空间立体几何的表面积和体积

合集下载

高考复习数学立体几何初步第7章 第2节 空间几何体的表面积与体积

高考复习数学立体几何初步第7章 第2节 空间几何体的表面积与体积

第二节空间几何体的表面积与体积————————————————————————————————[考纲传真]了解球、棱柱、棱锥、台的表面积和体积的计算公式.1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)锥体的体积等于底面面积与高之积.()(2)球的体积之比等于半径比的平方.()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O 的半径为R ,其内接正方体的边长为a ,则R =32a .( ) [答案] (1)× (2)× (3)√ (4)√2.(教材改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( )A .1 cmB .2 cmC .3 cmD.32 cmB [S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,∴r 2=4,∴r =2(cm).] 3.(2015·全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图7-2-1,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )图7-2-1A .14斛B .22斛C .36斛D .66斛B [设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π·r 2·5=π12×⎝ ⎛⎭⎪⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).故选B.]4.(2016·全国卷Ⅱ)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A .12π B.323π C .8πD .4πA [设正方体棱长为a ,则a 3=8,所以a =2.所以正方体的体对角线长为23,所以正方体外接球的半径为3,所以球的表面积为4π·(3)2=12π,故选A.]5.(2017·郑州质检)某几何体的三视图如图7-2-2所示(单位:cm),则该几何体的体积是________cm 3.图7-2-2323 [由三视图可知该几何体是由棱长为 2 cm 的正方体与底面为边长为 2 cm 的正方形、高为2 cm 的四棱锥组成,V =V 正方体+V 四棱锥=8 cm 3+83 cm 3=323cm 3.](1)某几何体的三视图如图7-2-3所示,则该几何体的表面积等于( )图7-2-3A .8+22B .11+2 2C .14+2 2D .15(2)(2016·全国卷Ⅰ)如图7-2-4,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )图7-2-4A .17πB .18πC .20πD .28π(1)B (2)A [(1)由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为4+22+2+2=8+22,两底面的面积和为2×12×1×(1+2)=3.所以该几何体的表面积为8+22+3=11+2 2.(2)由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR 2=17π.故选A.][规律方法] 1.(1)多面体与旋转体的表面积等于侧面面积与底面面积之和.(2)简单组合体:应搞清各构成部分,并注意重合部分的处理.2.若以三视图的形式给出,解题的关键是对给出的三视图进行分析,从中发现几何体中各元素间的位置关系及数量关系,得到几何体的直观图,然后根据条件求解.[变式训练1] (2016·全国卷Ⅲ)如图7-2-5,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )【导学号:31222245】图7-2-5A .18+36 5B .54+18 5C .90D .81B [由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(3×3+3×6+3×35)×2=54+18 5.故选B.](1)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π(2)(2016·天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图7-2-6所示(单位:m),则该四棱锥的体积为________m 3.图7-2-6(1)C (2)2 [(1)过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示.由于V 圆柱=π·AB 2·BC =π×12×2=2π, V 圆锥=13π·CE 2·DE =13π·12×(2-1)=π3,所以该几何体的体积V =V 圆柱-V 圆锥=2π-π3=5π3.(2)由三视图知,四棱锥的高为3,底面平行四边形的一边长为2,对应高为1,所以其体积V =13Sh =13×2×1×3=2.][规律方法] 1.若所给定的几何体是柱体、锥体或台体,则可直接利用公式进行求解.2.若所给定的几何体的体积不能直接利用公式得出,则常用转换法(转换的原则是使底面面积和高易求)、分割法、补形法等方法进行求解.3.若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.[变式训练2] 一个几何体的三视图如图7-2-7所示(单位:m),则该几何体的体积为________m 3.图7-2-783π [由几何体的三视图可知该几何体由两个圆锥和一个圆柱构成,其中圆锥的底面半径和高均为1,圆柱的底面半径为1且其高为2,故所求几何体的体积为V =13π×12×1×2+π×12×2=83π.]111V 的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4π B.9π2C.6π D.32π3B[由AB⊥BC,AB=6,BC=8,得AC=10,要使球的体积V最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC的内切圆的半径为r.则12×6×8=12×(6+8+10)·r,则r=2.此时2r=4>3,不合题意.因此球与三棱柱的上、下底面相切时,球的半径R最大.由2R=3,即R=3 2.故球的最大体积V=43πR3=92π.][迁移探究1]若本例中的条件变为“直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上”,若AB=3,AC=4,AB⊥AC,AA1=12,求球O的表面积.[解]将直三棱柱补形为长方体ABEC-A′B′E′C′,则球O是长方体ABEC-A′B′E′C′的外接球,∴体对角线BC′的长为球O的直径.因此2R=32+42+122=13,故S球=4πR2=169π.[迁移探究2]若本例中的条件变为“正四棱锥的顶点都在球O的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.[解]如图,设球心为O,半径为r,则在Rt △AOF 中,(4-r )2+(2)2=r 2, 解得r =94,则球O 的体积V 球=43πr 3=43π×⎝ ⎛⎭⎪⎫943=243π16.[规律方法] 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中P A ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.[变式训练3] (2015·全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256πC [如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O -ABC =V C -AOB ,而△AOB 面积为定值,∴当点C 到平面AOB 的距离最大时,V O -ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O -ABC 最大为13×12R2×R=36,∴R=6,∴球O的表面积为4πR2=4π×62=144π.故选C.][思想与方法]1.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高.[易错与防范]1.求组合体的表面积时,要注意各几何体重叠部分的处理,防止重复计算.2.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.课时分层训练(三十九)空间几何体的表面积与体积A组基础达标(建议用时:30分钟)一、选择题1.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.22π3 B.42π3C.22πD.42πB[依题意知,该几何体是以2为底面半径,2为高的两个同底圆锥组成的组合体,则其体积V=13π(2)2×22=423π.]2.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为()【导学号:31222246】A.32π3B.4πC.2π D.4π3D[依题意可知正四棱柱体对角线的长度等于球的直径,可设球半径为R,则2R=12+12+(2)2=2,解得R=1,所以V=4π3R3=4π3.]3.(2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图7-2-8所示,则该几何体的体积为()图7-2-8A.13+23πB.13+23πC.13+26πD .1+26πC [由三视图知,该四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×43π×⎝ ⎛⎭⎪⎫223=13+26π.故选C.]4.某几何体的三视图如图7-2-9所示,且该几何体的体积是3,则正视图中的x 的值是( )【导学号:31222247】图7-2-9A .2 B.92 C.32D .3D [由三视图知,该几何体是四棱锥,底面是直角梯形,且S底=12×(1+2)×2=3,∴V=13x·3=3,解得x=3.]5.(2016·江南名校联考)一个四面体的三视图如图7-2-10所示,则该四面体的表面积是()图7-2-10A.1+ 3 B.2+ 3C.1+2 2 D.2 2B[四面体的直观图如图所示.侧面SAC⊥底面ABC,且△SAC与△ABC均为腰长是2的等腰直角三角形,SA=SC=AB=BC=2,AC=2.设AC的中点为O,连接SO,BO,则SO⊥AC,∴SO⊥平面ABC,∴SO⊥BO.又OS=OB=1,∴SB=2,故△SAB与△SBC均是边长为2的正三角形,故该四面体的表面积为2×1 2×2×2+2×34×(2)2=2+ 3.]二、填空题6.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为______.【导学号:31222248】7 [设新的底面半径为r ,由题意得13×π×52×4+π×22×8=13×π×r 2×4+π×r 2×8, ∴r 2=7,∴r =7.]7.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.12 [设正六棱锥的高为h ,棱锥的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1,∴斜高h ′=12+(3)2=2,∴S 侧=6×12×2×2=12.]8.某几何体的三视图如图7-2-11所示,则该几何体的体积为________.图7-2-11136π [由三视图可知,该几何体是一个圆柱和半个圆锥组合而成的几何体,其体积为π×12×2+12×13π×12×1=136π.]三、解答题9.如图7-2-12,在三棱锥D -ABC 中,已知BC ⊥AD ,BC =2,AD =6,AB +BD =AC +CD =10,求三棱锥D -ABC 的体积的最大值.图7-2-12[解] 由题意知,线段AB +BD 与线段AC +CD 的长度是定值,∵棱AD 与棱BC 相互垂直,设d 为AD 到BC 的距离,4分则V D -ABC=AD ·BC ×d ×12×13=2d , 当d 最大时,V D -ABC 体积最大.8分 ∵AB +BD =AC +CD =10, ∴当AB =BD =AC =CD =5时, d 有最大值42-1=15.此时V =215.12分10.四面体ABCD 及其三视图如图7-2-13所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H .图7-2-13(1)求四面体ABCD 的体积; (2)证明:四边形EFGH 是矩形.[解] (1)由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1,∴AD ⊥平面BDC ,3分∴四面体ABCD 的体积V =13×12×2×2×1=23.5分(2)证明:∵BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG ,平面EFGH ∩平面ABC =EH ,8分∴BC ∥FG ,BC ∥EH ,∴FG ∥EH . 同理EF ∥AD ,HG ∥AD ,∴EF ∥HG , ∴四边形EFGH 是平行四边形. 又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG . ∴四边形EFGH 是矩形.12分B 组 能力提升 (建议用时:15分钟)1.(2015·全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图7-2-14所示.若该几何体的表面积为16+20π,则r =( )图7-2-14A .1B .2C .4D .8B [如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.]2.三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.14 [设点A 到平面PBC 的距离为h .∵D ,E 分别为PB ,PC 的中点,∴S △BDE =14S △PBC , ∴V 1V 2=V A -DBEV A -PBC=13S △BDE ·h 13S △PBC ·h=14.] 3.(2016·全国卷Ⅰ)如图7-2-15,已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G.图7-2-15(1)证明:G 是AB 的中点;(2)在图中作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.[解] (1)证明:因为P 在平面ABC 内的正投影为D , 所以AB ⊥PD.因为D在平面P AB内的正投影为E,所以AB⊥DE.3分因为PD∩DE=D,所以AB⊥平面PED,故AB⊥PG.又由已知可得,P A=PB,所以G是AB的中点.5分(2)在平面P AB内,过点E作PB的平行线交P A于点F,F即为E在平面P AC内的正投影.7分理由如下:由已知可得PB⊥P A,PB⊥PC,又EF∥PB,所以EF⊥P A,EF⊥PC.又P A∩PC=P,因此EF⊥平面P AC,即点F为E在平面P AC内的正投影.连接CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G是AB的中点,所以D在CG上,故CD=23CG.10分由题设可得PC⊥平面P AB,DE⊥平面P AB,所以DE∥PC,因此PE=23PG,DE=13PC.由已知,正三棱锥的侧面是直角三角形且P A=6,可得DE=2,PE=2 2. 在等腰直角三角形EFP中,可得EF=PF=2,所以四面体PDEF的体积V=13×12×2×2×2=43.12分。

空间几何体的表面积和体积公式大全

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全一、 全(表)面积(含侧面积) 1、柱体① 棱柱② 圆柱 2、锥体①棱锥:h c S ‘底棱锥侧21=② 圆锥:l c S 底圆锥侧21=3、 台体① 棱台:h c c S)(21‘下底上底棱台侧+=②圆台:l c c S )(21下底上底棱台侧+=4、 球体① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、柱体① 棱柱 ② 圆柱 2、锥体① 棱锥 ② 圆锥3、① 棱台 ② 圆台 4、球体① 球:r V 334π=球② 球冠:略 ③ 球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。

三、 拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的。

2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的32。

分析:圆柱体积:r r h S V r 3222)(ππ=⨯==圆柱圆柱侧面积:r h cS r r 242)2(ππ=⨯==圆柱侧因此:球体体积:r r V 3334232ππ=⨯=球 球体表面积:r S 24π=球通过上述分析,我们可以得到一个很重要的关系(如图)+ =即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式: )(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。

延长两侧棱相交于一点P 。

设台体上底面积为S 上,下底面积为S 下高为h 。

易知:PDC ∆∽PAB ∆,设h PE 1=, 则h h PF +=1由相似三角形的性质得:PFPEAB CD =即:hh hSS +=11下上(相似比等于面积比的算术平方根)整理得:SS h S h 上下上-=1又因为台体的体积=大锥体体积—小锥体体积 ∴h S S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代入:SS h S h 上下上-=1得:hS S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S SS S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。

8.2空间几何体的表面积与体积

8.2空间几何体的表面积与体积

1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.柱、锥、台和球的表面积和体积名称 几何体 表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13Sh台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 33.常用结论(1)与体积有关的几个结论①一个组合体的体积等于它的各部分体积的和或差. ②底面面积及高都相等的两个同类几何体的体积相等. (2)几个与球有关的切、接常用结论 a.正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .b.若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.c.正四面体的外接球与内切球的半径之比为3∶1. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)多面体的表面积等于各个面的面积之和.( √ ) (2)锥体的体积等于底面积与高之积.( × ) (3)球的体积之比等于半径比的平方.( × )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( √ ) (5)长方体既有外接球又有内切球.( × )(6)台体的体积可转化为两个锥体的体积之差来计算.( √ )1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( ) A.4π B.3π C.2π D.π 答案 C解析 底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.故选C. 2.(2014·重庆)某几何体的三视图如图所示,则该几何体的体积为( )A.12B.18C.24D.30答案 C解析 由俯视图可以判断该几何体的底面为直角三角形,由主视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,V 111ABC A B C -棱柱=S △ABC ·AA 1=12×4×3×5=30,V 111P A B C 锥-棱=13S111A B C ·PB 1=13×12×4×3×3=6.故几何体ABC -P A 1C 1的体积为30-6=24.故选C.3.(2015·陕西)一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB.4πC.2π+4D.3π+4答案 D解析 由三视图可知原几何体为半圆柱,底面半径为1,高为2,则表面积为: S =2×12π×12+12×2π×1×2+2×2=π+2π+4=3π+4.4.(教材改编)一个棱长为2 cm 的正方体的顶点都在球面上,则球的体积为________ cm 3. 答案 43π解析 由题意知正方体的体对角线为其外接球的直径, 所以其外接球的半径r =12×23=3(cm),所以V 球=43π×r 3=43π×33=43π(cm 3).5.(2015·天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.答案 83π解析 由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1 m ,圆锥的高为1 m ,圆柱的高为2 m ,所以该几何体的体积V =2×13π×12×1+π×12×2=83π (m 3).题型一 求空间几何体的表面积例1 (1)(2015·安徽)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3B.1+2 2C.2+ 3D.2 2(2)(2015·课标全国Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的主视图和俯视图如图所示.若该几何体的表面积为16+20π,则r 等于( )A.1B.2C.4D.8(3)(2014·山东)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 答案 (1)C (2)B (3)12解析 (1)由几何体的三视图可知空间几何体的直观图如图所示. ∴其表面积S 表=2×12×2×1+2×34×(2)2=2+3,故选C.(2)由主视图与俯视图想象出其直观图,然后进行运算求解.如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B. (3)设正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1,∴斜高h ′=12+(3)2=2, ∴S 侧=6×12×2×2=12.思维升华 空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (3)旋转体的表面积问题注意其侧面展开图的应用.(2014·安徽)一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+ 3B.18+ 3C.21D.18答案 A解析 由几何体的三视图可知,该几何体的直观图如图所示. 因此该几何体的表面积为6×(4-12)+2×34×(2)2=21+ 3.故选A.题型二 求空间几何体的体积命题点1 求以三视图为背景的几何体的体积例2 (2015·课标全国Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17 C.16 D.15答案 D解析 如图,由题意知,该几何体是正方体ABCD-A 1B 1C 1D 1被过三点A 、B 1、D 1的平面所截剩余部分,截去的部分为三棱锥A-A 1B 1D 1,设正方体的棱长为1,则截去部分体积与剩余部分体积的比值为V 111A A B D -V 111B C D ABCD -=V 111A AB D -V 1111A BCD ABCD --V 111A A B D -=13×12×12×113-13×12×12×1=15.选D.命题点2 求简单几何体的体积例3 (2015·山东)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D.2π 答案 C解析 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C.(1)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的体积等于( )A.4π3 B.32π3 C.36πD.256π3(2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( ) A.23B.33C.43D.32答案 (1)B (2)A解析 (1)由三视图可知该几何体是一个直三棱柱,底面为直角三角形,高为12,如图所示,其中AC =6,BC =8,∠ACB =90°,则AB =10.由题意知,当打磨成的球的大圆恰好与三棱柱底面直角三角形的内切圆相同时,该球的半径最大.即r =6+8-102=2,故能得到的最大球的体积为43πr 3=4π3×8=32π3,故选B.(2)如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32,∴S △AGD =S △BHC =12×22×1=24,∴V =V E -ADG +V F -BCH +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23.故选A.思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解. (3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解. 题型三 与球有关的切、接问题例4 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B.210C.132 D.310答案 C解析 如图所示,由球心作平面ABC 的垂线, 则垂足为BC 的中点M . 又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =(52)2+62=132. 引申探究1.本例若将直三棱柱改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少? 解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r . 又正方体的棱长为4,故其体对角线长为43, 从而V 外接球=43πR 3=43π×(23)3=323π,V 内切球=43πr 3=43π×23=32π3.2.本例若将直三棱柱改为“正四面体”,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少? 解 设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π.3.本例中若将直三棱柱改为“侧棱和底面边长都是32的正四棱锥”,则其外接球的半径是多少? 解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为(32)2-(12×6)2=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.思维升华 空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB=AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( ) A.22B.1C. 2D. 3答案 C解析 由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为△ABC 所在圆面的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中点.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x 2,MC 1=x2,OC 1=R =1(R为球的半径),∴(x 2)2+(x2)2=1,即x =2,则AB =AC =1, ∴S 11ABB A 矩形=2×1= 2.14.巧用补形法解决立体几何问题典例 如图:△ABC 中,AB =8,BC =10,AC =6,DB ⊥平面ABC ,且AE ∥FC ∥BD ,BD =3,FC =4,AE =5. 则此几何体的体积为________.思维点拨 将所求几何体补成一个直三棱柱,利用棱柱的体积公式即可求得该几何体的体积.解析 用“补形法”把原几何体补成一个直三棱柱,使AA ′=BB ′=CC ′=8,所以V 几何体=12V 三棱柱=12×S △ABC ·AA ′=12×24×8=96.答案 96温馨提醒 (1)补形法的应用思路:“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”. (2)补形法的应用条件:当某些空间几何体是某一个几何体的一部分,且求解的问题直接求解较难入手时,常用该法.[方法与技巧]求空间几何体的侧面积、体积的思想与方法(1)转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.(2)求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.[失误与防范]求空间几何体的表面积应注意的问题(1)求组合体的表面积时,要注意各几何体重叠部分的处理.(2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.A 组 专项基础训练 (时间:35分钟)1.(2015·浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8 cm 3B.12 cm 3C.323 cm 3D.403 cm 3答案 C解析 由三视图可知该几何体是由棱长为2 cm 的正方体与底面为边长为2 cm 正方形、高为2 cm 的四棱锥组成,V =V 正方体+V 四棱锥=8 cm 3+83 cm 3=323cm 3.故选C.2.用平面α截球O 所得截面圆的半径为3,球心O 到平面α的距离为4,则此球的表面积为( ) A.100π3B.500π3C.75πD.100π答案 D解析 依题意,设球半径为R ,满足R 2=32+42=25, ∴S 球=4πR 2=100π.3.(2015·课标全国Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) A.14斛 B.22斛 C.36斛 D.66斛 答案 B解析 由题意知:米堆的底面半径为163(尺),体积V =13×14πR 2·h ≈3209(立方尺).所以堆放的米大约为3209×1.62≈22(斛).4.一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( )A.3+ 6B.3+ 5C.2+ 6D.2+ 5答案 C解析 由三视图还原为空间几何体,如图所示, 则有OA =OB =1,AB = 2. 又PB ⊥平面ABCD , ∴PB ⊥BD ,PB ⊥AB ,∴PD =22+1=5,P A =2+12=3,从而有P A 2+DA 2=PD 2,∴P A ⊥DA ,∴该几何体的侧面积S =2×12×2×1+2×12×2×3=2+ 6. 5.(2015·课标全国Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( )A.36πB.64πC.144πD.256π答案 C解析 如图,要使三棱锥O-ABC 即C-OAB 的体积最大,当且仅当点C到平面OAB 的距离,即三棱锥C-OAB 底面OAB 上的高最大,其最大值为球O 的半径R ,则V O-ABC 最大=V C-OAB 最大=13×S △OAB ×R =13×12×R 2×R =16R 3=36,所以R =6,得S 球O =4πR 2=4π×62=144π.选C.6.(2014·山东)三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC的体积为V 2,则V 1V 2=________. 答案 14解析 设点A 到平面PBC 的距离为h .∵D ,E 分别为PB ,PC 的中点,∴S △BDE =14S △PBC , ∴V 1V 2=V A -DBE V A -PBC =13S △BDE ·h 13S △PBC ·h =14. 7.(2015·江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.答案 7 解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7. 8.一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的体积与球O 的体积的比值为________.答案 932解析 设等边三角形的边长为2a ,球O 的半径为R ,则V 圆锥=13·πa 2·3a =33πa 3.又R 2=a 2+(3a -R )2,所以R =233a , 故V 球=4π3·(233a )3=323π27a 3, 则其体积比为932. 9.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的主视图和俯视图是相同的正方形,求它们的表面积之比.解 由题意可知这三个几何体的高都相等,设长方体的底面正方形的边长为a ,高也等于a ,故其表面积为S 1=6a 2.直三棱柱的底面是腰长为a 的等腰直角三角形,高为a ,故其表面积为S 2=12×a ×a +12×a ×a +(a +a +2a )×a =(3+2)a 2.14圆柱的底面是半径为a 的圆的14,高为a ,故其表面积为S 3=14πa 2+14πa 2+a 2+a 2+14×2πa ×a =(π+2)a 2.所以它们的表面积之比为S 1∶S 2∶S 3=6a 2∶(3+2)a 2∶(π+2)a 2=6∶(3+2)∶(π+2).10.(教材改编)已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm 和30 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如图所示,三棱台ABC —A 1B 1C 1中,O 、O 1分别为两底面中心,D 、D 1分别为BC 和B 1C 1的中点,则DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得3×12×(20+30)×DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中, O 1O =DD 21-(OD -O 1D 1)2=43, 所以棱台的高为4 3 cm.B 组 专项能力提升(时间:25分钟)11.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S —ABC 的体积为( )A.3 3B.2 3C. 3D.1答案 C解析 如图,过A 作AD 垂直SC 于D ,连接BD .由于SC 是球的直径,所以∠SAC =∠SBC =90°,又∠ASC =∠BSC =30°,又SC 为公共边, 所以△SAC ≌△SBC .由于AD ⊥SC ,所以BD ⊥SC .由此得SC ⊥平面ABD .所以V S —ABC =V S —ABD +V C —ABD =13S △ABD ·SC . 由于在Rt △SAC 中,∠ASC =30°,SC =4,所以AC =2,SA =23,由于AD =SA ·CASC = 3.同理在Rt △BSC 中也有BD =SB ·CBSC = 3.又AB =3,所以△ABD 为正三角形,所以V S —ABC =13S △ABD ·SC=13×12×(3)2·sin 60°×4=3,所以选C.12.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+6 5B.30+6 5C.56+12 5D.60+12 5答案 B解析 由几何体的三视图可知,该三棱锥的直观图如图所示,其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,AE =4.∵AE =4,ED =3,∴AD =5.又CD ⊥BD ,CD ⊥AE ,则CD ⊥平面ABD ,故CD ⊥AD ,所以AC =41且S △ACD =10.在Rt △ABE 中,AE =4,BE =2,故AB =2 5.在Rt △BCD 中,BD =5,CD =4,故S △BCD =10,且BC =41.在△ABD 中,AE =4,BD =5,故S △ABD =10.在△ABC 中,AB =25,BC =AC =41,则AB 边上的高h =6,故S △ABC =12×25×6=6 5. 因此,该三棱锥的表面积为S =30+6 5.13.(2015·四川)在三棱柱ABC —A 1B 1C 1中,∠BAC =90°,其主视图和左视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P —A 1MN 的体积是________.答案 124解析 由题意知还原后的几何体是一个直放的三棱柱,三棱柱的底面是直角边长为1的等腰直角三角形,高为1的直三棱柱,∵V 1—P A MN =V 1—A PMN ,又∵AA 1∥平面PMN ,∴V 1—A PMN =V A —PMN ,∴V A —PMN =13×12×1×12×12=124, 故V 1—P A MN =124. 14.(2015·课标全国Ⅰ)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E —ACD 的体积为63,求该三棱锥的侧面积. (1)证明 因为四边形ABCD 为菱形,所以AC ⊥BD .因为BE ⊥平面ABCD ,所以AC ⊥BE .故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)解 设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E —ACD 的体积V E —ACD =13×12AC ·GD ·BE =624x 3=63. 故x =2.从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5.故三棱锥E —ACD 的侧面积为3+2 5.15.如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,AB =2,EB = 3.(1)求证:DE ⊥平面ACD ;(2)设AC =x ,V (x )表示三棱锥B -ACE 的体积,求函数V (x )的解析式及最大值.(1)证明 ∵四边形DCBE 为平行四边形,∴CD ∥BE ,BC ∥DE .∵DC ⊥平面ABC ,BC ⊂平面ABC ,∴DC ⊥BC .∵AB 是圆O 的直径,∴BC ⊥AC ,且DC ∩AC =C ,∴BC ⊥平面ADC .∵DE ∥BC ,∴DE ⊥平面ADC .(2)解 ∵DC ⊥平面ABC ,∴BE ⊥平面ABC .在Rt △ABE 中,AB =2,EB = 3.在Rt △ABC 中,∵AC =x ,BC =4-x 2(0<x <2),∴S △ABC =12AC ·BC =12x ·4-x 2, ∴V (x )=V E -ABC =36x ·4-x 2(0<x <2). ∵x 2(4-x 2)≤(x 2+4-x 22)2=4,当且仅当x 2=4-x 2,即x =2时,取等号, ∴x =2时,体积有最大值33.。

初中数学知识归纳立体几何的体积和表面积的计算方法

初中数学知识归纳立体几何的体积和表面积的计算方法

初中数学知识归纳立体几何的体积和表面积的计算方法初中数学知识归纳:立体几何的体积和表面积的计算方法在初中数学学习中,立体几何是一个重要的内容,涉及到体积和表面积的计算方法。

本文将综合归纳立体几何中常见的几何体的体积和表面积计算方法,以帮助同学们更好地掌握这一知识点。

1. 立方体立方体是一种几何体,具有六个相等的正方形面。

计算立方体的体积和表面积十分简单。

体积的计算方法:立方体的体积等于边长的立方,即体积 = 边长 x 边长 x 边长。

表面积的计算方法:立方体的表面积等于六个面的面积之和,即表面积 = 6 x 面积。

2. 正方体正方体是一种特殊的立方体,其六个面都是正方形。

体积的计算方法:正方体的体积与立方体相同,体积 = 边长 x 边长x 边长。

表面积的计算方法:正方体的表面积也与立方体相同,表面积 = 6 x 面积。

3. 长方体长方体是一种具有六个面的几何体,分别为矩形。

体积的计算方法:长方体的体积等于底面积乘以高,即体积 = 底面积 x 高。

表面积的计算方法:长方体的表面积等于两个底面积和四个侧面积之和,即表面积 = 2 x 底面积 + 4 x 侧面积。

4. 圆柱体圆柱体由一个圆形底面和一个平行于底面的圆形顶面连接而成。

体积的计算方法:圆柱体的体积等于底面积乘以高,即体积 = 底面积 x 高。

其中,底面积为圆的面积,可以使用πr²来表示(π取3.14或近似值),r为圆的半径。

表面积的计算方法:圆柱体的表面积等于两个底面积和一个侧面的面积之和,即表面积 = 2 x 底面积 + 侧面积。

其中,侧面积可以看作一条长方形的面积,长度为圆周长,宽度为圆柱体的高。

因此,侧面积 = 圆周长 x 高= 2πr x 高。

5. 锥体锥体由一个圆形底面和一个尖顶连接而成。

体积的计算方法:锥体的体积等于底面积乘以高再除以3,即体积= (底面积 x 高) / 3。

其中,底面积为圆的面积,可以使用πr²来表示(π取3.14或近似值),r为圆的半径。

立体几何体的体积与表面积

立体几何体的体积与表面积

体积定义及物理意义
体积定义
体积是立体几何体占据三维空间的大 小,是描述立体几何体规模的基本量 。
物理意义
体积反映了立体几何体在空间中的延 伸程度,与物体的质量、密度等物理 性质密切相关。
体积计算公式推导
01
02
03
长方体体积公式
V = l × w × h,其中l为 长度,w为宽度,h为高度 。该公式通过计算三个相 邻面的面积之积得出体积 。
圆锥体积
1/3×底面积×高,记作 V=1/3×π×r^2×h
圆锥表面积
侧面积+底面积,记作 S=π×r×l+π×r^2(其中l为母
线长)
球体和椭球体
球体体积
4/3×π×r^3(r为球体半径)
椭球体体积
4/3×π×a×b×c(a,b,c分别为椭球体的三个 半轴长)
球体表面积
4×π×r^2
椭球体表面积
空间
立体几何体存在的三维空间,由 无数个平面和点组成。
常见立体几何体类型
正方体
六个面都是正方形的特殊长方 体。
圆锥体
由一个圆面和一个侧面(母线 为直线)围成的立体几何体。
长方体
六个面都是矩形的立体几何体 。
圆柱体
由两个平行且相等的圆面和一 个侧面围成的立体几何体。
球体
由一个连续且光滑的曲面围成 的立体几何体,所有点到球心 的距离都相等。
设球体半径为r,则其表面积为 4πr²。公式推导基于球体表面微
元的面积积分。
圆柱体表面积公式
设圆柱体底面半径为r,高为h, 则其表面积为2πrh+2πr²。公式 推导基于圆柱体侧面和底面的面
积计算。
实际应用举例
散热设计

空间几何体的表面积与体积公式大全,DOC

空间几何体的表面积与体积公式大全,DOC

空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积)1、①棱柱②圆柱2、①②3、①②4、①球:②③二、1、①棱柱②圆柱2、①棱锥②圆锥3、①棱台②圆台4、①球:②③三、1、2、则+=即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式:)(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。

延长两侧棱相交于一点P 。

则∴V 即:)(33)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S S S S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。

这些圆柱的高为nr,则:每个圆柱的体积h S V i i ==nrr i 2π……=2r nr ⨯π=[3r n n π=[3r n n π当→n ∴V 半球5、 ∴S =球6、(1则其体积为:a V 3=正方体四个角上切下的每一个三棱锥体积为:中间剩下的正四面体的体积为:a a a a hSV 322231]60sin 21[3131)32232()2()2(=-⨯︒⨯⨯⨯==⨯⨯正三棱锥这样一个即:61(2 (a)(b)(c)(d)(e)(3(a ) 正方体内切球直径=正方体棱长(b ) 正方体内切球与正四面体的四条棱相切。

(c ) 与正四面体四条棱相切的球半径=正方体棱长的一半 (d ) 设正四面体棱长为a ,则与其棱都相切的球半径为r 1有:aar 422211=⨯= 7、利用祖暅原理推导球体体积。

构造一个几何体,使其截面与半球截面处处相等,根据祖暅原理可得两物体体积相等。

证明:作如下构造:在底面半径和高都是r 的圆柱内挖去一个与圆柱等底等高的圆锥。

如图:R ,∴S 1π=即:S 1 8、 正方体与球(1) 正方体的内切球正方体的棱长=a 球体的直径d (2) 正方体的外接球正方体的体对角线=a 3球体的直径d(3) 规律:①正方体的内切球与外接球的球心为同一点; ②正方体的内切球与外接球的球心在体对角线上; ③正四面体的内切球与外接球的的半径之比为:3:1 ④正四面体内切球与外接球体积之比为:1:339(∴a h r 12641==即:a a r V 33321663434)126(πππ===球∴π3:18=V V 球正四机体: (2)正四面体的外接球 外接球的半径=)2332(224343a a⨯-⨯=⨯高=a 46 ∴2:33122:86:33ππ==aaV V 正四面体球 (310、 (1 球体直径、圆柱的高、圆柱底面直径构成直角三角形。

高中数学 空间几何体的表面积和体积

高中数学 空间几何体的表面积和体积
1.3 简单几何体的表面积和体积
1、表面积:几何体表面的面积 2、体积:几何体所占空间的大小。
表面积、全面积和侧面积
• 表面积:立体图形的所能触摸到的面积之 和叫做它的表面积。(每个面的面积相加 )
• 全面积 全面积是立体几何里的概念, 相对于截面积(“截面积”即切面的面积) 来说的,就是表面积总和
2r
l
圆锥的侧面展开图是扇形
rO
S r2 r l r(r l)
(3)台体的侧面积
①正棱台:设正n棱台的上底面、下底面周 长分别为c′、c,斜高为h′,则正n棱台的侧面积公
式:S正棱台侧= 1∕2(c+c.′)h′
②圆台:如果圆台的上、下底面半径分别为
r′、r,母线长为l,则S圆台侧= πl(r′+. r)
(2)锥体的侧面积
①正棱锥:设正棱锥底面正多边形的周长为c,斜 高为h′,则
S正棱锥侧= 1∕2ch.(′ 类比三角形的面积)
②圆锥:如果圆锥的底面半径为r,母线长为l,那 么
S圆锥侧= πrl.(类比三角形的面积)
把正三棱锥侧面沿一条侧棱展开,得到什么图形? 侧面积怎么求?
h' h'
S正棱锥= 侧 12ch'
棱锥的侧面展开图是什么?如何计算它的表面积?
正三棱锥的侧面展开图
h/ h/
侧面展开
h' h'
正五棱锥的侧面展开图
S表面积 S侧S底
思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线
展开,分别得到什么图形?展开的图形与原图
有什么关系?
扇形
R扇= l
l扇=
nl
180
l
r
S圆锥 = S 侧 扇 = n 3l6 201 2l扇 lrl

高考数学复习—空间几何体的表面积与体积

高考数学复习—空间几何体的表面积与体积
• 8.2 空间几何体的表面 积与体积
1.柱体、锥体、台体的表面积
(1)直棱柱、正棱锥、正棱台的侧面积 S 直棱柱侧=__________,S 正棱锥侧=__________, S = 正棱台侧
__________(其中 C,C′为底面周长,h 为高,h′为斜高).
(2)圆柱、圆锥、圆台的侧面积 S 圆柱侧=________,S 圆锥侧=________,S 圆台侧=________
故正方体的体积为 223= 42,所以三棱锥 P-CDE 的体积为 42-
4×13×12× 22× 22× 22= 122.故填122.
类型四 空间旋转体的体积问题
已知球的外切圆台上、下底面的半径分别为 r,
R,求圆台的体积.
解:如图,图①是该几何体的直观图,图②是该几何体的轴
截面平面图.
圆台轴截面为等腰梯形,与球的大圆相切,根据切线长定理, AC=AO1,BO=BC,得梯形腰长为 R+r,梯形的高即球的直径 长为 OO1= AB2-(OB-O1A)2= (R+r)2-(R-r)2
则 AD1= 32+42+122=13,所以直三棱柱外接球的半径为123.故选
C.
点 拨: 求解几何体外接球的半径主要从两个方面考 虑:一是根据球的截面的性质,利用球的半径 R、 截面圆的半径 r 及球心到截面圆的距离 d 三者的关 系 R2=r2+d2 求解,其中确定球心的位置是关键; 二是将几何体补成长方体,利用该几何体与长方体 共有外接球的特征,由外接球的直径等于长方体体
=123.即直三棱柱外接球的半径为123.
解法二:(补体法)如图所示,将直三棱柱 ABC-A1B1C1 的底面补
成矩形,得到长方体 ABDC-A1B1D1C1.显然,直三棱柱 ABC-A1B1C1 的 外 接 球 就 是 长 方 体 ABDC-A1B1D1C1 的 外 接 球 . 而 长 方 体

高中数学的几何体表面积和体积公式是哪些

高中数学的几何体表面积和体积公式是哪些

高中数学的几何体表面积和体积公式是哪些高中数学的几何体表面积和体积公式1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)3、正方体:表面积:S=6a2,体积:V=a3(a-边长)4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)5、棱柱:体积:V=Sh(S-底面积,h-高)6、棱锥:体积:V=Sh/3(S-底面积,h-高)7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)11、直圆锥:V=πr^2h/3(r-底半径,h-高)12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)数学基础差的学生如何提高数学成绩基础薄弱的同学提高数学成绩的方法数学基础打牢,是个非常重要的事,很多及格成绩不到的同学,基本是连计算和公式都不是很过关。

对于这一类学生有以下几点建议。

空间几何体的表面积和体积公式大全

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积)①棱柱、②圆柱.2・锥体①棱锥:S^ = ^h [②圆锥:= /3、台体①棱台• S梭台侧=空(6?上底+c下底)方'» S全= s±+s『s下②圆台:S杭台側=*(6底+cQZ -4、球体①球:S球=勿/②球冠:略③球缺:略二、体积1、柱体①棱柱} V,=S h②圆柱S S 2、锥体①棱锥} v.=\sh②圆锥S S3、 台体V 台肓//(S 匕+ JS 上S F + S 下)台=齐方(厂上+Jr 上厂下+厂下) 4、 球体①球:V 球② 球冠:略VyT/③ 球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高力计算;而圆锥、圆台的 侧面积计算时使用母线/计算。

三、拓展提高1、 祖眶原理:(祖璀:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的。

2、 阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是2厂的圆柱形容器内装一个最大 的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的?。

①棱台 ②圆台丿分析:圆柱体积:V H1 = s h =(^r)x2r = 2^/圆柱侧面积:S叭削= c/z = (2岔)X2广=4兀/2 彳4 彳因lit :球体体积:|/厅=—x2/r^ =_龙厂球体表面积:S球=4兀厂通过上述分析,我们可以得到一个很重要的关系(如图)即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和3、台体体积公式公式:几冷〃(S上+、恳瓦+ S』证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD。

延长两侧棱相交于一点P 0设台体上底面积为Si,下底面积为S下高为// °易知:\PDCs 型AB,设卩£ =人,则Pf+h由相似三角形的性质得:孚=袋AB PF即:(相似比等于面积比的算术平方根)、用hi整理得:人=尺刃又因为台体的体积二大锥体体积一小锥体体积u台=§s下(九+力r s上人人(S下-S上)+§s下方即:(、瓦+丫瓦)+扣下力=|/z $ + 应7+S卜)4、球体体积公式推导分析:将半球平行分成相同高度的若干层(兀层),〃越大,每一层越近似于圆柱'"T -HZ)时»每一层都可以看作是一个圆柱。

2023年高考数学二轮复习第一部分专题攻略专题四立体几何第一讲空间几何体的表面积与体积

2023年高考数学二轮复习第一部分专题攻略专题四立体几何第一讲空间几何体的表面积与体积

专题四 立体几何第一讲 空间几何体的表面积与体积——小题备考微专题1 空间几何体的表面积和体积常考常用结论1.柱体、锥体、台体、球的表面积公式: ①圆柱的表面积S =2πr (r +l ); ②圆锥的表面积 S =πr (r +l );③圆台的表面积S =π(r ′2+r 2+r ′l +rl ); ④球的表面积S =4πR 2.2.柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 球=43πR 3.保 分 题1.[2022·山东枣庄三模]若圆锥的母线长为2,侧面积为2π,则其体积为( ) A .√6π B .√3π C .√63π D .√33π2.[2022·河北保定一模]圆柱的底面直径与高都等于球的直径,则球的表面积与圆柱的侧面积的比值为( )A .1∶1B .1∶2C .2∶1D .2∶33.[2022·湖北武汉二模]如图,在棱长为2的正方体中,以其各面中心为顶点构成的多面体为正八面体,则该正八面体的体积为( )A .2√23B .43 C .4√23D .83提分题例1 (1)[2022·河北张家口三模]如图,在三棱柱ABC­ A1B1C1中,过A1B1的截面与AC交于点D,与BC交于点E,该截面将三棱柱分成体积相等的两部分,则CDAC=()A.13B.12C.2−√32D.√3−12(2)[2022·湖南雅礼中学二模]某圆锥高为1,底面半径为√3,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为()A.2 B.√3C.√2D.1听课笔记:【技法领悟】1.求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键.求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.2.求不规则几何体的体积,常用分割或补形的方法,将不规则几何体转化为规则几何体,易于求解.巩固训练11.[2022·山东菏泽一模]如图1,在高为h的直三棱柱容器ABC ­ A1B1C1中,AB=AC=2,AB⊥AC.现往该容器内灌进一些水,水深为2,然后固定容器底面的一边AB于地面上,再将容器倾斜,当倾斜到某一位置时,水面恰好为A 1B 1C (如图2),则容器的高h 为( )A .3B .4C .4√2D .62.[2022·福建福州三模]已知AB ,CD 分别是圆柱上、下底面圆的直径,且AB ⊥CD ,O 1,O 分别为上、下底面的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥A ­ BCD 的体积为18,则该圆柱的侧面积为( )A .9πB .12πC .16πD .18π微专题2 与球有关的切、接问题常考常用结论1.球的表面积S =4πR 2,体积V =43πR 3.2.长方体、正方体的体对角线等于其外接球的直径. 3.n 面体的表面积为S ,体积为V ,则内切球的半径r =3VS .4.直三棱柱的外接球半径:R =√r 2+(L2)2,其中r 为底面三角形的外接圆半径,L 为侧棱长,如果直三棱柱有内切球,则内切球半径R ′=L2.5.正四面体中,外接球和内切球的球心重合,且球心在高对应的线段上,它是高的四等分点,球心到顶点的距离为外接球的半径R =√64a (a 为正四面体的棱长),球心到底面的距离为内切球的半径r =√612a ,因此R ∶r =3∶1.保 分 题1.[2022·广东深圳二模]已知一个球的表面积在数值上是它的体积的√3倍,则这个球的半径是( )A .2B .√2C .3D .√32.已知正四棱锥P ­ ABCD 中,AB =√6,P A =2√3,则该棱锥外接球的体积为( )A.4π B.32π3C.16π D.16π33.[2022·天津红桥一模]一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1、√2、3,则此球的体积为________.提分题例2 (1)[2022·江苏苏州三模]《九章算术》卷第五《商功》中,有“贾令刍童,上广一尺,袤二尺,下广三尺,袤四尺,高一尺.”,意思是:“假设一个刍童,上底面宽1尺,长2尺;下底面宽3尺,长4尺,高1尺.”(注:刍童为上下底面为相互平行的不相似长方形,两底面的中心连线与底面垂直的几何体),若该几何体所有顶点在一球体的表面上,则该球体的体积为()立方尺A.√41πB.41π3D.3√41πC.41√41π6(2)[2022·山东泰安三模]如图,已知三棱柱ABC ­ A1B1C1的底面是等腰直角三角形,AA1⊥底面ABC,AC=BC=2,AA1=4,点D在上底面A1B1C1(包括边界)上运动,则三棱锥D ­ ABC 的外接球表面积的最大值为()π B.24πA.814C.243π D.8√6π16听课笔记:【技法领悟】1.确定球心的位置,弄清球的半径(直径)与几何体的位置和数量关系.2.求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.3.补成正方体、长方体、正四面体、正棱柱、圆柱等规则几何体.巩固训练21.已知圆柱的轴截面为正方形,其外接球为球O,球O的表面积为8π,则该圆柱的体积为()A.√22π B.√2πC.2π D.2√2π2.[2022·广东潮州二模]已知△ABC是边长为3的等边三角形,三棱锥P ­ ABC全部顶点都在表面积为16π的球O的球面上,则三棱锥P ­ ABC的体积的最大值为()A.√3B.3√32C.9√34D.√32专题四 立体几何第一讲 空间几何体的表面积与体积微专题1 空间几何体的表面积和体积保分题1.解析:设圆锥的底面半径为r ,高为h ,则πr ×2=2π,可得r =1,则h =√22−r 2=√3,因此,该圆锥的体积为V =13πr 2h =13π×12×√3=√33π. 答案:D2.解析:设球的半径为r ,依题意圆柱的底面半径也是r ,高是2r , 圆柱的侧面积=2πr ·2r =4πr 2 ,球的表面积为4πr 2 , 其比例为1∶1. 答案:A3.解析:该正八面体是由两个同底的正四棱锥组成,且正四棱锥的底面是边长为√2的正方形,棱锥的高为1,所以该正八面体的体积为2×13×√2×√2×1=43.答案:B提分题[例1] 解析:(1)由题可知平面A 1B 1ED 与棱柱上、下底面分别交于A 1B 1,ED , 则A 1B 1∥ED ,ED ∥AB , 显然CDE - C 1A 1B 1是三棱台,设△ABC 的面积为1,△CDE 的面积为S ,三棱柱的高为h , ∴12·1·h =13h (1+S +√S ), 解得√S =√3−12,由△CDE ∽△CAB ,可得CD AC =√S√1=√3−12. (2)如图,截面为△P AB ,设C 为AB 中点,设OC =x ,x ∈[0,√3),则AB =2√3−x 2,PC =√x 2+1,则截面面积S =12×2√3−x 2×√x 2+1=√−(x 2−1)2+4,则当x 2=1时,截面面积取得最大值为2. 答案:(1)D (2)A[巩固训练1]1.解析:在图1中V 水=12×2×2×2=4,在图2中,V 水=V ABC − A 1B 1C 1− V C − A 1B 1C 1=12×2×2×h -13×12×2×2×h =43h , ∴43h =4,∴h =3.答案:A2.解析:分别过A ,B 作圆柱的母线AE ,BF ,连接CE ,DE ,CF ,DF ,设圆柱的底面半径为r ,则三棱锥A - BCD 的体积为两个全等四棱锥C - ABFE 减去两个全等三棱锥A - CDE , 即2×13×r ×2r ×r -2×13×r ×12×2r ×r =23r 3=18,则r =3,圆柱的侧面积为2πr ×r =18π答案:D微专题2 与球有关的切、接问题保分题1.解析:设球的半径为R ,则根据球的表面积公式和体积公式, 可得,4πR 2=43πR 3×√3,化简得R =√3. 答案:D2.解析:正方形ABCD 的对角线长√6+6=2√3,正四棱锥的高为 √(2√3)2−(2√32)2=3,设外接球的半径为R ,则(3-R )2+(2√32)2=R 2⇒R =2, 所以外接球的体积为4π3×23=32π3.答案:B3.解析:长方体外接球的直径为√12+(√2)2+32=2√3,所以外接球半径为√3,所以球的体积为4π3×(√3)3=4√3π.答案:4√3π提分题[例2] 解析:(1)作出图象如图所示:由已知得球心在几何体的外部, 设球心到几何体下底面的距离为x , 则R 2=x 2+(52)2=(x +1)2+(√52)2,解得x =2,∴R 2=414, ∴该球体的体积V =4π3×(√412)3=41√41π6.(2)因为△ABC 为等腰直角三角形,AC =BC =2,所以△ABC 的外接圆的圆心为AB 的中点O 1, 且AO 1=√2,连接O 1与A 1B 1的中点E ,则O 1E ∥AA 1,所以O 1E ⊥平面ABC , 设球的球心为O ,由球的截面性质可得O 在O 1E 上, 设OO 1=x ,DE =t (0≤t ≤√2),半径为R , 因为OA =OD =R ,所以√2+x 2=√(4−x )2+t 2, 所以t 2=8x -14,又0≤t ≤√2, 所以74≤x ≤2,因为R 2=2+x 2,所以8116≤R 2≤6,所以三棱锥D -ABC 的外接球表面积的最大值为24π. 答案:(1)C (2)B [巩固训练2]1.解析:设外接球的半径为R ,圆柱底面圆的半径为r ,因为圆柱的轴截面为正方形,所以圆柱的高h =2r ,由球O 的表面积S =4πR 2=8π,得R =√2,又R = √(h2)2+r 2=√2r ,得r =1,所以圆柱的体积V =πr 2·2r =2πr 3=2π.答案:C2.解析:球O 的半径为R ,则4πR 2=16π,解得:R =2,由已知可得:S △ABC =√34×32=9√34,其中AE =23AD =√3,球心O 到平面ABC 的距离为√R 2−(√3)2=1, 故三棱锥P - ABC 的高的最大值为3, 体积最大值为13S △ABC ·3=9√34.答案:C。

2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第五节空间几何体的表面积和体积

2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第五节空间几何体的表面积和体积

第五节 空间几何体的表面积和体积【知识点20】空间几何体的表面积一般地,我们可以把多面体展开成平面图形,求出展开图中各个小多边形的面积,然后相加即为多面体的表面积. 1.直棱柱和正棱锥的表面积(1)直棱柱的侧面积①侧棱和底面垂直的棱柱叫做直棱柱.②直棱柱的侧面展开图是矩形,这个矩形的长等于直棱柱的底面周长c ,宽等于直棱柱的高h ,因此,直棱柱的侧面积是S 直棱柱侧=ch . ③底面为正多边形的直棱柱叫做正棱柱. (2)正棱锥的侧面积①如果一个棱锥的底面是正多边形,并且顶点在底面的正投影是底面中心,那么称这样的棱锥为正棱锥.正棱锥的侧棱长都相等.②棱锥的侧面展开图是由各个侧面组成的,展开图的面积就是棱锥的侧面积.如果正棱锥的底面周长为c ,斜高(即侧面等腰三角形底边上的高)为h ′,它的侧面积是S 正棱锥侧=12ch ′.2.正棱台的表面积正棱锥被平行于底面的平面所截,截面和底面之间的部分叫做正棱台.与正棱锥的侧面积公式类似,若设正棱台的上、下底面的周长分别为c ′,c ,斜高为h ′,则其侧面积是S 正棱台侧=12(c +c ′)h ′. 3.圆柱、圆锥、圆台的表面积【推导圆柱侧面积及表面积】S 侧=2πrl ,S 表=2πr (r +l ).【推导圆锥侧面积及表面积】底面周长是2πr ,利用扇形面积公式得 S 侧=12×2πrl =πrl ,S 表=πr 2+πrl =πr (r +l ).【推导圆台侧面积及表面积】由题图知,圆台的侧面展开图是扇环,内弧长等于圆台上底周长,外弧长等于圆台下底周长,则x x +l =r R ,解得x =r R -rl . S 扇环=S 大扇形-S 小扇形=12(x +l )×2πR -12x ×2πr =π[(R -r )x +Rl ]=π(r +R )l ,所以S 圆台侧=π(r +R )l ,S 圆台表=π(r 2+rl +Rl +R 2).【类型一】 求多面体的侧面积和表面积 【例1】正四棱台两底面边长分别为a 和b (a <b ).(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.【变式1】已知正四棱台的高是12 cm,两底面边长之差为10 cm,表面积为512 cm2,求底面的边长.【反思】(1)求棱锥、棱台及棱柱的侧面积和表面积的关键是求底面边长,高,斜高,侧棱.求解时要注意直角三角形和梯形的应用.(2)正棱柱、正棱锥、正棱台的所有侧面都全等,因此求侧面积时,可先求一个侧面的面积,然后乘以侧面的个数.(3)棱台是由棱锥所截得到的,因此棱台的侧面积也可由大小棱锥侧面积作差得到.【变式2】已知正四棱锥的侧面积是底面积的2倍,高为3,求它的表面积.【变式3】如图,在正方体ABCD —A1B1C1D1中,三棱锥D1—AB1C的表面积与正方体的表面积的比为________.【思考1】如图,已知正三棱锥S-ABC的侧面积是底面积的2倍,正三棱锥的高SO=3,求此正三棱锥的表面积.【类型二】与三视图结合综合问题【例2】某四面体的三视图如图所示,该四面体四个面的表面积为 .【变式1】一个四面体的三视图如图所示,则该四面体的表面积是()A. 2+B. 1C. 1+D.【变式2】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是A. 2B. 3C. 4D. 5【变式3】已知一个几何体的三视图如图所示(单位:m),其中俯视图为正三角形,则该几m何体的体积为_______3【思考2】某几何体的三视图如图所示,则该几何体的表面积为.【思考3】某三棱锥的三视图如图所示,则该三棱锥的体积为A. 60B. 30C. 20D. 10【变式1】如图是一个几何体的三视图,在该几何体的各个面中,面积最小的面的面积为()A. 8B. 4C.D.【类型三】求旋转体的表面积【例3】圆台的上、下底面半径分别为10 cm和20 cm.它的侧面展开图扇环的圆心角为180°,那么圆台的表面积是________ cm2.(结果中保留π)【变式1】圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,求圆台较小底面的半径.【反思】(1)求圆柱、圆锥和圆台的侧面积和表面积,只需求出上、下底半径和母线长即可,求半径和母线长时常借助轴截面.(2)解答旋转体的侧面积与表面积问题可先把空间问题转化为平面问题,即在展开图内求母线的长,再进一步代入侧面积公式求出侧面积,进而求出表面积.(3)旋转体的轴截面是化空间问题为平面问题的重要工具,因为在轴截面中集中体现了旋转体的“关键量”之间的关系.在推导这些量之间的关系时要注意比例性质的应用.【变式2】若圆锥的母线长为2 cm,底面圆的周长为2π cm,则圆锥的表面积为________ cm2.【变式3】以圆柱的上底中心为顶点,下底为底作圆锥,假设圆柱的侧面积为6,圆锥的侧面积为5,求圆柱的底面半径.【变式4】若一个圆台的轴截面如图所示,则其侧面积等于______.【变式5】.一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和正三角形,则它们的表面积之比为________.【类型四】与三视图结合的综合问题【例4】一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为的直角三角形,俯视图是半径为,圆心角为的扇形,则该几何体的表面积是( )A. B. C. D.【变式1】如图是一个封闭几何体的三视图,则该几何体的表面积为( )A. 27cm π B. 28cm π C. 29cm π D. 211cm π【类型五】 简单组合体的表面积【例5】牧民居住的蒙古包的形状是一个圆柱与圆锥的组合体,尺寸如图所示(单位:m),请你帮助算出要搭建这样的一个蒙古包至少需要多少篷布?(精确到0.01 m 2)【反思】 (1)组合体的侧面积和表面积问题,首先要弄清楚它是由哪些简单几何体组成,然后再根据条件求各个简单组合体的基本量,注意方程思想的应用.(2)在实际问题中,常通过计算物体的表面积来研究如何合理地用料,如何节省原材料等,在求解时应结合实际,明确实际物体究竟是哪种几何体,哪些面计算在内,哪些面实际没有. 【变式1】有两个相同的直棱柱,高为2a ,底面三角形的边长分别为3a,4a,5a (a >0).用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,表面积最小的是一个四棱柱,求a 的取值范围.【变式2】如图所示,△ABC 的三边长分别是AC =3,BC =4,AB =5,作CD ⊥AB ,垂足为点D .以AB 所在直线为轴,将此三角形旋转一周,求所得旋转体的表面积.【方法小结】1.多面体的表面积为围成多面体的各个面的面积之和.棱柱的表面积等于它的侧面积加底面积;棱锥的表面积等于它的侧面积加底面积;棱台的表面积等于它的侧面积加两个底的面积.2.有关旋转体的表面积的计算要充分利用其轴截面,就是说将已知条件尽量归结到轴截面中求解.而对于圆台有时需要将它还原成圆锥,再借助相似的相关知识求解.3.S圆柱表=2πr(r+l);S圆锥表=πr(r+l);S圆台表=π(r2+rl+Rl+R2).【思考1】如图(1)所示,已知正方体面对角线长为a,沿阴影面将它切割成两块,拼成如图(2)所示的几何体,那么此几何体的表面积为________.【思考2】一个圆锥的底面半径为2 cm,高为6 cm,在其中有一个高为x cm的内接圆柱.(1)求圆锥的侧面积;(2)当x为何值时,圆柱的侧面积最大?求出最大值.【变式1】已知某圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则该圆台较小底面的半径为________.【知识点21】空间几何体的体积【类型一】柱体、锥体、台体的体积【例1】(1)如图所示,已知三棱柱ABC-A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1-ABC1的体积为____________.(2)现有一个底面直径为20 cm的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm,高为20 cm的圆锥形铅锤,铅锤完全浸没在水中.当铅锤从水中取出后,杯里的水将下降________ cm.【反思】(1)常见的求几何体体积的方法①公式法:直接代入公式求解.②等积法:如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可.一、柱体、锥体、台体的体积公式1.柱体的体积公式V=Sh(S为底面面积,h为高).2.锥体的体积公式V=13Sh(S为底面面积,h为高).3.台体的体积公式V=13(S′+S′S+S)h(S′,S为上、下底面面积,h为高).4.柱体、锥体、台体的体积公式之间的关系V=Sh V=13(S′+S′S+S)h V=13Sh.二、球的表面积和体积公式1.球的表面积公式S=4πR2(R为球的半径).2.球的体积公式V=43πR3.三、球体的截面的特点1.球既是中心对称的几何体,又是轴对称的几何体,它的任何截面均为圆.2.利用球半径、截面圆半径、球心到截面的距离构建直角三角形是把空间问题转化为平面问题的主要途径.③分割法:将几何体分割成易求解的几部分,分别求体积.(2)求几何体体积时需注意的问题柱、锥、台体的体积的计算,一般要找出相应的底面和高,要充分利用截面、轴截面,求出所需要的量,最后代入公式计算.【变式1】如图所示,在长方体ABCD-A′B′C′D′中,用截面截下一个棱锥C-A′DD′,求棱锥C-A′DD′的体积与剩余部分的体积之比.【变式2】已知一个三棱台上、下底面分别是边长为20 cm和30 cm的正三角形,侧面是全等的等腰梯形,且侧面面积等于上、下底面面积之和,求棱台的高和体积.【变式3】已知正三棱锥S—ABC,D,E分别为底面边AB,AC的中点,则四棱锥S—BCED 与三棱锥S—ABC的体积之比为________.【变式4】圆柱形容器内盛有高度为6 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,如图所示.则球的半径是________ cm.【变式5】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为____ cm3.【类型二】球的表面积与体积【例2】(外接球)(1)设长方体的长,宽,高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为________.(2)求球与它的外切等边圆锥(轴截面是正三角形的圆锥叫等边圆锥)的体积之比.【变式1】一倒置圆锥体的母线长为10 cm,底面半径为6 cm.(1)求圆锥体的高;(2)一球刚好放进该圆锥体中,求这个球的半径以及此时圆锥体剩余的空间.【反思】(1)正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为r 1=a2,过在一个平面上的四个切点作截面如图①. (2)球与正方体的各条棱相切球与正方体的各条棱相切于各棱的中点,过球心作正方体的对角面有r 2=22a ,如图②. (3)长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为a ,b ,c ,则过球心作长方体的对角面有球的半径为r 3=12a 2+b 2+c 2,如图③.(4)正方体的外接球正方体棱长a 与外接球半径R 的关系为2R =3a . (5)正四面体的外接球正四面体的棱长a 与外接球半径R 的关系为2R =62a . 【练习1】长方体共顶点的三个侧面面积分别为3,5,15,则它的外接球表面积为________.【练习2】将棱长为2的正方体木块削成一个体积最大的球,则该球的体积为________.【练习3】设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为________.【练习4】三棱锥P ABC -中, ,,PA PB PC 互相垂直, 1PA PB ==, M 是线段BC上一动点,若直线AM 与平面PBC 所成角的正切的最大值是2,则三棱锥P ABC -的外接球的表面积是( )A. 2πB. 4πC. 8πD. 16π【例3】在正三棱锥S −ABC 中,SA =2√7,AB =6,则该三棱锥外接球的直径为( )A. 7B. 8C. 9D. 10【反思】在一个多面体的面找外接圆的圆心,过该圆的圆心,作垂直于该面的垂线,球心O 在垂线上,构造三角形,解三角形。

立体几何的计算总结

立体几何的计算总结

立体几何的计算总结立体几何是数学的一个重要分支,涉及到三维空间中的图形、体积、表面积等计算问题。

在学习立体几何的过程中,我们需要掌握一些计算方法和公式,以便解决各种几何问题。

本文将对立体几何的常见计算方法进行总结和归纳。

一、长方体的计算长方体是最简单的立体图形之一,其计算公式如下:1. 长方体的体积计算公式:长方体的体积(V)等于长(L)乘以宽(W)乘以高(H),即V = L * W * H。

其中,长、宽、高的单位需保持一致。

2. 长方体的表面积计算公式:长方体的表面积(A)等于长方体的底面积(A底)加上长方体的四个侧面积(A侧)。

A = A底 + A侧,其中 A底 = L * W,A侧 = 2 * (L * H + W * H)。

二、正方体和立方体的计算正方体和立方体是特殊的长方体,其计算公式如下:1. 正方体和立方体的体积计算公式:正方体和立方体的体积(V)等于边长(a)的立方,即V = a^3。

2. 正方体和立方体的表面积计算公式:正方体和立方体的表面积(A)等于正方体或立方体的一个面积(A面)乘以6个,即 A = A面 * 6。

A面 = a * a,其中 a为边长。

三、圆柱体的计算圆柱体是由一个矩形和两个平行圆面组成的立体图形,其计算公式如下:1. 圆柱体的体积计算公式:圆柱体的体积(V)等于底面积(A底)乘以高(H),即 V = A 底 * H。

A底= πr^2,其中 r为底面圆的半径。

2. 圆柱体的表面积计算公式:圆柱体的表面积(A)等于底面积(A底)加上两个底面和侧面的面积和(A侧)。

A = A底+ 2πrh,其中 A底= πr^2,A侧= 2πrh,r为底面圆的半径,h为圆柱体的高。

四、圆锥体的计算圆锥体是由一个圆锥面和一个底面组成的立体图形,其计算公式如下:1. 圆锥体的体积计算公式:圆锥体的体积(V)等于底面积(A底)乘以高(H)再除以3,即 V = (A底 * H) / 3。

如何计算立体几何体的体积和表面积

如何计算立体几何体的体积和表面积

如何计算立体几何体的体积和表面积计算立体几何体的体积和表面积是数学中的基本问题之一。

无论是在日常生活中还是在工程设计中,我们经常需要计算各种形状的物体的体积和表面积。

本文将介绍一些常见的立体几何体,以及计算它们的体积和表面积的方法。

一、立方体立方体是最简单的立体几何体之一,它的六个面都是正方形。

计算立方体的体积和表面积非常简单,只需要知道它的边长即可。

立方体的体积等于边长的立方,表面积等于边长的平方乘以6。

二、长方体长方体是另一种常见的立体几何体,它的六个面都是矩形。

计算长方体的体积和表面积也很简单,只需要知道它的长、宽和高即可。

长方体的体积等于长乘以宽乘以高,表面积等于2倍长乘以宽加2倍长乘以高加2倍宽乘以高。

三、圆柱体圆柱体是一个底面为圆形的立体几何体。

计算圆柱体的体积和表面积需要知道它的底面半径和高。

圆柱体的体积等于底面积乘以高,表面积等于2倍底面积加上底面周长乘以高。

四、球体球体是一个所有点到中心点的距离都相等的几何体。

计算球体的体积和表面积需要知道它的半径。

球体的体积等于4/3乘以π乘以半径的立方,表面积等于4乘以π乘以半径的平方。

五、锥体锥体是一个底面为圆形且顶点在底面上的几何体。

计算锥体的体积和表面积需要知道它的底面半径和高。

锥体的体积等于1/3乘以底面积乘以高,表面积等于底面积加上底面周长乘以斜高。

六、棱锥棱锥是一个底面为多边形且顶点在底面上的几何体。

计算棱锥的体积和表面积需要知道它的底面积和高。

棱锥的体积等于1/3乘以底面积乘以高,表面积等于底面积加上底面周长乘以斜高。

以上是常见立体几何体的计算方法,当然还有其他形状的立体几何体,计算方法也有所不同。

在实际应用中,我们可以利用计算机软件或者数学公式来计算复杂形状的立体几何体的体积和表面积。

无论是通过手工计算还是通过计算机辅助计算,了解立体几何体的体积和表面积的计算方法对于解决实际问题都是非常重要的。

总结起来,计算立体几何体的体积和表面积是数学中的基本问题。

高考数学总复习考点知识专题讲解37---空间几何体的表面积和体积

高考数学总复习考点知识专题讲解37---空间几何体的表面积和体积
高考数学总复习考点知识专题讲解 空间几何体的表面积和体积
最新考纲:1.了解球、柱体、锥体、台体的表面积计算 公式;2.了解球、柱体、锥体、台体的体积计算公式.
基础
知识回顾
1.多面体的表(侧)面积 多面体的各个面都是平面,则多面体的侧面积就是所 有侧面的面积之和,表面积是侧面积与底面面积之和.
2.圆柱、圆锥、圆台的侧面展开图及侧面积公式
角度2:几何体的内切球
【例3-2】 (1)(2019·重庆七校联考)已知正三棱锥的
高为6,内切球(与四个面都相切)的表面积为16π,则其底面
边长为( B )
A.18
B.12
C.6 3
D.4 3
ห้องสมุดไป่ตู้
(2)(2019·广东七校第二次联考)在四棱锥P-ABCD中, 四边形ABCD是边长为2a的正方形,PD⊥底面ABCD,且PD =2a,若在这个四棱锥内放一个球,则该球半径的最大值 为_(_2_-___2_)_a.
1 2
×3×4×5-
1 3
×
1 2
×3×4×(5-2)=
24,故选C.
2.(2019·福建泉州期中)已知一几何体的三视图如图所 示,俯视图是一个等腰直角三角形和半圆,则该几何体的 体积为( B )
A.16+8π B.136+8π C.16+16π D.136+16π
[解析] 由三视图可知,该几何体是一个三棱锥与半圆
[拓展探究] (1)本例(1)改为“侧棱和底面边长都是3 2
的正四棱锥”,则其外接球的半径是___3_____. (2)本例(2)改为:底面为正三角形的直棱柱ABC-
A′B′C′的6个顶点都在球面上,且AB=6,AA′=12, 则球O的半径是__4__3____.

2022复习立体几何----空间几何体及其表面积与体积(学

2022复习立体几何----空间几何体及其表面积与体积(学

空间几何体的表面积和体积知识梳理1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式3.1.正方体与球的切、接常用结论正方体的棱长为a,球的半径为R(1)若球为正方体的外接球,则2R=3a;(2)若球为正方体的内切球,则2R=a;(3)若球与正方体的各棱相切,则2R=2a.2.长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.3.正四面体的外接球的半径R=64a,内切球的半径r=612a,其半径R∶r=3∶1(a为该正四面体的棱长).诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)锥体的体积等于底面面积与高之积.()(2)两个球的体积之比等于它们的半径比的平方.()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O的半径为R,其内接正方体的边长为a,则R=32a.()2.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为()A.1 cmB.2 cmC.3 cmD.32cm3.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.4.(2020·天津卷)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.24πC.36πD.144π5.(2020·全国Ⅲ卷)如图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+236.(2020·浙江卷)已知圆锥的侧面积(单位:cm2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是__________.考点一空间几何体的表面积与侧面积1.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π2.(2020·北京卷)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+ 3B.6+23C.12+ 3D.12+233.(2021·成都诊断)如图,四面体各个面都是边长为1的正三角形,其三个顶点在一个圆柱的下底面圆周上,另一个顶点是上底面圆心,圆柱的侧面积是()A.23π B.324πC.223π D.22π考点二空间几何体的体积角度1简单几何体的体积【例1】(1)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.324(2)(2019·天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.【训练1】(1)(2019·江苏卷)如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是________.(2)已知某几何体的三视图如图所示,则该几何体的体积为________.角度2不规则几何体的体积【例2】如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF 均为正三角形,EF∥AB,EF=2,则该多面体的体积为________.【训练2】(2020·浙江卷)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.73 B.143C.3D.6考点三多面体与球的切、接问题【例3】(经典母题)(2021·长沙检测)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是________.【迁移】本例中若将“直三棱柱”改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少?【训练3】(1)(2020·全国Ⅲ卷)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.(2)(2021·济南质检)已知球O是三棱锥P-ABC的外接球,P A=AB=PB=AC=2,CP=22,点D是PB的中点,且CD=7,则球O的表面积为()A.28π3 B.14π3C.2821π27 D.16π3空间几何体的实际应用“强调应用”也是高考卷命题的指导思想,体现了新课标的“在玩中学,在学中思,在思中得”的崭新理念,既有利于培养考生的探究意识和创新精神,又能够很好地提升考生的数学综合素养,因而成为高考试卷中的一道亮丽的风景线.如全国Ⅲ卷第16题是以学生到工厂劳动实践,利用3D打印技术制作模型为背景创设的与空间几何体的体积有关的问题.考查运用空间几何求解实际问题的能力.【典例】(2019·全国Ⅲ卷)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体.其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为______g.【训练】(2021·潍坊联考)如图所示,直三棱柱ABC-A1B1C1是一块石材,测量得∠ABC=90°,AB=6,BC=8,AA1=13.若将该石材切削、打磨,加工成几个大小相同的健身手球,则一个加工所得的健身手球的最大体积及此时加工成的健身手球的个数分别为()A.32π3,4 B.9π2,3C.6π,4D.32π3,3A级基础巩固一、选择题1.体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.32 3πC.8πD.4π2.(2021·郑州调研)现有同底等高的圆锥和圆柱,已知圆柱的轴截面是边长为2的正方形,则圆锥的侧面积为()A.3πB.3π2C.5π2 D.5π3.如图所示,正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为3,D为BC中点,则三棱锥A-B1DC1的体积为()A.3B.3 2C.1D.3 24.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.3105.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4 C.π2 D.π46.(2020·全国Ⅱ卷)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C.1 D.327.一个几何体的三视图如图所示,其中俯视图是半径为r 的圆,若该几何体的体积为98π,则它的表面积是( )A.92πB.9πC.454πD.544π8.(2021·安庆调研)已知在四面体P ABC 中,P A =4,BC =26,PB =PC =23,P A ⊥平面PBC ,则四面体P ABC 的外接球的表面积是( ) A.160π B.128π C.40π D.32π二、填空题9.如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.10.已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH的体积为________.11.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)为________.12.(2021·太原质检)已知圆锥的顶点为S,底面圆周上的两点A、B满足△SAB为等边三角形,且面积为43,又知圆锥轴截面的面积为8,则圆锥的侧面积为________.B级能力提升13.(2020·全国Ⅰ卷)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π14.已知四面体ABCD中,AB=AD=BC=DC=BD=5,AC=8,则四面体ABCD的体积为________.15.(2021·贵阳调研)如图,三棱锥的所有顶点都在一个球面上,在△ABC中,AB=3,∠ACB=60°,∠BCD=90°,AB⊥CD,CD=22,则该球的体积为________.16.(2019·北京卷)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为______.。

高中数学苏教版必修2讲义:第一章 1.3 空间几何体的表面积和体积

高中数学苏教版必修2讲义:第一章 1.3 空间几何体的表面积和体积

第1课时空间几何体的表面积(1)直棱柱:侧棱和底面垂直的棱柱.(2)正棱柱:底面为正多边形的直棱柱.(3)正棱锥:底面是正多边形,并且顶点在底面的正投影是底面中心的棱锥.(4)正棱台:正棱锥被平行于底面的平面所截,截面和底面之间的部分.观察下列多面体:问题1:直棱柱的侧面展开图是什么?提示:以底面周长为长,高为宽的矩形.问题2:正棱锥的侧面展开图是什么?提示:若干个全等的等腰三角形.问题3:正棱台的侧面展开图是什么?提示:若干个全等的等腰梯形.几个特殊的多面体的侧面积公式(1)S 直棱柱侧=ch (h 为直棱柱的高); (2)S 正棱锥侧=12ch ′(h ′为斜高);(3)S 正棱台侧=12(c +c ′)h ′(h ′为斜高).观察下列旋转体:问题1:圆柱的侧面展开图是什么? 提示:以底面周长为长,高为宽的矩形. 问题2:圆锥的侧面展开图是什么? 提示:扇形.问题3:圆台的侧面展开图是什么? 提示:扇环.几种旋转体的侧面积公式 (1)S 圆柱侧=cl =2πrl . (2)S 圆锥侧=12cl =πrl .(3)S 圆台侧=12(c +c ′)h =π(r +r ′)l .1.柱、锥、台的表面积即全面积应为侧面积与底面积的和.2.柱、锥、台的侧面积的求法要注意柱、锥、台的几何特性,必要时要展开. 3.柱、锥、台的侧面积之间的关系(1)正棱柱、正棱锥、正棱台侧面积之间的关系: S 正棱柱侧――→h ′=hc ′=cS 正棱台侧――→c ′=0S 正棱锥侧. (2)圆柱、圆锥、圆台表面积之间的关系: S 圆柱侧――→r 1=r 2S 圆台侧――→r 1=0S 圆锥侧.[例1] 正四棱锥的侧面积是底面积的2倍,高是3,求它的表面积.[思路点拨] 由S 侧与S 底的关系,求得斜高与底面边长之间的关系,进而求出斜高和底面边长,最后求表面积.[精解详析] 如图,设PO =3,PE 是斜高,∵S 侧=2S 底,∴4·12·BC ·PE =2BC 2.∴BC =PE .在Rt △POE 中,PO =3,OE =12BC =12PE .∴9+(PE2)2=PE 2.∴PE =2 3.∴S 底=BC 2=PE 2=(23)2=12. S 侧=2S 底=2×12=24. ∴S 表=S 底+S 侧=12+24=36.[一点通] 求棱锥、棱台及棱柱的侧面积和表面积的关键是求底面边长,高,斜高,侧棱.求解时要注意直角三角形和梯形的应用.1.已知一个三棱锥的每一个面都是边长为1的正三角形,则此三棱锥的表面积为________.解析:三棱锥的每个面(正三角形)的面积都是34,所以三棱锥 的表面积为4×34= 3. ★★答案★★: 32.底面为正方形的直棱柱,它的底面对角线长为2,体对角线长为6,则这个棱柱的侧面积是________.解析:设直棱柱底面边长为a ,高为h ,则h =6-2=2,a =2×22=1, 所以S 棱柱侧=4×1×2=8. ★★答案★★:83.正四棱台的高是12 cm ,两底面边长之差为10 cm ,表面积为512 cm 2,求底面的边长.解:如图,设上底面边长为x cm ,则下底面边长为(x +10)cm ,在Rt △E 1FE 中,EF =x +10-x2=5(cm).∵E 1F =12 cm ,∴斜高E 1E =13 cm. ∴S 侧=4×12(x +x +10)×13=52(x +5),S 表=52(x +5)+x 2+(x +10)2=2x 2+72x +360. ∵S 表=512 cm 2, ∴2x 2+72x +360=512. 解得x 1=-38(舍去),x 2=2. ∴x 2+10=12.∴正四棱台的上、下底面边长分别为2 cm 、12 cm.[例2] 圆台的上、下底面半径分别是10 cm 和20 cm ,它的侧面展开图的扇环的圆心角是180°,那么圆台的表面积是多少?[思路点拨] 解答本题可先把空间问题转化为平面问题,即在展开图内求母线的长,再进一步代入侧面积公式求出侧面积,进而求出表面积.[精解详析]如图所示,设圆台的上底面周长为c ,因为扇环的圆心角是180°,故c =π·SA =2π×10,所以SA=20,同理可得SB=40,所以AB=SB-SA=20,∴S表面积=S侧+S上+S下=π(r1+r2)·AB+πr21+πr22=π(10+20)×20+π×102+π×202=1 100π(cm2).故圆台的表面积为1 100πcm2.[一点通](1)求圆柱、圆锥和圆台的侧面积和表面积,只需求出上、下底半径和母线长即可,求半径和母线长时常借助轴截面.(2)对于与旋转体有关的组合体的侧面积和表面积问题,首先要弄清楚它是由哪些简单几何体组成,然后再根据条件求各个简单组合体的半径和母线长,注意方程思想的应用.4.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是________.解析:根据轴截面面积是3,可得圆锥的母线长为2,底面半径为1,所以S=πr2+πrl=π+2π=3π.★★答案★★:3π5.如图所示,在底半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.解:设圆柱的底面半径为x,圆锥高h=42-22=23,画轴截面积图(如图),则3 23=2-x2.故圆锥内接圆柱的底半径x=1.则圆柱的表面积S=2π·12+2π·1·3=(2+23)π.6.一个直角梯形的上、下底的半径和高的比为1∶2∶3,求它绕垂直于上、下底的腰旋转后形成的圆台的上底面积、下底面积和侧面积的比.解:如图所示,设上、下底的半径和高分别为x、2x、3x,则母线长l=(2x-x)2+(3x)2=2x,∴S上底=πx2,S下底=π(2x)2=4πx2,S侧=π(x+2x)·2x=6πx2,∴圆台的上底面积、下底面积和侧面积之比为1∶4∶6.1.正棱柱、正棱锥、正棱台的所有侧面都全等,因此求侧面积时,可先求一个侧面的面积,然后乘以侧面的个数.2.棱台是由棱锥所截得到的,因此棱台的侧面积可由大小棱锥侧面积作差得到.3.旋转体的轴截面是化空间问题为平面问题的重要工具,因为在轴截面中集中体现了旋转体的“关键量”之间的关系.在推导这些量之间的关系时要注意比例性质的应用.课下能力提升(十)1.一个圆锥的底面半径为2,高为23,则圆锥的侧面积为________.解析:S侧=πRl=π×2×(23)2+22=8π.★★答案★★:8π2.正三棱锥的底面边长为a,高为33a,则此棱锥的侧面积为________.解析:如图,在正三棱锥S-ABC中,过点S作SO⊥平面ABC于O点,则O为△ABC的中心,连结AO并延长与BC相交于点M,连结SM,SM即为斜高h′,在Rt△SMO中,h ′=(33a )2+(36a )2=156a ,所以侧面积S =3×12×156a ×a =154a 2. ★★答案★★:154a 23.一个圆台的母线长等于上、下底面半径和的一半,且侧面积是32π,则母线长为________.解析:设圆台的上、下底面半径分别为r ′、r ,则母线l =12(r ′+r ).∴S 侧=π(r +r ′)·l =π·2l ·l =2πl 2=32π.∴l =4.★★答案★★:44.一个圆柱的底面面积是S ,其侧面积展开图是正方形,那么该圆柱的侧面积为________.解析:设圆柱的底面半径为R ,则S =πR 2,R =Sπ,底面周长c =2πR . 故圆柱的侧面积为S 圆柱侧=c 2=(2πR )2=4π2Sπ=4πS .★★答案★★:4πS5.如图,在正方体ABCD -A 1B 1C 1D 1中,三棱锥D 1­AB 1C 的表面积与正方体的表面积的比为________.解析:设正方体棱长为1,则其表面积为6,三棱锥D 1­AB 1C 为正四面体,每个面都是边长为2的正三角形,其表面积为4×12×2×62=23,所以三棱锥D 1­AB 1C 的表面积与正方体的表面积的比为1∶ 3.★★答案★★:1∶ 36.以圆柱的上底中心为顶点,下底为底作圆锥,假设圆柱的侧面积为6,圆锥的侧面积为5,求圆柱的底面半径.解:如图所示,设圆柱底面圆的半径为R ,高为h ,则圆锥的底面半径为R ,高为h ,设圆锥母线长为l ,则有l =R 2+h 2.①依题意,得⎩⎪⎨⎪⎧2πRh =6,πRl =5,②由①②,得R =2ππ,即圆柱的底面半径为2ππ.7.设正三棱锥S -ABC 的侧面积是底面积的2倍,正三棱锥的高SO =3,求此正三棱锥的全面积.解:设正三棱锥底面边长为a ,斜高为h ′,如图所示,过O 作OE ⊥AB ,则SE ⊥AB ,即SE =h ′.∵S 侧=2S 底,∴12×3a ×h ′=34a 2×2,∴a =3h ′. ∵SO ⊥OE ,∴SO 2+OE 2=SE 2, ∴32+(36×3h ′)2=h ′2. ∴h ′=23,∴a =3h ′=6. ∴S 底=34a 2=34×62=93,S 侧=2S 底=18 3. ∴S 全=S 侧+S 底=183+93=27 3. 8.如图所示,表示一个用鲜花做成的花柱,它的下面是一个直径为1 m 、高为3 m 的圆柱形物体,上面是一个半球形体.如果每平方米大约需要鲜花150朵,那么装饰这个花柱大约需要多少朵鲜花(π取3.1)?解:圆柱形物体的侧面面积S 1≈3.1×1×3=9.3(m 2),半球形物体的表面积为S 2≈2×3.1×(12)2≈1.6(m 2), 所以S 1+S 2≈9.3+1.6=10.9(m 2). 10.9×150≈1 635(朵).答:装饰这个花柱大约需要1 635朵鲜花.第2课时 空间几何体的体积观察下列几何体:问题1:你能否求出上述几何体的体积吗? 提示:能.问题2:要求上述几何体的体积,需要知道什么? 提示:底面积和高.柱体、锥体、台体的体积公式(1)柱体体积:V 柱体=Sh .其中S 为柱体的底面积,h 为高. (2)锥体体积:V 锥体=13Sh .其中S 为锥体的底面积,h 为高.(3)台体体积:V 台体=13h (S +SS ′+S ′).其中S ,S ′分别为台体的两底面面积,h 为台体的高.2009年12月4日,阿迪达斯和国际足联在开普敦共同发布2010年南非世界杯官方比赛用球“JABULANI ”,“JABULANI ”源于非洲祖鲁语,意为“普天同庆”,新的比赛用球在技术上取得历史性突破,设计上融入了南非元素.问题1:根据球的形成定义,体育比赛中用到的足球与数学中的球有何不同? 提示:比赛中的足球是空心的,而数学中的球是实体球. 问题2:给你一个足球能否计算出这个足球表皮面积和体积? 提示:能,只要知道球的半径即可求出.1.球的表面积设球的半径为R ,则球的表面积S =4πR 2,即球的表面积等于它的大圆面积的4倍. 2.球的体积设球的半径为R ,则球的体积V =43πR 3.1.求柱、锥、台的体积要注意底面积与高的确定,必要时注意分割. 2.柱体、锥体、台体之间体积公式的关系3.要求球的表面积,只需求出球的半径.4.球的体积与球的半径的立方成正比,即球的体积是关于球的半径的增函数.[例1] (1)底面为正三角形的直棱柱的侧面的一条对角线长为2.且与该侧面内的底边所成的角为45°,求此三棱柱的体积.(2)如图,四棱锥P -ABCD 的底面是边长为1的正方形,P A ⊥CD ,P A =1,PD = 2.求此四棱锥的体积.[思路点拨] (1)由条件求出高和底面边长,再利用公式求体积;(2)解本题的关键是求四棱锥的高,可证明P A ⊥底面ABCD ,再利用公式求体积.[精解详析] (1)如图,由条件知此三棱柱为正三棱柱.∵正三棱柱的面对角线AB 1=2. ∠B 1AB =45°.∴AB =2×sin 45°=2=BB 1. ∴V 三棱柱=S △ABC ·BB 1=34×(2)2×2=62. (2)在△P AD 中,P A =AD =1,PD =2, ∴P A 2+AD 2=PD 2.∴P A ⊥AD ,又P A ⊥CD ,且AD ∩CD =D , ∴P A ⊥平面ABCD ,从而P A 是底面ABCD 上的高, ∴V 四棱锥=13S 正方形ABCD ·P A =13×12×1=13.[一点通] 求柱体、锥体的体积,关键是求其高,对柱体而言,高常与侧棱、斜高及其在底面的射影组成直角三角形,对棱锥而言,求高时,往往要用到线面垂直的判定方法,因为棱锥的高实际上是顶点向底面作垂线,垂线段的长度.1.一圆锥母线长为1,侧面展开图圆心角为240°,则该圆锥的体积为________. 解析:设圆锥侧面展开图的弧长为l , 则l =240°×π×1180°=4π3.设圆锥的底面半径为r ,则4π3=2πr ,r =23.V =π3·⎝⎛⎭⎫232·12-49=4π33·59=4581π. ★★答案★★:4581π2.一个正方体和一个圆柱等高并且侧面积相等,则正方体与圆柱的体积之比为________.解析:设正方体棱长为1,则S 正方体侧=S 圆柱侧=4, 设圆柱的底面半径为r ,则2πr ×1=4,r =2π,V 正方体=1,V 圆柱=π⎝⎛⎭⎫2π2·1=4π.∴V 正方体∶V 圆柱=π∶4. ★★答案★★:π∶4[例2] 圆台上底的面积为16π cm 2,下底半径为6 cm ,母线长为10 cm ,那么,圆台的侧面积和体积各是多少?[思路点拨] 解答本题作轴截面可以得到等腰梯形,为了得到高,可将梯形分割为直角三角形和矩形,利用它们方便地解决问题.[精解详析]如图,由题意可知,圆台的上底圆半径为4 cm , 于是S 圆台侧=π(r +r ′)l =100π(cm 2). 圆台的高h =BC=BD 2-(OD -AB )2 =102-(6-4)2=46(cm),V 圆台=13h (S +SS ′+S ′)=13×46×(16π+16π×36π+36π)=3046π3(cm 3).[一点通] 求台体的体积关键是求高,为此常将有关计算转化为平面图形(三角形或特殊四边形)来计算.对于棱台往往要构造直角梯形和直角三角形;在旋转体中通常要过旋转轴作截面得到直角三角形、矩形或等腰梯形.3.正四棱台两底面边长为20 cm 和10 cm ,侧面积为780 cm 2,求其体积. 解:如图所示,正四棱台ABCD ­A 1B 1C 1D 1中,A 1B 1=10 cm ,AB =20 cm.取A 1B 1的中点E 1,AB 的中点E ,连结E 1E ,则E 1E 是侧面ABB 1A 1的高.设O 1,O 分别是上,下底面的中心,则四边形EOO 1E 1是直角梯形.S 侧=4×12×(10+20)·E 1E ,即780=60E 1E ,解得E 1E =13 (cm).在直角梯形EOO 1E 1中,O 1E 1=12A 1B 1=5 (cm),OE =12AB =10 (cm),所以O 1O =E 1E 2-(OE -O 1E 1)2=132-52=12(cm).所以V =13×12×(102+202+102×202)=2800(cm 3).[例3] 一个球内有相距9 cm 的两个平行截面,它们的面积分别为49π cm 2和400π cm 2.求球的表面积.[思路点拨] 由于题中没有说明截面的位置,故需分类讨论.[精解详析] (1)当截面在球心的同侧时,如图所示为球的轴截面.由球的截面性质知,AO 1∥BO 2,且O 1,O 2分别为两截面圆的圆心, 则OO 1⊥AO 1,OO 2⊥BO 2.设球的半径为R.因为圆O2的面积为49π,即π·O2B2=49π,所以O2B=7.同理,因为π·O1A2=400π,所以O1A=20.设OO1=x,则OO2=(x+9).在Rt△OO1A中,R2=x2+202,在Rt△OO2B中,R2=(x+9)2+72,所以,x2+202=(x+9)2+72,解得x=15.即R2=x2+202=252.故S球=4πR2=2 500π.所以,球的表面积为2 500πcm2.(2)当截面位于球心O的两侧时,如图所示为球的轴截面.由球的截面性质知,O1A∥O2B,且O1,O2分别为两截面圆的圆心,则OO1⊥AO1,OO2⊥O2B.设球的半径为R.因为圆O2的面积为49π,即π·O2B2=49π,所以O2B=7.同理,因为π·O1A2=400π,所以O1A=20.设O1O=x,则OO2=(9-x).在Rt△OO1A中,R2=x2+202,在Rt△OO2B中,R2=(9-x)2+72.所以x2+400=(9-x)2+49,解得x=-15,不合题意,舍去.综上所述,球的表面积为2 500πcm2.[一点通]球的截面性质:球心与截面圆心的连线垂直于截面,本题利用球的截面将立体几何问题转化为平面几何问题,借助于直角三角形中的勾股定理解决问题.4.(新课标全国卷Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为________ cm3.解析:设球半径为R cm,根据已知条件知正方体的上底面与球相交所得截面圆的半径为4 cm,球心到截面的距离为(R-2) cm,所以由42+(R-2)2=R2,得R=5,所以球的体积V=43πR3=43π×53=500π3cm3.★★答案★★:500π35.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为________.解析:过球心作球的截面,如图所示,设球的半径为R,截面圆的半径为r,则有r=R2-⎝⎛⎭⎫R22=32R,则球的表面积为4πR2,截面的面积为π⎝⎛⎭⎫32R2=34πR2,所以截面的面积与球的表面积的比为34πR24πR2=316.★★答案★★:3166.长方体的一个顶点上的三条棱长分别是3,4,5,且它的八个顶点都在同一球面上,则这个球的表面积和体积是多少?解:设球的半径为R,则由已知得(2R)2=32+42+52,故R2=252,∴R=522,∴S球=4πR2=50π,∴V球=43πR3=43π·(522)3=12532π.1.求柱、锥、台体的体积时,由条件画出直观图,然后根据几何体的特点恰当进行割补,可能使复杂问题变得直观易求.2.求球与多面体的组合问题,通过多面体的一条侧棱和球心,或“切点”“接点”作出截面图.3.球的截面是一个圆面、圆心与球心的连线与截面圆垂直,且满足d =R 2-r 2(d 为球心到截面圆的距离).课下能力提升(十一)1.一个圆锥与一个球的体积相等,圆锥的底面半径是球的半径的3倍,圆锥的高与底面半径之比为________.解析:设球的半径为r ,则圆锥的底面半径是3r ,设圆锥的高为h ,则43πr 3=13π(3r )2h ,解得h =49r ,所以圆锥的高与底面半径之比为427.★★答案★★:4272.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于________. 解析:设圆柱的底面半径为r ,则圆柱的母线长为2r , 由题意得S 圆柱侧=2πr ×2r =4πr 2=4π,所以r =1, 所以V 圆柱=πr 2×2r =2πr 3=2π. ★★答案★★:2π3.(福建高考)三棱锥P -ABC 中,P A ⊥底面ABC ,P A =3,底面ABC 是边长为2的正三角形,则三棱锥P -ABC 的体积等于________.解析:依题意有,三棱锥P -ABC 的体积V =13S △ABC ·|P A |=13×34×22×3= 3.★★答案★★: 34.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是________.解析:V =V 大圆锥-V 小圆锥=13π(3)2(1+1.5-1)=32π.★★答案★★:32π5.(天津高考)已知一个正方体的所有顶点在一个球面上.若球的体积为9π2, 则正方体的棱长为________.解析:设正方体的棱长为x ,其外接球的半径为R ,则由球的体积为9π2,得43πR 3=9π2,解得R =32.由2R =3x ,得x =2R3= 3.★★答案★★: 36.如图所示,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF =32,EF 与平面AC 的距离为2,求该多面体的体积.解:如图,设G ,H 分别是AB ,DC 的中点,连结EG ,EB ,EC ,EH ,HG ,HB ,∵EF ∥AB ,EF =12AB =GB ,∴四边形GBFE 为平行四边形,则EG ∥FB ,同理可得EH ∥FC ,GH ∥BC ,得三棱柱EGH -FBC 和棱锥E ­AGHD . 依题意V E ­AGHD =13S AGHD ×2=13×3×32×2=3, 而V EGH ­FBC =3V B ­EGH =3×12V E ­BCHG =32V E ­AGHD =92,∴V 多面体=V E ­AGHD +V EGH ­FBC =152.7.已知正四棱台两底面面积分别为80 cm 2和245 cm 2,截得这个正四棱台的原棱锥的高是35 cm ,求正四棱台的体积.解:如图,SO =35,A ′O ′=25,AO =752,由SO ′SO =A ′O ′AO ,得SO ′=35×25752=20.∴OO ′=15.∴V 正四棱台=13×15×(80+80×245+245)=2 325.即正四棱台的体积为2 325 cm 3.8.如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高.(1)证明:平面P AC ⊥平面PBD ;(2)若AB =6,∠APB =∠ADB =60°,求四棱锥P -ABCD 的体积. 解:(1)证明:因为PH 是四棱锥P -ABCD 的高,所以AC ⊥PH .又AC ⊥BD ,PH ,BD 都在平面PBD 内,且PH ∩BD =H , 所以AC ⊥平面PBD ,故平面P AC ⊥平面PBD .(2)因为ABCD 为等腰梯形,AB ∥CD ,AC ⊥BD ,AB =6,所以HA =HB = 3. 因为∠APB =∠ADB =60°, 所以P A =PB =6,HD =HC =1, 可得PH = 3.等腰梯形ABCD 的面积为S =12AC ×BD =2+ 3.所以四棱锥的体积为V =13×(2+3)×3=3+233.一、空间几何体1.多面体与旋转体(1)棱柱有两个面互相平行,其余各面都是平行四边形.但是要注意“有两个面互相平行,其余各面都是平行四边形的几何体不一定是棱柱”.(2)有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.注意:一个棱锥至少有四个面,所以三棱锥也叫四面体.(3)棱台是利用棱锥来定义的,用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个仍然是棱锥,另一个称之为棱台,截面叫做上底面,原棱锥的底面叫做下底面.注意:解决台体常用“台还原成锥”的思想.(4)将矩形、直角三角形、直角梯形分别绕着它的一边、一直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台,这条直线叫做轴,垂直于轴的边旋转一周而成的圆面叫做底面,不垂直于轴的边旋转而成的曲面叫做侧面,无论旋转到什么位置,这条边都叫做母线.2.直观图画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法.画立体图形与画水平放置的平面图形相比多了一个z 轴,最大区别是空间几何体的直观图有实线与虚线之分,而平面图形的直观图全为实线.二、平面的基本性质1.平面的基本性质公理内容图形符号公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内A∈α,B∈α⇒AB⊂α公理2如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线P∈α,且P∈β⇒α∩β=l,且P∈l公理3经过不在同一条直线上的三点,有且只有一个平面A,B,C三点不共线⇒存在唯一的平面α使A,B,C∈α公理3的三个推论推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2.三个公理的主要作用(1)公理1的作用:①判断直线是否在平面内,点是否在平面内.②用直线检验平面.(2)公理2的作用:①判定两个平面是否相交;②证明点共线.(3)公理3的作用:①确定平面;②证明点线共面.三、空间直线与直线的位置关系空间两条直线的位置关系有且只有相交、平行、异面三种.注意:两直线垂直有“相交垂直”与“异面垂直”两种.1.证明线线平行的方法 (1)线线平行的定义;(2)公理4:平行于同一条直线的两条直线互相平行; (3)线面平行的性质定理:a ∥α,a ⊂β,α∩β=b ⇒a ∥b ; (4)线面垂直的性质定理:a ⊥α,b ⊥α⇒a ∥b ; (5)面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b .2.证明线线垂直的方法(1)线线垂直的定义:两条直线所成的角是直角,在研究异面直线所成的角时,要通过平移把异面直线转化为相交直线;(2)线面垂直的性质:a ⊥α,b ⊂α⇒a ⊥b ; (3)线面垂直的性质:a ⊥α,b ∥α⇒a ⊥b . 四、空间直线与平面的位置关系空间中直线与平面有三种位置关系:直线在平面内,直线与平面相交,直线与平面平行. 注意:直线在平面外包括平行和相交两种关系. 1.证明线面平行的方法 (1)线面平行的定义;(2)判定定理:a ⊄α,b ⊂α,a ∥b ⇒a ∥α; (3)平面与平面平行的性质:α∥β,a ⊂α⇒a ∥β. 2.证明线面垂直的方法 (1)线面垂直的定义;(2)线面垂直的判定定理:⎭⎪⎬⎪⎫m ,n ⊂α,m ∩n =A l ⊥m ,l ⊥n ⇒l ⊥α; (3)面面平行的性质:α∥β,l ⊥α⇒l ⊥β;(4)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β . 五、空间平面与平面的位置关系空间平面与平面的位置关系有且只有平行和相交两种. 1.证明面面平行的方法 (1)面面平行的定义; (2)面面平行的判定定理:a ∥β,b ∥β,a ⊂α,b ⊂α,a ∩b =A ⇒α∥β; (3)线面垂直的性质:垂直于同一条直线的两个平面平行.2.证明面面垂直的方法(1)面面垂直的定义:两个平面相交所成的二面角是直二面角; (2)面面垂直的判定定理:a ⊥β,a ⊂α⇒α⊥β. 3.证明空间线面平行或垂直需注意三点 (1)由已知想性质,由求证想判定; (2)适当添加辅助线(面);(3)用定理时先明确条件,再由定理得出相应结论. 六、空间几何体的表面积和体积1.棱锥、棱台、棱柱的侧面积公式间的联系S 正棱台侧=12(c +c ′)h ′ ――→c ′=0 S 正棱锥侧=12ch ′――→c =c ′h =h ′S 正棱柱侧=ch 2.圆锥、圆台、圆柱的侧面积公式间的联系S 圆台侧=π(r ′+r )l ――→r ′=0 S 圆锥侧=πrl ――→r ′=rS 圆柱侧=2πrl 3.锥、台、柱的体积之间的联系V 台体=13(S 上+S 下+S 上S 下)h ――→S 上=0 V 锥体=13Sh ――→S 上=S下V 柱体=Sh 4.球的表面积与体积 设球的半径为R ,则球的表面积S =4πR 2,体积V =43πR 3.一、填空题(本大题共14小题,每小题5分,共70分) 1.下列几何体是旋转体的是________.①圆柱;②六棱锥;③正方体;④球体;⑤四面体. 答案:①④2.若两个平面互相平行,则分别在这两个平行平面内的直线________.解析:由于直线分别位于两平行平面内,因此它们无公共点,因此它们平行或异面. 答案:平行或异面3.圆台的一个底面周长是另一个底面周长的3倍,母线长l =3,侧面积为84π,则圆台较小底面的半径为________.解析:设圆台较小底面半径为r ,则S 侧面积=π(r +3r )l =84π,r =7. 答案:74.已知一个表面积为24的正方体,设有一个与每条棱都相切的球,则此球的体积为________.解析:设正方体的棱长为a ,则6a 2=24,解得a =2.又球与正方体的每条棱都相切,则正方体的面对角线长22等于球的直径,则球的半径是2,则此球的体积为43π(2)3=823π.答案:823π5.一个三角形用斜二测画法画出来是一个边长为1的正三角形,则此三角形的面积是________.解析:如图所示,将△A ′B ′C ′还原后为△ABC ,由于O ′C ′=2C ′D ′=2×1×32=62,所以CO =2O ′C ′= 6.∴S △ABC =12×1×6=62.答案:626.如图,如果MC ⊥菱形ABCD 所在的平面,那么MA 与BD 的位置关系是________.解析:连结AC ,由于四边形ABCD 是菱形,所以AC ⊥BD ,又MC ⊥平面ABCD ,所以MC ⊥BD ,又MC ∩AC =C ,所以BD ⊥平面AMC ,所以MA ⊥BD .答案:垂直7.已知直线a ∥平面α,平面α∥平面β,则直线a 与平面β的位置关系为________. 解析:∵a ∥α,α∥β,∴a ∥β或a ⊂β. 答案:a ∥β或a ⊂β8.圆锥侧面展开图的扇形周长为2m ,则全面积的最大值为________. 解析:设圆锥底面半径为r ,母线为l ,则有2l +2πr =2m . ∴S 全=πr 2+πrl =πr 2+πr (m -πr )=(π-π2)r 2+πrm . ∴当r =πm 2(π2-π)=m2(π-1)时,S 全有最大值πm 24(π-1).答案:πm 24(π-1)9.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于________.解析:如图设点A 为圆O 和圆K 公共弦的中点,则在Rt △OAK 中,∠OAK 为圆O 和圆K 所在的平面所成的二面角的一个平面角,即∠OAK =60°.由OK =32,可得OA =3,设球的半径为R ,则(3)2+⎝⎛⎭⎫R 22=R 2,解得R =2,因此球的表面积为4π·R 2=16π.答案:16π10.如图,二面角α-l -β的大小是60°,线段AB ⊂α,B ∈l ,AB 与l 所成的角为30°,则AB 与平面β所成的角的正弦值是________.解析:如图,作AO ⊥β于O ,AC ⊥l 于C ,连结OB ,OC ,则OC ⊥l .设AB 与β所成角为θ,则∠ABO =θ, 由图得sin θ=AO AB =AC AB ·AO AC =sin 30°·sin 60°=34.答案:3411.已知m ,n 是两条不同直线,α,β,γ是三个不同平面,下列命题中错误的是________.①若m ∥α,n ∥α,则m ∥n ; ②若α⊥γ,β⊥γ,则α∥β; ③若m ∥α,m ∥β,则α∥β; ④若m ⊥α,n ⊥α,则m ∥n .解析:对于①,m ,n 均为直线,其中m ,n 平行于α,则m ,n 可以相交也可以异面,故①不正确;对于②,③,α,β还可能相交,故②,③错;对于④,m ⊥α,n ⊥α,则同垂直于一个平面的两条直线平行,故④正确.答案:①②③12.若一个圆柱、一个圆锥的底面直径和高都等于一个球的直径,则圆柱、球、圆锥的体积之比是________.解析:设球的半径为R ,圆柱、圆锥的底面半径为r ,高为h ,则r =R ,h =2R ,V 圆柱=πR 2×2R =2πR 3,V 球=43πR 3,V圆锥=13πR 2×2R =23πR 3,所以V 圆柱∶V 球∶V圆锥=2πR 3∶43πR 3∶23πR 3=3∶2∶1.答案:3∶2∶113.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面是以∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .解析:由题意易知,B 1D ⊥平面ACC 1A 1,所以B 1D ⊥CF .要使CF ⊥平面B 1DF ,只需CF ⊥DF 即可.令CF ⊥DF ,设AF =x ,则A 1F =3a -x ,由Rt △CAF ∽Rt △F A 1D ,得ACA 1F =AF A 1D ,即2a 3a -x =x a.整理得x 2-3ax +2a 2=0,解得x =a 或x =2a . 答案:a 或2a14.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则三棱锥S ­ABC 的体积的最大值为________.解析:记球O 的半径为R ,作SD ⊥AB 于D ,连线OD 、OS ,易求R =23,又SD ⊥平面ABC ,注意到SD =SO 2-OD 2=R 2-OD 2,因此要使SD 最大,则需OD 最小,而OD 的最小值为12×23=33,因此高SD 的最大值是⎝⎛⎭⎫232-⎝⎛⎭⎫332=1,又三棱锥S -ABC 的体积为13S △ABC ·SD =13×34×22×SD =33SD ,因此三棱锥S -ABC 的体积的最大值是33×1=33.答案:33二、解答题(本大题共6小题,共90分)15.(14分)圆柱的轴截面是边长为5 cm 的正方形ABCD ,圆柱侧面上从A 到C 的最短距离是多少?解:如图,底面半径为52cm ,母线长为5 cm.沿AB 展开,则C 、D 分别是BB ′、AA ′的中点. 依题意AD =π×52=52π.∴AC =(52π)2+52=5 π2+42. ∴圆柱侧面上从A 到C 的最短距离为5π2+42cm.16.(14分)如图所示,已知ABCD 是矩形,E 是以DC 为直径的半圆周上一点,且平面CDE ⊥平面ABCD .求证:CE ⊥平面ADE .证明:∵E 是以DC 为直径的半圆周上一点,∴CE ⊥DE . 又∵平面CDE ⊥平面ABCD ,且AD ⊥DC , ∴AD ⊥平面CDE .又CE ⊂面CDE ,∴AD ⊥CE .又DE ∩AD =D ,∴CE ⊥平面ADE .17.(14分)(新课标全国卷Ⅱ)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.解:(1)证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连结DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(2)因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC =CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =22得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3, 故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D . 所以VC ­A 1DE =13×12×6×3×2=1.18.(16分)已知等腰梯形PDCB 中(如图①),PB =3,DC =1,PD =BC =2,A 为PB 边上一点,且DA ⊥PB .现将△P AD 沿AD 折起,使平面P AD ⊥平面ABCD (如图②).(1)证明:平面P AD ⊥平面PCD ;(2)试在棱PB 上确定一点M ,使截面AMC 把几何体分成两部分,其两部分体积比为V PDCMA ∶V M ­ACB =2∶1.解:(1)证明:依题意知,CD ⊥AD , 又∵平面P AD ⊥平面ABCD , ∴DC ⊥平面P AD .又DC ⊂平面PCD , ∴平面P AD ⊥平面PCD . (2)由题意知P A ⊥平面ABCD ,∴平面P AB ⊥平面ABCD .如上图,在PB 上取一点M ,作MH ⊥AB ,则MH ⊥平面ABCD ,设MH =h ,。

命题比赛立体几何表面积与体积数学文化

命题比赛立体几何表面积与体积数学文化

一、概述数学作为一门重要的学科,在现代社会发挥着不可替代的作用。

而立体几何作为数学的一个重要分支,更是无处不在。

掌握立体几何的知识,对于学生来说是非常重要的。

本次写作围绕命题比赛立体几何表面积与体积数学文化展开,旨在探讨立体几何的相关知识,以及如何在比赛中运用这些知识。

二、立体几何的基本概念1. 立体几何是研究三维空间中的形状、大小和位置关系的数学分支,主要包括表面积和体积两个方面。

2. 表面积是指一个物体外表面的总面积,通常使用单位平方厘米(cm²)或单位平方米(m²)来表示。

3. 体积是指一个物体所占的空间大小,通常使用单位立方厘米(cm³)或单位立方米(m³)来表示。

三、立体几何的公式与计算方法1. 常见几何图形的表面积与体积计算方法:(1)长方体:长方体的表面积与体积分别为公式1和公式2:公式1:长方体的表面积= 2×(长×宽 + 长×高 + 宽×高)公式2:长方体的体积 = 长×宽×高(2)球体:球的表面积与体积分别为公式3和公式4:公式3:球的表面积= 4×π×r² (其中:r为球的半径)公式4:球的体积= 4/3 × π × r³……四、立体几何在命题比赛中的应用1. 熟练掌握基本公式和计算方法是参加命题比赛的基本要求。

可通过大量练习来提高问题解决能力。

2. 题目虽然会考察基本知识,但也会融会贯通,考查学生对立体几何知识的理解和应用能力。

学生应多观察现实生活中的几何问题,提高解决问题的能力。

3. 在命题比赛中,除了熟练掌握基本知识和解题技巧外,更需要有创新思维和解题思路。

多思考、多讨论、多交流,会有助于开阔视野、提高能力。

4. 参加命题比赛不仅能够锻炼学生的逻辑思维能力和解决问题的能力,还能够培养学生的数学兴趣,从而提高学习积极性,促进学生全面发展。

学习重点数学立体几何体积与表面积

学习重点数学立体几何体积与表面积

学习重点数学立体几何体积与表面积数学是一门广泛应用于各个领域的学科,而立体几何是数学中的一个重要分支。

在学习立体几何时,掌握体积和表面积的计算方法是非常关键的一部分。

本文将重点介绍立体几何的体积和表面积的计算方法,以及一些常见几何体的体积和表面积的计算公式。

一、体积的计算方法体积是指几何体所占据的三维空间的容量大小。

不同的几何体有不同的计算方法,下面我们将分别介绍几种常见几何体的体积计算方法。

1. 立方体的体积计算方法:立方体是最基本的几何体之一,它的所有边长相等。

计算立方体的体积非常简单,只需要将边长的立方即可。

例如,一个边长为a的立方体的体积可以表示为V=a^3。

2. 正方体的体积计算方法:正方体也是一种常见的几何体,它是立方体的特殊情况,即所有的边长相等且所有的面都是正方形。

计算正方体的体积与立方体相同,都是将边长的立方。

假设正方体的边长为a,则它的体积可以表示为V=a^3。

3. 圆柱体的体积计算方法:圆柱体是由底面为圆形的平面和与底面平行的两个平行面所围成的几何体。

计算圆柱体的体积需要知道底面的半径和高。

假设底面的半径为r,高为h,则圆柱体的体积可以表示为V=πr^2h,其中π的近似值为3.14。

4. 球体的体积计算方法:球体是由所有点到球心的距离相等的点所形成的几何体。

计算球体的体积需要知道球的半径。

假设球的半径为r,则球体的体积可以表示为V=(4/3)πr^3,其中π的近似值为3.14。

二、表面积的计算方法表面积是指几何体外部各个平面所覆盖的总面积。

与体积类似,不同几何体的表面积计算方法也不相同。

下面我们将介绍几种常见几何体的表面积计算方法。

1. 立方体的表面积计算方法:立方体的表面积是指立方体六个面的总面积。

由于立方体的所有面都是正方形,所以立方体的表面积计算方法为S=6a^2,其中a为边长。

2. 正方体的表面积计算方法:正方体的表面积与立方体相同,都是指正方体六个面的总面积。

对于正方体来说,六个面都是正方形,所以正方体的表面积计算方法也为S=6a^2,其中a为边长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间立体几何的表面积和体积
1. (陕西理5)某几何体的三视图如图所示,则它的体积是( )
A .283π-
B .83
π- C .82π-
D .
23
π
2.(安徽理6)一个空间几何体的三视图如图所示,则该几何体的表面积为
(A )48 (B ) (C ) (D )80 ( )
3.如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为 ( )
A .
B .
C .
D .4.(山东理11)右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是 ( ) A .3 B .2 C .1 D .0
5.(2009宁夏海南卷文)一个棱锥的三视图如图,则该棱锥的全面积(单位:2
cm )为( )
(A )48+ (B )48+ (C )36+ (D )36+6.一个球与它的外切圆柱、外切等边圆锥的体积之比为 ( ) A.235∶∶ B.234∶∶ C .358∶∶ D .469∶∶
7.已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面积之和,则该正四棱台的高是 ( )
A .2
B .
2
5 C .3 D .
2
7 8.已知ABC Rt ∆的两条直角边分别为3和4,现以ABC Rt ∆的一条直角边所在直线为轴旋转一周,所得旋转体的体积为 ( ) A.π12 B.π16 C.
ππ165
48
或 D. ππ1612或.
9.(2009福建卷文)如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为
1
2。

则该集合体的俯视图可以是 ( )
10.已知球面上的四点P 、A 、B 、C ,PA 、PB 、PC 的长分别为3、4、5,且这三条线段两两 垂直,则这个球的表面积为
( )
A .202π
B .252π
C .50π
D .200π
11.若一圆柱的侧面展开图是一个正方形,则这个圆柱的全面积和侧面积之比是( )
A
122ππ+ B 144ππ+ C 12ππ+ D 142π
π
+ 12. (江西省九江市六校2011年4月高三第三次联考理科) 一空间几何体三视图如图所示,则该几何体的体积为 .
13.(上海市闵行区2011届高三下学期质量调研文科)如图是一个正三棱柱零件,面1AB 平行于正投影面,则零件的左视图的面积为
.
1
14.若正方体外接球的体积是 3
32
,则正方体的棱长等于 .
15.圆柱形容器内盛有高度为3cm 的水,若放入三个相同的珠(球的半么与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是___ _cm. 16.(2009辽宁卷理)设某几何体的三视图如上(尺寸的长度单位为m )。

则该几何体的体积为 3
m。

相关文档
最新文档