教学目标与教学重、难点的制定:依据课程标准的具体要求以及基于教材内容的具体分析,制定本节课的教学目标为:1.通过函数单调性的学习,让学生通过自主探究活动,体会数学概念的形成过程的真谛,学会运用函数图像理解和研究函数的性质。

函数的单调性教学设计

函数的单调性教学设计

1函数的单调性教学设计(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--函数的单调性教学设计一、教学内容分析:函数的单调性是学生在掌握了函数的概念,函数的表示方法等基础知识后,学习的函数的第一个性质,主要刻画了函数在其定义域内某区间上图像(上升或下降)的变化趋势,为进一步学习函数其它性质提供了方法依据,如在研究函数的值域、最大值、最小值等性质中有着重要应用,而且在解决比较数的大小、解不等式、证明不等式、数列的性质等数学问题时也有重要的应用。

同时它又是后续研究指数函数、对数函数以及三角函数性质的基础。

所以函数的单调性在高中数学中具有核心知识地位和承上启下的重要作用。

二、学生学情分析:从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数等简单函数,函数的概念及函数的表示,能画出一些简单函数的图像,从图像的直观变化,学生能粗略的得到函数增减性的定义,所以引入函数的单调性的定义应该是顺理成章的。

从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括和语言转换能力。

本班学生的数学基础和学习能力存在差异,学生在认知过程中主要存在两个方面的困难:第一,把具体的、直观形象的函数单调性的特征抽象出来,用数学的符号语言进行描述,比如把定义域内某区间上“随着x 的增大,相应的函数值)(x f 也随着增大”(单调递增)这一特征用该区间上“任意的21x x <,都有)()(21x f x f <”进行刻画,其中最难理解的是为什么要在区间上“任意”取两个大小不等的1x ,2x ;第二,利用定义证明函数的单调性过程中,对学生在代数方面严格推理能力的要求较高,教师应该给以适时的点拨和纠正.三、教学目标设置:(一)知识与技能:1.用准确的数学语言归纳、抽象概括增函数和减函数的定义,并能正确理解单调性的定义;2.利用图像和定义判断函数的单调性,能正确书写单调区间,并能用单调性定义证明函数在给定区间上的单调性;3.培养学生抽象概括能力、类比化归能力及数形结合思想方法的运用能力。

《函数的单调性》的教学设计

《函数的单调性》的教学设计

《§3 函数的单调性》教学设计一、教学背景分析1、学习任务分析内容:函数的单调性。

地位与作用:《函数的单调性》是《高中数学北师大版》(必修1)第二章第3节的内容。

它既是在学生学过函数概念等知识后的延续和拓展,又是后面研究指数函数、对数函数、三角函数等各类函数的单调性的基础,在整个高中数学中起着承上启下的作用。

研究函数单调性的过程体现了数学的数形结合和归纳转化的思想方法,反映了从特殊到一般的数学归纳思维形式,这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大意义。

函数的单调性是函数的四个基本性质之一,在比较几个数的大小、对函数作定性分析(求函数的值域、最值,求函数解析式的参数范围、绘函数图象)以及与不等式等其它知识的综合应用上都有广泛的应用;同时在这一节中利用函数图象来研究函数性质的数形结合的思想将贯穿于我们整个高中数学教学。

2、学生情况分析从知识储备方面,首先,学生已经学习了函数的基本概念,及初中所学的一次函数与二次函数为本节课的进一步学习准备好了必要的知识基础;另外,由于学生初学,因此在课堂上需要多给学生思考及动手操作的时间,适当的时候也需要老师加以引导。

二、教学目标的确定1、教学目标:知识与技能:理解函数单调性的概念,掌握证明函数单调性的方法和步骤。

过程与方法:通过观察图像,归纳,概括出函数的单调性等概念,能用数学单调性解决简单问题,使学生领会数形结合的思想,培养学生观察、分析、归纳等思维能力。

渗透数形结合、特殊到一般等数学思想方法。

培养学生提出问题,分析问题以及数学表达的能力情感态度与价值观:通过对现实世界中蕴涵的一些数学模式进行思考,逐步认识数学的科学价值和应用价值,提高数学学习兴趣,树立学好数学的信心。

2、教学重、难点教学重点:(1)领会函数单调性概念,体验函数单调性的形式化过程,深刻理解函数单调性的本质,并明确单调性是一个局部概念;(2)函数单调性的概念的理解教学难点::判断和证明函数单调性三、教学方法与手段教学方法:采用“三主教学法”教师主导,学生主体,思维主线;充分调动学生学习的积极性和主动性渗透数学思索方程;启发探究相结合四、授课类型:新授课五、教学课时:一课时六、教学用具:计算机、投影仪、彩色粉笔七、教学过程的设计(一)、创设情境,引入新课【活动】:多媒体展示图片,让学生观看图片,引入新课,(二)、归纳探索,形成概念1、借助图象,直观感知回顾一次函数与二次函数图像特征,为本节课研究函数单调性做好准备。

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)为你细心整理了6篇《函数的单调性教学设计》的范文,但愿对你的工作学习带来帮忙,盼望你能喜爱!固然你还可以在搜寻到更多与《函数的单调性教学设计》相关的范文。

《函数的单调性》教学设计【教材分析】《函数单调性》是高中数学新教材必修一其次章第三节的内容。

在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个根底学问点,是讨论和争论初等函数有关性质的根底。

把握本节内容不仅为今后的函数学习打下理论根底,还有利于培育学生的抽象思维力量及分析问题和解决问题的力量.【学生分析】从学生的学问上看,学生已经学过一次函数,二次函数,反比例函数等简洁函数,函数的概念及函数的表示,接下来的任务是对函数应当连续讨论什么,从各种函数关系中讨论它们的共同属性,应当是顺理成章的。

从学生现有的学习力量看,通过初中对函数的熟悉与试验,学生已具备了肯定的观看事物的力量,积存了一些讨论问题的阅历,在肯定程度上具备了抽象、概括的力量和语言转换力量。

从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。

函数的单调性是学生从已经学习的函数中比拟简单发觉的一共性质,学生也简单产生共鸣,通过比照产生顿悟,渴望获得这种学习的.积极心向是学生学好本节课的情感根底。

【教学目标】1.使学生从形与数两方面理解函数单调性的概念.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培育学生观看、归纳、抽象的力量和语言表达力量.3.通过学问的探究过程培育学生细心观看、仔细分析、严谨论证的良好思维习惯,让学生经受从详细到抽象,从特别到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念.【教学难点】从形与数两方面理解函数单调性的概念.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】教学根本流程1、视频导入------营造气氛激发兴趣2、直观的熟悉增(减)函数-----问题探究3、定量分析增(减)函数)-----归纳规律4、给出增(减)函数的定义------展现结果5、微课教学设计函数的单调性定义重点强调 ------ 稳固深化 7、课堂收获 ------提高升华(一)创设情景,提醒课题1.钱江潮,自古称之为“天下奇观”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生通过观察、思考、讨论,归纳得出:
函数y = x2在(0,+∞)上图象是上升的,用函数解析式来描述就是:对于(0,+∞)上的任意的x1,x2,当x1<x2时,都有x12<x22. 即函数值随着自变量的增大而增大,具有这种性质的函数叫增函数。
2.增函数
一般地,设函数y=f(x)的定义域为I,
如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数(increasing function).
教学设计
上课题目
函数的单调性21章3节来自高考要求会判断单调性
课时安排
2
教学目标
知识与技能
(1)建立增(减)函数的概念通过观察一些函数图象的特征,形成增
(减)函数的直观认识. 再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义 . 掌握用定义证明函数单调性的步骤。
利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:
①任取x1,x2∈D,且x1<x2;
②作差f(x1)-f(x2);
③变形(通常是因式分解和配方);
④定号(即判断差f(x1)-f(x2)的正负);
⑤下结论(即指出函数f(x)在给定的区间D上的单调性)归纳小结
函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:
(2)函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛。
过程与方法
(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何
意义;
(2)学会运用函数图象理解和研究函数的性质;
(3)能够熟练应用定义判断与证明函数在某区间上的单调性..
3、从函数图象上可以看到,y=x2的图象在y轴左侧是下降的,类比增函数的定义,你能概括出减函数的定义吗?
注意:
函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;
必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2).
4.函数的单调性定义
如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间:
情感态度和价值观
使学生感到学习函数单调性的必要性与重要性,增强学习函数的紧迫感
教学重点
函数的单调性及其几何意义
教学难点
利用函数的单调性定义判断、证明函数的单调性.
教辅手段
多媒体
上课时间
教学方法
合作探究
授课类型
新授课
教学板书设计
函数的单调性
一般地,设函数y=f(x)的定义域为I,例1如图是定义在区间[-5,5]上的函数y=f(x)
取值→作差→变形→定号→下结论
会画函数
的图象
数形结合
数学思想
渗透
习题配置及配置说明
课本P38练习第1、2、3题;
证明函数 在(1,+∞)上为增函数.
教学反思
反思时间:年月日
(三)质疑答辩,发展思维。
根据函数图象说明函数的单调性.
例1如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?
例2物理学中的玻意耳定律P= (k为正常数)告诉我们,对于一定量的气体,当其体积V减少时,压强P将增大。试用函数的单调性证明之。
如果对于定义域I内的某个区间D内的任根据图象说出函数的单调区间
意两个自变量x1,x2,当x1<x2时,都有以及在每一单调区间上单调性?
f(x1)<f(x2),那么就说f(x)在区间D上是
增函数
教学过程
教学环节
教师活动
学生活动
设计意图及说明








(二)研探新知
1、y = x2的图象在y轴右侧是上升的,如何用数学符号语言来描述这种“上升”呢?
分析:按题意,只要证明函数P= 在区间(0,+∞)上是减函数即可。
证明:略
通过实例
引出新知
自主探究
学生完成
问题
完成例题
分析注意
的问题
分析实例
得到结论
由特殊到
一般
有助于学
生对知识
的理解
学会应用
知识点
注意函数
的变化
会选恰当
方法了解
原因
教学过程
教学环节
教师活动
学生活动
设计意图及说明




3.判断函数单调性的方法步骤
相关文档
最新文档