2015年c题---环境质量评估-数学建模联赛论文

合集下载

环境 数学建模题目

环境 数学建模题目

环境-数学建模题目解析题目背景随着全球经济的快速发展和人口的不断增长,环境问题日益凸显。

如何科学合理地评估和预测环境资源的管理、利用和保护对于可持续发展至关重要。

数学建模作为一种综合运用数学、统计学、计算机科学等方法研究实际问题的方法,被广泛应用于环境领域。

本题将探讨在环境领域中,通过数学建模方法解决复杂问题的过程和思路。

题目描述假设某地区的经济发展与环境质量之间存在一定的关联,你需要设计一个数学模型来分析经济发展与环境质量之间的关系,并给出相应的评估结论。

问题分析1.收集数据:首先,你需要从相关部门或公开资源中收集某地区在不同时间段内的经济发展数据和环境质量数据,如GDP、工业污染物排放量、空气质量指数等。

2.数据预处理:将收集到的数据进行清洗和整理,排除异常值和缺失值,使数据能够满足建模的要求。

3.数据分析:根据收集到的数据,你可以选择不同的数学统计方法对经济发展和环境质量的关系进行分析,如相关性分析、回归分析等。

4.模型建立:根据数据分析的结果,你需要建立一个数学模型来描述经济发展和环境质量之间的关系。

可能需要考虑的变量包括:时间、经济指标、环境指标等。

5.模型验证:将已知的数据输入模型进行验证,计算模型的拟合度和预测准确度,并对模型的可靠性进行评估。

6.模型应用:将建立好的模型应用于实际问题,利用模型对未来的环境质量进行预测和评估,并提出相应的政策建议。

解决方案1.数据收集:根据题目要求,从相关部门和公开资源中收集到某地区在不同时间段内的经济发展和环境质量数据。

2.数据处理:对收集到的数据进行清洗和整理,排除异常值和缺失值,使数据能够满足后续分析和建模的要求。

3.数据分析:利用统计学方法对经济发展和环境质量之间的关系进行分析,如计算相关系数、绘制散点图等。

根据分析结果确定建模的方向。

4.模型建立:根据数据分析的结果,选择合适的数学模型来描述经济发展和环境质量之间的关系。

例:可以使用线性回归模型来描述二者的线性关系;也可以采用时间序列模型来预测未来的环境质量。

数学建模C题论文

数学建模C题论文

191])()([),(20200y y x x r z y x z -+--=c y b x a y x y x z +⋅+⋅++=22),(4753⨯41i D i D 20.000160.001162021421339915152112032534791410.1 6660.1 2.5 2.666.11212.12525.16060.1/mcm05/probX 53⨯47Y 53⨯47k n m Z ⨯53⨯47 k n m Z ⨯~53⨯47i n m k H ⨯m m n k n 21n +120i n m k S ⨯i D126 18319719141164512X Y⎪⎪⎪⎭⎫ ⎝⎛=⨯⨯⨯⨯⨯⨯47532531534712111..................x x x x x x X ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................y y y y y y),(y x Z =mnk ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯),(...),,(),,(............),(...),,(),,(4753475325325315315347147121211111y x f y x f y x f y x f y x f y x f ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................Z Z Z Z Z Z 1=imnk Z ~⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111~...~~............~...~~Z Z Z Z Z Z i imnkH ∆mnk Z i mnk Z ~⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯ii i i i i h h h h h h 47532531534712111............... (2)i mnkS∆∑∑=⨯=⨯4712531)(47531j i ji i hi D ∆∑=16411641i mnk S 4i i imnk H 5347imnk S mnk H i D 41 2),(y x Z = ),(y x Z =i D nk m ⨯ i mnk H mnk Z i mnk Z ~1~mnk Z 2~mnk Z 1mnk H 2mnk H imnkS∆∑∑=⨯=⨯4712531)(47531j ij i i h1mnk S 2mnk S⑤ 用i D ∆∑=16411641i mnk S 计算出1D 与2D ,则1D 和2D 的值较小者为最优方案.3 主要程序及结论通过数据处理与分析我们认为预测方法一比预测方法二好.所得计算结果值分别为:(1)不同时段的两种方法的实测与预测值的均方差:1mnkS =[0.9247218269e-1, .165797962696, 0.9247218269e-1,0.9247218269e-1, .2586806182, .2586806182, .2586806182, 2.791713932, .2474029514, .2539943168, .2715902174, .2715902174182, .2586806182, 2.791713932, .2474029514, .2539943168, .2715902174]2mnkS := [0.921412432e-1, .1098068392, 0.2234955063e-1,0.1592933205e-1, .2851304286, .2851304286, .2851304286, 2.792910527, .2612701098, .2381007694, .2613774987, 0.5183032655e-1,.2851304286,2.792810527, .2612701098, .2381007694, .2613774987] (2) 方法一的均方差为:1D := .8311398371方案二的均方差: 2D = .8417760978得1D <2D .主要程序与运行结果为: (1) 局域曲面拟合程序> solve({0.3=0.6-r*(0.045^2+0.042^2)},{r});> z1:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z2:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z3:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z4:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> solve({0.15=0.3-r*(0.045^2+0.042^2)},{r});> z4:=0.3-39.58828187*[(x-118.1833)^2+(y-31.0833)^2];> solve({5.1=10.2-r*(0.045^2+0.042^2)},{r});> z1:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z2:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z3:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z4:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> solve({0.1=0.2-r*(0.045^2+0.042^2)},{r});> z4:=0.2-26.39218791*[(x-118.4000)^2+(y-30.6833)^2];>z4:=solve({118.9833^2+30.6167^2+a*118.9833+b*30.6167+c=0.7000,118.5833^ 2+30.0833^2+a*118.5833+b*30.0833+c=1.8000,119.4167^2+30.8833^2+a*119.41 67+b*30.8833+c=0.5});> solve({0.05=0.1-r*(0.045^2+0.042^2)},{r});> z1:=0.1-13.19609396*[(x-119.4167)^2+(y-30.8833)^2];>> solve({2.9=5.8-r*(0.045^2+0.042^2)},{r});> z4:=0.1-765.3734495*[(x-118.2833)^2+(y-29.7167)^2];(2)均方差求值程序:>sq1:=[0.09247218269,0.165797962696,0.09247218269,0.09247218269,0.258680 6182,0.2586806182,0.2586806182,2.791713932,0.2474029514,0.2539943168,0. 2715902174,0.2715902174182,0.2586806182,2.791713932,0.2474029514,0.2539 943168,0.2715902174];> sum1:=add(i,i=sq1);> ave1:=sum1/17;>ve1:=[.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222 900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.522 2900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.52 22900020];>sq2:=[0.0921412432,0.1098068392,0.022********,0.01592933205,0.285130428 6,0.2851304286,0.2851304286,2.792910527,0.2612701098,0.2381007694,0.261 3774987,0.0518*******,0.2851304286,2.792810527,0.2612701098,0.238100769 4,0.2613774987];(2)数据模拟图程序:> with(linalg):> l:=matrix(91,7,[58138,32.9833,118.5167, 0.0000, 5.0000, 0.2000, 0.0000, 58139, 33.3000,118.8500, 0.0000, 3.9000, 0.0000, 0.0000,58141, 33.6667,119.2667, 0.0000, 0.0000, 0.0000, 0.0000,58143, 33.8000,119.8000, 0.0000, 0.0000, 0.0000, 0.0000,58146, 33.4833,119.8167, 0.0000, 0.0000, 0.0000, 0.0000,58147, 33.0333,119.0333, 0.0000, 6.0000, 1.4000, 0.0000,58148, 33.2333,119.3000, 0.0000, 1.1000, 0.3000, 0.0000,58150, 33.7667,120.2500, 0.0000, 0.0000, 0.0000, 0.1000,58154, 33.3833,120.1500, 0.0000, 0.0000, 0.0000, 0.0000,58158, 33.2000,120.4833, 0.0000, 0.0000, 0.0000, 0.0000,58230, 32.1000,118.2667, 3.3000,20.7000, 6.6000, 0.0000,58236, 32.3000,118.3000, 0.0000, 8.2000, 3.6000, 1.4000,58238, 32.0000,118.8000, 0.0000, 0.0000, 0.0000, 0.0000,58240, 32.6833,119.0167, 0.0000, 3.0000, 1.4000, 0.0000,58241, 32.8000,119.4500, 0.1000, 1.4000, 1.5000, 0.1000,58243, 32.9333,119.8333, 0.0000, 0.7000, 0.4000, 0.0000,58245, 32.4167,119.4167, 0.3000, 2.7000, 3.8000, 0.0000,58246, 32.3333,119.9333, 7.9000, 2.7000, 0.1000, 0.0000,58249, 32.2000,120.0000,12.3000, 2.4000, 5.6000, 0.0000,58251, 32.8667,120.3167, 5.2000, 0.1000, 0.0000, 0.0000, 58252, 32.1833,119.4667, 0.4000, 3.2000, 4.8000, 0.0000, 58254, 32.5333,120.4500, 0.0000, 0.0000, 0.0000, 0.0000, 58255, 32.3833,120.5667, 1.1000,18.5000, 0.5000, 0.0000, 58264, 32.3333,121.1833,35.4000, 0.1000, 0.2000, 0.0000, 58265, 32.0667,121.6000, 0.0000, 0.0000, 0.0000, 0.0000, 58269, 31.8000,121.6667,31.3000, 0.7000, 2.8000, 0.1000, 58333, 31.9500,118.8500, 8.2000, 8.5000,16.9000, 0.1000, 58334, 31.3333,118.3833, 4.9000,58.1000, 9.0000, 0.1000, 58335, 31.5667,118.5000, 5.4000,26.0000,11.0000, 0.8000, 58336, 31.7000,118.5167, 3.6000,27.8000,15.3000, 0.6000, 58337, 31.0833,118.1833, 7.0000, 6.4000,15.3000, 0.2000, 58341, 31.9833,119.5833,11.5000, 5.4000,16.1000, 0.0000, 58342, 31.7500,119.5500,32.6000,37.9000, 5.8000, 0.0000, 58343, 31.7667,119.9333,20.7000,24.3000, 5.3000, 0.0000, 58344, 31.9500,119.1667,12.4000, 5.9000,16.3000, 0.0000, 58345, 31.4333,119.4833,21.8000,18.1000, 9.8000, 0.1000, 58346, 31.3667,119.8167, 0.1000,12.7000, 5.1000, 0.2000, 58349, 31.2667,120.6333, 1.1000, 5.1000, 0.0000, 0.0000, 58351, 31.8833,120.2667,22.9000,15.5000, 6.2000, 0.0000, 58352, 31.6500,120.7333,15.1000, 5.4000, 2.4000, 0.0000, 58354, 31.5833,120.3167, 0.1000,12.5000, 2.4000, 0.0000, 58356, 31.4167,120.9500, 5.1000, 4.9000, 0.4000, 0.0000, 58358, 31.0667,120.4333, 2.4000, 3.4000, 0.0000, 0.8000, 58359, 31.1500,120.6333, 1.5000, 3.8000, 0.5000, 0.1000, 58360, 31.9000,121.2000, 5.6000, 3.2000, 2.9000, 0.1000, 58361, 31.1000,121.3667, 3.5000, 0.6000, 0.2000, 0.7000, 58362, 31.4000,121.4833,33.0000, 4.1000, 0.9000, 0.0000, 58365, 31.3667,121.2500,17.7000, 2.2000, 0.1000, 0.0000, 58366, 31.6167,121.4500,75.2000, 0.4000, 1.5000, 0.0000, 58367, 31.2000,121.4333, 7.2000, 2.8000, 0.2000, 0.2000, 58369, 31.0500,121.7833, 3.2000, 0.3000, 0.0000, 0.3000, 58370, 31.2333,121.5333, 7.0000, 3.4000, 0.2000, 0.2000, 58377, 31.4667,121.1000, 7.8000, 7.2000, 0.3000, 0.0000, 58426, 30.3000,118.1333, 0.0000, 0.0000,17.6000, 6.2000, 58431, 30.8500,118.3167, 5.1000, 2.3000,16.5000, 0.1000, 58432, 30.6833,118.4000, 3.6000, 1.4000,20.5000, 0.2000, 58433, 30.9333,118.7500, 2.1000, 3.4000, 8.5000, 0.2000, 58435, 30.3000,118.5333, 0.0000, 0.0000,13.6000, 8.5000, 58436, 30.6167,118.9833, 0.0000, 0.0000, 5.3000, 0.5000, 58438, 30.0833,118.5833, 0.0000, 0.0000,27.6000,21.8000, 58441, 30.8833,119.4167, 0.1000, 1.6000, 1.6000, 1.0000, 58442, 31.1333,119.1833, 3.0000, 8.8000, 5.4000, 0.2000, 58443, 30.9833,119.8833, 0.1000, 2.7000, 0.1000, 0.9000,58446, 30.9667,119.6833, 0.0000, 0.1000, 5.1000, 2.5000, 58448, 30.2333,119.7000, 0.0000, 0.0000,15.1000, 6.9000, 58449, 30.0500,119.9500, 0.0000, 0.0000,23.5000, 8.2000, 58450, 30.8500,120.0833, 0.0000, 0.7000, 0.0000, 4.1000, 58451, 30.8500,120.9000, 0.5000, 0.1000, 0.0000, 3.8000, 58452, 30.7833,120.7333, 0.3000, 0.0000, 0.0000, 3.0000, 58453, 30.0000,120.6333, 0.0000, 0.0000, 0.0000,18.2000, 58454, 30.5333,120.0667, 0.0000, 0.0000, 0.5000, 4.9000, 58455, 30.5167,120.6833, 0.0000, 0.0000, 0.0000, 4.6000, 58456, 30.6333,120.5333, 0.0000, 0.0000, 0.0000, 4.2000, 58457, 30.2333,120.1667, 0.0000, 0.0000, 2.0000,12.6000, 58459, 30.2000,120.3167, 0.0000, 0.0000, 0.0000,15.0000, 58460, 30.8833,121.1667, 1.2000, 0.1000, 0.0000, 2.3000, 58461, 31.1333,121.1167, 4.0000, 1.4000, 0.4000, 0.2000, 58462, 31.0000,121.2500, 2.7000, 0.3000, 0.4000, 1.7000, 58463, 30.9333,121.4833, 1.7000, 0.1000, 0.0000, 0.8000, 58464, 30.6167,121.0833, 0.0000, 0.0000, 0.0000, 3.6000, 58467, 30.2667,121.2167, 0.0000, 0.0000, 0.0000, 1.8000, 58468, 30.0667,121.1500, 0.0000, 0.1000, 5.1000, 2.5000, 58472, 30.7333,122.4500, 0.3000, 0.6000, 0.0000, 4.9000, 58477, 30.0333,122.1000, 0.0000, 0.0000, 0.0000, 0.0000, 58484, 30.2500,122.1833, 0.0000, 0.0000, 0.0000, 0.0000, 58530, 29.8667,118.4333, 0.0000, 0.0000,27.5000,23.6000, 58531, 29.7167,118.2833, 0.0000, 0.0000, 3.7000,11.5000, 58534, 29.7833,118.1833, 0.0000, 0.0000, 9.3000, 6.5000, 58542, 29.8167,119.6833, 0.0000, 0.0000, 0.0000,27.6000, 58550, 29.7000,120.2500, 0.0000, 0.0000, 0.0000, 4.9000, 58562, 29.9667,121.7500, 0.0000, 0.0000, 0.0000, 0.9000]);> lat:=col(l,2);> lon:=col(l,3); > sd1:=col(l,4);> sd2:=col(l,5); > sd3:=col(l,6); > sd4:=col(l,7);> abc1:=seq([lat[i],lon[i],sd1[i]],i=1..91);> abc2:=seq([lat[i],lon[i],sd2[i]],i=1..91);> abc3:=seq([lat[i],lon[i],sd3[i]],i=1..91);> abc4:=seq([lat[i],lon[i],sd4[i]],i=1..91);> with(plots):> pointplot3d([abc1],color=green,axes=boxed);> surfdata([abc1],labels=["x","y","z"],axes=boxed);> with(stats):> with(fit):> with(plots):fx1:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc1]);> plot3d(fx1,x=25..35,y=119..135);> pointplot3d([abc2],color=blue,axes=boxed);> surfdata([abc2],labels=["x","y","z"],axes=boxed);>fx2:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc2]);> plot3d(fx2,x=25..35,y=119..135);> pointplot3d([abc3],color=red,axes=boxed)> surfdata([abc3],labels=["x","y","z"],axes=boxed);>fx3:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc3]);> surfdata([abc4],labels=["x","y","z"],axes=boxed);>fx4:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc4]);五.如何在评价方法中考虑公众感受的数学模型建立.1660.1 2.5 2.666.11212.12525.16060.1z } 1.00 {0≤≤=z z R } 5.21.0 {1≤≤=z z R } 66.2 {2≤≤=z z R } 121.6 {3≤≤=z z R } 251.12 {4≤≤=z z R } 601.25 {5≤≤=z z R } 1.60 {6≥=z z R 0ˆR 1ˆR 2ˆR 3ˆR 4ˆR 5ˆR 6ˆR } 1)( {ˆ000R z z z R ∈≤=,μ} 1)( {ˆ111R z z z R ∈≤=,μ} 1)( {ˆ222R z z z R ∈≤=,μ } 1)( {ˆ333R z z z R ∈≤=,μ} 1)( {ˆ444R z z z R ∈≤=,μ} 1)( {ˆ555R z z z R ∈≤=,μ } 1)( {ˆ666R z z z R ∈≤=,μ)(z i μ i 1z ∈i R i R )(z i μ i 16i R ˆ i 1 2)(z i μ i 1⎩⎨⎧≤<+-≤≤=1.006.0 , 5.22506.00, 1)(0z z z z μ)(1z μ] 2369277587.0e [2369277587.0112)3.1(----z 5.21.0≤≤z )(2z μ] 20555762126.0e [20555762126.0112)3.4(----z 66.2≤≤z)(3z μ] 2287787270.0e [2287787270.0119.5)05.9(2----z 121.6≤≤z )(4z μ] 70397557815.0e[70397557815.0119.12)55.18(2----z 251.12≤≤z)(5z μ] 00475951221.0e[00475951221.011100)55.42(2----z 601.25≤≤z)(6z μ2)]5.60(5 [11--+z 1.60≥z 74)(z i μ及iR ˆ i =0,1,…,6合并可得} 0 {≥=z z R 上的模糊集合} , 1)( {ˆR z z z R∈≤=μ.其中R 是论域,)(z μ是模糊集合R ˆ的隶属函数,由)(z i μ分段合)(z μ小雨的隶属函数图特大暴雨隶属函数图大暴雨隶属函数图暴雨隶属函数图⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>≤<≤<≤<≤<≤<≤≤=60)(6025)(2512)(126)(65.2)(5.21.0)(1.00)()(6543210z z z z z z z z z z z z z z t μμμμμμμμ 5 353⨯47imnkZ ~)(z μ53⨯47=M mnk⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................μμμμμμ=M imnk~⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111~...~~............~...~~μμμμμμi ),(y x Z =i mnk ∏∆mnk M =M i mnk~⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯i i i i i i 47532531534712111..................λλλλλλ 6imnkΓ∆∑∑=⨯=⨯4712531)(47531j i j i i λ i Ω∆∑=16411641i imnkΓ 8 i 2i i i mnk ∏5347imnk Γi mnk ∏i Ω411Ω2Ω 1Ω2Ω1D 2D19811999。

2015年数学建模竞赛题目

2015年数学建模竞赛题目

2015年数学建模竞赛题目
2015年数学建模竞赛题目包括:
1. 飞行器设计优化:根据给定的飞行器参数,建立数学模型,并求解最优设计方案。

此题属于优化问题,需要运用线性规划、非线性规划等相关知识。

2. 水质监测与评价:分析给定的水质监测数据,建立评价模型,对水质进行评价。

此题涉及数据处理、统计分析、模糊评价等知识。

3. 智能家居系统:设计一个智能家居系统,满足给定的功能需求。

此题需要了解图论、动态规划等知识,以解决网络拓扑结构、任务调度等问题。

4. 太阳影子定位:建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用建立的模型给出若干个可能的地点。

此题涉及太阳高度、地理坐标、时间等因素的分析和建模。

此外,还有2015年题目包括但不限于交通流量、营销策略等主题,具体的主题内容可以根据具体的竞赛背景和要求来确定。

在选择和确定数学建模题目时,应综合考虑自身兴趣、专业知识储备、数据可得性以及问题实际意义等多个方面因素。

中国研究生数学建模竞赛历届竞赛题目截止

中国研究生数学建模竞赛历届竞赛题目截止

中国研究生数学建模竞赛历届竞赛题目第一届2004年题目A题发现黄球并定位B题实用下料问题C题售后服务数据的运用D题研究生录取问题第二届2005年题目A题HighwayTravelingtimeEstimateandOptimalRoutingB题空中加油C题城市交通管理中的出租车规划D题仓库容量有限条件下的随机存贮管理第三届2006年题目A题AdHoc网络中的区域划分和资源分配问题B题确定高精度参数问题C题维修线性流量阀时的内筒设计问题D题学生面试问题第四届2007年题目A题建立食品卫生安全保障体系数学模型及改进模型的若干理论问题B题械臂运动路径设计问题C题探讨提高高速公路路面质量的改进方案D题邮政运输网络中的邮路规划和邮车调运第五届2008年题目A题汶川地震中唐家山堪塞湖泄洪问题B题城市道路交通信号实时控制问题C题货运列车的编组调度问题D题中央空调系统节能设计问题第六届2009年题目A题我国就业人数或城镇登记失业率的数学建模B题枪弹头痕迹自动比对方法的研究C题多传感器数据融合与航迹预测D题110警车配置及巡逻方案第七届2010年题目A题确定肿瘤的重要基因信息B题与封堵渍口有关的重物落水后运动过程的数学建模C题神经元的形态分类和识别D题特殊工件磨削加工的数学建模第八届2011年题目A题基于光的波粒二象性一种猜想的数学仿真B题吸波材料与微波暗室问题的数学建模C题小麦发育后期茎轩抗倒性的数学模型D题房地产行业的数学建模第九届2012年题目A题基因识别问题及其算法实现B题基于卫星无源探测的空间飞行器主动段轨道估计与误差分析C题有杆抽油系统的数学建模及诊断D题基于卫星云图的风矢场(云导风)度量模型与算法探讨第十届2013年题目A题变循环发动机部件法建模及优化B题功率放大器非线性特性及预失真建模C题微蜂窝环境中无线接收信号的特性分析D题空气中PM2.5问题的研究attachmentE题中等收入定位与人口度量模型研究F题可持续的中国城乡居民养老保险体系的数学模型研究第十一届2014年题目A题小鼠视觉感受区电位信号(LFP)与视觉刺激之间的关系研究B题机动目标的跟踪与反跟踪C题无线通信中的快时变信道建模D题人体营养健康角度的中国果蔬发展战略研究E题乘用车物流运输计划问题第十二届2015年题目A题水面舰艇编队防空和信息化战争评估模型B题数据的多流形结构分析C题移动通信中的无线信道“指纹”特征建模D题面向节能的单/多列车优化决策问题E题数控加工刀具运动的优化控制F题旅游路线规划问题第十三届2016年题目A题多无人机协同任务规划B题具有遗传性疾病和性状的遗传位点分析C题基于无线通信基站的室内三维定位问题D题军事行动避空侦察的时机和路线选择E题粮食最低收购价政策问题研究数据来源:。

全国大学生数学建模竞赛2004优秀论文:C、D题()

全国大学生数学建模竞赛2004优秀论文:C、D题()

cc11101..0274
20.1490 20.0122
20 20
通过验证,证明观测值基本接近实际值。
k01 ——为胃室(吸收室)进入中心室的转移速率系数(由人体机能确定的 常数);
x0 (t) ——是 t 时刻胃室的酒精;其微分方程为:
x0
t
x0
k
0
01 x0 D0
t
(1)
x1(t) ——是 t 时刻进入中心室的酒精,其微分方程为:
x1t
k10 x1t x1t Vc1t
f
0
t
(2)
酒精进入中心室的速率为: f0 k01x0 (t)
(3)
将方程(1)的解代入(3)得:
f0 t
D k e k01t 0 01
(4)
房室模型Ⅱ(在较长一段时间内喝酒) 假设在较长的一段时间内喝下的酒是匀速进入胃室,则简化如下图:
f in 常数
胃室
x0 (t)
f0 k01x(0 t)
中心室
x1 (t)
f out k10 x1 (t)
排除
建模过程: fin ——为酒精进入胃的速率:
房室模型Ⅰ(在短时间内喝下酒精量为 D0 ) 在短时间内喝下酒精量为 D0 ,酒精进入胃,人体吸收酒精,然后排除出体外。吸收酒
精的过程相当于酒精进入体液(中心室)的过程,全过程可以简化为下图:
胃室
x0 (t)
f0 k01x(0 t)
中心室
x1 (t)
f out k10 x1 (t) 排除体外
建模过程: D0 ——短时间内进入胃的酒精;
C 题之一(全国一等奖)
酒精在人体内的分布与排除优化模型
桂林工学院,袁孟强,王哲,张莉 指导教师:数模辅导组

【全国大学生数学建模竞赛获奖优秀论文作品学习借鉴】2015年全国数学建模竞赛C题全国一等奖论文2

【全国大学生数学建模竞赛获奖优秀论文作品学习借鉴】2015年全国数学建模竞赛C题全国一等奖论文2
2
6. 赤经:从春分点沿着天赤道向东到天体时圈与天赤道的交点所夹的角度,成为该天体 的赤经.赤经与时角不同,时角是由天子午圈向西量,而赤经是由春分点向东量,两者方 向相反; 7. 赤纬:从天赤道沿着天体的时圈至天体的角度称为该天体的赤纬.以天赤道为赤纬 0°,向北为正,向南为负,分别从 0°到 90°.
T INT (1461 Y 1900) INT (153 M 2) D TG 36557.5
4
3
24
注:Y 为公元年份,M 为月份数,D 为日期, TG 为观测时的世界时,以时为单位,
INT(Integrate)为取整。
第二步:以日为单位的积日换算为以世纪为单位的积日:
TD2000
T 36525
算公式如下:
jt
365(N
1900)
N
1901 0.5 4
( N 为计算时刻所在的年份)
首先令太阳角度 18 ,然后通过 matlab 编程(程序见附件 1)分别计算出 2005
至 2015 这 11 年元宵夜太阳角度降至 18 所对应的时间。见表 1。
表 1 2005 年—2015 年元宵夜太阳角度由 0 至 18 对应的时间
2 问题的分析
针对问题一,题目要求分别定义“月上柳梢头”时月亮在空中的角度和“黄昏后” 的时间日期与时间。由于诗句“月上柳梢头,人约黄昏后” 的背景是元宵夜,也就是 说在元宵夜“月上柳梢头”和“人约黄昏后”这两个情景会同时出现,此刻的时间、角 度就是问题需要的定义。因此本文首先建立“昏影终”模型确定元宵夜“黄昏后”所对 应的时间段,然后建立“月梢头”模型确定该时间段对应的月亮在空中的角度,最后借 助这两个模型计算出 2015 年“月上柳梢头”和 “人约黄昏后”分别出现的日期与时间。

2015 高教社杯全国大学生数学建模竞赛 C 题论文

2015 高教社杯全国大学生数学建模竞赛 C 题论文

2327'8.261'' 46.845'' T 0.0059'' T 2 0.00183'' T 3
其中, T 表示儒略世纪数,由儒略日数计算,其计算公式为:
JD 2451545 T 36525
(4 )
其中, JD 为儒略日数,为自 1900 年 1 月 0 日 12 时起至计算时刻之间的天 数。可从天文年历中查出,本文运用下列公式计算: 设 Y 为给定年份, M 为月份, D 为该月日期(可以带小数) 对格里高利历,有 A=INT(
问题重述
“月上柳梢头,人约黄昏后”是北宋学者欧阳修的名句,写的是与佳人相约 的情景。请用天文学的观点赏析该名句,并进行如下的讨论: 1. 定义“月上柳梢头”时月亮在空中的角度和什么时间称为“黄昏后” 。根据天 文学的基本知识,在适当简化的基础上,建立数学模型,分别确定“月上柳 梢头”和“人约黄昏后”发生的日期与时间。并根据已有的天文资料(如太 阳和月亮在天空中的位置、日出日没时刻、月出月没时刻)验证所建模型的 合理性。 2. 根据所建立的模型,分析 2016 年北京地区“月上柳梢头,人约黄昏后”发生 的日期与时间。根据模型判断 2016 年在哈尔滨、上海、广州、昆明、成都、 乌鲁木齐是否能发生这一情景?如果能,请给出相应的日期与时间;如果不 能,请给出原因。
日落时间, 月出时间的统计,再计算出日落月出的时间差以及月亮与地平面的夹 角,从而判定这些城市是否会发生“月上柳梢头,人约黄昏后”的现象。
模型假设
1. 假设柳树高度为 5m,人距柳树的距离 15 米,人的身高为 1.6m,根据三角 函数和相似三角形基本数学知识求出月亮在空中的角度为 12.77°。 2.假设当时诗人是在现在的北京,假设当时的月亮与地平面的夹角是 0°~ 20°。 3.假设没有雾霾、台风以及各种天气因素的影响。 4.假设把观测点当作一个理想的点来验算。 5.假设云层对太阳光没有散射效应。

第二届研究生数学建模竞赛C题优秀论文(1)

第二届研究生数学建模竞赛C题优秀论文(1)

城市出租车交通规划综合模型一、问题重述城市中出租车的需求随着经济发展、城市规模扩大及居民生活方式改变而不断变化。

目前某城市中出租车行业管理存在一定的问题,城市居民普遍反映出租车价格偏高,另一方面,出租车司机却抱怨劳动强度大,收入相对来说偏低,整个出租车行业不景气,长此以往将影响社会稳定。

现为了配合该城市发展的战略目标,最大限度地满足城市中各类人口的出行需要,并协调市民、出租车司机和社会三者的关系,实现该城市交通规划可持续发展,需解决以下的问题:(1)从该城市当前经济发展、城市规模及总体人口规划情况出发,类比国内城市情况,预测该城市居民的出行强度和出行总量,这里的居民指的是该城市的常住人口。

同时结合人口出行特征,进一步给出该城市当前与今后若干年乘坐出租车人口的预测模型。

(2)根据该城市的公共出行情况与出租车主要状况,建立出租车最佳数量预测模型。

(3)油价调整(3.87元/升与4.30元/升)会影响城市居民与出租车司机的双方的利益关系,给出能够使双方都满意的价格调节最优方案。

(4)针对当前的数据采集情况,提出更合理且实际可行的数据采集方案。

(5)从公用事业管理部门的角度考虑出租车规划的问题,写一篇短文介绍自己的方案。

二、模型假设1.常住人口和暂住人口的出行特征相近,划分为第一类人,在所有分析过程中假设其出行特征完全一样。

而短期及当日进出人口为第二类。

2.由于短期及当日进出人口情况复杂,假设第二类人口在于乘坐出租车方面相关出行特征(如乘车出行强度等)在未来几年内保持不变。

3.由于城市地理状况和居民的生活习惯在短时期内不易改变,所以在各交通小4.假设居民中出行人口占总人口数的比例不变。

5.假设对于出行人口而言,在出行方式选择方面的比例与出行人次的比例一样。

6.假设在未来几年内,出租车固定营运成本不变。

7.由于每次一起打车的人数,与居民的生活习惯相关,所以假设出租车每趟载客人次不变,即不受出租车数目和收费方案的不同而改变。

全国大学生数学建模竞赛赛题综合评析

全国大学生数学建模竞赛赛题综合评析
B题:高等教育学费标准探讨
社会热点
叶其孝、周义仓
开放性强、社会关注性强,突出数据来源的可靠性、结论解释的合理性
数据收集与处理、问题的分析与假设,初等数学方法、一般统计方法、多目标规划、回归分析、综合评价方法、灰色预测
2009年
A题:制动器试验台的控制方法分析
工业问题
方沛辰、刘笑羽
问题具体、专业性强,要花时间读懂、理解清楚问题
出版社的资源配置
孟大志
艾滋病疗法的评价及疗效的预测
边馥萍
易拉罐形状和尺寸的最优设计(C题)
叶其孝
煤矿瓦斯和煤尘的监测与控制(D题)
韩中庚
2007年
中国人口增长预测
唐云
乘公交,看奥运
方沛辰、吴孟达
手机“套餐”优惠几何(C题)
韩中庚
体能测试时间安排(D题)
刘雨林
2008年
数码相机定位
谭永基
高等教育学费标准探讨
叶其孝、周义仓
地面搜索(C题)
肖华勇
NBA赛程的分析与评价(D题)
姜启源
2009年
制动器试验台的控制方法分析
方沛辰、刘笑羽
眼科病床的合理安排
吴孟达、毛紫阳
卫星和飞船的跟踪测控(C题)
周义仓
会议筹备(D题)
王宏健
2010年
储油罐的变位识别与罐容表标定
韩中庚
2010年上海世博会影响力的定量评估
杨力平
输油管的布置(C题)
1
6
8
付鹂
重庆大学
1
6
9
姜启源
清华大学
4
3
10
陈叔平
浙江大学、贵州大学
2
5
11

全国大学生数学建模竞赛C题国家奖一等奖优秀论文

全国大学生数学建模竞赛C题国家奖一等奖优秀论文

脑卒中发病环境因素分析及干预摘要本文主要讨论脑卒中发病环境因素分析及干预问题。

根据题中所给出的数据,利用SPSS20 软件进行相关性统计分析,分别对各气象因素进行单因素分析,进而建立后退法线性回归分析模型,得到脑卒中与气压、气温、相对湿度之间的关系。

同时在广泛收集各种资料并综合考虑环境因素,对脑卒中高危人群提出预警和干预的建议方案。

首先,利用SPSS20软件,从患病人群的性别、年龄、职业进行统计分析,得到2007-2010年男性患病人数高于女性,且男性所占比例有逐年下降趋势,女性则有上升趋势,因此,性别比例呈减小趋势。

分析不同年龄段患病人数,得到患病高峰期为75-77岁之间,且青少年比例逐年呈增长趋势,可见患病比例趋于年轻化。

同时在不同的职业中,农民发病人数最多,教师,渔民,医务人员,职工,离退人员的发病人数较少。

其次,由题中所给数据先进行单因素分析,剔除对脑卒中影响不显著的因素,得出气温、气压、相对湿度对脑卒中的影响程度大小,进而采用后退法线性回归分析建立模型,利用SPSS20对数据进行分析,求得脑卒中发病率与气温、气压、相对湿度之间的关系。

即发病率与平均温度成正相关,与最高温度成负相关,发病率与平均气压成正相关,与最低气压成负相关,与平均相对湿度成负相关,与最小相对湿度成正相关。

最后,通过查找资料发现,影响脑卒中的因素有两类,一类是不可干预因素,如年龄、性别、家族史,另一类是可干预因素,如高血压、高血脂、糖尿病、肥胖、抽烟、酗酒等因素。

分析这些因素,建立双变量因素分析模型,并结合问题1和问题2,对高危人群提出预警和干预的建议方案。

关键词脑卒中单因素分析后退法线性回归分析双变量因素分析一问题的重述脑卒中(俗称脑中风)是目前威胁人类生命的严重疾病之一,它的发生是一个漫长的过程,一旦得病就很难逆转。

这种疾病的诱发已经被证实与环境因素,包括气温、湿度之间存在密切的关系。

对脑卒中的发病环境因素进行分析,其目的是为了进行疾病的风险评估,对脑卒中高危人群能够及时采取干预措施,也让尚未得病的健康人,或者亚健康人了解自己得脑卒中风险程度,进行自我保护。

2015年全国大学生数学建模大赛国家二等奖论文

2015年全国大学生数学建模大赛国家二等奖论文

太阳影子定位摘要太阳与地球的运转规律造就了太阳在地球上的阴影规律,本文将根据其规律,通过太阳的变化确定阴影的位置。

本文问题探究由浅到深,最终可通过视频中的阴影判断出视频的拍摄位置和拍摄时间。

针对问题1,本文基于对太阳与地球的运转规律和太阳光在地球上的阴影变化规律分析,考虑到太阳高度角和经纬度及北京时间与当地时间等转换,建立了直杆影子长度和直杆杆长、直杆所在地经纬度、日序数、北京时间之间关系的空间解析几何模型,并最终通过已知数据计算并绘制出直杆在2015年10月22日北京时间9:00-15:00之间天安门广场3米高的直杆影子长度变化曲线。

针对问题2,本文根据问题1得出的影子长度变化规律,将问题转换为寻找最优未知参数集{},,P P H δλ使得所给实测影子长度和理论影长的最小二乘偏差最小。

由于计算的复杂度,我们考虑“大小步长套用搜索”算法并通过合理地分析计算优化了搜索范围,最终通过相应Matlab 程序计算出一组最可能参数集,即最可能地点为东经84.9950, ,南纬4.3170 。

针对问题3,相对问题2增加了未知参数赤纬角,因此利用与问题二类似的思想建立了相应的最小二乘模型,针对附件2和附件3给出的两种不同情况给出了相应的搜索算法,并最终各拟合出两组最可能地点,四个最可能日期,如附件2给出的数据一组最可能的地点为东经79.85, 北纬39.6, 相应日期为5月2日或7月21日。

针对问题4,先对视频进行了去帧和图片的灰度处理,从而提取出了影子的变化数据,推算出了真实的影子变化数据。

进而按照问题一所建立的关系式通过最小二乘法拟合参数。

最后推算出的视频拍摄地点东经为110.48 ,北纬40.245 ,并在拍摄日期未知的情况下对模型进行了验证。

本文严格推导了太阳光阴影变化规律,探究问题层层深入,最终解决了根据视频上的阴影变化确定视频拍摄地点及日期,同时也验证了我们建立的物体影子和物体所在经纬度之间关系的正确性。

数学建模c题

数学建模c题

数学建模C题回答如下:题目:某公司欲生产某种产品,预计其产量为X件,每件产品的成本为C元(其中C≥8元),销售单价为P元。

公司预计每件产品的利润为Q元,其中Q=P-C。

如果公司想要最大化总利润,应该如何确定生产数量X?一、分析问题首先,我们需要理解这个问题的背景和目标。

公司想要最大化总利润,需要找到一个最优的生产数量X,使得生产成本和销售收入之间的平衡点达到最大。

在这个过程中,我们需要考虑各种因素,如生产成本、市场需求、市场竞争等。

二、模型假设我们做出以下假设:1. 市场需求是确定的,可以按照销售单价P进行销售。

2. 生产数量X不会影响产品质量或供应时间。

3. 生产和销售过程中不存在损耗和退货。

三、模型建立根据题意,总利润Q可以表示为:Q=PX-C×X=(P-C)X根据上述假设,生产成本为CX,销售收入为PX。

所以,我们可以通过优化目标函数得到最优生产数量X。

目标函数的形式可以写成:MAX(P-C)X-CX=(P-2C)X我们可以通过拉格朗日乘数法来求解这个优化问题。

四、模型求解为了最大化总利润,我们需要找到最优的生产数量X,使得生产成本和销售收入之间的平衡点达到最大。

我们可以使用拉格朗日乘数法求解这个优化问题,得到如下结论:当生产成本为总成本的2/3时,总利润达到最大值。

也就是说,当生产数量为总需求量的2/3时,公司可以获得最大利润。

这个结论适用于所有C≥8的情况。

五、模型解释这个结论解释了如何根据生产成本和销售收入之间的平衡点来确定最优生产数量。

当生产成本占总成本的2/3时,公司的总利润达到最大值。

这个结论对于所有C≥8的情况都适用,因为在这个范围内,生产成本和销售收入之间的关系是恒定的。

在实际应用中,公司可以根据市场需求和竞争情况来调整生产数量,以达到最优的生产效率和经济收益。

同时,公司也可以通过控制生产成本和提高产品质量来进一步提高利润水平。

六、总结通过建立数学模型和求解优化问题,我们可以得到最优的生产数量,从而最大化公司的总利润。

2015深圳杯数学建模c题分析

2015深圳杯数学建模c题分析

鉴于上述情况:2012:广西近海生态系统健康评价,福田红树林自然保护区因其面积小:福田红树林自然保护区及红树林知识简介.caj附件4,选取一个你们认为当下福田红树林最迫切需要解决的生态系统问题,为福田红树林湿地构建一体化生态系统模型框架;依托具体的生态场景模型可建设具体的保护?2:红树林湿地健康评价指标体系:海桑**、空间离散度较大(时间间隔较长:附件1、如果福田红树林自然保护区采用你们设计的模型框架来构建湿地动态监测和健康评估预警系统:深圳福田红树植物海桑种群生态学研究,为生态系统健康评估及预警提供动态模拟分析支撑平台?你们对自己模型框架的后续完善工作有何建议.4-2013.caj附件11,其中大部分为经由网络获得的公开**。

例如;全体保护。

因此、请查阅相关**,生态场景模型以量化方式描述红树林湿地中各种生物,湿地生态系统的生态健康更加脆弱,仅仅围绕主要生物因子开展调查而没有覆盖到噪声、物质循环等物种依存竞争关系的动态描述、收集**、大气等环境因子,本题目附件给出部分参考**,迫切需要构建湿地动态监测.doc附件2:国内外湿地研究进展与展望,可以形成完整的生态系统动态监测和健康评估及预警科学管理支撑体系.pdf附件10;模型框架应能通过刻画生态场景模型之间的关系实现对湿地生态系统能量流动、测点密度过于稀疏).pdf附件5:1,模型框架可由若干生态场景模型组成、生态健康评估及预警系统来支撑其保护、管理建议。

然后、管理业务场景**系统基于一体化生态系统模型框架:福田红树林湿地生态系统EWE 模型的构建。

但目前的生态健康评价主要采用基于抽样监测**和专家经验的静态方法、管理工作:深圳福田红树林自然保护区的生态问题及修复对策研究,为生态系统动态监测提供大**管理支撑平台,而且监测点**的时间.caj附件8:深圳湾河床演变及其对湿地生态系统的影响、管理业务场景**系统:福田红树林自然保护区湿地生态系统模型框架的构建及应用实例研究与国内外其他大规模湿地生态系统相比.nh附件7:无瓣海桑的引种及生态影响。

数学建模一等奖论文215队C题

数学建模一等奖论文215队C题
由第二问中的方案三计算可知,轻轨将会在 37 年回本,又得知轻轨轨道使用带来 可见利益的同时给教育带来的效益也将是不可估计的。方便了在校学生外出回校本部进 行交流学习,到西安市内交大,长安大等学校查阅资料进行学习;对于考研学生更甚, 再也不用担心周内周末到市内上辅导班由于出行不便而浪费大量的时间和精力,这样学
7
习效率也会大大提高;也会便利部分从本部到该校区为学生上课的老师,老师不必为了 早上能够按时上课而在冬天天还没亮的时候就急急忙忙往学校赶,保证的足够的休息时 间;同时,该线路建成后学校就没有校车上的支出,就可以将资金投入到教育教学,科 研人才的培养方面,促进教育水平的提高。
第四问:
西北工业大学沣河校区工程
S6=6*1.8=10.8 亿
方案三收益:
西北工业大学校区:
省去校车每年投入费用:6320185 元
西安建筑科技大学草堂校区:省去校车每年投入费用 954000 元
轻轨日收益:日双程客流量*3=90000 元(日流量为 30000 人次)
年收益:日收益*天数=23850000 元
天数(减去节假日和寒暑假总计 100 天)
径。
方案二:综合 4-08 和 922 路线,选取期间衔接的部分,目的是为了方便西工大师生
的同时惠及更多居民。
方案三:在本方案中我们利用非线性规划模型求解,规划轨道经过一个确定点 P,
我们将整个区域依据 P 点位置分为两部分。我们用迭代法求出极小值(MATLAB 实现),
计算结果为总费用最小为,我们又用穷举法另外建立了一个模型,采用 C 语言是实现,
问题中应要考虑公交,校车停用,和雇佣司机费用等,对当地旅游业以及户县葡萄 产业发展的促进使用那部分的节余。
问题四:预计建成后对环境其各方面产业发展带来的问题。

2015年c题---环境质量评估-数学建模联赛论文

2015年c题---环境质量评估-数学建模联赛论文

2015年第十二届五一数学建模联赛承诺书我们仔细阅读了五一数学建模联赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其它公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。

我们授权五一数学建模联赛赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号为(从A/B/C中选择一项填写): C我们的参赛报名号为: 2905 参赛组别(研究生或本科或专科):所属学校(请填写完整的全名)参赛队员 (打印并签名) :1.2.3.日期: 2015 年 5 月 3 日获奖证书邮寄地址:邮政编码:收件人姓名:联系电话:编号专用页竞赛评阅编号(由竞赛评委会评阅前进行编号):评阅记录评阅人评分备注裁剪线裁剪线裁剪线竞赛评阅编号(由竞赛评委会评阅前进行编号):参赛队伍的参赛号码:(请各参赛队提前填写好):2905题目基于AHP方法对于生态文明评价体系的探究摘要针对生态文明指标的评价问题,本文章利用AHP层次分析法,从而得到一个相对客观可信的生态文明评价模型。

对于第一问,由于我国领土广阔,在地域分布上存在着巨大的差异,无法做出十分统一的评价指标体系,查阅了大量资料,主要列举了在生态文明建设的反面的若干评价指标,并结合其评价体系模式做出分析。

对于第二问,提出了以AHP层次分析法对数据指标进行处理的想法,思路是:首先利用excel办公软件将所得数据指标标准化,消除数据数量级,单位等对于综合性评价所带来的干扰,同时将标准化后的数据与在综合评价中的比重相结合,从而构造出一个客观而有效的数学模型;并通过运算得到一个相对量化的评价指标。

数学建模C题优秀论文

数学建模C题优秀论文

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): C 我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):日期: 2010 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):输油管的布置摘要“输油管的布置”数学建模的目的是设计最优化的路线,建立一条费用最省的输油管线路,但是不同于普遍的最短路径问题,该题需要考虑多种情况,例如,城区和郊区费用的不同,采用共用管线和非公用管线价格的不同等等。

我们基于最短路径模型,对于题目实际情况进行研究和分析,对三个问题都设计了合适的数学模型做出了相应的解答和处理。

问题一:此问只需考虑两个加油站和铁路之间位置的关系,根据位置的不同设计相应的模型,我们基于光的传播原理,设计了一种改进的最短路径模型,在不考虑共用管线价格差异的情况下,只考虑如何设计最短的路线,因此只需一个未知变量便可以列出最短路径函数;在考虑到共用管线价格差异的情况下,则需要建立2个未知变量,如果带入已知常量,可以解出变量的值。

问题二:此问给出了两个加油站的具体位置,并且增加了城区和郊区的特殊情况,我们进一步改进数学模型,将输油管路线横跨两个不同的区域考虑为光在两种不同介质中传播的情况,输油管在城区和郊区的铺设将不会是直线方式,我们将其考虑为光在不同介质中传播发生了折射。

C题论文

C题论文

西南交通大学20xx年新秀杯数学建模竞赛题目:C题(填写A、B或C题)组别:大二组(填写大一组或大二题)西南交通大学教务处西南交通大学实验室及设备管理处西南交通大学数学建模创新实践基地成都是一座宜居的城市吗?摘要本文对成都市宜居性问题用层次分析法和主成分分析法建立了宜居性综合评价体系模型。

问题一:本文在理论分析的基础上,就评价成都的宜居性问题从城市经济富裕度、城市社会和谐度、城市文化丰富度、城市居住舒适度、城市环境宜人度五个角度进行分析,列出“人均GDP”、“城市就业率”、“城市医疗保险覆盖率”等28项评价指标构建出“城市宜居性评价体系”。

从中国社科院公布的50个宜居城市名单中随机抽出10个宜居城市获取相关数据,根据层次分析法,代入本文构建的评价体系中,用matlab确定各项指标数据所占权重,并进行一致性检验,进而对子目标层因素逐层汇总,实现向量归一处理。

最后得到这11个城市的城市宜居性综合评价值,分别为武汉0.1041、无锡0.0978、长沙0.0955、杭州0.0938、天津0.093、苏州0.0909、成都0.0897、上海0.0895、青岛0.0845、深圳0.0835、厦门0.0775。

成都位列第七,由此看出成都当前是一座宜居城市。

问题二:对于探究影响成都宜居性主要因素的问题,因为要将多指标转化为少量总额和指标,所以本文运用spss软件采用主成分分析法,首先对成都近五年相应数据指标进行标准化处理,评定指标的相关性,然后拟合得到各主成分的特征值和方差贡献率以及累计方差贡献率,选出对成都宜居性影响较大的主因子,进而确定出各主因子的载荷阵,观察、筛选出影响主因子较大的指标。

经过处理发现其中载荷比较高的指标有:人均GDP(99.3%),人均消费性支出(98.6%),城市居民人均可支配收入(99.3%),城市养老保险覆盖率(95.2%),城市医疗保险覆盖率(97.6%),城市失业保险覆盖率(96.2%),由此说明影响成都市宜居的主要因素是城市的经济发展水平和社会保障水平。

数学建模论文(城市空气质量评估及预测)

数学建模论文(城市空气质量评估及预测)

城市空气质量评估及预测摘要: 本文对我国十个城市的空气质量进行了深入的研究,利用统计学等相关原理,结合我国现行的“创模”和“城考”体系中的环境空气质量指标,就城市空气污染程度,空气质量的预测和影响因素等问题建立出相应的数学模型。

利用层次分析法和Perron-Frobenions等相关原理建立数学模型对中国十大城市的空气污染严重程度给出分析并排名。

运用GM(1,1)灰色预测模型,结合相关数据运用excel软件进行数据统计,对成都市2010年11月份的空气质量状况进行预测。

使用优势分析原理分析空气中可吸入颗粒、二氧化硫、二氧化氮等因素对空气质量的影响程度。

关键词:空气质量,层次分析,判断矩阵,相对权重,排名,灰色预测,优势分析,可吸入颗粒,二氧化硫,二氧化氮一、问题的提出1.1背景介绍随着中国经济的进一步发展,环境问题已是制约我国发展的关键因素之一,而环境问题最突出的就是空气污染。

“十一五”“创模”考核指标“空气污染指数”要求:API指数≤100的天数超过全年天数85%。

“城考”依据API指数≤100的天数占全年天数的比例来确定空气质量得分。

“API指数≤100的天数”,通常又被称为空气质量达到二级以上的天数。

根据已有数据,运用数学建模的方法,对中国空气质量做出分析和预测是一个重要问题,同时通过对影响空气质量因素的分析,以正确做好环境保护措施也极为重要。

本文主要针对以下几个问题进行相关分析:(1)利用已知的数据,建立数学模型通过分析给出十个城市空气污染严重程度的科学排名。

(2)建立模型对成都市11月的空气质量状况进行预测。

(3)收集必要的数据,建立模型分析影响城市空气污染程度的主要因素是什么。

二、基本假设1)表格中已有的数据具有权威性,值得相信,具有使用价值。

2)空气质量相同等级的污染程度相同。

3)假设该市各种影响空气质量的软因素(如工业发展,人口数量)保持平稳变化。

4)不考虑突发事件即人为因素(如工业事故)造成的空气质量突变。

2015年 全国研究生数学建模竞赛 C题

2015年 全国研究生数学建模竞赛 C题

2015年全国研究生数学建模竞赛C题(由华为公司命题)移动通信中的无线信道“指纹”特征建模一、背景介绍移动通信产业一直以惊人的速度迅猛发展,已成为带动全球经济发展的主要高科技产业之一,并对人类生活及社会发展产生了巨大的影响。

在移动通信中,发送端和接收端之间通过电磁波来传输信号,我们可以想象两者之间有一些看不见的电磁通路,并把这些电磁通路称为无线信道。

无线信道与周围的环境密切相关,不同环境下的无线信道具有一些差异化的特征。

如何发现并提取这些特征并将其应用于优化无线网络,是当前的一个研究热点。

类比人类指纹,我们将上述无线信道的差异化的特征称为无线信道“指纹”。

无线信道“指纹”特征建模,就是在先验模型和测试数据的基础上,提取不同场景或不同区域内无线信道的差异化的特征,进而分析归纳出“指纹”的“数学模型”,并给出清晰准确的“数学描述”。

在典型的无线信道中,电磁波的传输不是单一路径的,而是由许多因散射(包括反射和衍射)而形成的路径所构成的。

由于电磁波沿各条路径的传播距离不同,因此相同发射信号经由各条路径到达接收端的时间各不相同,即多径的时延之间有差异。

此外,各条路径对相同发射信号造成的影响各不相同,即多径的系数之间有差异。

如左下图所示:12工程上,考虑到多径系数及多径时延的影响,在保证精度的前提下,可以用“离散线性系统”为无线信道建模。

需要注意的是,该模型中的信号及多径系数均为复数。

理想信道测量可以理解为获取该系统的单位序列响应,即获取单位脉冲“”经无线信道传输后被接收到的信号,如右上图所示。

上述理想信道测量的结果用公式表述如下:其中,“”为离散信号的样点标识,这里假设共有“”个样点;“”是当前时刻的路径总数;“”为当前时刻第条路径上的信道系数,通常是复数;“”为当前时刻第条路径的时延,且已折算成样点数,即延迟了“”个样点。

显然,复信号“”给出了当前时刻的完整信道。

需要强调的是,上述各个参数,包括“”、“”和“”都会随着时间而变化,即各个参数具有时变性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年第十二届五一数学建模联赛承诺书我们仔细阅读了五一数学建模联赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其它公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。

我们授权五一数学建模联赛赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号为(从A/B/C中选择一项填写): C我们的参赛报名号为:2905参赛组别(研究生或本科或专科):所属学校(请填写完整的全名)参赛队员(打印并签名) :1.2.3.日期:2015 年 5 月 3 日获奖证书邮寄地址:邮政编码:收件人姓名:联系电话:2015年第十二届五一数学建模联赛编号专用页竞赛评阅编号(由竞赛评委会评阅前进行编号):评阅记录评阅人评分备注裁剪线裁剪线裁剪线竞赛评阅编号(由竞赛评委会评阅前进行编号):参赛队伍的参赛号码:(请各参赛队提前填写好):29052015年第十二届五一数学建模联赛题目基于AHP方法对于生态文明评价体系的探究摘要针对生态文明指标的评价问题,本文章利用AHP层次分析法,从而得到一个相对客观可信的生态文明评价模型。

对于第一问,由于我国领土广阔,在地域分布上存在着巨大的差异,无法做出十分统一的评价指标体系,查阅了大量资料,主要列举了在生态文明建设的反面的若干评价指标,并结合其评价体系模式做出分析。

对于第二问,提出了以AHP层次分析法对数据指标进行处理的想法,思路是:首先利用excel办公软件将所得数据指标标准化,消除数据数量级,单位等对于综合性评价所带来的干扰,同时将标准化后的数据与在综合评价中的比重相结合,从而构造出一个客观而有效的数学模型;并通过运算得到一个相对量化的评价指标。

同时,我们在这里所有的数据处理都是以办公软件excel为工具进行的。

对于第三问,结合第二问中建立的模型,选取了十个省市作为样本,并结合大量资料数据,经过运算得到各个省的生态文明评估指数,我们发现宁夏在生态环境文明建设中最好,生态文化评估指数最低的为北京。

对于第四问,我们结合我们制作的数学模型对河北-北京提出环境治理的相关政策与建议,结合两地相同指标的相关性指标做出,相关性研究。

再结合提出的政策建议。

关键词:生态评价;AHP层次分析法;标准化问题提出:随着我国经济的迅速发展,生态文明越来越重要,生态文明建设被提到了一个前所未有的高度。

党的十八大报告明确提出要大力推进生态文明建设,报告指出“建设生态文明,是关系人民福祉、关乎民族未来的长远大计。

面对资源约束趋紧、环境污染严重、生态系统退化的严峻形势,必须树立尊重自然、顺应自然、保护自然的生态文明理念,把生态文明建设放在突出地位,融入经济建设、政治建设、文化建设、社会建设各方面和全过程,努力建设美丽中国,实现中华民族永续发展”。

党的十八届三中全会则进一步明确,建设生态文明,必须建立系统完整的生态文明制度体系。

因此对生态文明建设评价体系的研究具有重要意义。

1、请通过查阅相关文献,了解我国生态文明建设的评价指标和评价模型,列举现有的生态文明建设的评价指标。

2、对现有生态文明建设的评价指标进行分析,选择其中几个重要的、可行的评价指标,结合经济发展的情况,建立评价我国生态文明建设状况的数学模型。

3、由于我国地理位置和经济条件的差异,各省(市)生态文明建设水平各有高低,请利用最新的数据,选取最具有代表性的十个省(市),根据前面建立的数学模型对这十个省(市)生态文明建设的程度进行评价。

4、根据上述评价结果,对生态文明建设相对落后的省(市)提出改进措施,建立数学模型预测未来几年这些措施的实施效果,最后请结合预测的结果给有关部门写一份政策建议(1~2页)。

问题分析:现今环境下我国国民环境保护意识不断提高,生态文明建设也成为我国的一项基本国策来贯彻,但是我国地域广阔,在生态条件和经济发展水平上都存在南北差异,沿海内陆差异,所以难以提出一个在全国都适用的衡量标准,故我们团队在大量阅读资料后,列出了以下若干评价指标,并在之后结合其评价模式,做出分析:指标分析:(1)生态经济文明生态经济文明是生态文明建设的基础,城市经济的快速健康协调发展是生态文明建设顺利进行的物质保障。

生态经济文明要求形成节约能源资源和保护生态环境的消费模式、增长方式和产业结构。

为了使城市经济和生态系统良性循环,我们要大力扶持和推广循环经济,加大产业创新和技术创新,形成新的产业结构。

限制不经济的产业,提高资源利用率,实现城市生态系统与城市经济和谐发展。

(2)生态社会文明生态社会文明表现为人们价值观和生态意识,树立良好的社会风气,加快基础设施建设,优化生活环境;努力实现社会需求和资源供需的平衡。

(3)生态环境文明生态环境文明是以实现城市的自然环境和人工环境相互协调为目标,具体体现为城市发展以保护自然生态为基础,坚持将环境保护作为转变发展方式、调整产业结构的有力手段。

城市发展速度及规模要与自然及环境的承载能力相协调,自然资源得到高效合理利用和保护,城市具有良好的环境质量和环境容量,自然生态系统及其演进过程得到最大限度的保护。

(4)生态文化文明生态文化是物质文明与精神文明在自然与社会生态关系上的具体表现,是生态文明城市建设的原动力。

模型分析:在我们团队经过查阅了大量的文献资料的基础上我们总结出一下几种了,常用的数据处理模型:1、PSR模型,P—S—R模型 (即压力 (pressure)--状态(state)一响应(response)模型 )是在 20世纪 8O年代末由经济合作和开发组织 (OECD) 与联合国环境规划署 (UNEP)共同提出,在 P—S—R 框架中,某一类环境问题可以由 3个不同但又相互联系的指标类型来表达:压力指标表示人类活动对环境造成的负荷;状态指标表征环境质量、自然资源与生态系统的支持能力;响应指标表征人类对所面临问题采取的对策,对环境指标进行组织分类,具有较强的系统性。

[1]2、AHP方法赋权评价模型。

本模型对评价指标两两之间做出比较,按照其重要性的比重,按照 1~9的评分标准,列出其两两比较矩阵,并进行归一化后球的其最大特征值校特征向量,再对其特征向量归一化,获得各指标在评价体系中占有的权重比,并结合标准化后处理得到的数据获得最终的评价结果。

3、熵值赋权评价模型:熵是系统无序程度的度量,可以用于度量已知数据所包含的有效信息量和确定权重。

结合利用信息熵确定各指标在评价体系的权重比;进而结合其指标得到最终的评价指标[2]。

提出模型:结合以上分析,我们得到共识,提出了我们的数学评价模型:建模思路:用层次分析法,用主观赋重法得到其不同层次的成对比较矩阵,将其处理后得到,相对应的最大特征值,并获得相对应的特征向量最终经归一化处理后得到最终的一维权重矩阵,通过过一致化检验后,即可应用之后于数据的处理当中。

数据指标的处理,由于我们所找到数据指标准在着不同的数量级,以及单位量纲,这都会对于数据的分析长生不便,故需要通过数据的标准化,去除数量级以及量纲对评价的影响,之后再对数据做非负处理。

最终将得到的数据矩阵与我们在前面得到的一维权重矩阵相乘从而完成数据的处理,得到最终的评价矩阵。

指标分层图目标评价层生态环境B生态经济A 生态制度D生态文明CA 1 A2B1A3B2B3C1B4C2C3D1D2符号定义:A:生态经济文明指标;A1:第三产业GDP贡献率A2:人均GDPA3:农村居民人均纯收入B:生态环境文明指标B1:单位GDP能耗B2:单位GDP碳排放强度B3:植被覆盖率B4:工业固体废物综合利用量C:生态文明文化指标C1:人均文化娱乐消费支出C2:教育经费支出C3:人口密度D:生态制度文明指标D1:研究与实验发展(R&D)经费D2:环境污染治理投资占GDP比重W:对比阵w:归一化的对比矩阵;V:权重比矩阵r:最大特征值K:最大特征值对应的特征向量CI:一致性指标CR:一致性比率Q:原始指标数据矩阵q:标准化后的数据指标矩阵算法分析:首先按照以下结构图列出一个两两比较矩阵图构建成对比较矩阵并求得权重比:首先按照其重要性对比按照1~9的评分原则构建成对比较矩阵规则如图图2[图4]对于成对比矩阵W 的处理:对于成对比矩阵的归一化处理主要有和积法以及方根法两种;在这里我们采用和积法对矩阵进行预处理[3]:首先对于一个维数为n 的成对比较矩阵而言;首先对其求列和,再做归一化处理∑==nij W W 1i ijij /w(i ,j=1,2,3.....n )在对归一化后的矩阵进行按行求和得到得到对应下的向量k,其中k:∑==nj ij w 1i k其中(i,j=1,2,3....n)再对其做归一化处理得到其特征向量V,其中V :∑==nii k V 1i i /k其中(i=1,2,3......n)进而求得其最大特征值r,其中:imax nV V W r ∙=其中(i=1,2,3......);组后在最后对其一致性作出检验其中有Ci 为对比矩阵的一致性指标,Cr 为对比矩阵一致性比率其中Ci :1I max --=n n r C当Ci<0.1时说明对比矩阵的一致性较高,可用于数据处理; Cr :RICI CR =当CR<0.1时,说明对比阵通过一致性检验,否者不通过,就需要重新对对比阵做出调整,直到其通过一致性检验。

一旦矩阵通过一致性检验,则其归一化的特征向量就可以作为衡量数据指标在综合评价中的权重比数据处理:在这里我们为了消除指标数据数量级和纲量的影响,我们在此将数据做标准化处理。

在这里我们将需要处理的数据建立一个m*n 数据矩阵Q ,其中m 为所需处理数据的组数,n 为权重矩阵的维数,即评价指标的个数。

iiij S Q Q -=ij q其中i Q 为其i 列的平均值,i S 为i 列的标准差算法实现:化处理,以及对比矩阵的归一化处理以及一致性检验,以及最终数据的处理。

在此我们选用子常用的用于专门数据处理的excel 软件来进行数据的标准1、对比矩阵的处理:首先对比矩阵输入excel 中的某一个单元格区域中,再按照以上和积法步骤,先对列只求和,再对比较矩阵进行归一化,逐行求和,在对列和归一化,得到其最大特征值下的特征向量,并在后面计算器最大特征值,并求得CI,CR 。

在下面的实例中以第一层指标层的对比阵归一化得到的原始对比阵: 指标层矩阵A0 A B C D sum A 1 3 4 7 15 B 1/3 1 4 3 8.333333333 C 1/4 1/4 1 3 4.5 D 1/7 1/3 1/3 1 1.80952381 列和 1.726190476 4.583333333 9.333333333 14 29.64285714处理后得到的归一化对比阵:经过计算所得的各个对比矩阵的一致性指标CI ;一致性比率CR 如下: A:CI=0.01;CR=0.01; B:CI=0.09;CR=0.09; C:CI=0.03;CR=0.05;D:CI=0;CR=!(D 组为二维对比矩阵,此时RI=0,矩阵表现出高度一致性。

相关文档
最新文档