8-3 空间点、直线、平面之间的位置关系

合集下载

教学设计2:8.4.2 空间点、直线、平面之间的位置关系

教学设计2:8.4.2 空间点、直线、平面之间的位置关系

8.4.2空间点、直线、平面之间的位置关系1.空间中点与直线有两种关系:点在线上,点在线外如图中A在线AB上在线A’B’外.点与平面位置关系有两种:点在面上,点在面外如图A在平面ABCD上A不在BB’C’C’上.2.空间中直线与直线的位置关系不同在任何一个平面内的两条直线叫异面直线平行直线(无交点).共面直线:相交直线(一个交点);异面直线(无交点).3.异面直线的画法:4.异面直线所成的角如图,已知两条异面直线a,b,经过空间任一点O 作直线a'∥a,b'∥b,我们把a'与b'所成的锐角(或直角)叫做异面直线a,b所成的角(或夹角).为了简便,点O通常取在两条异面直线中的一条上,例如,取在直线b上,然后经过点O作直线a'∥a,a'和b所成的锐角(或直角)就是异面直线a与b所成的角.5.练习一、已知M、N分别是长方体的棱C1D1与CC1上的点,那么MN与AB所在的直线是异面直线吗?解:是,因为两条直线既不相交也不平行.练习二、如图,已知正方体ABCD-A'B'C'D'中.(1)哪些棱所在直线与直线BA'是异面直线?(2)直线BA'和CC'的夹角是多少?6.空间中直线与平面的位置关系:直线在平面内(无数个公共点);直线与平面相交(一个公共点);直线与平面平行(没有公共点).7.空间中平面与平面的位置关系:两个平面平行(没有公共点);两个平面相交(有一条公共直线).8.探究:如图,在长方体ABCD-A'B'C'D'中,连接A'B,D'C,请你举出一些图中直线与平面的位置关系.平面ABCD//平面A'B'C'D',平面AA'DD'//平面BB'CC',AA '//平面BB'CC',A'B//平面CC'DD'等.9.例一:如图用符号表示下列图形中的直线、平面之间的位置关系.解:在(1)中α∩β=l,a∩α=A,a∩β=B在(2)α∩β=l,.a⊂α,b⊂β,a∩l=P,b∩l=P,a∩b=P10.例二:如图,AB∩α=B,A∉α,a⊂α,B∉a.直线AB 与a具有怎样的位置关系?为什么?解:直线AB与a是异面直线.理由如下:若直线AB 与a不是异面直线,则它们相交或平行,设它们确定的平面为β,则B∈β,αβ⊂由于经过点B与直线a有且仅有一个平面α,因此平面平面α与β重合,从而ABα⊂, 进而A∈α,这与A∉α矛盾.所以直线AB与a是异面直线.补充说明:例二告诉我们一种判断异面直线的方法:与一个平面相交的直线和这个平面内不经过交点的直线是异面直线.11.例3:已知a,b,c是三条直线,如果a与b是异面直线,b与c是异面直线,那么a与c有怎样学生思考例三学生独立思考例5并回答段炼学生立体感段炼学生独立解决问题能力的位置关系?并画图说明.解:直线a与直线c的位置关系可以是平行、相交、异面.如图(1)(2)(3).总结:判定两条直线是异面直线的方法(1)定义法:由定义判断两条直线不可能在同一平面内.(2)重要结论:连接平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.用符号语言可表示为A∉α,B∈α,l⊂α,B∉l⇒AB 与l是异面直线(如图).12.例4:如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是A1B1,BB1的中点,则下列直线与平面、平面与平面的位置关系是什么?(1)AM所在的直线与平面ABCD的位置关系;(2)CN所在的直线与平面ABCD的位置关系;(3)AM所在的直线与平面CDD1C1的位置关系;(4)平面AMD1与平面BNC的位置关系.解:(1)AM所在的直线与平面ABCD相交.(2)CN所在的直线与平面ABCD相交.(3)AM所在的直线与平面CDD1C1平行.(4)平面AMD1与平面BNC相交.12.例5:在直三棱柱(侧棱垂直于底面)ABC-A1B1C1中,E,F分别为A1B1,B1C1的中点.求证:平面ACC1A1与平面BEF相交.证明:∵在矩形AA1B1B中,E为A1B1的中点,∴AA1与BE不平行,则AA1,BE的延长线相交于一点,设此点为G,∴G∈AA1,G∈BE.又AA1⊂平面ACC1A1,BE⊂平面BEF,∴G∈平面ACC1A1,G∈平面BEF,∴平面ACC1A1与平面BEF相交.总结:判断或证明平面与平面的位置关系时主要考虑平面与平面有无公共点,如果没有公共点,则两平面平行;如果可以找到一个公共点,则两平面相交.1.空间中直线与直线位置关系.。

空间点、直线、平面之间的位置关系5题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测

空间点、直线、平面之间的位置关系5题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测

专题32空间点、直线、平面之间的位置关系5题型分类1.基本事实1:过不在一条直线上的三个点,有且只有一个平面.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.基本事实4:平行于同一条直线的两条直线平行.2.“三个”推论推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.3.空间中直线与直线的位置关系异面直线:不同在任何一个平面内,没有公共点.4.空间中直线与平面、平面与平面的位置关系图形语言符号语言公共点直线与平面相交a ∩α=A 1个平行a ∥α0个在平面内a ⊂α无数个平面与平面平行α∥β0个相交α∩β=l 无数个5.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.6.异面直线所成的角(1)定义:已知两条异面直线a ,b ,经过空间任一点O 分别作直线a ′∥a ,b ′∥b ,我们把直线a ′与b ′所成的角叫做异面直线a 与b 所成的角(或夹角).(2),π2.常用结论1.过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.2.分别在两个平行平面内的直线平行或异面.(一)共面、共线、共点问题的证明(1)共面:先确定一个平面,然后再证其余的线(或点)在这个平面内.(2)共线:先由两点确定一条直线,再证其他各点都在这条直线上.(3)共点:先证其中两条直线交于一点,再证其他直线经过该点(1)E ,F ,G ,H 四点共面;(1)证明E ,F ,G ,H 四点共面;(2)证明GE ,FH ,1BB 相交于一点.1-3.(2024高三·全国·专题练习)如图所示,在正方体(1)求证:1CE D F DA ,,三线交于点(2)在(1)的结论中,G 是D (二)(1)点、直线、平面位置关系的判定,注意构造几何体(长方体、正方体)模型来判断,常借助正方体为模型.(2)求异面直线所成角的方法方法解读平移法将异面直线中的某一条平移,使其与另一条相交,一般采用图中已有的平行线或者作平行线,形成三角形求解补形法在该几何体的某侧补接上同样一个几何体,在这两个几何体中找异面直线相应的位置,形成三角形求解题型2:空间位置关系的判断都相交,则直线A .2GH EF=C .直线EF ,GH 是异面直线2-3.【多选】(2024·湖北荆门A .若l αβ= ,A α∈B .若A ,B ,C 是平面C .若A α∈且B α∈,则直线D .若直线a α⊂,直线2-4.(2024·上海长宁·二模)如图,已知正方体则下列命题中假命题为(A .存在点P ,使得PQ ⊥B .存在点P ,使得//PQ AC .直线PQ 始终与直线CC(1)直线AF 与直线DE 相交;(2)直线CH 与直线DE 平行;(3)直线BG 与直线DE 是异面直线;(4)直线CH 与直线BG 成3-2.(2024高三·全国·课后作业)已知正四面体小为.3-3.(2024高三·河北·学业考试)如图直线1A E 与BF 所成角的大小为3-4.(2024高一下·北京·期末)如图,等腰梯形112BC CD DA AB ====,则直线3-5.(2024高三·全国·对口高考)线段AB 的两端分别在直二面角CD αβ--的两个面αβ、内,且与这两个面都成30︒角,则直线AB 与CD 所成的角等于.(三)空间几何体的切割(截面)问题(1)作截面应遵循的三个原则:①在同一平面上的两点可引直线;②凡是相交的直线都要画出它们的交点;③凡是相交的平面都要画出它们的交线.(2)作交线的方法有如下两种:①利用基本事实3作交线;②利用线面平行及面面平行的性质定理去寻找线面平行及面面平行,然后根据性质作出交线.A .177B .134-2.(2024·河南·模拟预测)在正方体确的个数为()①//MN 平面11AAC C ;②MN①异面直线1D D与AF所成角可以为②当G为中点时,存在点③当E,F为中点时,平面④存在点G,使点C与点则上述结论正确的是(A.①③B.②④4-5.(2024·新疆·二模)已知在直三棱柱BC=,432AC=,如图所示,若过的面积为()(四)等角定理的应用空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.一、单选题-如图所示,则直线PC()1.(2024高三·北京·学业考试)四棱锥P ABCDA.与直线AD平行B.与直线AD相交C .与直线BD 平行D .与直线BD 是异面直线2.(2024·广东)若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是A .l 与1l ,2l 都相交B .l 与1l ,2l 都不相交C .l 至少与1l ,2l 中的一条相交D .l 至多与1l ,2l 中的一条相交3.(2024高一·全国·课后作业)若直线l 在平面α外,则l 与平面α的公共点个数为()A .0B .0或1C .1D .24.(2024·上海·模拟预测)如图,正方体1111ABCD A B C D -中,P Q R S 、、、分别为棱1AB BC BB CD 、、、的中点,连接11A S B D 、,对空间任意两点M N 、,若线段MN 与线段11A S B D 、都不相交,则称M N 、两点可视,下列选项中与点1D 可视的为()A .点PB .点QC .点RD .点B5.(2024高二上·四川乐山·期末)若直线l 与平面α有两个公共点,则l 与α的位置关系是()A .l ⊂αB .//l αC .l 与α相交D .l α∈6.(2024高二上·上海静安·阶段练习)设A B C D 、、、是某长方体四条棱的中点,则直线AB 和直线CD 的位置关系是().A .相交B .平行C .异面D .无法确定7.(2024高三·全国·专题练习)如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线()A.12对B.24对C.36对D.48对8.(2024高三·全国·专题练习)三棱柱各面所在平面将空间分成不同部分的个数为()A.18B.21C.24D.279.(2024高一·全国·课后作业)平面α上有三个不共线点到平面β距离相等,则平面α与平面β的位置关系是()A.相交B.平行C.垂直D.相交或平行10.(2024高一·全国·课前预习)下列命题中正确的是()A.一个平面内三条直线都平行于另一平面,那么这两个平面平行B.如果一个平面内所有直线都平行于另一个平面,那么这两个平面平行C.平行于同一直线的两个平面一定相互平行D.如果一个平面内有几条直线都平行于另一平面,那么这两个平面平行G N M H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或11.(2024高三·全国·专题练习)如图中,,,,GH MN是异面直线的图形有()所在棱的中点,则表示直线,A.①③B.②③C.②④D.②③④12.(2024高三上·内蒙古赤峰·阶段练习)已知直线l和平面α,若lα∥,Pα∈,则过点P且平行于l的直线().A.只有一条,不在平面α内B.只有一条,且在平面α内C.有无数条,一定在平面α内D.有无数条,不一定在平面α内13.(2024高三·全国·专题练习)将图(1)中的等腰直角三角形ABC沿斜边BC的中线AD折起得到空间四面体ABCD,如图(2),则在空间四面体ABCD中,AD与BC的位置关系是()A .相交且垂直B .相交但不垂直C .异面且垂直D .异面但不垂直14.(2024高三上·吉林长春·期末)如图,在底面为正方形的棱台1111ABCD A B C D -中,E 、F 、G 、H 分别为棱1CC ,1BB ,CF ,AF 的中点,对空间任意两点M 、N ,若线段MN 与线段AE 、1BD 都不相交,则称点M 与点N 可视,下列选项中与点D 可视的为()A .1B B .FC .HD .G15.(2024·全国)在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π616.(上海市曹杨中学2023-2024学年高二上学期期中数学试题)如图,在正方体1111ABCD A B C D -中,点P 是线段11A C 上的动点,下列与BP 始终异面的是()A .1DDB .AC C .1AD D .1B C17.(2024·福建福州·三模)在底面半径为1的圆柱1OO 中,过旋转轴1OO 作圆柱的轴截面ABCD ,其中母线AB =2,E 是弧BC 的中点,F 是AB 的中点,则()A .AE =CF ,AC 与EF 是共面直线B .AE CF ≠,AC 与EF 是共面直线C .AE =CF ,AC 与EF 是异面直线D .AE CF ≠,AC 与EF 是异面直线18.(2024高二下·广西桂林·期中)已知直线m ⊂平面α,则“平面α∥平面β”是“m ∥β”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件19.(2024·新疆阿克苏·一模)已知M ,N ,P 是正方体1111ABCD A B C D -的棱AB ,1AA ,1CC 的中点,则平面MNP 截正方体1111ABCD A B C D -所得的截面是()A .三角形B .四边形C .五边形D .六边形20.(2023届上海春季高考练习)如图,P 是正方体1111ABCD A B C D -边11AC 上的动点,下列哪条边与边BP 始终异面()A .1DDB .AC C .1AD D .1B C21.(2024高二上·浙江杭州·期末)已知空间三条直线,,l m n ,若l 与m 异面,且l 与n 异面,则()A .m 与n 异面B .m 与n 相交C .m 与n 平行D .m 与n 异面、相交、平行均有可能22.(2024高三·全国·专题练习)下列命题中正确的个数为()①若ABC ∆在平面α外,它的三条边所在的直线分别交α于P Q R 、、,则P Q R 、、三点共线.②若三条直线a b c 、、互相平行且分别交直线l 于、、A B C 三点,则这四条直线共面;③空间中不共面五个点一定能确定10个平面.A .0B .1C .2D .323.(2024高三·全国·专题练习)下列结论正确的是()A .两个平面α,β有一个公共点A ,就说α,β相交于过A 点的任意一条直线.B .两两相交的三条直线最多可以确定三个平面.C .如果两个平面有三个公共点,则这两个平面重合.D .若直线a 不平行于平面α,且a ⊄α,则α内的所有直线与a 异面.24.(2024高三·全国·专题练习)给出下列说法:①梯形的四个顶点共面;②三条平行直线共面;③有三个公共点的两个平面重合;④三条直线两两相交,可以确定1个或3个平面.其中正确的序号是()A .①B .①④C .②③D .③④25.(2024·上海浦东新·一模)已知直线l 与平面α相交,则下列命题中,正确的个数为()①平面α内的所有直线均与直线l 异面;②平面α内存在与直线l 垂直的直线;③平面α内不存在直线与直线l 平行;④平面α内所有直线均与直线l 相交.A .1B .2C .3D .426.(2024高一·全国·课后作业)直线l 是平面α外的一条直线,下列条件中可推出//l α的是A .l 与α内的一条直线不相交B .l 与α内的两条直线不相交C .l 与αD .l 与α内的任意一条直线不相交27.(2024高三下·上海·阶段练习)如图所示,正三棱柱111ABC A B C -的所有棱长均为1,点P 、M 、N 分别为棱1AA 、AB 、11A B 的中点,点Q 为线段MN 上的动点.当点Q 由点N 出发向点M 运动的过程中,以下结论中正确的是()A .直线1C Q 与直线CP 可能相交B .直线1C Q 与直线CP 始终异面C .直线1C Q 与直线CP 可能垂直D .直线1C Q 与直线BP 不可能垂直28.(2024高三下·上海浦东新·阶段练习)已知正方体1111ABCD A B C D -中,M ,N ,P 分别是棱11A D ,11D C ,AB 的中点,Q 是线段MN 上的动点,则下列直线中,始终与直线PQ 异面的是()A .1AB B .1BC C .1CAD .1DD 29.(2024高一上·全国·专题练习)M ∈l ,N ∈l ,N ∉α,M ∈α,则有A .l ∥αB .l ⊂αC .l 与α相交D .以上都有可能30.(2024高三上·重庆沙坪坝·期中)在棱长为3的正方体1111ABCD A B C D -中,点Р是侧面11ADD A 上的点,且点Р到棱1AA 与到棱AD 的距离均为1,用过点Р且与1BD 垂直的平面去截该正方体,则截面在正方体底面ABCD 的投影多边形的面积是()A .92B .5C .132D .831.(2024高三下·上海闵行·阶段练习)在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为AB ,BC 的中点,对于如下命题:①异面直线1DD 与1B F ②点P 为正方形1111D C B A 内一点,当//DP 平面1B EF 时,DP 的最小值为322;③过点1D ,E ,F 的平面截正方体1111ABCD A B C D -所得的截面周长为1B BEF -的所有顶点都在球O 的表面上时,球O .则正确的命题个数为()A .1B .2C .3D .432.(2024高三·全国·对口高考)如图,正方体1111ABCD A B C D -的棱长为P 在对角线1BD 上,过点P 作垂直于1BD 的平面α,记这样得到的截面多边形(含三角形)的周长为y ,设BP x =,则当[]1,5x ∈时,函数()y f x =的值域为()A .36,66⎡⎤⎣⎦B .6,26⎡⎣C .(6D .(0,36二、多选题33.(2024高一下·辽宁营口·阶段练习)有下列命题:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.其中正确命题是()A .①B .②C .③D .④34.(2024高一下·江苏苏州·阶段练习)下列命题中错误的是()A .空间三点可以确定一个平面B .三角形一定是平面图形C .若A ,B ,C ,D 既在平面α内,又在平面β内,则平面α和平面β重合D .四条边都相等的四边形是平面图形35.(2024·河北廊坊·模拟预测)我们知道,平面几何中有些正确的结论在空间中不一定成立.下面给出的平面几何中的四个真命题,在空间中仍然成立的有()A .平行于同一条直线的两条直线必平行B .垂直于同一条直线的两条直线必平行C .一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补D .一个角的两边分别垂直于另一个角的两边,那么这两个角相等或互补36.(2024高一下·陕西西安·期中)如图所示,在正方体1111ABCD A B C D -中,M ,N 分别为棱11C D ,1C C 的中点,则下列四个结论正确的是()A .直线AM 与1CC 是相交直线B .直线AM 与BN 是平行直线C .直线BN 与1MB 是异面直线D .直线AM 与1DD 是异面直线37.(2024高一·全国·课后作业)下列结论中正确的是()A .若两个平面有一个公共点,则它们有无数个公共点B .若已知四个点不共面,则其中任意三点不共线C .若点A 既在平面α内,又在平面β内,则α与β相交于b ,且点A 在b 上D .任意两条直线不能确定一个平面38.(2024高三·全国·专题练习)如图,已知正方体1111ABCD A B C D -的棱长为2,设P ,Q 分别为11A B ,1DD 的中点,则过点P ,Q 的平面α截正方体所得截面的形状可能为()A .三角形B .四边形C .五边形D .六边形39.(2024高一下·湖北武汉·期末)当三个平面都平行时,三个平面可将空间分成4个部分,那么三个平面还可将空间分成()部分.A .5B .6C .7D .840.(2024高三下·山东日照·阶段练习)如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E 、F ,且12EF =,则下列结论中正确的是()A .线段11B D 上存在点E 、F 使得//AE BF B .//EF 平面ABCDC .AEF △的面积与BEF △的面积相等D .三棱锥A -BEF 的体积为定值三、填空题41.(2024高三·全国·专题练习)给出下列四个命题:①平面外的一条直线与这个平面最多有一个公共点;②若平面α内的一条直线a 与平面β内的一条直线b 相交,则α与β相交;③若一条直线和两条平行线都相交,则这三条直线共面;④若三条直线两两相交,则这三条直线共面.其中真命题的序号是.42.(2024高一下·全国·课后作业)已知直线MN ⊥平面α于N ,直线NP MN ⊥,则NP 与平面α的关系是.43.(2024高一·全国·课后作业)如图,把下列图形的点、线、面的关系,用集合的语言表述:(1);(2);(3).44.(2024高一下·黑龙江齐齐哈尔·期末)已知空间中两个角α,β,且角α与角β的两边分别平行,若70α=︒,则β=.45.(2024高二下·上海虹口·期末)在空间,如果两个不同平面有一个公共点,那么它们的位置关系为.46.(2024高三下·重庆渝中·阶段练习)空间四边形的对角线互相垂直且相等,顺次连接这个四边形各边中点,所组成的四边形是.47.(2024高二上·上海徐汇·阶段练习)如图,在长方体ABCD -A 1B 1C 1D 1中,(1)直线A 1B 与直线D 1C 的位置关系是;(2)直线A 1B 与直线B 1C 的位置关系是;(3)直线D 1D 与直线D 1C 的位置关系是;(4)直线AB 与直线B 1C 的位置关系是.48.(2024高二上·上海徐汇·阶段练习)设A ∠和B ∠的两边分别平行,若45A ∠=︒,则B ∠的大小为.49.(2024高一·全国·课后作业)“直线l 与平面α没有公共点”是“l α∥”的条件.50.(2024高一下·全国·课后作业)在底面为正六边形的六棱柱中,互相平行的面视为一组,则共有组互相平行的面,与其中一个侧面相交的面共有个.52.(2024高一·全国·单元测试)若直线a 与平面α内无数条直线平行,则a 与α的位置关系是.53.(2024高二上·上海奉贤·阶段练习)如图,将正方体沿交于一顶点的三条棱的中点截去一小块,八个顶“阿基米德多面体”,则异面直线AB 与CD 所成角的大小是四、解答题54.(2024高一·全国·课后作业)已知:l ⊂α,D α∈,∈A l ,B l ∈,C l ∈,D l ∉.求证:直线,,AD BD CD 共面于α.55.(2024高一·全国·课后作业)如图,ABCD 为空间四边形,点E ,F 分别是AB ,BC 的中点,点G ,H 分别在CD ,AD 上,且13DH AD =,13DG CD =.(1)求证:E ,F ,G ,H 四点共面;(2)求证:EH ,FG 必相交且交点在直线BD 上.56.(2024高一下·北京·期末)如图,在正方体1111ABCD A B C D -中,E 是棱1CC 上一点,且1:1:2CE EC =.(1)试画出过1,,D A E 三点的平面截正方体1111ABCD A B C D -所得截面α;(2)证明:平面1D AE 与平面ABCD 相交,并指出它们的交线.57.(2024高一·全国·课后作业)如图所示是一个三棱锥,欲过点P 作一个截面,使得截面与底面平行,该怎样在侧面上画出截线?58.(2024高一·全国·课后作业)59.(2024高一下·全国·课后作业)在直三棱柱ABC -A 1B 1C 1中,E ,F 分别为A 1B 1,B 1C 1的中点.求证:平面ACC 1A 1与平面BEF 相交.60.(2024高一上·安徽亳州·期末)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:(1)E ,C ,D 1,F 四点共面;(2)CE ,D 1F ,DA 三线共点.61.(2024高三·全国·专题练习)如图,在空间四边形ABCD 中,,,,E F G H 分别在,,,AB AD BC CD 上,EG 与FH 交于点P ,求证:,,P A C 三点共线.62.(2024高二·全国·课后作业)如图所示,在正方体1111ABCD A B C D -中,,E F 分别是AB 和1AA 的中点,求证:四边形1FECD 为平面图形.63.(2024高一·全国·专题练习)如图所示,在空间四边形ABCD 中,E ,F 分别为AB ,AD 的中点,G ,H 分别在BC ,CD 上,且::1:2BG GC DH HC ==.求证:(1)E 、F 、G 、H 四点共面;(2)EG 与HF 的交点在直线AC 上.64.(2024高二·上海·专题练习)如图所示,在正方体1111ABCD A B C D -中.画出平面11ACC A 与平面1BC D 及平面1ACD 与平面1BDC 的交线.65.(2024高一·全国·专题练习)如图,直升机上一点P 在地面α上的正射影是点A (即PA ⊥α),从点P 看地平面上一物体B (不同于A ),直线PB 垂直于飞机玻璃窗所在的平面β.求证:平面β必与平面α相交.66.(2024高一·全国·专题练习)如图,已知平面,αβ,且l αβ= ,设在梯形ABCD 中,AD BC ∕∕,且,AB CD αβ⊂⊂.求证:,,AB CD l 共点.67.(2024高一下·河南信阳·期中)如图,在正方体1111ABCD A B C D -中,E ,F 分别是1,AB AA 上的点,且12,2A F FA BE AE ==.(1)证明:1,,,E C D F 四点共面;(2)设1D F CE O ⋂=,证明:A ,O ,D 三点共线.68.(2024高一下·陕西西安·期中)(1)已知直线a b ∥,直线l 与a ,b 都相交,求证:过a ,b ,l 有且只有一个平面;(2)如图,在空间四边形ABCD 中,H ,G 分别是AD ,CD 的中点,E ,F 分别是边AB ,BC 上的点,且13CF AE FB EB ==.求证:直线EH ,BD ,FG 相交于一点.。

点直线平面之间的位置关系知识点总结

点直线平面之间的位置关系知识点总结

点、直线、平面之间的位置关系知识点总结立体几何知识点总结1.直线在平面内的判定1利用公理1:一直线上不重合的两点在平面内;则这条直线在平面内.2若两个平面互相垂直;则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内;即若α⊥β;A∈α;AB⊥β;则ABα.3过一点和一条已知直线垂直的所有直线;都在过此点而垂直于已知直线的平面内;即若A∈a;a⊥b;A∈α;b⊥α;则aα.4过平面外一点和该平面平行的直线;都在过此点而与该平面平行的平面内;即若Pα;P∈β;β∥α;P∈a;a∥α;则aβ.5如果一条直线与一个平面平行;那么过这个平面内一点与这条直线平行的直线必在这个平面内;即若a∥α;A∈α;A∈b;b∥a;则bα.2.存在性和唯一性定理1过直线外一点与这条直线平行的直线有且只有一条;2过一点与已知平面垂直的直线有且只有一条;3过平面外一点与这个平面平行的平面有且只有一个;4与两条异面直线都垂直相交的直线有且只有一条;5过一点与已知直线垂直的平面有且只有一个;6过平面的一条斜线且与该平面垂直的平面有且只有一个;7过两条异面直线中的一条而与另一条平行的平面有且只有一个;8过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.3.射影及有关性质1点在平面上的射影自一点向平面引垂线;垂足叫做这点在这个平面上的射影;点的射影还是点.2直线在平面上的射影自直线上的两个点向平面引垂线;过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.3图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时;射影是一条线段;当图形所在平面不与射影面垂直时;射影仍是一个图形.4射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:i射影相等的两条斜线段相等;射影较长的斜线段也较长;ii相等的斜线段的射影相等;较长的斜线段的射影也较长;iii垂线段比任何一条斜线段都短.4.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行;并且方向相同;则这两个角相等.推论若两条相交直线和另两条相交直线分别平行;则这两组直线所成的锐角或直角相等.异面直线所成的角1定义:a、b是两条异面直线;经过空间任意一点O;分别引直线a′∥a;b′∥b;则a′和b′所成的锐角或直角叫做异面直线a和b所成的角.2取值范围:0°<θ≤90°.3求解方法①根据定义;通过平移;找到异面直线所成的角θ;②解含有θ的三角形;求出角θ的大小.5.直线和平面所成的角1定义和平面所成的角有三种:i垂线面所成的角的一条斜线和它在平面上的射影所成的锐角;叫做这条直线和这个平面所成的角.ii垂线与平面所成的角直线垂直于平面;则它们所成的角是直角.iii一条直线和平面平行;或在平面内;则它们所成的角是0°的角.2取值范围0°≤θ≤90°3求解方法①作出斜线在平面上的射影;找到斜线与平面所成的角θ.②解含θ的三角形;求出其大小.③最小角定理斜线和平面所成的角;是这条斜线和平面内经过斜足的直线所成的一切角中最小的角;亦可说;斜线和平面所成的角不大于斜线与平面内任何直线所成的角.6.二面角及二面角的平面角1半平面直线把平面分成两个部分;每一部分都叫做半平面.2二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱;这两个平面叫做二面角的面;即二面角由半平面一棱一半平面组成.若两个平面相交;则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量;通常认为二面角的平面角θ的取值范围是0°<θ≤180°3二面角的平面角①以二面角棱上任意一点为端点;分别在两个面内作垂直于棱的射线;这两条射线所组成的角叫做二面角的平面角.如图;∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB上的位置无关.②二面角的平面角具有下列性质:i二面角的棱垂直于它的平面角所在的平面;即AB⊥平面PCD.ii从二面角的平面角的一边上任意一点异于角的顶点作另一面的垂线;垂足必在平面角的另一边或其反向延长线上.iii二面角的平面角所在的平面与二面角的两个面都垂直;即平面PCD⊥α;平面PCD⊥β.③找或作二面角的平面角的主要方法.i定义法ii垂面法iii三垂线法Ⅳ根据特殊图形的性质4求二面角大小的常见方法①先找或作出二面角的平面角θ;再通过解三角形求得θ的值.②利用面积射影定理S′=S·cosα其中S为二面角一个面内平面图形的面积;S′是这个平面图形在另一个面上的射影图形的面积;α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.7.空间的各种距离点到平面的距离1定义面外一点引一个平面的垂线;这个点和垂足间的距离叫做这个点到这个平面的距离.2求点面距离常用的方法:1直接利用定义求①找到或作出表示距离的线段;②抓住线段所求距离所在三角形解之.2利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上;则已知点到两平面交线的距离就是所求的点面距离.3体积法其步骤是:①在平面内选取适当三点;和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由V=S·h;求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4转化法将点到平面的距离转化为平行直线与平面的距离来求.8.直线和平面的距离1定义一条直线和一个平面平行;这条直线上任意一点到平面的距离;叫做这条直线和平面的距离.2求线面距离常用的方法①直接利用定义求证或连或作某线段为距离;然后通过解三角形计算之.②将线面距离转化为点面距离;然后运用解三角形或体积法求解之.③作辅助垂直平面;把求线面距离转化为求点线距离.9.平行平面的距离1定义个平行平面同时垂直的直线;叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分;叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.2求平行平面距离常用的方法①直接利用定义求证或连或作某线段为距离;然后通过解三角形计算之.②把面面平行距离转化为线面平行距离;再转化为线线平行距离;最后转化为点线面距离;通过解三角形或体积法求解之.10.异面直线的距离1定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度;叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.2求两条异面直线的距离常用的方法①定义法题目所给的条件;找出或作出两条异面直线的公垂线段;再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.②转化法为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法。

高中数学高考45第八章 立体几何 8 3 空间点、直线、平面之间的位置关系

高中数学高考45第八章 立体几何 8 3 空间点、直线、平面之间的位置关系

例2 (1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平 面β的交线,则下列命题正确的是 A.l与l1,l2都不相交 B.l与l1,l2都相交 C.l至多与l1,l2中的一条相交
√D.l至少与l1,l2中的一条相交
解析 由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相 交.故选D.
的公共直线. 公理4:平行于同一条直线的两条直线互相 平行 .
2.直线与直线的位置关系 (1)位置关系的分类
平行 直线 共面直线
相交直线 异面直线:不同在 任何 一个平面内,没有公共点
(2)异面直线所成的角 ①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b, 把a′与b′所成的 锐角(或直角) 叫做异面直线a与b所成的角(或夹角). ②范围: 0,π2. .
√D.点C和点M
解析 ∵AB⊂γ,M∈AB,∴M∈γ. 又α∩β=l,M∈l,∴M∈β. 根据公理3可知,M在γ与β的交线上. 同理可知,点C也在γ与β的交线上.
123456
6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH 在原正方体中互为异面的对数为_3_.
解析 平面图形的翻折应注意翻折前后相对位置的变化, 则AB,CD,EF和GH在原正方体中, 显然AB与CD,EF与GH,AB与GH都是异面直线, 而AB与EF相交,CD与GH相交,CD与EF平行. 故互为异面的直线有且只有3对.
解 ∵BE∥AF 且 BE=12AF,G 为 FA 的中点, ∴BE∥FG且BE=FG, ∴四边形BEFG为平行四边形,∴EF∥BG. 由(1)知BG∥CH. ∴EF∥CH,∴EF与CH共面. 又D∈FH,∴C,D,F,E四点共面.

高三数学 空间点线面之间的位置关系

高三数学 空间点线面之间的位置关系

课堂互动讲练
【名师点评】 题中是先说明D1、 E、F确定一平面,再说明B在所确定 的平面内,也可证明D1E∥BF,从而 说明四点共面.
课堂互动讲练
考点四 异面直线的判定
证明两直线为异面直线的方法: 1.定义法(不易操作). 2.反证法:先假设两条直线不 是异面直线,即两直线平行或相交, 由假设的条件出发,经过严密的推理, 导出矛盾,从而否定假设肯定两条直 线异面.此法在异面直线的判定中经 常用到.
A.A∈l,A∈α,B∈l, B∈α⇒l⊂α
B.A∈α,A∈β,B∈α, B∈β⇒a∩β=AB
C.l⊄α,A∈l⇒A∉α D.A∈α,A∈l,l⊄α⇒l∩α=A 答案:C
三基能力强化
4.如图所示,在正方体ABCD-
A1B1C1D1中,异面直线AC与B1C1
所成的角为
.
答案:45°
5.三条直线两两相交,可以确 定3进一步反映了平面的延展 性.其作用是:(1)判定两平面相交;(2) 作两平面相交的交线(当知道两个平面 的两个公共点时,这两点的连线就是交 线);(3)证明多点共线(如果几个点都是 某两个平面的公共点,则这几个点都在 这两个平面的交线上).
随堂即时巩固
点击进入
课时活页训练
PQ、CB的延长线交于M,RQ、DB的延
长线交于N,RP、DC的延长线交于K.求
证:M、N、K三点共线.
课堂互动讲练
【思路点拨】 要证明M、N、K 三点共线,由公理3可知,只要证明M、 N、K都在平面BCD与平面PQR的交 线上即可.
课堂互动讲练
【证明】
PQ∩CB=M
RQ∩DB=N⇒
RP∩DC=K
课堂互动讲练
解:选取平面BCF,该 平面有以下两个特点:①该 平面包含直线CF;②该平面 与DE相交于点E.在平面BCF 中,过点E作CF的平行线交 BF于点N,连结ND,可以看 出:EN与ED所成的角即为 异面直线FC与ED所成的角. 10分

高中数学高考第3节 空间点、直线、平面之间的位置关系 课件

高中数学高考第3节 空间点、直线、平面之间的位置关系 课件


回 顾
c∥b,从而a∥b,这与a与b是异面直线矛盾,故①正确.
课 后
对于②,a与b可能异面垂直,故②错误.
限 时

课 堂
对于③,由a∥b可知a∥β,又α∩β=c,从而a∥c,故③正


点 确.


返 首 页
41



主 回
(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M 课

∉平面GHN,因此直线GH与MN异面;图③中,连接MG(图略),

究 _有__且__只__有__一__条___过该点的公共直线.
返 首 页
5

前 自
(4)公理2的三个推论

回 顾
推论1:经过一条直线和这条直线外的一点,有且只有一个平 课 后
面.
限 时

课 堂
推论2:经过两条相交直线,有且只有一个平面.



推论3:经过两条平行直线,有且只有一个平面.


返 首 页
后 限
些点都是这两个平面的公共点,再根据基本公理3证明这些点都在
时 集


堂 考
交线上;②同一法:选择其中两点确定一条直线,然后证明其余点

探 也在该直线上.

返 首 页
25
课 前
(2)证明线共点问题:先证两条直线交于一点,再证明第三条直

主 线经过该点.



(3)证明点、直线共面问题:①纳入平面法:先确定一个平面,


返 首 页
43
1.下列结论中正确的是 ( )

第3讲 直线平面之间的位置关系(学生版)

第3讲 直线平面之间的位置关系(学生版)

第八章 立体几何与空间向量第3讲 空间点、直线、平面之间的位置关系班级__________ 姓名__________一、基础知识:1、空间直线的位置关系(1)位置关系的分类:⎩⎨⎧共面直线⎩⎨⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎥⎤0,π2.(3)等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. (4)异面直线判定定理:过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.2、平面:(1)平面的概念:平面是一个描述而不定义的概念,立体几何里所说的平面是从生活中常见的平面,如桌子的表面、黑版面、平静的水面等中抽象出来的,生活中的平面是比较平且是有限的,而立体几何中的平面是绝对的平且是无限延展的。

(2)平面的表示:①立体几何中通常画平行四边形来表示平面,且当平面水平放置时,把平行四边形的锐角画成45 , 横边画成等于邻边的2倍。

②平面通常用一个希腊字母表示。

如平面α、平面β、 平面γ等;也可以用表示平面的平行四边形的两个顶点的字母来表示,如平面AC 等;若用三角形表示平面时,则表示成平面ABC 。

注意:在平面几何里,凡是后引的辅助线都画成虚线,而立体几何里则不然,凡是被遮住的线,都画成虚线,凡是不被遮住的线都画成实线,无论是题中原有的还是后引的辅助线。

3、平面的基本性质:公理1:如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示:或者:∵,A B αα∈∈,∴AB α⊂公理2:经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈.推论1 经过一条直线和直线外的一点有且只有一个平面.推论2 经过两条相交直线有且只有一个平面推论3 经过两条平行直线有且只有一个平面公理3:如果两个平面有一个公共点,那么它们有且只有一条经过这个点的公共直线。

人教版高一数学必修二《空间点、直线、平面之间的位置关》教案及教学反思

人教版高一数学必修二《空间点、直线、平面之间的位置关》教案及教学反思

人教版高一数学必修二《空间点、直线、平面之间的位置关》教案及教学反思一、教学目标通过本次教学,学生将能够:1.掌握空间点、直线、平面之间的位置关系;2.学会使用空间几何中的基本概念和基本问题;3.进一步培养学生的数学思维,提高学生的空间想象能力和综合运用能力。

二、教学重点和难点教学重点:1.理解空间中点、直线、平面的概念和特征;2.掌握点与直线、点与平面的位置关系以及直线与平面的位置关系;3.运用三视图法和参考投影法解决平面与平面的位置关系。

教学难点:1.掌握点、直线、平面的共面关系;2.学会在空间中画出图形;3.掌握平面间的位置关系。

三、教学过程1. 导入环节(5分钟)引导学生通过生活实际情境,复习几何学中的点、线、面的概念,并对此进行概括,展现本课内容的片面性和局限性,进而引导学生思考如何通过分别考虑点、直线、平面的位置关系的方法来全面把握几何学中的空间图形。

同时,激发学生空间想象的能力。

2. 正式教学环节(40分钟)1)点与直线的位置关系教师介绍点与直线的位置关系,并用图形进行示范。

然后,让学生自己分析和总结,归纳出点与直线的位置关系的有关性质。

例如:•点在直线上;•点在直线上的外部;•点在线的两侧;•点与直线相离。

2)点与平面的位置关系引入点与平面的位置关系,老师同样先给出范例进行示范,帮助学生加深理解。

然后,再让学生自己探究和总结,归纳点与平面的位置关系的有关性质。

例如:•点在平面上;•点在平面上的内部;•点在平面上的外部。

3)直线与平面的位置关系讲述直线与平面的位置关系,为学生提供相关的图形,并进行实操。

教师同样应给学生提供足够多的机会,让学生自行探究总结,得出有关性质。

例如:•直线在平面上;•直线与平面交于一点;•直线与平面平行;•直线与平面垂直。

4)平面与平面的位置关系在学习与应用前面的知识点后,适当引入平面与平面的位置关系。

老师还是要以图形为依据,实践出多重案例,使学生理解平面与平面的位置关系的本质。

(2019新教材)人教A版高中数学必修第二册:空间点、直线、平面之间的位置关系

(2019新教材)人教A版高中数学必修第二册:空间点、直线、平面之间的位置关系

■名师点拨 (1)异面直线的定义表明异面直线不具备确定平面的条件.异面直线 既不相交,也不平行. (2)不能把异面直线误认为分别在不同平面 内的两条直线,如图中,虽然有 a⊂α,b⊂β, 即 a,b 分别在两个不同的平面内,但是因 为 a∩b=O,所以 a 与 b 不是异面直线.
2.空间中直线与平面的位置关系
2.[变条件]在本例中,若将条件改为平面 α 内有无数条直线与 平面 β 平行,那么平面 α 与平面 β 的关系是什么? 解:如图,α 内都有无数条直线与平面 β 平行.
由图知,平面 α 与平面 β 可能平行或相交.
3.[变条件]在本例中,若将条件改为平面 α 内的任意一条直线 与平面 β 平行,那么平面 α 与平面 β 的关系是什么? 解:因为平面 α 内的任意一条直线与平面 β 平行,所以只有这 两个平面平行才能做到,所以平面 α 与平面 β 平行.
平行.( × ) (10)若两个平面都平行于同一条直线,则这两个平面平行.( × )
异面直线是指( ) A.空间中两条不相交的直线 B.分别位于两个不同平面内的两条直线 C.平面内的一条直线与平面外的一条直线 D.不同在任何一个平面内的两条直线
解析:选 D.对于 A,空间两条不相交的直线有两 种可能,一是平行(共面),另一个是异面,所以 A 应排除.对于 B,分别位于两个平面内的直线, 既可能平行也可能相交也可能异面,如图,就是 相交的情况,所以 B 应排除.对于 C,如图中的 a,b 可看作是平 面 α 内的一条直线 a 与平面 α 外的一条直线 b,显然它们是相交直 线,所以 C 应排除.只有 D 符合定义.
位置关系
直线 a 在 平面 α 内
直线 a 在平面 α 外
直线 a 与平
直线 a 与

空间点、直线、平面之间的位置关系(教案)

空间点、直线、平面之间的位置关系(教案)

空间点、直线、平面之间的位置关系适用学科高中数学适用年级高中一年级适用区域人教版课时时长(分钟)60知识点平行、垂直关系的综合问题教学目标考查空间线面平行、垂直关系的判断考查空间线面平行、垂直关系的判断教学重点空间直线与平面、平面与平面之间的位置关系.教学难点用图形表达直线与平面、平面与平面的位置关系.教学过程一、复习预习平面的基本性质平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公共直线.(4)公理2的三个推论:的三个推论:推论1:经过一条直线和这条直线外一点有且只有一个平面;:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;:经过两条相交直线有且只有一个平面;推论3:经过两条平行直线有且只有一个平面.:经过两条平行直线有且只有一个平面.二、知识讲解空间中两直线的位置关系空间中两直线的位置关系(1)空间两直线的位置关系空间两直线的位置关系相交相交(2)异面直线所成的角异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).②范围:2π. (3)平行公理和等角定理平行公理和等角定理①平行公理:平行于同一条直线的两条直线互相平行.①平行公理:平行于同一条直线的两条直线互相平行.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.三、例题精析【例题1】【题干】在正方体ABCDA 1B 1C 1D 1中,E 是DD 1的中点,则BD 1与平面ACE 的位置关系为________. 【答案】平行平行 【解析】如图.如图.连接AC 、BD 交于O 点,连接OE ,因为OE ∥BD 1,而OE ⊂平面ACE ,BD 1⊄平面ACE ,所以BD 1∥平面ACE . 【例题2】【题干】如图,直三棱柱ABCA ′B ′C ′,∠BAC =90°,AB =AC =,AA ′=1,点M ,N 分别为A ′B 和B ′C ′的中点.′的中点.(1)证明:MN ∥平面A ′ACC ′;′; (2)求三棱锥A ′MNC 的体积.的体积.(锥体体积公式V =31Sh ,其中S 为底面面积,h 为高) 【答案】证明证明 法一法一 连接AB ′,AC ′,如图由已知∠BAC =90°,AB =AC ,三棱柱ABCA ′B ′C ′为直三棱柱,′为直三棱柱,所以M 为AB ′中点.′中点.又因为N 为B ′C ′的中点,所以MN ∥AC ′. 又MN ⊄平面A ′ACC ′,AC ′⊂平面A ′ACC ′,′,因此MN ∥平面A ′ACC ′. 法二法二 取A ′B ′的中点P ,连接MP ,NP ,AB ′,如图,而M ,N 分别为AB ′与B ′C ′的中点,′的中点,所以MP ∥AA ′,PN ∥A ′C ′,′,所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′. 又MP ∩NP =P ,因此平面MPN ∥平面A ′ACC ′. 而MN ⊂平面MPN ,因此MN ∥平面A ′ACC ′. (2)解 法一法一 连接BN ,如图由题意A ′N ⊥B ′C ′,平面A ′B ′C ′∩平面B ′BCC ′=B ′C ′,′,所以A ′N ⊥平面NBC .又A ′N =21B ′C ′=1, 故V A ′MNC =V NA ′MC =21V NA ′BC =21V A ′NBC =61. 法二法二 V A ′MNC =V A ′NBC -V MNBC =21V A ′NBC =61. 【解析】(1)连接AB ′,AC ′,在△AC ′B ′中由中位线定理可证MN ∥AC ′,则线面平行可证;此问也可以应用面面平行证明.平行可证;此问也可以应用面面平行证明.(2)证A ′N ⊥平面NBC ,故V A ′MNC =V A ′NBC -V MNBC =21V A ′NBC ,体积可求.,体积可求.【例题3】【题干】如图所示,在三棱柱ABCA 1B 1C 1中,A 1A ⊥平面ABC ,若D 是棱CC 1的中点,问在棱AB 上是否存在一点E ,使DE ∥平面AB 1C 1?若存在,请确定点E 的位置;若不存在,请说明理由.在,请说明理由.【答案】解 存在点E ,且E 为AB 的中点.的中点.下面给出证明:下面给出证明:如图,取BB1的中点F,连接DF,则DF∥B1C1. ∵AB的中点为E,连接EF,则EF∥AB1. 是相交直线,B1C1与AB1是相交直线,∴平面DEF∥平面AB1C1. 而DE⊂平面DEF,∴DE∥平面AB1C1. 【解析】取AB、BB1的中点分别为E、F,证明平面DEF∥平面AB1C1即可.即可. 【例题4】【题干】如图所示,在三棱柱ABCA1B1C1中,A1A⊥平面ABC,若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由.的位置;若不存在,请说明理由.的中点.【答案】存在点E,且E为AB的中点.下面给出证明:下面给出证明:如图,取BB1的中点F,连接DF,则DF∥B1C1. ∵AB的中点为E,连接EF,则EF∥AB1. 是相交直线,B1C1与AB1是相交直线,∴平面DEF∥平面AB1C1. 而DE⊂平面DEF,∴DE∥平面AB1C1. 【解析】取AB、BB1的中点分别为E、F,证明平面DEF∥平面AB1C1即可.即可. 【例题5】【题干】如图,几何体EABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD. (1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC. 证明 (1) 【答案】证明图(a) 如图(a),取BD的中点O,连接CO,EO. 由于CB=CD,所以CO⊥BD,(2分) 又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,(4分) 的中点,因此BD⊥EO,又O为BD的中点,所以BE=DE.(6分) (2)法一法一 如图(b),取AB的中点N,连接DM,DN,MN,图(b) 的中点,因为M是AE的中点,所以MN∥BE. 又MN⊄平面BEC,BE⊂平面BEC,∴MN∥平面BEC.(8分) 为正三角形,又因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以DN∥BC.(10分) 又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC. 又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.(12分) 法二 如图(c),延长AD,BC交于点F,连接EF. 法二图(c) 因为CB=CD,∠BCD=120°,30°. . 所以∠CBD=30°为正三角形,因为△ABD为正三角形,所以∠BAD=60°,∠ABC=90°,因此∠AFB=30°,所以AB =21AF .(8分) 又AB =AD ,所以D 为线段AF 的中点.连接DM ,由点M 是线段AE 的中点,因此DM ∥EF .(10分) 又DM ⊄平面BEC ,EF ⊂平面BEC , 所以DM ∥平面BEC .(12分) 【解析】(1) 取BD 的中点O ,证明BD ⊥EO ;(2)取AB 中点N ,证明平面DMN ∥平面BEC ;找到平面BCE 和平面ADE的交线EF ,证明DM ∥EF . 四、课堂运用【基础】1. 下列命题是真命题的是( ).A .空间中不同三点确定一个平面.空间中不同三点确定一个平面B .空间中两两相交的三条直线确定一个平面.空间中两两相交的三条直线确定一个平面C .一条直线和一个点能确定一个平面.一条直线和一个点能确定一个平面D .梯形一定是平面图形.梯形一定是平面图形 【答案】D 【解析】空间中不共线的三点确定一个平面,A 错;空间中两两相交不交于一点的三条直线确定一个平面,B 错;经过直线和直线外一点确定一个平面,C 错;故D 正确.正确.2. 空间两个角α,β的两边分别对应平行,且α=60°,则β为( ).A .60°B .120°C .30°D .60°或120°【答案】D 【解析】由等角定理可知β=60°或120°120°. . 【巩固】1. 如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.对. 【答案】24 【解析】如图所示,与AB 异面的直线有B 1C 1,CC 1,A 1D 1,DD 1四条,因为各棱具有相同的位置且正方体共有12条棱,排除两棱的重复计算,共有异面直线21212××4=24(对).2. 如图所示,在正方体ABCDA 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:的中点.求证:(1)E 、C 、D 1、F 四点共面;四点共面; (2)CE 、D 1F 、DA 三线共点.三线共点.【答案】(1)如图,连接EF ,CD 1,A 1B . ∵E 、F 分别是AB 、AA 1的中点,的中点,∴EF ∥A 1B . 又A 1B ∥D 1C ,∴EF ∥CD 1, ∴E 、C 、D 1、F 四点共面.四点共面. (2)∵EF ∥CD 1,EF <CD 1,∴CE与D1F必相交,设交点为P,则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD. 同理P∈平面ADD1A1. 又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE、D1F、DA三线共点.三线共点.【解析】(1)由EF∥CD1可得;可得;(2)先证CE与D1F相交于P,再证P∈AD. 【拔高】1.下列如图所示是正方体和正四面体,P、Q、R、S分别是所在棱的中点,则四个点共面的图形是________.①②③【答案】①②③【解析】可证①中的四边形PQRS为梯形;②中,如图所示,取A1A和BC的中点为M、N可证明PMQNRS为平面图形,且PMQNRS为正六边形;③中,可证四边形PQRS为平行四边形;四点不共面.④中,可证Q点所在棱与面PRS平行,因此,P、Q、R、S四点不共面.2.如图是正四面体的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,在这个正四面体中,平行;①GH与EF平行;②BD与MN为异面直线;为异面直线;角;③GH与MN成60°角;垂直.④DE与MN垂直.以上四个命题中,正确命题的序号是________.②③④【答案】②③④【解析】如图所示,GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.课程小结内容小结一个理解一个理解异面直线概念的理解异面直线概念的理解(1)“不同在任何一个平面内”,指这两条直线不能确定任何一个平面,因此,异面直线既不相交,也不平行.线既不相交,也不平行.(2)不能把异面直线误解为:分别在不同平面内的两条直线为异面直线.不能把异面直线误解为:分别在不同平面内的两条直线为异面直线. 两种判定方法两种判定方法异面直线的判定方法异面直线的判定方法(1)判定定理:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两直线异面.从而可得两直线异面. 课后作业【基础】1.下列命题正确的是【】下列命题正确的是【】、若两条直线和同一个平面所成的角相等,则这两条直线平行A、若两条直线和同一个平面所成的角相等,则这两条直线平行B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行、若两个平面都垂直于第三个平面,则这两个平面平行 【答案】C【解析】若两条直线和同一平面所成角相等,若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也这两条直线可能平行,也可能为异面直线,也可能相交,所以A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D 错;故选项C 正确。

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系

在图中,直线AB与DC在同一个平面ABCD
内,它们没有公共点,它们是平行直线;直线AB与
BC也在同一个平面ABCD内,它们只有一个公共
点B,它们是相交直线;直线AB与CC′不同在任何
一个平面内.
D′ A′
C′ B′
D
C
A
B
课文精讲
➢ 空间中直线、平面之间的位置关系 1.(1.空重间点中)直线与直线的位置关系
课文精讲
➢ 空间中直线、平面之间的位置关系 1.(直重线点与)平面的位置关系及其表示
位置关 表系 示方法 符号表示
直线a在平 面α内
a⊂α
图形表示
a
α
直线a与平 面α相交
a∩α=O
a
O α
直线a与平 面α平行
a//α
a
α
公共点 情况
有无数个公共点 有且只有一个公共点 没有公共点
课文精讲
➢ 空间中直线、平面之间的位置关系 1.(3.空重间点中)平面与平面的位置关系
a a
a
A
α
α
α
直线在平面内
a⊂α
直线在平面外
a⊂α
直线a与平面α相交于点A,记作a∩α=A;
直线a与平面α平行,记作a//α.
课文精讲
➢ 空间中直线、平面之间的位置关系 1.(重点)
2.空间中直线与平面的位置关系 一般地,直线a在平面α内,应把直线a画在表
示平面α的平行四边形内;直线a在平面α外,应把 直线a或它的一部分画在表示平面α的平行四边 形外.
(1)直线在平面内——有无数个公共点; (2)直线与平面相交——有且只有一个公共点; (3)直线与平面平行——没有公共点.
当直线与平面相交或平行时,直线不在平面 内,也称为直线在平面外.

高中数学必修二课件:空间点、直线、平面之间的位置关系

高中数学必修二课件:空间点、直线、平面之间的位置关系

5.若点M是两条异面直线a,b外的一点,则过点M且与a,b都平行的平面 有__0_或__1___个.
解析 当点M在过a且与b平行的平面或过b且与a平行的平面内时,没有满足 条件的平面;当点M不在上述两个平面内时,满足题意的平面只有1个.
那么这两个平面的位置关系一定是( C )
A.平行
B.相交
C.平行或相交
D.以上都不对
(2)已知平面α,β ,且α∥β ,直线a⊂α,直线b⊂β,则直线a与直线b具
有怎样的位置关系?画出图形.
【思路】 由α∥β,a⊂α,b⊂β,可知直线a,b无公共点.
【解析】 由题意得直线a,b无公共点,所以直线a,直线b可能平行或异 面.如图所示,在长方体模型中若直线AC就是直线a,B1D1就是直线b,则直线a 与直线b异面;若直线BD就是直线a,B1D1就是直线b,则直线a与直线b平行.
综合①②可知c与b相交或异面.
探究1 判断两直线的位置关系,不能局限于平面内,要把直线置身于空间 考虑,有时可分为平面和空间两种情形讨论.
思考题1 (1)正方体ABCD-A1B1C1D1中和AB平行的棱有_A_1_B_1,__C_D_,_C_1_D_1; 和AB异面的棱有__C_C_1_,_D_D_1_,_A_1_D_1,__B_1C_1___.
平面α与β平行,记作α∥β.
1.如何画异面直线?
答:画异面直线时,为了充分显示出它们既不平行又不相交的特点,即不 共面的特点,常常需要以辅助平面作为衬托,以加强直观性,如下图①②③, 若画成如图④的情形,就区分不开了,因此千万不能画成如图④的图形.
2.如何判断异面直线? 答:①定义法.②两直线既不平行也不相交.
③直线a不平行于平面α,则a不平行于α内任何一条直线.

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系

2.空间中直线与平面的位置关系
直线CD与平面ABCD ——有无数个公共点; 直线AA1与平面ABCD ——有只且有一个公共点A; 直线D1C1与平面ABCD ——没有公共点.
D1 A1
D
A
C1
B1 C
B
直线在平面内 直线与平面相交 直线与平面平行
直线与平面的位置关系有且只有三种
直线在 平面外
(1)直线在平面内——有无数个公共点;
8.4.2 空间点、直线、平面之间的位置关系
数学
XXX
由上一小节“平面”的学习,我们认识了空 间中点、直线、平面之间的一些位置关系,如 点在平面内,直线在平面内,两个平面相交, 等等,空间中点、直线、平面之间还有其他位 置关系吗?
点线关系 线线关系 面面关系 点面关系 线面关系
在长方体ABCD-A1B1C1D1中:
观察:如图所示的长方体ABCD-A1B1C1D1中,直线与 直线之间有哪些不同的位置关系?
D1 A1
D
A
C1
B1 C
B
1.空间中直线与直线的位置关系
直线DC与AB在同一个平面ABCD内,它们 D1
没有公共点,它们是平行直线;
A1
直线DC与BC也是在同一个平面ABCD内, 它们只有一个公共点B,它们是相交直线;
CA
G DB
HE F
例题6 如图是一个正方体的展开图,如果将它还原
为正方体,那么,AB、CD、EF、GH这四条线段中,
哪些线段所在直线是异面直线?
CA
C G
A
E G
DB HE
F
H D
BF
例题6 如图是一个正方体的展开图,如果将它还原
为正方体,那么,AB、CD、EF、GH这四条线段中,

空间点、直线、平面之间的位置关系(2个课时)(课件)(人教A版2019 必修第二册)

空间点、直线、平面之间的位置关系(2个课时)(课件)(人教A版2019 必修第二册)

作用:证明点共线、线共点.
证:P,Q,R三点共线 证:AB,CD,l三线共点
点共线的证明
课本P132-8.已知△ABC在平面α外,AB∩α=P,
AC∩α=R,BC∩α=Q,求证:P,Q,R三点共线.
证明:∵ AB P,P 且P AB,
又∵ AB 平面ABC,P 平面ABC.
设平面ABC 平面 l,P l.
l
A
①直线l在平面α内:直线l上的所有点都在平面α上. 记为l
l ②直线l与平面α相交:直线l与平面α只有一个公共点A. 记为l A ③直线l与平面α平行:直线l与平面α没有公共点.记为l //.
3.点、直线、平面的关系
a
(4)直线与直线的位置关系:
o
b
共面直线平 相行 交::
a a
// b b
D
αβ
C
空间四边形
例.三个平面最多能把空间分成____部分,最少能把空 间分成____部分。 [考]三个平面能把空间分成4或6或7或8部分.
面与面的交线
例.正方体中,平面ACC1与平面BDC1的交线是_____.
D1C1基本Fra bibliotek实2.若一条直线
A1
B1
上的两点在一个平面内,
那么这条直线在此平面
内.
(√) P131-4.直线a⊂α,b⊂β,α//β,判断直线a,b的位置关系. 平行或异面
[考]若a⊂α,b⊂β,α//β,则a与b平行或异面.
P131-132习题8.4
2.若直线a不平行于平面α,且a⊂α,则下列结论成立的是( B ) a
A.α内的所有直线与a是异面直线 B.α内不存在与a平行的直线
O
(a
b)

空间解析几何的位置关系

空间解析几何的位置关系

空间解析几何的位置关系在数学中,空间解析几何是研究三维空间中点、直线、平面等几何元素之间的位置关系的一个分支。

通过分析和运用几何运算,可以准确描述和计算空间中各个几何元素的位置关系。

本文将介绍空间解析几何中常见的位置关系,并探讨它们在实际应用中的意义和用途。

一、点和直线的位置关系在空间解析几何中,点和直线是最基本的几何元素之一。

点在直线上的位置关系共有三种情况:1. 点在直线上:当一个点在直线上时,我们可以通过其坐标与直线的方程进行验证。

例如,对于一条直线的方程为Ax + By + Cz + D = 0,只需代入点的坐标(x, y, z),若方程成立,则该点在直线上。

2. 点在直线之外:如果一个点不在直线上,我们可以使用点到直线的距离公式来确定它们之间的关系。

点到直线的距离公式为:d = |Ax + By + Cz + D| / √(A^2 + B^2 + C^2),其中d表示点到直线的最短距离。

3. 点在直线延长线上:若一个点不在直线上,但位于直线的延长线上时,其满足点到直线的最短距离为0。

二、点和平面的位置关系与点和直线的位置关系类似,点和平面的位置关系也可以分为三种情况:1. 点在平面上:当一个点在平面上时,我们可以通过将点的坐标代入平面的方程进行验证。

例如,对于一个平面的方程为Ax + By + Cz +D = 0,只需代入点的坐标(x, y, z),若方程成立,则该点在平面上。

2. 点在平面之上或之下:如果一个点不在平面上,则可利用点到平面的距离公式来判断它们的位置关系。

点到平面的距离公式为:d =|Ax + By + Cz + D| / √(A^2 + B^2 + C^2),其中d表示点到平面的最短距离。

当d为正值时,表示点在平面的上方;当d为负值时,表示点在平面的下方。

3. 点在平面之外但位于平面的延伸面上:当一个点不在平面上,但在平面的延伸面上时,其满足点到平面的距离为0。

三、直线和直线的位置关系直线和直线之间的位置关系包括平行、相交和重合三种情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课前自主回顾 课堂互动探究 课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
(3)一个常用结论. 过平面外一点和平面内一点的直线,与平面内不过该 点的直线是异面直线,如图.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
如图所示,正方体ABCD-A1B1C1D1中,M、N分别是 A1B1、B1C1的中点.问: (1)AM和CN是否是异面直线?说明理由. (2)D1B和CC1是否是异面直线?说明理由.
课前自主回顾 课堂互动探究 课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
1 (2)∵EF 綊2CD1,∴直线 D1F 和 CE 必相交, 设 D1F∩CE=P. ∵P∈D1F 且 D1F⊂平面 AA1D1D, ∴P∈平面 AA1D1D. 又 P∈EC 且 CE⊂平面 ABCD, ∴P∈平面 ABCD, 即 P 是平面 ABCD 与平面 AA1D1D 的公共点, 而平面 ABCD∩平面 AA1D1D=AD, ∴P∈AD.∴CE、D1F、DA 三线共点.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
3.直线和平面的位置关系
位置关系 公共点 符号表示 直线a在 平面α内 直线a与平面 直线a与平 α相交 面α平行
无数个 公共点 一个 公共点 无 公共点 a⊂α a∩α=A a∥α
课前自主回顾
课堂互动探究
课时作业
与名师对话
与名师对话
高考总复习 ·课标版 ·A
数学(理)
(4)异面直线所成的角:不同在任何一个平面内的两条 直线叫做
异面直线 ,已知异面直线a,b,经过空间任一
点O作直线a′∥a,b′∥b,我们把a′与b′所成的 锐角
(或直角) 叫做异面直线a与b所成的角(或夹角),两条异面
π 直线所成的角θ∈(0, 2 ],计算中,通常把两条异面直线所 成的角转化为两条相交直线所成的角.
数学(理)
(2)是异面直线.证明如下: ∵ABCD-A1B1C1D1是正方体,∴B、C、C1、D1不共 面. 假设D1B与CC1不是异面直线, 则存在平面α,使D1B⊂平面α ,CC1⊂平面α, ∴D1、B、C、C1∈α,与ABCD-A1B1C1D1是正方体矛 盾. ∴假设不成立,即D1B与CC1是异面直线.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
考纲要求 理解空间直线、 平面位置关系的 定义,并了解可 以作为推理依据 的公理和定理.
考情分析 预测:2013年高考对本节内容的考查仍将 以求证异面直线垂直、求异面直角所成角 为主.以棱柱、棱锥为依托考查异面直线 所成角,2013年高考复习中应予以高度关 注,还应关注共点、共线、共面问题的命 题.
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
如图所示,在正方体ABCD- A1B1C1D1中,E为AB的中点,F为A1A的中 点, 求证:(1)E、C、D1、F四点共面; (2)CE、D1F、DA三线共点.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
【证明】 (1)分别连接 EF、A1B、D1C. ∵E、F 分别是 AB 和 AA1 的中点, 1 ∴EF 綊 A1B.又 A1D1 綊 B1C1 綊 BC, 2 ∴四边形 A1D1CB 为平行四边形. ∴A1B∥CD1,从而 EF∥CD1. ∴EF 与 CD1 确定一个平面. ∴E、F、D1、C 四点共面.
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
正方体 ABCD-A′B′C′D′中, Q、 分别是 AB、 P、 R AD、B′C′的中点,那么,正方体过 P、Q、R 的截面图形 是________.(填几边形)
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
a∥c
课前自主回顾 课堂互动探究 课时作业
与名师对话Biblioteka 高考总复习 ·课标版 ·A
数学(理)
公理4实质上是说平行具有传递性,在平面、空间中这 个性质都适用. 作用:判断空间两条直线平行的依据. (3)等角定理:空间中如果两个角的两边分别对应平 行,那么这两个角 相等或互补.
课前自主回顾
课堂互动探究
课时作业
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
问题探究1:如果两条直线没有任何公共点,则两条直 线为异面直线,此说法正确吗? 提示:不正确.如果两条直线没有公共点,则两条直 线平行或异面. 问题探究2:垂直于同一条直线的两直线的位置关系怎 样?
提示:相交,平行或异面.
课前自主回顾 课堂互动探究 课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
解析:①错误,空间四边形四条边不在一个平面内; ②错误,如三棱柱的三条侧棱不能共面;③错误,如从正 方体一个顶点出发的三条棱不共面;④正确,由公理2的推 论可知;⑤正确,由公理1可知;⑥正确,由公理3可知, 两个平面的公共点都落在交线上;⑦错误,若l∩α=A,则 A∈α.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
(1)三个平面两两相交,则交线条数为 A.3 C.2或3 B.1 D.1或3
(
)
(2)平行六面体ABCD-A1B1C1D1中,既与AB共面,又与 CC1共面的棱的条数为________.
课前自主回顾
课堂互动探究
课时作业
与名师对话
与名师对话
高考总复习 ·课标版 ·A
数学(理)
2.直线与直线的位置关系 (1)位置关系的分类.
相交直线 :同一平面内,有且只有一个公共点 共面直线 平行直线 :同一平面内,没有公共点 异面直线:不同在任何 一个平面内,没有公共点
(2)平行公理:公理 4:平行于同一条直线的两条直线互 相平行. 符号表示为:设 a,b,c 是三条直线,a∥b,c∥b, 则
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
(对应学生用书 P131)
1.平面的基本性质 (1)公理 1: 如果一条直线上的 两点 在一个平面内, 那 么这条直线在此平面内. 符号表示为:A∈l,B∈l,A∈α,B∈α⇒l ⊂ 作用:可用来证明点、直线在平面内. α.
课前自主回顾 课堂互动探究 课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
所谓线共点问题就是证明三条或三条以上的直线交于 一点. (1)证明三线共点的依据是公理 3. (2)证明三线共点的思路是:先证两条直线交于一点,再 证明第三条直线经过该点,把问题化归到证明点在直线上的 问题.
课前自主回顾
问题探究3:如果一条直线与一个平面平行,那么,这 条直线与平面内的任意一条直线平行,这种说法正确吗? 提示:不正确.如果一条直线与一个平面平行,那么 这条直线与平面内的直线平行或异面.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
(对应学生用书P132)
平面的基本性质是研究立体几何的理论基础,考查平 面的基本性质、推论及文字语言、图形语言和符号语言的 相互转化能力.
答案:六边形
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
证明空间两直线平行最常用的方法:平行直线的传递 性,即如果 a∥b,b∥c,则 a∥c. 证明两直线为异面直线的方法: (1)定义法(不易操作). (2)反证法:先假设两条直线不是异面直线,即两直线平 行或相交,由假设的条件出发,经过严密的推理,导出矛盾, 从而否定假设,肯定两条直线异面.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
(2)公理2:过 不在一条直线 上的三点,有且只有一个 平面. 符号表示为:A,B,C三点不共线⇒有且只有一个平面 α,使A∈α,B∈α,C∈α. 作用:①可用来确定一个平面,为空间图形平面化作 准备;②证明点线共面.
课前自主回顾
连接MN、A1C1、AC. ∵M、N分别是A1B1、B1C1的中点, ∴MN∥A1C1. 又∵A1A綊C1C, ∴A1ACC1为平行四边形. ∴A1C1∥AC,∴MN∥AC, ∴A、M、N、C在同一平面内, 故AM和CN不是异面直线.
课前自主回顾 课堂互动探究 课时作业
与名师对话
高考总复习 ·课标版 ·A
课前自主回顾 课堂互动探究 课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
【思路启迪】 (1)易证MN∥AC,∴AM与CN不异 面.(2)由图易判断D1B和CC1是异面直线,证明时常用反证 法.
课前自主回顾
课堂互动探究
课时作业
与名师对话
【解】
高考总复习 ·课标版 ·A
数学(理)
(1)不是异面直线.理由如下:
4.两个平面的位置关系
位置关系 两平面 平行 两 平 面 相 交 斜 交 垂 直 表示法
高考总复习 ·课标版 ·A
数学(理)
公共点个数 没有公共点
α∥β
α∩β=l
有 无数 个公共点在一条直线上
α⊥β
有 无数 个公共点在一条直线上
相关文档
最新文档