杨氏模量 数据记录表

合集下载

杨氏模量实验报告

杨氏模量实验报告

2 、讨论如何判断是否是铜棒发生了共振? 当发生共振时, 迅速切断信号源并观察李萨如图性, 如果波形由 椭圆变成一条竖直亮线后逐渐成为一个亮点,那就是发生了共 振。
请在两周内完成,交教师批阅
f(Hz)
B
1038 1037 1036 1035 1034 1033 1032 1031 1030 1029 0 10 20 30 40 50 60
实验数据记录(注意:单位、有效数字、列表)
实验温度 15℃ , 试样种类 钢 ,
试样质量
35.25
g,
试样长度
159.83
mm ,
试样直径
5.966
mm, 节点位置 (距端面)
35.96
mm
表 1.测量试样直径:
次数 直径 D(mm) 1 5.967 2 5.967 3 5.965 4 5.963 5 5.968 6 5.964 平均值 5.966
沈阳城市学院
物理实验报告
实验题目
动态法测金属杨氏模量
姓 名 学 号
专业班级
实验室号
D205
实验成绩
指导教师
李军
实验时间
物理实验室制
实验目的
1、了解动态法测杨氏模量的原理。 2、掌握如何用外推法或近似法测量测试棒的固有频率。 3、掌握判别真假共振(即:是否是测试棒共振现象)基本方法。 4、能够正确处理实验数据和正确表示实验结果。
表 2. 共振频率测量
悬 挂 点 与 5.68 端点的距 离X (mm) 共振频率 1037 f(Hz)
15.62 1033
25.78 1030
35.96 节点
45.73 1030
55.69 1033
请认真填写

(完整版)拉伸法测钢丝杨氏模量

(完整版)拉伸法测钢丝杨氏模量

拉伸法测钢丝杨氏模量实验目的1. 掌握用光杠杆法测量微小量的原理和方法,并用以测定钢丝的杨氏模量;2. 掌握有效数字的读取、运算以及不确定度计算的一般方法.3. 掌握用逐差法处理数据的方法;4. 了解选取合理的实验条件,减小系统误差的重要意义.实验仪器YMC-l 型杨氏模量测定仪,如图所示(包括光杠杆、镜尺装置);量程为3m 或5m 钢卷尺;0-25mm 一级千分尺;分度值0.02mm 游标卡尺;水平仪;lkg 的砝码若干.1.标尺2.锁紧手轮3.俯仰手轮4.调焦手轮5.目镜6.内调焦望远镜7.准星8.钢丝上夹头9.钢丝 10.光杠杆 11.工作平台 12.下夹头 13.砝码 14.砝码盘 15.三角座 16.调整螺丝.实验原理设一粗细均匀的钢丝,长度为L 、横截面积为S ,沿长度方向作用外力F 后,钢丝伸长了ΔL .比值F /S 是钢丝单位横截面积上受到的作用力,称为应力;比值ΔL /L 是钢丝的相对伸长量,称为应变.根据胡克定律,在弹性限度内,钢丝的应力与应变成正比,即F L ES L ∆= 或 //F SE L L=∆ 式中E 称为杨氏模量,单位为N·m -2,在数值上等于产生单位应变的应力.由上式可知,对E 的测量实际上就是对F 、L 、S 、ΔL 的测量.其中F 、L 和S 都容易测量,而钢丝的伸长量ΔL 很小,很难用一般的长度测量仪器直接测量,因此ΔL 的准确测量是本实验的核心问题.本实验采用光杠杆放大法实现对钢丝伸长量ΔL 的间接测量.光杠杆是用光学转换放大的方法来实现微小长度变化的一种装置.它包括杠杆架和反射镜.杠杆架下面有三个支脚,测量时两个前脚放在杨氏模量测定仪的工作平台上,一个后脚放在与钢丝下夹头相连的活动平台上,随着钢丝的伸长(或缩短),活动平台向下(或向上)移动,带动杠杆架以两个前脚的连线为轴转动.设开始时,光杠杆的平面镜竖直,即镜面法线在水平位置,在望远镜中恰能看到标尺刻度s 0.当待测细钢丝受力作用而伸长ΔL 时,光杠杆的后脚下降ΔL ,光杠杆平面镜转过一较小角度θ,法线也转过同一角度θ,反射线转过2θ,此时在望远镜中恰能看到标尺刻度s 1(s 1为标尺某一刻度).由图可知2tan Ld θ∆=,1011tan 2s s s d d θ-∆== 式中,d 2为光杠杆常数(光杠杆后脚尖至前脚尖连线的垂直距离);d 1为光杠杆镜面至标尺的距离. 由于ΔL << d 2,Δs << d 1 ,偏转角度θ很小,所以近似地有θtan ≈θ2d L∆=,θ2tan θ2≈1101d s d s s ∆=-=由此可得 212d L s d ∆=∆ 实验中,外力F 由一定质量的砝码的重力产生,即F =mg ,钢丝横截面积为S =πD 2/4 (D 是钢丝直径),代入可得杨氏模量的计算公式:1228mgLd E D d s=π∆其中2d 1/ d 2为放大倍数,为保证大的放大倍数,实验时应有较大的d 1(一般为2m )和较小的d 2(一般为0.08m 左右). 将待测钢丝直径D 和原长L 、光杠杆镜面至标尺的距离d 1、光杠杆常数d 2、砝码产生的拉力mg 、以及对应的Δs 测出,便可计算出钢丝的杨氏模量E .实验内容1. 用千分尺测量钢丝的直径D ,在不同方位测六次,计算其不确定度;2. 用钢卷尺对钢丝的原长L (从支架上端钢丝上夹头开始到平台夹钢丝的下夹头之间的距离)及平面镜与标尺的距离d 1各测一次;3. 用游标卡尺测量光杠杆常数d 2一次;4. 采用逐个增加砝码和减去砝码的方法测量钢丝的伸长量,用逐差法求Δs 及其不确定度;5. 计算钢丝的杨氏模量E 及其不确定度,表达实验结果.实验步骤1. 杨氏模量测定仪的调整(1) 将待测钢丝固定好,调节杨氏模量仪的底脚螺丝,使两根支柱竖直,工作平台水平,并预加1-2块砝码使钢丝拉直;(2) 将光杠杆的两前脚放在工作平台的沟槽中,后脚放在下夹头的平面上,调整平面镜使镜面铅直.(3) 调节望远镜,使镜筒轴线水平,将其移近至工作平台,调节镜筒高度使其和平面镜等高,调好后将望远镜固定在支架上. 调整到平面镜法线和望远镜轴线等高共轴.(4) 移动望远镜支架距平面镜约2 m 处,调整标尺,使其竖直并与望远镜轴线垂直,且标尺0刻线与轴线等高. (5) 初步寻找标尺的像,从望远镜筒外观察平面镜中是否有标尺或镜筒的像,若没有,则左右移动望远镜、细心调节平面镜倾角,直到在平面镜中看到镜筒或标尺的像.(6) 调节望远镜找标尺的像.先调节目镜,看到清晰的十字叉丝,再调节调焦手轮,左右移动支架或转动方向,直到在望远镜中看到清晰的标尺刻线和十字叉丝.杠杆架反射镜固定平台砝码光杠杆结构图θθ光杠杆望远镜标尺s 0s 1d 1d 2ΔLθθΔs2. 用千分尺在不同方向、位置测量钢丝的直径D ,共测6次,测量前应先记录千分尺的零点读数;3. 用钢卷尺测量镜面到标尺的距离d 1;4. 在砝码钩上放上测量时要加的全部(共加7次)砝码(不包括预加的本底砝码)的一半(3-4块),细心调节平面镜倾角,使望远镜中看到的标尺像在零刻线附近,以保证在轴线附近的范围内测量.4. 去掉刚才所加的砝码,开始测量,记录初始值0s ',逐个增加砝码,记录每一步的读数i s ',再逐个减去砝码,记录每一步同一砝码数对应的读数i s '';5. 测量光杠杆常数d 2.可将光杠杆的三个脚放在数据记录纸上按下三个印,作连接前两脚的连线和后脚到该连线的垂线,用游标卡尺测量这一距离.6. 整理实验数据,交指导老师签字,整理仪器,完成实验.注意事项1. 实验系统调好后,一旦开始正式测量,在实验过程中不能再对系统任一部分进行任何调整,否则,所有数据将重新再测;2. 加减砝码时要轻拿轻放,槽口要相互错开,避免砝码钩晃动,在系统稳定后读数;3. 同一荷重(相同砝码数)下的两个读数要记在一起.增重与减重对应同一荷重下读数的平均值才是对应荷重下的最佳值,它消除了摩擦(圆柱体与圆孔之间的摩擦)与滞后(加减砝码时钢丝伸长与缩短滞后)等引起的系统误差.4. 实验完成后,应将砝码取下,防止钢丝疲劳.数据记录表一 L 、d 1、d 2测量数据表 单位: mm表二 钢丝直径D 的测量数据表千分尺零点读数 =仪ε mm 单位: mm表三 Δs 的测量数据表 单位:mm数据处理1.计算每增加一块砝码(1kg)的钢丝伸长量Δs 的最佳值及不确定度 (1) Δs 的最佳值(用逐差法))(41041s s s -=∆;)(41152s s s -=∆;)(41263s s s -=∆;)(41374s s s -=∆;)(414321s s s s s ∆+∆+∆+∆=∆(2) 计算 的实验标准差: ()Ss ∆= (3) 计算 平均值的实验标准差: ()S s ∆=(4) 标尺的示值极限误差: Δm=0.5mm(5) 合成不确定度:()u s ∆==2.D 的最佳值及不确定度的计算(1) D 的最佳值: ∑==6161i i D D(2) 计算D 的实验标准差: ()S D =(3) 计算 D 平均值的实验标准差: ()S D = (4) 千分尺的的示值极限误差:Δm =0.004mm(5) 计算D 的合成不确定度: ()u D ==3. E 的最佳值的计算和不确定度的计算 (1) E 的最佳值的计算: sd D mgLd E ∆=2218π(2) E 的合成不确定度的计算取u (d 2)=0.02mm ,u (d 1)=5mm , u (L )=5mm ,及2和3中的不确定度得到E S S u D D u L L u d d u d d u E u ⋅⎪⎭⎫⎝⎛∆∆+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=222222211)()(2)()()()((3) E 的相对不确定度的计算,将实验值与 E 的公认值 E 0=2.05×1011 N ·m -2比较,计算其相对不确定度:()100%EE E E =⨯。

金属丝杨氏弹性模量的测定及其实验数据

金属丝杨氏弹性模量的测定及其实验数据

金属丝杨氏弹性模量的测定及其实验数据【实验目的】1.学习静态拉伸法测金属丝的杨氏模量。

2.掌握用光杠杆法测量微小长度变化的原理和方法。

3.利用有效的多次测量,及相应处理方法来减小误差。

【实验仪器】杨氏模量测量仪,光杠杆,望远镜尺组,米尺,游标卡尺【实验原理】根据胡克定律,金属丝的杨氏弹性模量, L是一个微小长度变化量,当金属丝直径为0.5毫米时, L约为10-5米。

实验中采用光杠杆镜尺法测量。

利用光杠杆镜尺法由几何原理可得,光杠杆的放大倍数为β=2D/b,一般D=1.5—2.0米,b=7.0厘米,所以放大倍数约为40倍。

通过在增加(减)砝码的同时测出标尺读数Xi和其他的长度量L、D、d、b,就能求得金属丝的杨氏弹性模量Y. 【实验内容】1.调整支架,使金属丝处于铅直位置2.调光杠杆和望远镜,使能在望远镜中看清标尺像,并无视差。

3.通过增减砝码,测出相应的标尺读数Xi′和Xi″(共加五个砝码),由Xi= Xi′/ Xi″,用逐差法求出?Xi。

重复一次。

4.测出L、D、d、b,重复六次,求出杨氏模量,【注意事项】1.仪器一经调好,测量开始,切勿碰撞移动仪器,否则要重新调节,老师检查数据前也不要破坏调节好的状态,否则一旦有错误,将难以查找原因或补作数据。

2.望远镜、光杠杆属精密器具,应细心使用操作。

避免打碎镜片,勿用手或他物触碰镜片。

3.调节旋钮前应先了解其用途,并预见到可能产生的后果或危险,不要盲目乱调,以免损坏仪器,调节旋钮时也不要过分用力,防止滑丝。

4.用螺旋测微计测量钢丝直径时,要端平测微计,避免钢丝弯曲,【数据处理】1.增减重量时钢丝伸缩量的记录数【思考题】1.在本实验中,为什么可以用不同精确度的量具测量多种长度量?为什么有些需要多次测量,有些单次测量就可以?2. 如何用十几个砝码即快又精确地测量出金属丝的平均伸长量,应该用什么方法来计算?3.光杠杆法可测微小长度变化,其主要是采用了光放大原理,放大率为β=2D/b 。

杨氏模量

杨氏模量

拉伸法测钢丝杨氏模量杨氏模量(又称弹性模量)是工程材料的重要参数,它是表征固体材料抗形变能力的一个重要物理量,杨氏模量越大,材料越不易发生形变。

杨氏模量是选定机械构件材料的依据之一。

目前,实验室测量杨氏模量的方法主要有拉伸法、弯梁法、振动法等。

本实验采用拉伸法测量铜及钢丝的杨氏模量。

实验的关键是要测出金属丝的微小形变,应根据不同测量对象,选择不同的测量仪器。

如读数显微镜配以CCD 成像系统测量钢丝微小的伸长量。

【实验目的】1. 学会用拉伸法测量金属丝的杨氏模量。

2. 学会用逐差法处理实验数据。

3. 学习CCD 成像系统的使用方法,了解其特性。

【实验仪器】金属丝支架、读数显微镜、CCD 成像显示系统、螺旋测微计、直尺、砝码等。

【实验原理】1.设一根钢丝的截面积为A ,原长为L ,沿其长度方向加一拉力F 后,钢丝的伸长量为△L 。

根据胡克定律,材料在弹性限度内,钢丝的相对伸长量△L/L (应变)与单位横截面积上的受力F/S (应力)成正比:LL EA F ∆= (1)式中的比例系数E 称为该材料的杨氏模量。

钢丝的截面积为4d 2π=A ,d 为钢丝的直径。

因此 Ld FLLA FL E ∆=∆=24π (2)式中L ∆是一个很小的长度变化,可用读数显微镜配CCD (Charge Couple Device )成象系统 直接测量,把原来从显微镜中看到的图象通过CCD 呈现监视器的屏幕上,便于观测。

CCD 是电 荷耦合器件的简称,是目前较实用的一种图象传感器,它有一维和二维的两种。

一维用于位移、 尺寸的检测,二维用于平面图形、文字的传递。

现在的二维的CCD 器件已作为固态摄象器应用 于可视电话和无线电传真领域,在生产过程监视和检测上的应用也日渐广泛。

本实验采用二维CCD 器件作为固态摄像机,它将光学图象转变为视频电信号,由视频电缆接【实验仪器及装置】DC12V监视器CCD MS测试样品H2H1用伸长法测杨氏模量装置如图1所示,包括以下几部分:1.金属丝支架S为金属丝支架,高约1.32m,置于实验桌上,支架顶端设有金属丝悬挂装置,金属丝长度可调,约95cm,金属丝下端连接一小圆柱,圆柱中部方形窗中有细横线供读数用,小圆柱下端附有砝码托。

杨氏模量实验报告数据处理

杨氏模量实验报告数据处理

杨氏模量实验报告数据处理实验目的:本实验旨在通过测量金属试样的应力-应变关系,计算出杨氏模量,并对实验数据进行处理和分析。

实验原理:杨氏模量是描述材料抗弯刚度的物理量,定义为单位面积内所受的拉应力与相应的拉应变之比。

实验中,我们采用了悬臂梁法来测量杨氏模量。

实验步骤:1. 准备工作:a. 清洁并测量金属试样的尺寸,记录下其长度L、宽度W和厚度H。

b. 将金属试样固定在实验台上,使其成为一个悬臂梁。

2. 实验测量:a. 在试样上标出若干个等距离的测量点,用游标卡尺测量每个测量点的位置距离试样固定点的距离x。

b. 使用力传感器测量每个测量点处的挠度d。

c. 记录下每个测量点处施加的力F。

3. 数据处理:a. 计算每个测量点处的应力σ,公式为:σ = F / (W * H)。

b. 计算每个测量点处的应变ε,公式为:ε = d / L。

c. 绘制应力-应变曲线图,横轴为应变ε,纵轴为应力σ。

d. 选择直线段,根据线性回归方法计算出斜率k,即弹性模量E。

e. 计算杨氏模量Y,公式为:Y = E / (1 - ν^2),其中ν为泊松比。

实验数据处理结果:根据实验测量数据和上述数据处理步骤,我们得到了以下结果:金属试样的尺寸:长度L = 50 cm宽度W = 2 cm厚度H = 0.5 cm实验测量数据:测量点位置距离试样固定点的距离x (cm) 挠度d (mm) 施加力F (N) ----------------------------------------------0.00 0.00 0.005.00 0.02 0.1010.00 0.05 0.2015.00 0.09 0.3020.00 0.14 0.4025.00 0.19 0.50数据处理:根据上述实验测量数据,我们可以计算得到应力σ和应变ε:测量点位置距离试样固定点的距离x (cm) 应力σ (MPa) 应变ε----------------------------------------------0.00 0.00 0.0005.00 0.50 0.000410.00 1.00 0.00115.00 1.50 0.001820.00 2.00 0.002625.00 2.50 0.0034根据上述数据,我们绘制了应力-应变曲线图如下:[插入应力-应变曲线图]根据线性回归方法,我们选择直线段进行计算,得到斜率k为1.25 MPa/mm。

实验:金属杨氏模量的测定

实验:金属杨氏模量的测定

金属杨氏模量的测定实验原理根据胡克定律,在弹性形变范围内,棒状(或线状)固体应变与它所受的应力成正比:(1)式中Y 称为杨氏弹性模量,单位为N/M2。

其是表征固体性质的一个物理量。

实验证明,杨氏模量与外力F 、物体的长度L 和截面积S 的大小无关,只取决于被测物体的材料特性。

设金属丝的直径为d ,则,杨氏模量可由下式计算:(2)实验仪器杨氏模量测量仪;螺旋测微器;游标尺;钢卷尺和米尺;望远镜(附标尺)。

测量光杠杆镜状物为光短臂的杆随被测钢了M 镜法像的读数为伸长量△L 而对应的光杠杆镜中标尺读数变化则为△n=n1-n2。

由光路可逆可以得知,△n 对光杠杆镜的张角应为2θ。

从图2中,用几何方法可以得出(3)式: 和(4)式:,将(3)式和(4)式 联立后得:(5)式图2光杠杆测量原理式中△n=|n2-n1|,相当于光杠杆镜的长臂端D的位移。

其中的叫做光杠杆镜的放大倍数,由于△D>>b,所以△n>>△L,从而获得对微小量的线性放大,提高了△L的测量精度。

这种测量方法被称为放大法。

由于该方法具有性能稳定、精度高,而且是线性放大等优点,所以在设计各类测试仪器中有着广泛的应用。

实验内容杨氏模量测量仪的调整:(1)调节测定仪支架螺丝,使支架铅直,使夹头刚好穿过平台上的圆孔而不会与平台发生摩擦。

(2)将光杠杆后尖脚置于夹头上,两前尖脚置于平台凹槽上。

镜面与钢丝基本平行。

(3)调节光杠杆与望远镜、米尺中部在同一高度上。

(4)调节望远镜的位置或光杠杆镜面仰角,直至眼睛在望远镜目镜附近能直接(不通过望远镜筒)从光杠杆镜面中观察到标尺中部的像。

(5)细微调节望远镜方位和仰角调节螺丝,直至望远镜上缺口与准星连线粗略对准光杠杆镜面上部(6)调节望远镜目镜调焦旋钮,直至在望远镜中能看清叉丝。

(7)调节望远镜的物镜调焦旋钮直至在望远镜中能看清整个镜面。

(如果只能看到部分镜面,应调节望远镜仰角调节螺丝,直至看到整个镜面)。

杨氏模量实验报告

杨氏模量实验报告
= √(
0.00578 2
0.000578 2
0.000578 2
2 × 0.000000547 2
0.0011 2
) +(
) +(
) +(
) +(
)
40
0.555
2.028
0.000062
0.06576
≈ 2.433%
∆E = E ×
∆E
= 1.6 × 1011 × 0.02433 = 0.0389 × 1011 (N ∙ m−2 )
度要求较大,故使用游标卡尺;钢丝伸长量不大且精度要求不高,故使用标尺;金属丝直径较小而且而且
精度要求较大故使用千分尺。
2、利用光杠杆把测微小长度△L 变成测 b,光杠杆放大率为 2D/L,根据此式能否以增加 D 减小 l 来提高放
大率,这样做有无好处?有无限度?应该怎样考虑这个问题?
利用光杠杆把测微小长度∆变成测 b,可以使用下面的公式:
E
七、思考题
1、本实验中共几个长度量?为什么用不同仪器来测量?
本实验共 5 个长度量:金属丝长度 L、光杠杆与标尺的距离 D、光杠杆常数 b、金属丝直径 d、钢丝伸长量
l。因为不同的测量长度的仪器通常具有不同的测量范围、精度和灵敏度,因此适合测量不同范围和精度的
长度量。金属丝长度 L 和光杠杆与标尺的距离 D 测量范围较大所以需要卷尺;光杠杆常数 b 相对较小,精
4
(2)
利用(1)和(2)式计算即可,其中
F:可由实验中钢丝下面悬挂的砝码的重力给出
L:可由米尺测量
d:为细铁丝的直径,可用螺旋测微仪测量
ΔL: 是一个微小长度变化量,本实验利用光杠杆的光学放大作用实现对金属丝微小伸长量L 的间接测量。

电子一班 杨氏模量与温度的关系(2)

电子一班  杨氏模量与温度的关系(2)

燕山大学课程设计说明书题目:杨氏模量与温度的关系学院(系)理学院年级专业:09级电子信息科学与技术1班学号:0901********学生姓名:李慧指导教师:杜会静王锁明教师职称:讲师实验师燕山大学课程设计(论文)任务书年月日燕山大学课程设计评审意见表杨氏模量与温度的关系李慧理学院09级电子信息科学与技术1班摘要:本文通过研究杨氏模量与温度的关系,探究金属在特定温度情况下抗拉的特性杨氏模量是描述固体材料抵抗形变能力的重要物理量,也是工程上极为重要的常用参数。

实验中,运用拉伸法测定杨氏模量值大小。

研究多个温度下杨氏模量值,通过对其值的大小,判断其抵抗形变的能力,进步研究其与温度大小的线性关系。

关键字:杨氏模量拉伸法温度线性关系物理实验The relationship between Y oung’modulus and TempretureLi huiAbstract:T his paper, through studying young's modulus and temperature, explores the relationship between metal under specific temperature circumstance tensile propertiesYoung's modulus is to describe a solid material deformation resistance, but also the important physical ability in engineering extremely important common parameters. Experiments, apply for determination of young's modulus value tensile size. Research multiple temperature young modulus value, through its value of size, judge its ability to resist deformation temperature, further study it with the size of the linear relationship.Keywords:Young’s modulus;Stretching method;Temprature;Linear ralationship; Physics experiment1.引言杨氏弹性模量,简称杨氏模量,是反映材料形变与内应力关系的物理量,是选择机械构件材料的依据,是工程技术上常用的参数,用Y表示。

大学物理实验实验杨氏模量、看

大学物理实验实验杨氏模量、看
悬挂的砝码的重力给出,而Δl是一个微小长度变
化量。
杨氏模量仪示意图
1. 上梁夹板 2. 上梁水平调节镙钮 3. 金属细丝 4. 立柱 5. 防摆动装置调节镙钮 6. 十字叉丝板 7. 砝码盘 8. 望远镜筒锁紧镙钮 9. 望远镜筒 10. 支架锁紧镙钮 11. 磁性底座 12. 螺旋底脚
实验原理
实验内容和步骤
2、观察金属丝伸长变化
将显微镜筒装到支架上,插入磁性座,紧 靠定位板直边。按显微镜工作距离大致确定物 镜与被测十字叉丝屏的距离之后,用眼睛对准 镜筒,转动目镜,对分划板调焦,然后沿定位 板微移磁性座,在分划板上找到十字叉丝像, 经磁性座升降微调,使微尺分划板的零线对准 十字叉丝的横线,并微调目镜,尽量消除视差。 最后锁住磁性底座。因显微镜成倒像,所以待 测细丝受力伸长时,视场内的十字叉丝向上移 动;细丝回缩时,叉丝向下移动。
注意事项
1、在增加砝码的时候,应该轻拿轻放,尽 量不使金属丝摆动。
2、注意维护金属丝的平直状态,在用螺旋测 微计测量其直径时勿将其扭折,如果作实验前 发现金属丝略有弯折,可在砝码盘上先加上一 定量的本底砝码(约几百克),使它在伸直的 状态下开始做实验。
3、在测完上表数据后,应先测值l ,再测其它量。
尺 增加砝码
像 读 减少砝码
数 mm
平均值
100 300
500 700 900 1100 1300 1500
使用逐差法计算 并求出平均值
1700 1900
实验内容和步骤
3、测量金属丝长度l ,金属丝直径d。 (1) 用钢卷尺测量l
(2) 在金属丝上选不同部位用螺旋测微计测量d 4、 计算杨氏模量E及不确定度 。 5、 用作图法验证胡克定律。
实验原理

杨氏模量(梁弯曲)

杨氏模量(梁弯曲)

霍耳位置传感器法测杨氏模量一、实验内容:1.了解霍耳效应及霍耳位置传感器的原理2.学会使用霍耳位置传感器法测杨氏模量二、实验仪器:杨氏模量测试仪、千分尺、游标卡尺三、实验原理:1.霍耳元件置于磁感应强度为B 的磁场中,在垂直于磁场方向通以电流I ,则与这二者平面垂直的方向上产生霍耳电势差:B I K U H ⋅⋅= (1)上式中K 为元件的霍耳灵敏度。

如果保持霍耳元件的电流I 不变,而使其在一均匀梯度的磁场中移动时,则输出的霍耳电势差变化量为: Z dZdB I K UH∆⋅⋅⋅=∆ (2)上式中Z ∆为位移量,此式说明若dZdB 为常数时,U ∆与Z ∆成正比。

2.一段固体棒,在其两端沿轴发现施加大小相等、方向相反的外力F ,其长度L 发生改变L ∆,杨氏模量测试仪以S 表示横截面面积,称F/S 为胁强,相对长变L ∆/L 为胁变。

在弹性限度内,由胡克定律有:LL E S F ∆⋅=E 称为杨氏模量,其数值与材料性质有关。

在横梁受力弯曲的情况下,杨氏模量E 得测量表达式为: Zb a MgdE ∆⋅⋅⋅=334 (3)其中:d 为两刀口之间的距离;M 为所加砝码的质量;a 为梁的厚度;b 为梁的宽度;Z ∆为梁中心由于外力作用而下降的距离;g 为重力加速度。

四、实验步骤:1.调节三维调节架的上下前后位置的调节螺丝,使传感器探测元件处于磁铁中间位置。

2.用水准器观察是否在平衡位置,若偏离可用底座螺丝调节到水平位置。

3.调节霍耳位置传感器的毫伏表。

磁铁盒可上下调节调节螺丝使磁铁上下移动,当毫伏表读数值很小时,停止调节并固定螺丝,最后调节零电位器使毫伏表读数为零。

4.调节读数显微镜,使眼睛观察十字线及分划板刻度线和数字清晰。

然后移动读数显微镜前后位置,使能清晰看到铜刀上的基线。

转动读数显微镜的鼓轮使刀口架上的基线与读数显微镜内十字刻度线重合,记下初始读数值。

5.逐次增加砝码,每次增加10.00g ,相应从读数显微镜读出梁中心的位置i Z (mm )及毫伏表的读数i U (mv )。

杨氏模量测定实验报告(总7页)

杨氏模量测定实验报告(总7页)

杨氏模量测定实验报告(总7页)引言杨氏模量是用来描述材料刚性特性的一项重要参数,它是指材料在受到弹性形变时,单位面积内所受的弹性应力与应变之比。

杨氏模量是材料力学性能指标之一,通常用来描述材料的强度和韧性等方面的性质。

杨氏模量测定实验可以通过实验手段来确定材料弹性形变下的特性。

本次实验将进一步深入研究松木的组成结构和强度特性,测定杨氏模量。

材料与设备松木直棒、荷重盘、钢尺、白色胶带、微型计算机、松木直棒保持夹、对称杠杆读数器、普适电源、短接电线、电阻箱实验原理当材料受到外部载荷牵引时,它就会发生一定的形变,一旦载荷从材料上移动,材料就会恢复到原来的形状和长度。

如果载荷的大小尽可能小,在应力和应变的关系线上,这个线性段的倾角可以得到一个确定的值,它被称为弹性模量或杨氏模量,是一种材料的基本力学性能指标。

在实验中,松木直棒保持夹紧在实验台上。

在离松木直棒2/5处约250mm远的位置处,使用荷重盘作用在松木直棒上,同时在离松木直棒的端面约10cm处粘贴了一块白色胶带,以便后续读数。

当荷重盘通过对称杆杠向下施力1N时,松木直棒上出现一定程度的弯曲,胶带上的两个点之间的距离变化,通过读数器记录下来。

实验步骤1. 初始设置实验仪器。

插好对称杆杠的插头,保证插头加紧。

打开微型计算机,打开对称杆杠读数器电源,并调整电源电压使其符合显示器显示的点亮亮度,打开普适电源并选好电压、电流。

2. 安装松木直棒。

将松木直棒保持夹固定在实验台上,用铅笔单平衡松木直柄保持夹,保障保持夹紧密稳定。

3. 安装荷重盘。

用短接电线连接荷重盘以确保电路的正常通路。

4. 安装白色胶带。

用白色胶带将托架边缘所指示的粘贴长度随机放在松木直棒的中间,然后使用胶带紧贴棒面,并按照标准要求和示例放置测量点,5. 上盘加重。

为保证测量结果足够准确,需要等待测量值稳定,选好打好盘的荷重盘,放置在示例板上,然后记录下显示器显示的松木直棒的初始值。

重复该过程,直到测量值达到稳定状态。

(整理)实验报告:杨氏模量的测量.

(整理)实验报告:杨氏模量的测量.

测定金属的杨氏模量实验日期:2014年3月4日星期二下午姓名:一、CCD成像测定杨氏模量:实验目的:(1)用金属丝的伸长测定杨氏模量;(2)用CCD成像系统测量微小长度变化;(3)用逐差法、作图法和最小二乘法处理数据。

实验仪器:测定杨氏模量专用支架,显微镜,CCD CAMERA 型号WAT-308A DC+12V(CCD摄像机,监视器),米尺(带有卡口),螺旋测微器(分度0.01mm,量程0-25mm),电子天平(精度0.01g)实验原理:(1)由胡克定律我们知道在弹性限度内:,其中是应力,E为杨氏模量,为应变。

那么对于截面积为S,长为L,在力F作用下形变时,有如下关系:F,S,L比较容易测量,但是比较微小难以测量,所以实验中用CCD成像进行观察和直接测量。

则由此可以测定杨氏模量E。

(2)CCD与主体实验装置如右图所示:实验中先使用显微镜M把确定金属丝下端所挂圆柱体上的细横线放大,同时通过不随金属丝伸长而移动的M内部分划板上的刻度线作为刻线高低的高度标准。

然后利用CCD成像进行观察。

实验内容与数据处理:1、认识和调节仪器:(1)预热CCD显示屏,调节支架S竖直,调节钳形平台的两边螺丝的松紧,使得钳形平台既可以很好的限制金属丝的转动又不用造成过多的摩擦干扰。

(2)先调节显微镜目镜,看清清晰的分划板像,然后调节物镜与金属丝下挂的圆柱上的细横线的远近,使得可以同时看清分划板和细横线的像(3)打开和连接CCD,放置在显微镜后较近的位置,仔细调节位置使得分划板像清晰,此时也可微调显微镜目镜。

然后调节显微镜的前后位置旋钮,使得细横线也变清晰。

(此时要注意微调显微镜前后的旋钮时要对应移动CCD的前后,保持分划板的清晰)反复调节可以得到分划板和细横线都比较清晰的像。

2、观测金属丝受外力拉伸后的变化:在砝码盘上一次加砝码,质量约为200.0g(需要具体重新测定精确值)。

金属丝伸长后读出对应的读数(i=1,2…9),再加上一个略轻砝码,再一次减去砝码,读出:表中已用逐差法进行计算得到平均加四个砝码产生的伸长量与加的重量。

测量金属丝的杨氏模量实验报告

测量金属丝的杨氏模量实验报告

测量金属丝的杨氏模量实验报告
一、实验目的
1. 了解测量杨氏模量的实验原理
2. 了解计算杨氏模量的实验方法
3. 熟练掌握在实验中使用台架轴承、弹性载荷器、力计等仪器的操作
4. 利用实验测量金属丝的杨氏模量
二、实验原理
杨氏模量是一种材料力学特性,它反映了材料的弹性特性,描述了在拉伸载荷作用下材料的延伸量和载荷量之间的变化规律。

杨氏模量E是指拉伸时,材料每增加一个单位长度所对应的载荷量dF。

即: E=dF/dL
其中,E=杨氏模量,dF=变形线上载荷量增量,dL=变形线上长度增量。

三、实验方法
1. 将金属丝固定在台架轴承上,然后用弹性载荷器施加不同载荷,测量金属丝变形量和载荷量,记录在实验数据表上。

2. 用力计测量金属丝变形量和载荷量,然后计算出杨氏模量。

四、实验结果
实验数据如下:
第一次测量:
负载(N) 变形量(mm)
0.5 0.0045
1.0 0.0090
1.5 0.0135
2.0 0.0180
2.5 0.0225
3.0 0.0270
计算结果:
杨氏模量E=dF/dL=20000N/m
五、结论
本次实验测量金属丝的杨氏模量为20000N/m,误差在可接受范围内。

杨氏模量实验报告数据

杨氏模量实验报告数据

竭诚为您提供优质文档/双击可除杨氏模量实验报告数据篇一:杨氏模量实验报告杨氏模量的测量【实验目的】1.1.掌握螺旋测微器的使用方法。

2.学会用光杠杆测量微小伸长量。

3.学会用拉伸法金属丝的杨氏模量的方法。

【实验仪器】杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺),水准器,钢卷尺,螺旋测微器,钢直尺。

1、金属丝与支架(装置见图1):金属丝长约0.5米,上端被加紧在支架的上梁上,被夹于一个圆形夹头。

这圆形夹头可以在支架的下梁的圆孔内自由移动。

支架下方有三个可调支脚。

这圆形的气泡水准。

使用时应调节支脚。

由气泡水准判断支架是否处于垂直状态。

这样才能使圆柱形夹头在下梁平台的圆孔转移动时不受摩擦。

2、光杠杆(结构见图2):使用时两前支脚放在支架的下梁平台三角形凹槽内,后支脚放在圆柱形夹头上端平面上。

当钢丝受到拉伸时,随着圆柱夹头下降,光杠杆的后支脚也下降,时平面镜以两前支脚为轴旋转。

图1图2图33、望远镜与标尺(装置见图3):望远镜由物镜、目镜、十字分划板组成。

使用实现调节目镜,使看清十字分划板,在调节物镜使看清标尺。

这是表明标尺通过物镜成像在分划板平面上。

由于标尺像与分划板处于同一平面,所以可以消除读书时的视差(即消除眼睛上下移动时标尺像与十字线之间的相对位移)。

标尺是一般的米尺,但中间刻度为0。

【实验原理】1、胡克定律和杨氏弹性模量固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。

如果外力后仍有残余形变,这种形变称为塑性形变。

应力:单位面积上所受到的力(F/s)。

应变:是指在外力作用下的相对形变(相对伸长?L/L)它反映了物体形变的大小。

FL4FL?用公式表达为:Y??(1)s?L?d2?L2、光杠杆镜尺法测量微小长度的变化在(1)式中,在外力的F的拉伸下,钢丝的伸长量?L是很小的量。

用一般的长度测量仪器无法测量。

在本实验中采用光杠杆镜尺法。

初始时,平面镜处于垂直状态。

大学物理实验实验三拉伸法测金属丝的杨氏模量(1)(1)(1)(1)

大学物理实验实验三拉伸法测金属丝的杨氏模量(1)(1)(1)(1)

物理实验原始数据记录1、微小伸长量x ∆的测量与计算表1 光杠杆读数数据表仪器: 尺度望远镜标尺∆=尺 0.5 mm, 砝码质量m = 0.1 kg ,(表格单位:mm )2、金属丝直径的测量表2 金属丝的直径d仪器: 螺旋测计计 ∆微器=0.004 mm3、其它长度测量(单次测量)表3 单次测量量数据表 米尺: ∆=米尺大学物理实验报告实验名称拉伸法测金属丝的杨氏模量实验名称: 拉伸法测金属丝的杨氏模量 实验时间:2020.06.08 小组成员:张振勇 实验地点:实验目的:1.学会用拉伸法测金属丝的杨氏模量。

2.掌握用光杠杆法测量微小长度的变化。

3.学会用逐差法处理数据。

仪器、设备和材料:杨氏模量测定仪、光杠杆、尺读望远镜、游标卡尺、螺旋测微计及米尺 实验原理:⑴固体材料的杨氏模量材料力学告诉我们,固体受外力作用时都会发生形变。

外力与形变之间的关系一般情况下是比较复杂的,这里考虑最简单的情况;一根细而长的均匀棒状固体,只受轴向外力的作用,可以认为该物体只产生轴向形变。

设棒状固体的长度为L ,横截面积为S ,轴向力F 作用时,长度伸长量为L ∆,在弹性限度内,应力/F S 和应变/L L ∆成正比(胡克定律),即F L YSL ∆= 式中,比例系数Y 就是固体的杨氏模量。

杨氏模量取决于固体材料本身性质,与所施外力、物体长度、材料截面积的大小无关。

杨氏模量的单位为牛顿每平方米(N/m 2)。

我们对上式整理可以得到//F SY L L =∆ (4-5-1)式(4-5-1)可见,只要测出F 、S 、L 、L ∆,就会得到杨氏模量Y 值。

F 、S 、L 各量可用一般的测量仪器测得,而L ∆通常很小,用一般仪器和方法测量较为困难,本实验采用光杠杆法测量L ∆。

⑵.利用光杠杆法测量微小长度变化量光杠杆由平面全反射镜、主杠支脚和刀口组成,如图4-5-1所示,镜面倾角及主杠尖脚到刀口间距离均可调。

测量微小长度变化量原理如图4-5-2所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档