宁夏2018年中考数学参考答案及评分标准
2018年宁夏中考数学试卷及解析
宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学试题说明:1.考试时间120分钟.满分120分.2.考生作答时,将答案写在答题卡上,在本试卷上答题无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.计算:|−12|−√14 的结果是A. 1B.12 C .0 D.-12.下列运算正确的是A.(−a)3=a 3B. (a 2)3=a 5C.a 2÷a -2=1D.(-2a 3)2=4a 63.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是A. 30和 20B. 30和25C. 30和22.5D. 30和17.54.若2−√3是方程x 2-4x+c =0的一个根,则c 的值是A.1B. 3−√3C.1+√3D. 2+√35.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x .应列方程是A.300(1+x )=507B.300(1+x )2=507C.300(1+x )+300(1+x )2=507D.300+300(1+x )+300(1+x )2=507 6.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是( )A .10 B.20 C.10π D.20π7.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是A.40°B.50°C.60°D.70°8.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h (cm)与注水时间t (s)之间的函数关系图象大致是二、填空题(本题共8小题,每小题3分,共24分)9.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是 .10.已知m+n=12,m-n=2,则m 2-n 2= .11.反比例函数 y =k x (k 是常数,k ≠0)的图象经过点(1,4),那么这个函数图象所在的每个象限内,y 的值随x 值的增大而 .(填“增大”或“减小”)12.已知:a b =23,则 a−2b a+2b 的值是 .13.关于x 的方程 2x 2−3x +c =0 有两个不相等的实数根,则c 的取值范围是 .14.在平面直角坐标系中,四边形AOBC 为矩形,且点C 坐标为(8,6),M 为BC 中点,反比例函数 y =kx (k 是常数,k ≠0)的图象经过点M ,交AC 于点N ,则MN 的长度是 .15.一艘货轮以 18√2 ㎞/h 的速度在海面上沿正东方向航行,当行驶至A 处时,发现它的东南方向有一灯塔B ,货轮继续向东航行30分钟后到达C 处,发现灯塔B 在它的南偏东15°方向,则此时货轮与灯塔B 的距离是 km.16.如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A 0纸长度方向对折一半后变为A 1纸;A 1纸长度方向对折一半后变为A 2纸;A 2纸长度方向对折一半后变为A 3纸;A 3纸长度方向对折一半后变为A 4纸……A 4规格的纸是我们日常生活中最常见的,那么有一张A 4的纸可以裁 张A 8的纸.三、解答题(本题共有6个小题,每小题6分,共36分)17.解不等式组:⎪⎩⎪⎨⎧+<--≥--211535)1(3x x x x18.先化简,再求值:(1x+3−13−x )÷2x−3;其中,x =√3−3.19.已知:△ABC 三个顶点的坐标分别为A (-2,-2),B (-5,-4),C (-1,-5).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2,并写出点B 2的坐标.20.某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).请根据图表中的信息,解答下列问题:(1)表中的a=,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.21.已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.22.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?。
2018年宁夏回族自治区中考数学试卷及答案解析版
点评:此题考查了坡度坡角问题.注意能构造直角三角形,并利用解直角三角形的知识求解 是解此题的关键.
4.(3 分)(2018•宁夏)如图,△ABC 中,∠ACB=90°,沿 CD 折叠△CBD,使点 B 恰好落在 AC 边上的点 E 处.若∠A=22°,则∠BDC 等于( )
A.44°
B.60°
C.67°
分析:首先把一次函数化为 y=ax﹣a,再分情况进行讨论,a>0 时;a<0 时,分别讨论出两 函数所在象限,即可选出答案.
解答:解:y=a(x﹣1)=ax﹣a, 当 a>0 时,反比例函数在第一、三象限,一次函数在第一、三、四象限, 当 a<0 时,反比例函数在第二、四象限,一次函数在第二、三、四象限, 故选:C.
∴∠BDC=
=67°.
故选 C. 点评:此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,
注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.
5.(3 分)(2018•宁夏)雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷
共 1500 顶,其中甲种帐篷每顶安置 6 人,乙种帐篷每顶安置 4 人,共安置 8000 人.设该企业捐助甲种帐篷 x
分析:根据题意可判断⊙A 与⊙B 是等圆,再由直角三角形的两锐角互余,即可得到 ∠A+∠B=90°,根据扇形的面积公式即可求解.
故选 B. 点评:本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.
2.(3 分)(2018•宁夏)一元二次方程 x(x﹣2)=2﹣x 的根是( )
A.﹣1
B.2
C.1 和 2
D.﹣1 和 2
考点:解一元二次方程-因式分解法.3718684 专题:计算题. 分析:先移项得到 x(x﹣2)+(x﹣2)=0,然后利用提公因式因式分解,最后转化为两个
2018年宁夏回族自治区中考数学试卷-答案
宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】C【解析】,故选:C . 1110222--=-=【考点】绝对值、二次根式的运算2.【答案】D【解析】故选:D .33236224326(a),(a ),,(2)4a a a a a a a --=-=÷=-=【考点】同底数幂的除法、幂的乘方、积的乘方3.【答案】C【解析】由折线图可知用电量为10度的有1个月份,用电量为15度的有2个月份,用电量为20度的有2个月份,用电量为25度的有2个月份,用电量为30度的有3个月份,这组数据的众数为30,中位数为∴.故选C . 202522.52+=【考点】中位数、众数、折线统计图.4.【答案】A【解析】的一个根,解得,故选A . 2 240x x c -+=(2242(0,c -⨯+=∴1c =【考点】一元二次方程的根.5.【答案】B【解析】根据题意可列方程.故选B .()23001 507x +=【考点】一元二次方程的实际应用一增长率问题.6.【答案】A【解析】设圆锥的底面半径为r ,依题意,得,解得.即圆锥的底面半径为10,故选120302180r ππ⨯==10r A .【考点】圆锥的有关计算.7.【答案】D 【解析】如图,矩形的对边平行,.故选D 140,23 1403 70,∠=︒∴∠=︒∴∠=︒ ,23 70∴∠=∠=︒【考点】图形的折叠、平行线的性质8.【答案】D【解析】根据题意分析可得,向圆柱形水槽容器内注入水,水面高度h (cm)与注水时间t (s)之间的变化分2个阶段.①水面淹没铁块之前,水面匀速上升,且速度较快;②水面淹没铁块之后,水面匀速上升但与①相比速度较慢.故选D .【考点】函数图像的实际应用第Ⅱ卷二.填空题9.【答案】 25【解析】由题可知不透明布袋里共10个球,从布袋中任意摸出1个球恰好为红球的概率为. 42105=【考点】概率的计算10.【答案】24【解析】.2212,2,(m )(m n)12224m n m n m n n +=-=∴-=+-=⨯= 【考点】平方差公式、代数式求值11.【答案】减小 【解析】∵反比例函数的图象经过点,∴该反比例函数图象分布在第一、三象k y x=(1,4)1440k =⨯∴=>限,且在每一象限内y 随x 的增大而减小.【考点】反比例函数的图象与性质12.【答案】 12-【解析】根据题意设. 2223412,3,0,222382a b k k k a k b k k a b k k k --⋅-==≠===-++⋅则【考点】分式的基本性质13.【答案】 98c <【解析】关于x 的方程有两个不相等的实数根,,解 2230x x c -+=224(3)420b ac c ∴∆=-=--⨯⨯>得9c 8<【考点】一元二次方程根的判别式14.【答案】5【解析】点C 的坐标为,M 为BC 的中点,点M 的坐标为,,反比例函数 (8,6)∴(8,3)3CM = ky x=的图象经过点M ,,反比例函数的解析式为,四边形AOBC 为矩形,点C 的坐3824k =⨯=∴∴24y x= 标为,点N 的纵坐标为6,,点N 的坐标为,,(8,6)∴246,4x x∴=∴=∴(4,6)4CN ∴=5MN ∴==【考点】矩形的性质、反比例函数的图象与性质、勾股定理15.【答案】18【解析】过C 作,交AB 于点D ,再过C 作于点E .由题意知,,CD AC ⊥CE AB ⊥45CAB ∠=︒,,,,,在可得15BCD ∠=︒12AC ==AC CD ⊥∵45ADC ∠=︒∴30B ∠=︒∴Rt AEC △.在中, sin 459(km)CE AC =︒=Rt BCE △18(km)sin 30CE BC ==︒【考点】直角三角形的应用——方向角问题.16.【答案】16【解析】由裁剪对比图发现,一张A4纸可以裁2张A5纸,一张A5纸可以裁2张A6纸,一张A6纸可以裁2张A7纸,一张A7可以裁2张A8纸,故一张A4纸可裁出张A8纸.4216=【考点】规律探究三、解答题17.【答案】71x -≤-<【解析】解:解不等式①得:1x -≤解不等式②得:,7x ->所以,原不等式组的解集为.71x -≤-<【考点】一元一次不等式组18.【答案】1-【解析】解:原式= 11323()332(x 3)(x 3)23x x x x x x x --+⋅=⋅=+-+-+当. 3x =-时,原式【考点】分式的化简求值19.【答案】解:(1)正确画出轴对称图形111A B C △(2)正确画出位似图形;222A B C △2(10,8)B【解析】(1)根据轴对称的性质作图即可;(2)根据位似图形的性质作图,确定的坐标.2B 【考点】轴对称作图、位似作图、点的坐标20.【答案】解:(1),正确补全频数分布直方图=120a (2)(名)8000(0.050.3)2800⨯+=(3)由列表法或树状图法可知,随机抽取两名同学的可能性共有12种,其中抽到1名男生和1名女生的可能性有6种.. 61(11)122P ==∴抽到名男生和名女生【解析】解:(1),正确补全频数分布直方图=120a (2)(名)8000(0.050.3)2800⨯+=(3)由列表法或树状图法可知,随机抽取两名同学的可能性共有12种,其中抽到1名男生和1名女生的可能性有6种.. 61(11)122P ==∴抽到名男生和名女生【考点】频数分布表、频数分布直方图、样本估计总体、列表或画树状图求概率21.【答案】证明:四边形ABCD 为正方形∵90129023901 3.AB BC A CBN CM BE =∠=∠=︒∠+∠=︒⊥∠+∠=︒∠=∠∴,,∵,∴,∴在和中,ABE ∆BCN ∆,,13,A CBN AB BC ∠=∠⎧⎪=⎨⎪∠=∠⎩)ABE BCN ASA ∴∆∆≌((2)解: . 12N AB BN AB ∴= 为中点又∵△ABE ≌△BCN . 12AE BN AB ∴==在. 122AE AE Rt ABE tan ABE AB AE ∆∠===中,【解析】(1)根据正方形的性质和已知条件可证;(2)由全等三角形的性质和锐角三角函数可求解【考点】正方形的性质、全等三角形的判定和性质、锐角三角函数.22.【答案】解:(1)设B 种原料每千克的价格为 x 元,则A 种原料每千克的价格为(x +10)元根据题意,得: 1.21034x x ++≤()解得,10x ≤答:购入B 种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为 a 元,则零售价为(a+30)元。
2018年宁夏中考数学试卷答案
【解答】解:作 CE⊥AB 于 E, 18 km/h×30 分钟=9 km,
∴AC=9 km,
∵∠CAB=45°,
∴CE=AC•sin45°=9km,
∵灯塔 B 在它的南偏东 15°方向,
∴∠NCB=75°,∠CAB=45°,
∴∠B=30°,
∠ ∴BC= th
tkm,
故答案为:18. 16.(3 分)如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小
∠ 在 Rt△ABE 中,tan∠ABE═
∠ .
∠
22.(6 分)某工厂计划生产一种创新产品,若生产一件这种产品需 A 种原料 1.2
千克、B 种原料 1 千克.已知 A 种原料每千克的价格比 B 种原料每千克的价
格多 10 元.
(1)为使每件产品的成本价不超过 34 元,那么购入的 B 种原料每千克的价格最
(3)画树状图为:
共有 12 种等可能的结果数,其中抽到 1 名男生和 1 名女生的可能性有 6 种.
∴P(抽到 1 名男生和 1 名女学生)=
.
21.(6 分)已知点 E 为正方形 ABCD 的边 AD 上一点,连接 BE,过点 C 作 CN⊥ BE,垂足为 M,交 AB 于点 N.
(1)求证:△ABE≌△BCN; (2)若 N 为 AB 的中点,求 tan∠ABE.
格中画出△A2B2C2,并写出点 B2 的坐标.
【解答】解:(1)如图所示:△A1B1C1 即为所求: (2)如图所示:△A2B2C2 即为所求; B2(10,8)
20.(6 分)某区规定学生每天户外体育活动时间不少于 1 小时.为了解学生参 加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随 机抽样调查,并将调查结果绘制成如下的统计表(不完整).
宁夏2018年中考数学参考答案及评分标准
宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学试题参考答案及评分标准.............说明: 1. 除本参考答案外,其它正确解法可根据评分标准相应给分。
2. 涉及计算的题,允许合理省略非关键步骤。
3. 以下答案中右端所注的分数,表示考生正确做到这步应得的累积分。
一、 选择题(3分×8=24分)二、 填空题(3分×8=24分)9.52; 10. 24; 11. 减小; 12. 21-; 13. 89<c ; 14. 5 ; 15. 18 ; 16. 16.三.解答题(每小题6分,共36分)17. 解:解不等式①得:x ≤-1, …………………………………………………………………………2分解不等式②得:x >-7, …………………………………………………………………………4分 所以,原不等式组的解集为 -7<x <x ≤-1 6分 18. 解:原式=323)3)(3(223)3131(+=-⋅-+=-⋅-++x xx x x x x x x ……………………………4分 当33-=x 时,原式31333-=-=……………………………………………………6分19. 解:(1)正确画出轴对称图形△A 1B 1C 1……………………………………………………………2分(2)正确画出位似图形图形△A 2B 2C 2(3分); B 2(10,8)………………………………6分20. 解:(1)120=a ,正确补全频数分布直方图……………………………………………………2分(2)8000×(0.05+0.3)=2800(名)…………………………………………………………3分 (3)由列表法或树状图法可知,随机抽取两名同学的可能性共有12种,其中抽到1名男生和1名女生的可能性有6种.∴P (抽到1名男生和1名女学生)=21126= ………………………………………………6分21.(1)证明:∵四边形ABCD 为正方形∴AB =BC ,∠A =∠CBN =90°,∠1+∠2=90° ∵CM ⊥BE ∴∠2+∠3=90° ∴∠1=∠3在△ABE 和△BCN 中 ∠ ∠∠ ∠∴△ABE ≌△BCN (ASA )…………………………………………………………………3分 (2)解: ∵N 为AB 中点 ∴BN 21=AB 又∵△ABE ≌△BCN ∴AE = BN 21=AB 在Rt △ABE 中,tan ∠ABE =212===AE AE AB AE …………………………………………6分22. 解:(1)设B 种原料每千克的价格为x 元,则A 种原料每千克的价格为(x +10)元 根据题意,得:1.2(x +10)+x ≤34 解得,x ≤10答:购入B 种原料每千克的价格最高不超过10元. ……………………………………………2分 (2)设这种产品的批发价为a 元,则零售价为(a +30)元 根据题意,得:301600010000+=a a ,解得,a =50 经检验,a =50是原方程的根,且符合实际.答:这种产品的批发价为50元. …………………………………………………………………… 6分 四、解答题(23题、24题每题8分,25题、26题每题10分,共36分)23.解:(1)连接OC∵PC 为⊙O 的切线 ∴∠OCP =90° 即∠2+∠P =90°∵OA =OC ∴ ∠CAO =∠1 ∵AC=CP ∴∠P =∠C AO 又∵∠2是△AOC 的一个外角 ∴∠2=2∠C AO =2∠P ∴ 2∠P +∠P =90° ∴∠P =30°………………………………………………………………………………………… 4分 (2)连接AD∵D 为的中点∴∠ACD =∠DAE∴△ACD ∽△DAE ∴DEADAD DC = 即 AD 2=DC ·DE∵ DC ·DE =20 ∴ AD 52=∵= ∴ AD =BD 52= ∵ AB 是⊙O 的直径 ∴Rt △ADB 为等腰直角三角形∴ AB 102= ∴ OA 21=AB =10∴S ⊙O =π·OA 2=10π=31.4 ………………………………………………………………………… 8分24.解:(1)∵抛物线c bx x y ++-=231经过A ),(033、B (0,3) ∴由上两式解得332=b ∴抛物线的解析式为:3332312++-=x x y ………3分 (2)设线段AB 所在直线为:b kx y +=∵线段AB 所在直线经过点A ),(033、B (0,3) 抛物线的对称轴l 于直线AB 交于点D ∴设点D 的坐标为D ),(m 3 将点D ),(m 3代入333+-=x y ,解得m =2 ∴点D 坐标为),(23 ∴CD =CE -DE =2 过点B 作BF ⊥l 于点F ∴BF =OE =3 ∵BF +AE = OE +AE =OA =33 ∴S △ABC =S △BCD +S △ACD =21CD ·BF +21CD ·AE ∴S △ABC =21CD (BF +AE ) =21×2×33=…………………………………………………………8分 25.解:(1) (2,3,2); 12………………………………………………………………………………2分(2) ① ② ⑤…………………………………………………………………………………………5分 (3))(2222321321),,(xyS xzS yzS xyS xzS yzS S z y x ++=++=………………………………7分(4)当S 1=2, S 2=3, S 3=4时)432(2)(2321),,(xy xz yz xyS xzS yzS S z y x ++=++=欲使S (x ,y ,z )的值最小,不难看出x 、y 、z 应满足x ≤y ≤z (x 、y 、z 为正整数). 在由12个单位长 方体码放的几何体中,满足条件的有序数组为(1,1,12),(1,2,6),(1,3,4),(2,2,3).而 S (1,1,12)=128 , S (1,2,6)=100, S (1,3,4)=96, S (2,2,3)=92所以,由12个单位长方体码放的几何体表面积最小的有序数组为:(2,2,3), 最小面积为S (2,2,3)=92………………………………………………………………………………………………10分 26.解:(1)令点P 的坐标为P (x 0,y 0)∵PM ⊥y 轴∴S △OPM =21OM ·PM =0021y x ⋅⋅ 将34300+-=x y 代入得23)2(83)4(83)343(21200000+--=--=+-=∆x x x x x S OPM∴当x 0=2 时,△OPM 的面积有最大值S max =23∴PM ∥OB ∴OB PM AB AP = 即OB PMAB AP ⋅=∵直线AB 分别交两坐标轴于点A 、B ∴OA =3 , OB =4,AB =5∴AP =25……………………………………………………… 6分(2)①在△BOP 中,当BO = BP 时 BP = BO =4, AP =1∵P 1M ∥OB∴OB PMAB AP = ∴54=MP ,将54=MP 代入代入343+-=x y 中,得512=OM ∴ P 1(54 ,512)……………………………………………8分②在△BOP 中,当OP = BP 时过点P 作PM ⊥OB 于点N ∵ OP =BP ∴ ON =221=OB将ON =2代入343+-=x y 中得,23=MP ∴ 点P 的坐标为P (2,23)……………………………10分。
2018最新试题资料-2018年宁夏回族自治区中考数学试卷(含答案和解释)
2018年宁夏回族自治区中考数学试卷(含答案和解释)
5
c
2018年宁夏中考数学试卷
参考答案与试题解析
一、选择题本大题共8个小题,每小题3分,共24分在每小题给出的四个选项中,只有一项是符合题目要求的
1.下列各式计算正确的是()
A.4a﹣a=3B.a6÷a2=a3c.(﹣a3)2=a6D.a3a2=a6
【分析】根据合并同类项,同底数幂的除法底数不变指数相减,积的乘方等于乘方的积,同底数幂的乘法底数不变指数相加,可得答案.
【解答】解A、系数相加子母机指数不变,故A不符合题意;
B、同底数幂的除法底数不变指数相减,故B不符合题意;
c、积的乘方等于乘方的积,故c符合题意;
D、同底数幂的乘法底数不变指数相加,故D不符合题意;
故选c.
【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.
2.在平面直角坐标系中,点(3,﹣2)关于原点对称的点是()A.c.
【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.
【解答】解点P(3,﹣2)关于原点对称的点的坐标是(﹣3,2),故选A.
【点评】本题考查了关于原点对称的点的坐标,熟记关于原点对。
宁夏2018年中考数学试题(word版含答案解析)
一、选择题 <以下每题所给的四个答案中只有一个是正确的,每题 3 分,共 24 分)1、<2018?宁夏)计算 a 2+3a 2的结果是 < )A 、3a 2B 、 4a 24 D 、 4a 4C 、 3a考点 :归并同类项。
剖析: 本题考察整式的加法运算,本质上就是归并同类项,依据运算法例计算即可.2 2 2解答: 解: a +3a =4a .应选 B .评论: 整式的加减运算本质上就是归并同类项,这是各地中考的常考点. 2、<2018?宁夏)如图,矩形ABCD 的两条对角线订交于点O ,∠ AOD=60°, AD=2,则 AB的长是 < )A 、2B 、 4C 、2D 、4考点 :矩形的性质;等边三角形的判断与性质。
剖析: 本题的重点是本题的重点是利用等边三角形和矩形对角线的性质即锐角三角函数关系求长度.解答: 解:∵在矩形 ABCD 中, AO= AC ,DO= BD , AC=BD , ∴AO=DO ,又∵∠ AOD=60°, ∴∠ ADB=60°, ∴∠ ABD=30°,∴ =tan30 °,即 = , ∴AB=2 .应选 C .评论: 本题考察了矩形的性质和锐角三角函数关系,拥有必定的综合性,难度不大属于基础性题目.3、<2018?宁夏)等腰梯形的上底是 2cm ,腰长是 4cm ,一个底角是 60°,则等腰梯形的下底是<) A 、5cm B 、 6cm C 、 7cmD 、 8cm考点 :等腰梯形的性质;等边三角形的判断与性质;平行四边形的判断与性质。
专题 :计算题。
剖析:过 D 作 DE∥ AB 交 BC 于 E,推出平行四边形ABED,得出 AD=BE=2cm, AB=DE=DC,推出等边三角形DEC,求出 EC的长,依据BC=EB+EC即可求出答案.解答:解:过 D 作 DE∥AB 交 BC于 E,∵DE∥AB, AD∥ BC,∴四边形 ABED是平行四边形,∴A D=BE=2cm, DE=AB=4cm,∠ DEC=∠ B=60°,AB=DE=DC,∴△ DEC是等边三角形,∴E C=CD=4cm,∴B C=4cm+2cm=6cm.应选 B.评论:本题主要考察平等腰梯形的性质,平行四边形的性质和判断,全等等边三角形的性质和判断等知识点的理解和掌握,把等腰梯形转变成平行四边形和等边三角形是解本题的重点.4、<2018?宁夏)一个两位数的十位数字与个位数字的和是8,把这个两位数加上恰巧成为数字对换后构成的两位数,求这个两位数.设个位数字为x,十位数字为方程组正确的选项是<)18,结果y,所列A、B、C、D、考点:由本质问题抽象出二元一次方程组。
宁夏回族自治区2018年中考数学试卷及答案(Word版)
三、解答题(本题共有 6 个小题,每小题 6 分,共 36 分) 17.解不等式组: x 3
x 3 (x 1) 5 x 1 1 2 5
18.先化简,再求值: (
+
R
R
)÷
R
;其中,
R .
19.已知:△ABC 三个顶点的坐标分别为 A(-2,-2) ,B(-5,-4) ,C(-1,-5). (1)画出△ABC 关于 x 轴对称的△A1B1C1; (2)以点 O 为位似中心,将△ABC 放大为原来的 2 倍,得到△A2B2C2,请在网格中画出 △A2B2C2,并写出点 B2 的坐标.
24.抛物线 y
线 l,顶点为 C.
R
+
+ 经过点 A
22.某工厂计划生产一种创新产品,若生产一件这种产品需 A 种原料 1.2 千克、B 种原料 1 千克.已知 A 种原料每千克的价格比 B 种原料每千克的价格多 10 元. (1)为使每件产品的成本价不超过 34 元,那么购入的 B 种原料每千克的价格最高不超 过多少元? (2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产 品的零售价比批发价多 30 元.现用 10000 元通过批发价购买该产品的件数与用
20.某区规定学生每天户外体育活动时间不少于 1 小时.为了解学生参加户外体育活动的情 况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制 成如下的统计表(不完整).
请根据图表中的信息,解答下列问题: (1)表中的 a=,将频数分布直方图补全; (2)该区 8000 名学生中,每天户外体育活动的时间不足 1 小时的学生大约有多少名? (3)若从参加户外体育活动时间最长的 3 名男生和 1 名女生中随机抽取两名,请用画树状 图或列表法求恰好抽到 1 名男生和 1 名女生的概率. 21.已知点 E 为正方形 ABCD 的边 AD 上一点,连接 BE,过点 C 作 CN⊥BE,垂足为 M, 交 AB 于点 N. (1)求证:△ABE≌△BCN; (2)若 N 为 AB 的中点,求 tan∠ABE.
2018宁夏回族自治区中考数学试题含答案解析
宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学试题说明:1.考试时间120分钟。
满分120分。
2.考生作答时,将答案写在答题卡上,在本试卷上答题无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.计算:的结果是A. 1B.C.0D.-12.下列运算正确的是A. B. (a2)3=a5 C.a2÷a-2=1 D.(-2a3)2=4a63.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是A. 30和 20B. 30和25C. 30和22.5D. 30和17.54.若是方程x2-4x+c=0的一个根,则c的值是A.1B.C.D.5.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是A.300(1+x)=507B.300(1+x)2=507C.300(1+x)+300(1+x)2=507D.300+300(1+x)+300(1+x)2=5076.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是A.10 B.20 C.10πD.20π7.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是A.40°B.50°C.60°D.70°8.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是二、填空题(本题共8小题,每小题3分,共24分)9.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是 .10.已知m+n=12,m-n=2,则m2-n2= .11.反比例函数(k是常数,k≠0)的图象经过点(1,4),那么这个函数图象所在的每个象限内,y的值随x值的增大而 .(填“增大”或“减小”)12.已知:,则的值是 .13.关于x的方程有两个不相等的实数根,则c的取值范围是 .14.在平面直角坐标系中,四边形AOBC为矩形,且点C坐标为(8,6),M为BC中点,反比例函数的图象经过点M,交AC于点N,则MN的长度是 .15.一艘货轮以㎞/h 的速度在海面上沿正东方向航行,当行驶至A 处时,发现它的东南方向有一灯塔B ,货轮继续向东航行30分钟后到达C 处,发现灯塔B 在它的南偏东15°方向,则此时货轮与灯塔B 的距离是 km.16.如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A0纸长度方向对折一半后变为A1纸;A1纸长度方向对折一半后变为A2纸;A2纸长度方向对折一半后变为A3纸;A3纸长度方向对折一半后变为A4纸……A 4规格的纸是我们日常生活中最常见的,那么有一张A4的纸可以裁 张A8的纸.三、解答题(本题共有6个小题,每小题6分,共36分)17.解不等式组:⎪⎩⎪⎨⎧+<--≥--211535)1(3x x x x18.先化简,再求值:;其中,.19.已知:△ABC 三个顶点的坐标分别为A (-2,-2),B (-5,-4),C (-1,-5). (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2,并写出点B 2的坐标.20.某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).请根据图表中的信息,解答下列问题:(1)表中的a=,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.21.已知点E为正方形ABCD的边AD上一点,连接BE,过(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.22.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,共36分)23.已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.(1)求∠P的度数;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE·DC=20,求⊙O的面积.(π取3.14)24.抛物线经过点A和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.25.空间任意选定一点O,以点O为端点,作三条互相垂直的射线ox、oy、oz.这三条互相垂直的射线分别称作x轴、y轴、z轴,统称为坐标轴,它们的方向分别为ox(水平向前)、oy(水平向右)、oz(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为S1、S2、S3,且S1<S2<S3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S1所在的面与x轴垂直,S2所在的面与y轴垂直,S3所在的面与z轴垂直,如图1所示.若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,z轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作(1,2,6),如图3的几何体码放了2排3列4层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组(x,y,z)表示一种几何体的码放方式.(1)如图是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为,组成这个几何体的单位长方体的个数为个;(2)对有序数组性质的理解,下列说法正确的是;(只填序号)①每一个有序数组(x,y,z)表示一种几何体的码放方式.②有序数组中x、y、z的乘积就表示几何体中单位长方体的个数.③有序数组不同,所表示几何体的单位长方体个数不同.④不同的有序数组所表示的几何体的体积不同.⑤有序数组中x、y、z每两个乘积的2倍可分别确定几何体表面上S1、S2、S3的个数. (3)为了进一步探究有序数组(x,y,z)的几何体的表面积公式S(x,y,z),某同学针对若干个单位长方体进行码放,制作了下列表格:根据以上规律,请写出有序数组(x,y,z)的几何体表面积计算公式S(x,y,z);(用x、y、z、S1、S2、S3表示)(4)当S1=2,S2=3,S3=4时,对由12个单位长方体码放的几何体进行打包,为了节约外包装材料,对12个单位长方体码放的几何体表面积最小的规律进行探究,根据探究的结果请写出使几何体表面积最小的有序数组,并用几何体表面积公式求出这个最小面积.(缝隙不计)26.如图:一次函数的图象与坐标轴交于A、B两点,点P是函数(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学试题参考答案及评分标准.............说明: 1. 除本参考答案外,其它正确解法可根据评分标准相应给分。
宁夏回族自治区2018年中考数学试卷及答案
宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学试题说明:1.考试时间120分钟。
满分120分。
2.考生作答时,将答案写在答题卡上,在本试卷上答题无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.计算: −12 − 14 的结果是A. 1B.12 C .0 D.-12.下列运算正确的是A.(−a )3=a 3B. (a 2)3=a 5C.a 2÷a -2=1D.(-2a 3)2=4a 63.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是A. 30和 20B. 30和25C. 30和22.5D. 30和17.54.若2− 3是方程x 2-4x+c =0的一个根,则c 的值是A.1B. 3− 3C.1+ 3D. 2+ 35.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x .应列方程是A.300(1+x )=507B.300(1+x )2=507C.300(1+x )+300(1+x )2=507D.300+300(1+x )+300(1+x )2=507 6.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是A .10 B.20 C.10π D.20π7.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是A.40°B.50°C.60°D.70°8.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h (cm )与注水时间t (s )之间的函数关系图象大致是二、填空题(本题共8小题,每小题3分,共24分)9.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是 .10.已知m+n=12,m-n=2,则m 2-n 2= .11.反比例函数 y =k x (k 是常数,k ≠0)的图象经过点(1,4),那么这个函数图象所在的每个象限内,y 的值随x 值的增大而 .(填“增大”或“减小”)12.已知:a b =23,则 a−2b a +2b 的值是 .13.关于x 的方程 2x 2−3x +c =0 有两个不相等的实数根,则c 的取值范围是 .14.在平面直角坐标系中,四边形AOBC 为矩形,且点C 坐标为(8,6),M 为BC 中点,反比例函数y =kx (k 是常数,k ≠0)的图象经过点M ,交AC 于点N ,则MN 的长度是 .15.一艘货轮以 18 2 ㎞/h 的速度在海面上沿正东方向航行,当行驶至A 处时,发现它的东南方向有一灯塔B ,货轮继续向东航行30分钟后到达C 处,发现灯塔B 在它的南偏东15°方向,则此时货轮与灯塔B 的距离是 km.16.如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A 0纸长度方向对折一半后变为A 1纸;A 1纸长度方向对折一半后变为A 2纸;A 2纸长度方向对折一半后变为A 3纸;A 3纸长度方向对折一半后变为A 4纸……A 4规格的纸是我们日常生活中最常见的,那么有一张A 4的纸可以裁 张A 8的纸.。
2018年宁夏自治区中考数学试题(含答案)
宁夏回族自治区2018年初中毕业暨高中阶段招生考试数 学 试 题注意事项:1.全卷总分120分,答题时间120分钟 2.答题前将密封线内的项目填写清楚3.使用答题卡的考生,将所有答案全部答在答题卡相应的位置上.一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.下列运算正确的是( )A .32a -2a =3B .32)(a =5aC .⋅3a 6a =9aD .22)2(a =24a2.根据人民网-宁夏频道2018年1月18日报道,2018年宁夏地区生产总值为2060亿元,比上年增长12%,增速高于全国平均水平.2060亿元保留两个有效数字用科学记数法表示为( ) A .2.0×109元 B . 2.1×103元 C .2.1×1010元 D .2.1×1011元 3.一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是( ) A .13 B .17 C .22 D .17或224、小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( )A .⎩⎨⎧=+=+16120053y x y xB .⎩⎨⎧=+=+162.1605603y x y xC .⎩⎨⎧=+=+162.153y x y x D .⎩⎨⎧=+=+161200605603y x y x5.如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动),那么小羊A 在草地上的最大活动区域面积是( ) A.1217πm 2 B.617πm 2C.425πm 2D.1277πm 26.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD ,则∠ACP =( ) A .30B .45C .60D .67.57.一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近这个几何体的侧面积的是( )A .24.0B .62.8C .74.2D .113.0第5题第6题第7题8.运动会上,初二 (3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为( ).A .20305.140=-x x B.205.13040=-x x C .205.14030=-x x D.20405.130=-xx二、填空题(每小题3分,共24分)9.当a 时,分式21+a 有意义. 10.已知菱形的边长为6,一个内角为60°,则菱形较短的对角线长是 .11.已知a 、b 为两个连续的整数,且b a <<11,则a b += . 12. 点B (-3,4)关于y 轴的对称点为A ,则点A 的坐标是 . 13.在△ABC 中∠C =90°,AB =5,BC =4,则tan A =_________.14. 如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A 、B 两岛的视角∠ACB =__________度.15.如图,在矩形ABCD 中,对角线AC 、BD 相较于O ,DE ⊥AC 于E ,∠EDC ∶∠EDA =1∶2,且AC =10,则DE 的长度是 .16.如图,将等边△ABC 沿B C 方向平移得到△A 1B 1C 1.若BC =3,31=∆C PB S ,则BB 1= . 三、解答题(共24分)17.(6分) 计算:18.(6分)20)21(21)2012(45sin 22--+----︒∙第15题第16题A A 1 11化简,求值: 11222+-+--x xx x x x ,其中x=219.(6分)解不等式组 ⎪⎩⎪⎨⎧≤--+-+131211312x x x x )(>20.(6分)某商场为了吸引顾客,设计了一种促销活动,在一个不透明的箱子里放有4个相同的小球,在球上分别标有“0元”、“10元”、“20元”、“30元”的字样,规定:顾客在本商场同一天内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和,返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到 元购物券,至多可得到 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.21.(6分)商场对每个营业员在当月某种商品销售件数统计如下: 解答下列问题(1)设营业员的月销售件数为x(单位:件),商场规定:当x <15时为不称职;当15≤x <20时为基本称职;当20≤x <25为称职;当x ≥25时为优秀.试求出优秀营业员人数所占百分比;(2)根据(1)中规定,计算所有优秀和称职的营业员中月销售件数的中位数和众数; (3)为了调动营业员的工作积极性,商场决定制定月销售件数奖励标准,凡达到或超过这个标准的营业员将受到奖励。
2018年宁夏中考数学试题及解析
2018 年宁夏中考数学试卷一、选择题(以下每题所给的四个答案中只有一个是正确的,每题3 分,共 24 分)1.( 3 分)( 2018?宁夏)以下计算正确的选项是( )﹣ 12A .B . =2C . ( )D . (= ﹣1) =22.( 3 分)( 2018?宁夏)生物学家发现了一种病毒的长度约为 0.00000432 毫米.数据 0.00000432 用科学记数法表示为( )﹣5B .4.32×10 ﹣ 6﹣7﹣ 7A . 0.432×10 C . 4.32×10 D . 43.2×103.( 3 分)( 2018?宁夏)如图,搁置的一个机器部件 (图 1),若其主视图如 (图 2)所示,则其俯视图为 ( )A .B .C .D .4.( 3 分)( 2018?宁夏)某校 10 名学生参加 “心理健康 ”知识测试,他们得分状况以下表: 人数 2 3 4 1 分数 80859095那么这 10 名学生所得分数的众数和中位数分别是( )A .95 和 85B .90 和 85C . 90 和 87.5D .85 和 87.55.( 3 分)( 2018?宁夏)对于 x 的一元二次方程 2有实数根,则 m 的取值范围是( )x +x+m=0 A . B .m ≤ C . m ≥D . m ≤ m ≥6.( 3 分)( 2018?宁夏)如图,四边形 ABCD 是⊙ O 的内接四边形, 若∠ BOD=88 °,则∠ BCD 的度数是( )A . 88°B .92°C . 106°D . 136°7.( 3 分)( 2018?宁夏)如图,某小区有一块长为18 米,宽为6 米的矩形空地,计划在此中修筑两块同样的矩形绿地,它们的面积之和为度为 x 米,则能够列出对于x60 米 2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽的方程是( )。
2018年宁夏回族自治区中考数学试卷有答案
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数 学( 本试卷满分120分,考试时间120分钟)第Ⅰ卷( 选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算:12--的结果是( ) A .1B .12C .0D .1- 2.下列运算正确的是( )A .33()a a -=B .()325aa = C .221a a -÷= D 32624a a -=()3.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是( )A .30和20B .30和25C .30和22.5D .30和17.54.若2是方程240x x c -+=的一个根,则c 的值是( ) A .1B.3C.1D.25.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x .应列方程是( )A .()3001507x +=B .2300(1)507x +=C .2300(1)300(1)507x x +++=D .2300300(1)300(1)507x x ++++=6.用一个半径为30,圆心角为120︒的扇形围成一个圆锥,则这个圆锥的底面半径是( )A.10 B .20C .10πD .20π7.将一个矩形纸片按如图所示折叠,若140∠=︒,则∠2的度数是( )A .40︒B .50︒C .60︒D .70︒8.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h (cm )与注水时间t (s )之间的函数关系图象大致是( )第Ⅱ卷(非选择题 共96分)二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中的横线上) 9.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是 .10.已知12m n +=,2m n -=,则22m n -=.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)11.反比例函数ky x=(k 是常数,0k ≠)的图象经过点1,4(),那么这个函数图象所在的每个象限内,y 的值随x 值的增大而 .(填“增大”或“减小”) 12.已知:23a b =,则22a ba b-+的值是 . 13.关于x 的方程2230x x c -+=有两个不相等的实数根,则c 的取值范围是 . 14.在平面直角坐标系中,四边形AOBC 为矩形,且点C 坐标为8,6(),M 为BC 中点,反比例函数ky x=(k 是常数,0k ≠)的图象经过点M ,交AC 于点N ,则MN 的长度是 .15.一艘货轮以m /h 的速度在海面上沿正东方向航行,当行驶至A 处时,发现它的东南方向有一灯塔B ,货轮继续向东航行30分钟后到达C 处,发现灯塔B 在它的南偏东15︒方向,则此时货轮与灯塔B 的距离是 km . 16.如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A0纸长度方向对折一半后变为A1纸;A1纸长度方向对折一半后变为A2纸;A2纸长度方向对折一半后变为A3纸;A3纸长度方向对折一半后变为A4纸……A4规格的纸是我们日常生活中最常见的,那么有一张A4的纸可以裁 张A8的纸.三、解答题(本大题共10小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分6分)解不等式组:3(1)5,311.52x x x x --≥⎧⎪-+⎨-<⎪⎩18.(本小题满分6分) 先化简,再求值:112()333x x x -÷+--;其中,3x -.19.(本小题满分6分)已知:△ABC 三个顶点的坐标分别为A (2,2)--,B (5,4)--,C (1,5)--. (1)画出△ABC 关于x 轴对称的△111A B C ;(2)以点O 为位似中心,将△ABC 放大为原来的2倍,得到222A B C ∆ ,请在网格中画出222A B C ∆,并写出点B 2的坐标.20.(本小题满分6分)某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).请根据图表中的信息,解答下列问题:(1)表中的a = ,将频数分布直方图补全;(2)该区8 000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名? (3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率. 21.(本小题满分6分)已知点E 为正方形ABCD 的边AD 上一点,连接BE ,过点C 作CN BE ⊥,垂足为M,数学试卷 第5页(共20页) 数学试卷 第6页(共20页)交AB 于点N .(1)求证:ABE BCN ∆≅∆;(2)若N 为AB 的中点,求tan ABE ∠.22.(本小题满分6分)某工厂计划生产一种创新产品,若生产一件这种产品需A 种原料1.2千克、B 种原料1千克.已知A 种原料每千克的价格比B 种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B 种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10 000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?23.(本小题满分8分)已知:AB 为⊙O 的直径,延长AB 到点P ,过点P 作圆O 的切线,切点为C ,连接AC ,且AC CP =. (1)求P ∠的度数;(2)若点D 是弧AB 的中点,连接CD 交AB 于点E ,且·20DE DC =,求⊙O 的面积.( 3.14)π取24.(本小题满分8分)抛物线213y x bx c =-++经过点A ()和点B (0,3),且这个抛物线的对称轴为直线l ,顶点为C . (1)求抛物线的解析式;(2)接AB 、AC 、BC ,求ABC ∆的面积.25.(本小题满分10分)空间任意选定一点O ,以点O 为端点,作三条互相垂直的射线Ox 、Oy 、Oz .这三条互相垂直的射线分别称作x 轴、y 轴、z 轴,统称为坐标轴,它们的方向分别为Ox (水平向前)、Oy (水平向右)、Oz (竖直向上)方向,这样的坐标系称为空间直角坐标系. 将相邻三个面的面积记为123S S S 、、,且123S S S <<的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体1S 所在的面与x 轴垂直,2S 所在的面与y 轴垂直,3S 所在的面与z 轴垂直,如图1所示. 若将x 轴方向表示的量称为几何体码放的排数,y 轴方向表示的量称为几何体码放的列数,z 轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作(1,2,6),如图3的几何体码放了2排3列4层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组(,,)x y z 表示一种几何体的码放方式.(1)如图是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为 ,组成这个几何体的单位长方体的个数为 个;(2)对有序数组性质的理解,下列说法正确的是;(只填序号) ①每一个有序数组(,,)x y z 表示一种几何体的码放方式.②有序数组中x 、y 、z 的乘积就表示几何体中单位长方体的个数.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共20页) 数学试卷 第8页(共20页)③有序数组不同,所表示几何体的单位长方体个数不同. ④不同的有序数组所表示的几何体的体积不同.⑤有序数组中x 、y 、z 每两个乘积的2倍可分别确定几何体表面上123S S S 、、的个数. (3)为了进一步探究有序数组(,,)x y z 的几何体的表面积公式,,x y z S (),某同学针对若干个单位长方体进行码放,制作了下列表格:根据以上规律,请写出有序数组(,,)x y z 的几何体表面积计算公式,,x y z S ();(用x 、y 、z 、123S S S 、、表示)(4)当123234S S S ===,,时,对由12个单位长方体码放的几何体进行打包,为了节约外包装材料,对12个单位长方体码放的几何体表面积最小的规律进行探究,根据探究的结果请写出使几何体表面积最小的有序数组,并用几何体表面积公式求出这个最小面积.(缝隙不计)26.(本小题10分)如图:一次函数334y x =-+的图象与坐标轴交于A 、B 两点,点P 是函数334y x =-+04x (<<)图象上任意一点,过点P 作PM y ⊥轴于点M ,连接OP . (1)当AP 为何值时,△OPM 的面积最大?并求出最大值; (2)当△BOP 为等腰三角形时,试确定点P 的坐标.数学试卷 第9页(共20页) 数学试卷 第10页(共20页)宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学答案解析第Ⅰ卷2.【答案】D【解析】33236224326(a),(a ),,(2)4a a a a a a a --=-=÷=-=故选:D . 【考点】同底数幂的除法、幂的乘方、积的乘方 3.【答案】C【解析】由折线图可知用电量为10度的有1个月份,用电量为15度的有2个月份,用电量为20度的有2个月份,用电量为25度的有2个月份,用电量为30度的有3个月份,∴这组数据的众数为30,中位数为202522.52+=.故选C . 【考点】中位数、众数、折线统计图. 4.【答案】A【解析】23-是方程240x x c -+=的一个根,(2242(0,c -⨯+=∴解得1c =,故选A .【考点】一元二次方程的根. 5.【答案】B【解析】根据题意可列方程()23001 507x +=.故选B . 【考点】一元二次方程的实际应用一增长率问题. 6.【答案】A【解析】设圆锥的底面半径为r ,依题意,得120302180r ππ⨯=,解得=10r .即圆锥的底面半径为10,故选A .【考点】圆锥的有关计算. 7.【答案】D 【解析】如图,140,23 1403 70,∠=︒∴∠=︒∴∠=︒,矩形的对边平行,23 70∴∠=∠=︒.故选D【考点】图形的折叠、平行线的性质 8.【答案】D【解析】根据题意分析可得,向圆柱形水槽容器内注入水,水面高度h (cm)与注水时间t (s)之间的变化分2个阶段.①水面淹没铁块之前,水面匀速上升,且速度较快;②水面淹没铁块之后,水面匀速上升但与①相比速度较慢.故选D . 【考点】函数图像的实际应用第Ⅱ卷二.填空题9.【答案】25【解析】由题可知不透明布袋里共10个球,从布袋中任意摸出1个球恰好为红球的概率为42105=. 【考点】概率的计算 10.【答案】24【解析】2212,2,(m )(m n)12224m n m nm n n +=-=∴-=+-=⨯=.【考点】平方差公式、代数式求值 11.【答案】减小 【解析】∵反比例函数ky x=的图象经过点(1,4)1440k =⨯∴=>,∴该反比例函数图数学试卷 第11页(共20页) 数学试卷 第12页(共20页)象分布在第一、三象限,且在每一象限内y 随x 的增大而减小. 【考点】反比例函数的图象与性质 12.【答案】12-【解析】根据题意设2223412,3,0,222382a b k k k a k b k k a b k k k --⋅-==≠===-++⋅则. 【考点】分式的基本性质 13.【答案】98c < 【解析】关于x 的方程2230x x c -+=有两个不相等的实数根,224(3)420b ac c ∴∆=-=--⨯⨯>,解得9c 8<【考点】一元二次方程根的判别式 14.【答案】5【解析】点C 的坐标为(8,6),M 为BC 的中点,∴点M 的坐标为(8,3),3CM =,反比例函数ky x=的图象经过点M ,3824k =⨯=∴,∴反比例函数的解析式为24y x =,四边形AOBC 为矩形,点C 的坐标为(8,6),∴点N 的纵坐标为6,246,4x x∴=∴=,∴点N 的坐标为(4,6),4CN ∴=,5MN ∴==【考点】矩形的性质、反比例函数的图象与性质、勾股定理 15.【答案】18【解析】过C 作CD AC ⊥,交AB 于点D ,再过C 作CE AB ⊥于点E .由题意知,45CAB ∠=︒,15BCD ∠=︒,12AC ==,AC CD ⊥∵,45ADC ∠=︒∴,30B ∠=︒∴,在Rt AEC △可得s i n 459(k m C E A C=︒=.在Rt BCE △中,18(km)sin30CEBC ==︒【考点】直角三角形的应用——方向角问题. 16.【答案】16【解析】由裁剪对比图发现,一张A4纸可以裁2张A5纸,一张A5纸可以裁2张A6纸,一张A6纸可以裁2张A7纸,一张A7可以裁2张A8纸,故一张A4纸可裁出4216=张A8纸. 【考点】规律探究 三、解答题17.【答案】71x -≤-<【解析】解:解不等式①得:1x -≤ 解不等式②得:7x ->,所以,原不等式组的解集为71x -≤-<. 【考点】一元一次不等式组 18.【答案】1-【解析】解:原式=11323()332(x 3)(x 3)23x x x xx x x --+⋅=⋅=+-+-+当3x =-时,原式【考点】分式的化简求值19.【答案】解:(1)正确画出轴对称图形111A B C △ (2)正确画出位似图形222A B C △;2(10,8)B数学试卷 第13页(共20页) 数学试卷 第14页(共20页)【解析】(1)根据轴对称的性质作图即可;(2)根据位似图形的性质作图,确定2B 的坐标. 【考点】轴对称作图、位似作图、点的坐标20.【答案】解:(1) =120a ,正确补全频数分布直方图 (2)8000(0.050.3)2800⨯+=(名)(3)由列表法或树状图法可知,随机抽取两名同学的可能性共有12种,其中抽到1名男生和1名女生的可能性有6种.61(11)122P ==∴抽到名男生和名女生. 【解析】解:(1) =120a ,正确补全频数分布直方图 (2)8000(0.050.3)2800⨯+=(名)(3)由列表法或树状图法可知,随机抽取两名同学的可能性共有12种,其中抽到1名男生和1名女生的可能性有6种.61(11)122P ==∴抽到名男生和名女生.【考点】频数分布表、频数分布直方图、样本估计总体、列表或画树状图求概率 21.【答案】证明:∵四边形ABCD 为正方形 90129023901 3.AB BC A CBN CM BE =∠=∠=︒∠+∠=︒⊥∠+∠=︒∠=∠∴,,∵,∴,∴在ABE ∆和BCN ∆中,,,13,A CBN AB BC ∠=∠⎧⎪=⎨⎪∠=∠⎩ABE BCN ASA ∴∆∆≌()(2)解:12N AB BN AB ∴=为中点. 又∵△ABE ≌△BCN 12AE BN AB ∴==.在122AE AE Rt ABE tan ABE AB AE ∆∠===中,.【解析】(1)根据正方形的性质和已知条件可证;(2)由全等三角形的性质和锐角三角函数可求解【考点】正方形的性质、全等三角形的判定和性质、锐角三角函数.22.【答案】解:(1)设B 种原料每千克的价格为 x 元,则A 种原料每千克的价格为(x +10)元根据题意,得:1.21034x x ++≤() 解得,10x ≤答:购入B 种原料每千克的价格最高不超过10元. (2)设这种产品的批发价为 a 元,则零售价为(a+30)元 根据题意,得:100001600030a a =+,解得, 50a = 经检验,a =50是原方程的根,且符合实际.答:这种产品的批发价为50元.【解析】(1)根据每件产品的成本价不超过34元列不等式求解;(2)根据现用10 000元通过批发价购买与用16 000元通过零售价购买产品的件数相同列分式方程求解【考点】列不等式和分式方程解应用题. 23.【答案】解:(1)连接OC ,数学试卷 第15页(共20页) 数学试卷 第16页(共20页)90,290.,1PC O OCP P OA OC CAO ∴∠=︒∠+∠=︒=∴∠∠为的切线即=.∵AC =CP ∴∠P =∠CAO2AOC ∠∆又是的一个外角,∴∠2=2∠CAO =2∠P , 290,30P P P ∴∠+∠=︒∴∠=︒.(2)连接 AD ∵D 为AB 的中点ACD DAE ∴∠=∠DCA DAE ∴∆∆∽,∴2,AD DC AD DC DE AD DE==⋅即. ·20,DC DE AD =∴∵ ,AD BD ==5A D B D∴=∵ AB O Rt ADB ∴∆是的直径为等腰直角三角形,∴12AB OA AB =∴21031.4OSOA ππ===【解析】(1)利用圆切线的性质、直角三角形及三角形外角的性质求解即可;(2)利用圆周角定理推出相应角相等,再根据相似三角形的性质、弧与弦的关系定理以及勾股定理求解;【考点】圆切线的性质、直角三角形的性质、三角形外角的性质、弧与弦的关系定理、相似三角形的判定与性质、圆周角定理、勾股定理 24.【答案】(1)解:(1)∵抛物线213y x bx c =-++经过 03A B (),(,),∴90,3c c ⎧-++=⎪⎨=⎪⎩.由上两式解得b =.∴抛物线的解析式为:2133y x =-++.(2)设线段AB 所在直线为: + n y kx = ∵线段AB 所在直线经过点A(、B (0,3)可得33y x =+. 由抛物线的解析式可得其顶点C 的坐标为C) 设抛物线的对称轴l 于直线AB 交于点D , ∴设点D 的坐标为Dm)将点Dm)代入3y =+,解得m =2 ∴点D坐标为(),∴CD =CE -DE =2.过点B 作BF ⊥l 于点F BF OE ∴=∵ BF AE OE AE OA +=+==∴ 11221(BF AE)2122ABC BCD ACD S S S CD BF CD AECD ∆∆∆=+=⋅+⋅=+=⨯⨯=8分【解析】(1)根据A ,B 两点的坐标,利用待定系数法求解即可;(2)先确定直线AB 的解析式,然后求出直线l 与直线AB 的交点坐标,再利用三角形的面积公式求解. 【考点】二次函数、一次函数解析式的确定、三角形面积的计算数学试卷 第17页(共20页) 数学试卷 第18页(共20页)25.【答案】解:(1)(2,3,2) 12 (2)①②⑤(3)(,,)123123 =2+2 +2 =2( + + )x y z S yzS xzS xyS yzS xzS xyS . (4)当123234S S S ===,,时,(,,)123=2(+ + )=23+4) x y z S yzS xzS xyS yz xz xy +(2.欲使x y z S (,,)的值最小,不难看出 x 、y 、z 应满足x y z ≤≤(x 、y 、z 为正整数).在由12 个单位长方体码放的几何体中,满足条件的有序数组为(1,1,12),(1,2,6),(1,3,4),(2,2,3).而11121261342231281009692S S S S ====(,,)(,,)(,,)(,,),,,,所以,由12个单位长方体码放的几何体表面积最小的有序数组为 (2,2,3),最小面积为22392S =(,,).【解析】(1)根据三视图的含义进行求解; (2)根据有序数组的性质和新定义作出判断; (3)利用题中给出的几何体的表面积公式进行求解;(4)根据有序数组的含义和几何体的表面积公式进行分析求解。
2018年宁夏中考数学真题及答案
2018 年宁夏中考数学真题及答案注意事项:1. 考试时间 120 分钟 , 全卷总分 120 分 .2. 答题前将密封线内的项目填写清楚 .3. 答卷一律使用黑、蓝钢笔或圆珠笔 .4. 凡使用答题卡的考生,答卷前务必将答题卡上的有关项目填写清楚 . 选择题的每小题 选出答案后 , 用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净 后,再选涂其他答案 . 不使用答题卡的考生,将选择题的答案答在试卷上 .5则关于这 12 户居民月用水量, 下列说法错.误.的是 ( ) A .中位数 6 方 B .众数 6方 C .极差 8 方 D .平均数 5 方6.点 A 、B 、C 是平面内不在同一条直线上的三点,点 D 是平面内任意一点,若 A 、 B 、C 、D 四点恰能构成一个平行四边形,则在平面内符合这样条件的点 D 有 ( ) A .1 个 B .2 个 C .3 个 D .4 个7.把抛物线 yx 2 向左平移 1 个单位,然后向上平移 3 个单位,则平移后抛物线的表达式()2 2 2 2A . y (x 1)2 3 B. y (x 1)2 3 C . y (x 1)2 3 D . y (x 1)2 3.8.甲、乙两种商品原来的单价和为 100 元,因市场变化,甲商品降价 10%,乙商品提价 40%, 调价后两种商品的单价和比原来的单价和提高了 20%.若设甲、乙两种商品原来的单价分 别为 x 元、y 元,则下列方程组正确的是( ), 每小题 31.下列运算正确的是2 3 6A .a a a B. a5 a 3 a 2C . a 2 a 3 a 5D2.把多项式 x 3 2x 2x 分解因式结果正确的是()2 3 5(a 2)3 a 5()2A . x(x 22x) Bx(x 1)(x 1) D . x(x 1)23.把 61 万用科学记数法可表示为4 5 5A .6.1 104B.6.1 105C . 6.0 105461 1044.用一个平面去截一个几何体,不能截得三角形截面的几何体是A .圆柱B .圆锥C .三棱柱D .正方形 一、选择题 ( 下列每小题所给的四个答案中只有一个是正确的 分, 共 24 分 )x 2(x 2) CA . x y 100(1 1000)x (1 4000)y 100 (1 2000)C . x y 100D (1 1000)x (1 4000)y 100 (1 2000)11.矩形窗户上的装饰物如图所示, 它是由半径均为 b的两个四分之一圆组成, 则能射进阳 光部分的面积是 .12.商店为了对某种商品促销,将定价为 3 元的商品,以下列方式优惠销售:若购买不超过 5件,按原价付款;若一次性购买 5 件以上,超过部分打八折. 如果用 27 元钱,最多可以 购买该商品的件数是 .x213.若关于 x 的不等式组的解集是 x 2 ,则 m 的取值范围是xm14.将半径为 10cm ,弧长为 12 的扇形围成圆锥(接缝忽略不计) ,那么圆锥的母线与圆锥高的夹角的余弦值是 .15.如图是三根外径均为 1 米的圆形钢管堆积图和主视图, 则其最高点与地面的距离是 米.16.关于对位似图形的表述,下列命题正确的是 .(只填序号)① 相似图形一定是位似图形,位似图形一定是相似图形; ② 位似图形一定有位似中心;③ 如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这 两个图形是位似图形;④ 位似图形上任意两点与位似中心的距离之比等于位似比.x y 100(1 1000)x (1 4000)y 100 2000x y 100(1 1000)x (1 4000)y 100 20010.如图, BC ⊥ AE ,垂足为 C ,过 C 作 CD ∥ AB .若∠ ECD =48°则∠ B =A三、解答题(共24分)17.(6 分)x 3(x 2) 4计算: (3.14)018 ( 12) 11218. (6 分)19解不等式组 1 2x3x120.(6 分)在一个不透明的盒子里,装有 3 个写有字母A、2 个写有字母B和 1 个写有字母C的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下字母后放回盒子,摇匀后再随机取出一个小球,记下字母.请你用画树状图或列表的方法,求摸出的两个小球上分别写有字母B、C的概率.四、解答题(共48分)21.(6分)某课题组为了解全市九年级学生对数学知识的掌握情况,名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:(3)如果把成绩在90 分以上(含90 分)定为优秀,那么该市24000 名九年级考生数学成绩为优秀的学生约有多少名?22.(6 分)已知:正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF交于点M.1)求证:△ ABF≌△ DAE;2)找出图中与△ ABM相似的所有三角形(不添加任何辅助线).23.(8 分)如图,已知:⊙ O的直径AB与弦AC的夹角∠ A=30°,过点C作⊙ O的切线交AB的延长线于点P.在一次数学检测中,从全市24000分数段频数频率x<60200.1060≤x<70280.1470≤x<80540.2780≤x<90a0.2090≤x<100240.12100≤x<11018b110≤x≤120160.08题:(1)表中a和b 所表示的数分别为:a=(2)请在图中,补全频数分布直方图;(1)求证:AC=CP;(2)若PC=6, 求图中阴影部分的面积(结果精确到参考数据:3 1.73 3.14)24.(8 分)2 如图,已知:一次函数:y x 4的图像与反比例函数:y (x 0)的图像分别交于xA、B两点,点M是一次函数图像在第一象限部分上的任意一点,过M分别向x 轴、y 轴作垂线,垂足分别为M1、M2,设矩形MM1OM2的面积为S1;点N 为反比例函数图像上任意一点,过N 分别向x 轴、y 轴作垂线,垂足分别为N1、N2,设矩形NN1ON2 的面积为S2;(1)若设点M的坐标为(x,y),请写出S1关于x的函数表达式,并求x取何值时,S1的最大值;(2)观察图形,通过确定x 的取值,试比较S1、S2 的大小.25.(10 分)小明想知道湖中两个小亭A、B 之间的距离,他在与小亭A、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M处,测得亭A在点M的北偏东30°, 亭 B 在点M的北偏东60°0.1 ).当小明由点 M 沿小道 l 向东走 60 米时,到达点 N 处,此时测得亭 A 恰好位于点 N 的正北方向, Q 处,此时亭 B 恰好位于点 Q 的正北方向,根据以上测量数据,请你26. (10 分)在△ ABC 中,∠ BAC =45°,AD ⊥ BC 于 D ,将△ ABD 沿 AB 所在的直线折叠, 使点 D 落在点 E 处; 将△ ACD 沿 AC 所在的直线折叠,使点 D 落在点 F 处,分别延长 EB 、FC 使其交于继续向东走 30 米时到达点 帮助小明计算湖中两个小亭 A 、B 之间的距离.点M.(1) 判断四边形 AEMF 的形状,并给予证明. (2) 若 BD =1, CD =2,试求四边形 AEMF 的面积.参考答案及评分标准说明: 1. 除本参考答案外,其它正确解法可根据评分标准相应给分。
宁夏回族自治区2018年中考数学试卷及答案(Word版)
宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学试题说明:1.考试时间120分钟。
满分120分。
2.考生作答时,将答案写在答题卡上,在本试卷上答题无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.计算:的结果是A. 1B.C.0D.-12.下列运算正确的是A. B. (a2)3=a5 C.a2÷a-2=1 D.(-2a3)2=4a63.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是A. 30和20B. 30和25C. 30和22.5D. 30和17.54.若是方程x2-4x+c=0的一个根,则c的值是A.1B.C.D.5.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是A.300(1+x)=507B.300(1+x)2=507C.300(1+x)+300(1+x)2=507D.300+300(1+x)+300(1+x)2=5076.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是A.10 B.20 C.10π D.20π7.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是A.40°B.50°C.60°D.70°8.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是二、填空题(本题共8小题,每小题3分,共24分)9.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是 .10.已知m+n=12,m-n=2,则m2-n2= .11.反比例函数(k是常数,k≠0)的图象经过点(1,4),那么这个函数图象所在的每个象限内,y的值随x值的增大而 .(填“增大”或“减小”)12.已知:,则的值是 .13.关于x的方程有两个不相等的实数根,则c的取值范围是 .14.在平面直角坐标系中,四边形AOBC为矩形,且点C坐标为(8,6),M为BC中点,反比例函数(是常数,)的图象经过点M,交AC于点N,则MN的长度是 .15.一艘货轮以㎞/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是 km.16.如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A0纸长度方向对折一半后变为A1纸;A1纸长度方向对折一半后变为A2纸;A2纸长度方向对折一半后变为A3纸;A3纸长度方向对折一半后变为A4纸……A4规格的纸是我们日常生活中最常见的,那么有一张A4的纸可以裁张A8的纸.三、解答题(本题共有6个小题,每小题6分,共36分)17.解不等式组:⎪⎩⎪⎨⎧+<--≥--211535)1(3x x x x18.先化简,再求值:();其中, .19.已知:△ABC 三个顶点的坐标分别为A (-2,-2),B (-5,-4),C (-1,-5). (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2,并写出点B 2的坐标.20.某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).请根据图表中的信息,解答下列问题:(1)表中的a=,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.21.已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.22.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,共36分)23.已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.(1)求∠P的度数;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE·DC=20,求⊙O的面积.(π取3.14)24.抛物线经过点A和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.25.空间任意选定一点O,以点O为端点,作三条互相垂直的射线ox、oy、oz.这三条互相垂直的射线分别称作x轴、y轴、z轴,统称为坐标轴,它们的方向分别为ox(水平向前)、oy(水平向右)、oz(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为S1、S2、S3,且S1<S2<S3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S1所在的面与x轴垂直,S2所在的面与y轴垂直,S3所在的面与z轴垂直,如图1所示.若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,z轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作(1,2,6),如图3的几何体码放了2排3列4层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组(x,y,z)表示一种几何体的码放方式.(1)如图是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为,组成这个几何体的单位长方体的个数为个;(2)对有序数组性质的理解,下列说法正确的是;(只填序号)①每一个有序数组(x,y,z)表示一种几何体的码放方式.②有序数组中x、y、z的乘积就表示几何体中单位长方体的个数.③有序数组不同,所表示几何体的单位长方体个数不同.④不同的有序数组所表示的几何体的体积不同.⑤有序数组中x、y、z每两个乘积的2倍可分别确定几何体表面上S1、S2、S3的个数. (3)为了进一步探究有序数组(x,y,z)的几何体的表面积公式S(x,y,z),某同学针对若干个单位长方体进行码放,制作了下列表格:根据以上规律,请写出有序数组(x,y,z)的几何体表面积计算公式S(x,y,z);(用x、y、z、S1、S2、S3表示)(4)当S1=2,S2=3,S3=4时,对由12个单位长方体码放的几何体进行打包,为了节约外包装材料,对12个单位长方体码放的几何体表面积最小的规律进行探究,根据探究的结果请写出使几何体表面积最小的有序数组,并用几何体表面积公式求出这个最小面积.(缝隙不计)26.如图:一次函数的图象与坐标轴交于A、B两点,点P是函数(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学试题参考答案及评分标准.............说明: 1. 除本参考答案外,其它正确解法可根据评分标准相应给分。
2018年宁夏回族自治区中考数学试卷含答案
宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学试题说明:1.考试时间120分钟。
满分120分。
2.考生作答时,将答案写在答题卡上,在本试卷上答题无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.计算:的结果是A. 1B.C.0D.-12.下列运算正确的是A. B. (a2)3=a5 C.a2÷a-2=1 D.(-2a3)2=4a63.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是A. 30和20B. 30和25C. 30和22.5D. 30和17.54.若是方程x2-4x+c=0的一个根,则c的值是A.1B.C.D.5.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是A.300(1+x)=507B.300(1+x)2=507C.300(1+x)+300(1+x)2=507D.300+300(1+x)+300(1+x)2=5076.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是A.10 B.20 C.10π D.20π7.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是A.40°B.50°C.60°D.70°8.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是二、填空题(本题共8小题,每小题3分,共24分)9.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是 .10.已知m+n=12,m-n=2,则m2-n2= .11.反比例函数(k是常数,k≠0)的图象经过点(1,4),那么这个函数图象所在的每个象限内,y的值随x值的增大而 .(填“增大”或“减小”)12.已知:,则的值是 .13.关于x的方程有两个不相等的实数根,则c的取值范围是 .14.在平面直角坐标系中,四边形AOBC为矩形,且点C坐标为(8,6),M为BC中点,反比例函数(是常数,)的图象经过点M,交AC于点N,则MN的长度是 .15.一艘货轮以㎞/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是 km.16.如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A0纸长度方向对折一半后变为A1纸;A1纸长度方向对折一半后变为A2纸;A2纸长度方向对折一半后变为A3纸;A3纸长度方向对折一半后变为A4纸……A4规格的纸是我们日常生活中最常见的,那么有一张A4的纸可以裁张A8的纸.三、解答题(本题共有6个小题,每小题6分,共36分)17.解不等式组:⎪⎩⎪⎨⎧+<--≥--211535)1(3x x x x18.先化简,再求值:();其中, .19.已知:△ABC 三个顶点的坐标分别为A (-2,-2),B (-5,-4),C (-1,-5). (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2,并写出点B 2的坐标.20.某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).请根据图表中的信息,解答下列问题:(1)表中的a=,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.21.已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.22.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,共36分)23.已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.(1)求∠P的度数;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE·DC=20,求⊙O的面积.(π取3.14)24.抛物线经过点A和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C. (1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.25.空间任意选定一点O,以点O为端点,作三条互相垂直的射线ox、oy、oz.这三条互相垂直的射线分别称作x轴、y轴、z轴,统称为坐标轴,它们的方向分别为ox(水平向前)、oy(水平向右)、oz(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为S1、S2、S3,且S1<S2<S3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S1所在的面与x轴垂直,S2所在的面与y轴垂直,S3所在的面与z轴垂直,如图1所示.若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,z轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作(1,2,6),如图3的几何体码放了2排3列4层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组(x,y,z)表示一种几何体的码放方式.(1)如图是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为,组成这个几何体的单位长方体的个数为个;(2)对有序数组性质的理解,下列说法正确的是;(只填序号)①每一个有序数组(x,y,z)表示一种几何体的码放方式.②有序数组中x、y、z的乘积就表示几何体中单位长方体的个数.③有序数组不同,所表示几何体的单位长方体个数不同.④不同的有序数组所表示的几何体的体积不同.⑤有序数组中x、y、z每两个乘积的2倍可分别确定几何体表面上S1、S2、S3的个数.(3)为了进一步探究有序数组(x,y,z)的几何体的表面积公式S(x,y,z),某同学针对若干个单位长方体进行码放,制作了下列表格:根据以上规律,请写出有序数组(x,y,z)的几何体表面积计算公式S(x,y,z);(用x、y、z、S1、S2、S3表示)(4)当S1=2,S2=3,S3=4时,对由12个单位长方体码放的几何体进行打包,为了节约外包装材料,对12个单位长方体码放的几何体表面积最小的规律进行探究,根据探究的结果请写出使几何体表面积最小的有序数组,并用几何体表面积公式求出这个最小面积.(缝隙不计)26.如图:一次函数的图象与坐标轴交于A、B两点,点P是函数(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.宁夏回族自治区2018年初中学业水平暨高中阶段招生考试数学试题参考答案及评分标准.............说明: 1. 除本参考答案外,其它正确解法可根据评分标准相应给分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁夏回族自治区2018年初中学业水平暨高中阶段招生考试
数学试题参考答案及评分标准.............
说明: 1. 除本参考答案外,其它正确解法可根据评分标准相应给分。
2. 涉及计算的题,允许合理省略非关键步骤。
3. 以下答案中右端所注的分数,表示考生正确做到这步应得的累积分。
一、 选择题(3分×8=24分)
二、 填空题(3分×8=24分)
9.
52; 10. 24; 11. 减小; 12. 2
1-; 13. 89
<c ; 14. 5 ; 15. 18 ; 16. 16.
三.解答题(每小题6分,共36分)
17. 解:解不等式①得:x ≤-1, …………………………………………………………………………2分
解不等式②得:x >-7, …………………………………………………………………………4分 所以,原不等式组的解集为 -7<x <x ≤-1 6分 18. 解:原式=3
23)3)(3(223)3131(
+=
-⋅-+=-⋅-++x x
x x x x x x x ……………………………4分 当33-=x 时,原式313
33-=-=
……………………………………………………6分
19. 解:(1)正确画出轴对称图形△A 1B 1C 1……………………………………………………………2分
(2)正确画出位似图形图形△A 2B 2C 2(3分); B 2(10,8)………………………………6分
20. 解:(1)120=a ,正确补全频数分布直方图……………………………………………………2分
(2)8000×(0.05+0.3)=2800(名)…………………………………………………………3分 (3)由列表法或树状图法可知,随机抽取两名同学的可能性共有12种,其中抽到1名男生和1名女生的可能性有6种.
∴P (抽到1名男生和1名女学生)=
2
1
126= ………………………………………………6分
21.(1)证明:∵四边形ABCD 为正方形
∴AB =BC ,∠A =∠CBN =90°,∠1+∠2=90° ∵CM ⊥BE ∴∠2+∠3=90° ∴∠1=∠3
在△ABE 和△BCN 中 ∠ ∠
∠ ∠
∴△ABE ≌△BCN (ASA )…………………………………………………………………3分 (2)解: ∵N 为AB 中点 ∴BN 2
1=
AB 又∵△ABE ≌△BCN ∴AE = BN 21=
AB 在Rt △ABE 中,tan ∠ABE =21
2===AE AE AB AE …………………………………………6分
22. 解:(1)设B 种原料每千克的价格为x 元,则A 种原料每千克的价格为(x +10)元 根据题意,得:1.2(x +10)+x ≤34 解得,x ≤10
答:购入B 种原料每千克的价格最高不超过10元. ……………………………………………2分 (2)设这种产品的批发价为a 元,则零售价为(a +30)元 根据题意,得:
30
16000
10000+=a a ,解得,a =50 经检验,a =50是原方程的根,且符合实际.
答:这种产品的批发价为50元. …………………………………………………………………… 6分 四、解答题(23题、24题每题8分,25题、26题每题10分,共36分)
23.解:(1)连接OC
∵PC 为⊙O 的切线 ∴∠OCP =90° 即∠2+∠P =90°
∵OA =OC ∴ ∠CAO =∠1 ∵AC=CP ∴∠P =∠C AO 又∵∠2是△AOC 的一个外角 ∴∠2=2∠C AO =2∠P ∴ 2∠P +∠P =90° ∴∠P =30°………………………………………………………………………………………… 4分 (2)连接AD
∵D 为
的中点
∴∠ACD =∠DAE
∴△ACD ∽△DAE ∴DE
AD
AD DC = 即 AD 2=DC ·DE
∵ DC ·DE =20 ∴ AD 52=
∵
= ∴ AD =BD 52= ∵ AB 是⊙O 的直径 ∴Rt △ADB 为等腰直角三角形
∴ AB 102= ∴ OA 2
1
=AB =10
∴S ⊙O =π·OA 2
=10π=31.4 ………………………………………………………………………… 8分
24.解:(1)∵抛物线c bx x y ++-
=2
3
1经过A ),(033、B (0,3) ∴
由上两式解得3
3
2=
b ∴抛物线的解析式为:33
32312++-
=x x y ………3分 (2)设线段AB 所在直线为:b kx y +=
∵线段AB 所在直线经过点A )
,(033、B (0,3) 抛物线的对称轴l 于直线AB 交于点D ∴设点D 的坐标为D )
,(m 3 将点D )
,(m 3代入33
3
+-=x y ,解得m =2 ∴点D 坐标为),(23 ∴CD =CE -DE =2 过点B 作BF ⊥l 于点F ∴BF =OE =3 ∵BF +AE = OE +AE =OA =33 ∴S △ABC =S △BCD +S △ACD =21CD ·BF +2
1
CD ·AE ∴S △ABC =
21
CD (BF +AE ) =2
1×2×33=…………………………………………………………8分 25.解:(1) (2,3,2); 12………………………………………………………………………………2分
(2) ① ② ⑤…………………………………………………………………………………………5分 (3))(2222321321),,(xyS xzS yzS xyS xzS yzS S z y x ++=++=………………………………7分
(4)当S 1=2, S 2=3, S 3=4时
)
432(2)(2321),,(xy xz yz xyS xzS yzS S z y x ++=++=
欲使S (x ,y ,z )的值最小,不难看出x 、y 、z 应满足x ≤y ≤z (x 、y 、z 为正整数). 在由12个单位长 方体码放的几何体中,满足条件的有序数组为(1,1,12),(1,2,6),(1,3,4),(2,2,3).
而 S (1,1,12)=128 , S (1,2,6)=100, S (1,3,4)=96, S (2,2,3)=92
所以,由12个单位长方体码放的几何体表面积最小的有序数组为:(2,2,3), 最小面积
为S (2,2,3)=92………………………………………………………………………………………………10分 26.解:(1)令点P 的坐标为P (x 0,y 0)
∵PM ⊥y 轴
∴S △OPM =
21
OM ·PM =0021y x ⋅⋅ 将343
00+-=x y 代入得
2
3
)2(83)4(83)343(21200000+--=--=+-=∆x x x x x S OPM
∴当x 0=2 时,△OPM 的面积有最大值S max =2
3
∴PM ∥OB ∴OB PM AB AP = 即OB PM
AB AP ⋅=
∵直线AB 分别交两坐标轴于点A 、B ∴OA =3 , OB =4,AB =5
∴AP =
25
……………………………………………………… 6分
(2)①在△BOP 中,当BO = BP 时 BP = BO =4, AP =1
∵P 1M ∥OB
∴
OB PM
AB AP = ∴54=MP ,将54=MP 代入代入343+-=x y 中,得512
=
OM ∴ P 1(54 ,5
12
)……………………………………………8分
②在△BOP 中,当OP = BP 时
过点P 作PM ⊥OB 于点N ∵ OP =BP ∴ ON =221
=OB
将ON =2代入343+-
=x y 中得,2
3=MP ∴ 点P 的坐标为P (2,2
3
)……………………………10分。