部编版人教初中数学八年级上册《13.4 课题学习 最短路径问题 教学设计》最新精品优秀教案
人教版八年级数学上册:13.4课题学习最短路径问题(将军饮马为题)教案
三、教学难点与重点
1.教学重点
-理解并掌握轴对称的性质,以及在实际问题中的应用。
-学会利用轴对称性质解决最短路径问题,特别是将军饮马问题。
-掌握通过直观感知、操作确认、推理证明等数学活动来解决几何问题。
其次,小组讨论环节,学生的参与度很高,大家积极分享自己的观点。但我注意到,有些小组在讨论时可能会偏离主题,讨论一些与最短路径问题不相关的内容。这提示我在今后的教学中,需要更加明确讨论的主题和目标,适时引导学生回到主题上来。
另外,实践活动的设计上,我觉得还可以进一步优化。虽然实验操作能够帮助学生理解最短路径的概念,但我觉得可以增加一些更具挑战性和实际意义的任务,让学生在实践中遇到更多的问题,从而激发他们更深层次的思考和探索。
教学内容:
(1)回顾线段的性质,强调线段是两点间距离最短的路径。
(2)引入将军饮马问题,探讨在给定条件下如何找到最短路径。
(3)学习轴对称的性质,掌握将问题转化为轴对称问题的方法。
(4)应用轴对称性质解决将军饮马问题,得出最短路径的解法。
(5)通过例题和练习,巩固最短路径问题的求解方法。
二、核心素养目标
在难点和重点的讲解上,我尽量使用了简单的语言和生动的例子,但仍有部分学生在理解上存在障碍。我考虑在下一节课前,通过一些小测验来检测学生对这些概念的理解程度,以便我能够更有针对性地进行辅导。
此外,我也意识到,对于一些接受能力较强的学生,他们在掌握了基本概念后,可能需要更多拓展性的内容来满足他们的学习需求。因此,我计划在后续的课程中,提供一些难度较高的题目,让他们在挑战中进一步提升自己的能力。
3.重点难点解析:在讲授过程中,我会特别强调轴对称性质和线段性质这两个重点。对于难点部分,我会通过具体例题和图形比较来帮助大家理解。
人教版初中八年级数学上册第十三章13. 4 课题学习 最短路径问题 优秀教案
13. 4课题学习最短路径问题通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短和垂线段最短.重点应用所学知识解决最短路径问题.难点选择合理的方法解决问题.一、创设情境多媒体展示:如图,一个圆柱的底面周长为20 cm,高AB为4 cm,BC是底面的直径,一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路径.这是一个立体图形,要求蚂蚁爬行的最短路径,就是要把圆柱的侧面展开,利用“两点之间,线段最短”求出最短路径.那么怎样求平面图形中的最短路径问题呢?二、自主探究探究一:最短路径问题的概念1.多媒体出示图①和图②,提出问题:(1)图①中从点A走到点B哪条路最短?(2)图②中点C与直线AB上所有的连线中哪条线最短?2.教师总结:“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等问题,我们称之为最短路径问题.探究二:河边饮马问题多媒体出示问题1:牧马人从A地出发,到一条笔直的河边l饮马,然后到B地,牧马人从河边什么地方饮马,可使所走的路径最短?提出问题:如果点A和点B分别位于直线的两侧,如何在直线l上找到一点,使得这个点到点A和点B的距离的和最短?思考:如果点A和点B位于直线的同侧,如何在直线l上找到一点,使得这个点到点A 和点B的距离的和最短?教师引导学生讨论,明确找点的方法.让学生对刚才的方法通过逻辑推理的方法加以证明.教师巡视指导学生的做题情况,有针对性地进行点拨.探究三:造桥选址问题多媒体出示问题2.(教材第86页)提出问题:(1)根据问题1的探讨你对这道题有什么思路和想法?(2)这个问题有什么不同?(3)要保证路径AMNB最短,应该怎样选址?学生对这个三个问题展开讨论,得出结论:要保证AMNB最短,就是要保证AM+MN +NB最小.尝试选址作出图形.多媒体展示教材图13.4-7,13.4-8,13.4-9,引导学生分析、观察,让学生根据刚才的分析,完成证明过程.根据问题1和问题2,你有什么启示?三、知识拓展已知长方体的长为2 cm、宽为1 cm、高为4 cm,一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?[让学生讨论有几种爬行的方法,计算出每种方案中的路程,再进行比较]四、归纳总结1.本节课你学到了哪些知识?2.怎样解决最短路径问题?本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题学习,让学生经历将实际问题抽象为数学问题的线段和最小问题,再利用轴对称将线段和最小的问题转化为“两点之间,线段最短”问题.。
课题学习最短路径问题教案人教版八年级数学上册
13.4课题学习最短路径问题【教学目标】1.知识与技能:通过对最短路径的探索,进一步理解和掌握两点之间线段最短和垂线段最短的性质.2.过程与方法:让学生经历运用所学知识解决问题的过程,培养学生解决问题的能力,掌握探索最短路径的思想方法.3.情感态度与价值观:在数学学习活动中,获得成功的体验,树立自信心.【教学重难点】重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题,培养学生解决实际问题的能力;难点:如何利用轴对称将最短路径问题转化为线段和最小问题.【教学方法】情境学习法、探究实践法.【教学过程】新课导入:创设情境,提出问题:问题1:如图,连接A,B两点的所有连线中,哪条最短?为什么?答:②最短,因为两点之间,线段最短问题2:如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?为什么?答:PC最短,因为垂线段最短.“两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称之为最短路径问题.本节将利用数学知识探究数学史的著名的“牧马人饮马问题”及“造桥选址问题”.深入学习最短路径问题.由复习相关问题入手,为后面学习做好铺垫.新课讲授:(一)牧人饮马问题问题:如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?把实际问题抽象为数学作图问题:在直线l上求作一点C,使AC+BC最短问题.动手探究:探究1:现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?解:连接AB,与直线l相交于一点C.根据是“两点之间,线段最短”,可知这个交点即为所求.探究2:如果点A,B分别是直线l同侧的两个点,如何将点B“移”到l的另一侧B′处,满足直线l上的任意一点C,都保持CB与CB′的长度相等?作法:(1)作点B关于直线l的对称点B′;(2)连接AB′,与直线l相交于点C.则点C即为所求.探究3:你能用所学的知识证明AC +BC最短吗?证明:如图,在直线l上任取一点C′(与点C不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC =B′C,BC′=B′C′.②AC +BC= AC +B′C = AB′,② AC′+BC′= AC′+B′C′.在②AB′C′中,AB′<AC′+B′C′,②AC +BC<AC′+BC′.即AC +BC最短.例1:如图,已知点D,点E分别是等边三角形ABC中BC,AB边的中点,AD=5,点F是AD边上的动点,求BF+EF的最小值.解:△ABC为等边三角形,点D是BC边的中点,∴AD⊥BC,AB=BC,BD=CD,∴点B与点C关于直线AD对称.∵点F 在AD 上,∴BF =CF ,∴BF +EF =CF +EF ,∴连接CE ,线段CE 的长即为BF +EF 的最小值.∵当CE ⊥AB 时,CE 最小,∴当CE ⊥AB 时,BF +EF 的最小值.∵12AB ·CE =12BC ·AD ,∴CE =AD =5, ∴BF +EF 的最小值是5.归纳结论:求线段和的最小值问题:找准对称点是关键,而后将求线段长的和转化为求某一线段的长,而再根据已知条件求解.(二)造桥选址问题活动探究:如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN .桥造在何处可使从A 到B 的路径AMNB 最短(假定河的两岸是平行的直线,桥要与河垂直)?抽象出数学习题思考:N 在直线b 的什么位置时,AM +MN +NB 最小?由于河岸宽度是固定的,因此当AM +NB 最小时,AM +MN +NB 最小.AM 沿与河岸垂直的方向平移,点M 移到点N ,点A 移到点A ′,则AA ′ = MN ,AM + NB = A ′N + NB . 这样问题就转化为:当点N 在直线b 的什么位置时, A ′N +NB 最小?如图,连接A ′B 与b 相交于N ,N 点即为所求.试说明桥建在M ′N ′上时,从A 到B 的路径AMNB 增大.(两点之间线段最短)例2:如图,荆州古城河在CC ′处直角转弯,河宽相同,从A 处到B 处,须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,怎样架桥可使ADD ′E ′EB 的路程最短?解:作AF ②CD ,且AF =河宽,作BG ②CE ,且BG =河宽,连接GF ,与河岸相交于E ′,D ′.作DD ′,EE ′即为桥.理由:由作图法可知,AF //DD ′,AF =DD ′,则四边形AFD ′D 为平行四边形,于是AD =FD ′, 同理,BE =GE ′,由两点之间线段最短可知,GF最小.归纳结论:在解决最短路径问题时,我们通常利用轴对称、平移等变换把未知问题转化为已解决的问题,从而作出最短路径的选择.课堂练习:A地出发,先到草地边某一处牧马,再到河边饮马,然后回到B处,请画出最短路径.解:如图所示,AP+PQ+BQ最短.2.(1)如图②,在AB直线一侧C,D两点,在AB上找一点P,使C,D,P三点组成的三角形的周长最短,找出此点并说明理由.(2)如图②,在②AOB内部有一点P,是否在OA,OB上分别存在点E,F,使得E,F,P三点组成的三角形的周长最短,找出E,F两点,并说明理由.(3)如图②,在②AOB内部有两点M,N,是否在OA,OB上分别存在点E,F,使得E,F,M,N,四点组成的四边形的周长最短,找出E,F两点,并说明理由.答案:课堂小结:说一说哪些问题是线段最短问题.说一说牧民饮马问题的解决方法和原理.说一下造桥选址类问题的解决方法和原理.作业布置:1.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时点C的坐标是()A.(0,3)B.(0,2)C.(0,1)D.(0,0)答案:A2.完成本节配套习题.【板书设计】最短路径问题的解题原理:线段公理和垂线段最短.最短路径问题的分类:饮马问题和造桥选址问题.饮马问题的解题方法:轴对称知识+线段公理.造桥选址问题的解题方法:关键是将固定线段“桥”平移.【课后反思】创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,教学时,根据本课内容特点,尽可能的让学生动手实践,通过探索交流获取作图方法.。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例
4.鼓励学生在课后进行深入研究,不断提高自己的数学素养。
五、案例亮点
1.生活实例引入:通过引入实际生活中的最短路径问题,如旅行路线规划、物流配送等,使学生能够直观地理解最短路径问题的意义和应用,提高学生的学习兴趣。
3.教师引导学生运用坐标系、函数、图论等知识,分析问题、解决问题。
(三)小组合作
1.学生分组进行讨论,培养学生的团队合作意识。
2.教师组织小组间的交流与分享,促进学生间的互帮互助。
3.教师巡回指导,针对不同小组的特点进行针对性指导。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结最短路径问题的解决方法。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例
一、案例背景
本节内容为“人教版八年级数学上册13.4课题学习最短路径问题”,是在学生已经掌握了平面直角坐标系、一次函数和二次函数等基础知识的基础上进行学习的。通过对最短路径问题的探究,旨在培养学生的逻辑思维能力、空间想象能力和解决问题的能力。
3.组织学生探讨、交流最短路径问题的解决方法,培养学生合作学习的能力。
4.引导学生运用图论中的最短路径算法解决实际问题,提高学生运用所学知识解决实际问题的能力。
5.对学生进行评价,了解学生对最短路径问题的理解和运用程度,及时进行教学调整。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。
2.设计具有挑战性和吸引力的数学问题,激发学生的求知欲。
3.创设轻松、愉快的学习氛围,使学生在课堂上敢于发表自己的观点,培养学生的创新精神。
(二)问题导向
1.引导学生提出问题,如“如何找到两点之间的最短路径?”、“最短路径问题在实际生活中有哪些应用?”等。
最新人教版初中八年级上册数学《课题学习最短路径问题》精品教案
13.4 课题学习最短路径问题【知识与技能】1.了解最短路径问题.2.掌握解决最短路径问题的方法.【过程与方法】通过解决最短路径问题的过程培养学生分析问题的能力.【情感态度】通过对最短路径问题的学习,增强应用数学知识解决实际问题的信心.【教学重点】解决最短路径问题.【教学难点】最短路径的选择.一、情景导入,初步认识问题1 如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?问题2 如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)【教学说明】(1)C为直线l上的一个动点,那么,上面的问题可以转化为:当点C在l的什么位置时,AC与CB的和最小.作出点B关于l的对称点B′,连接AB′,线段AB′与直线l的交点C的位置即为所求.(2)N为直线b上的一个动点,MN垂直于直线b,交直线a于点M,这样,上面的问题可以转化为下面的问题:当点N在直线b的什么位置时,AM+MN+NB最小?将AM沿与河岸垂直方向平移,移动距离为河宽,则A点移到A′点,连接A′B,线段A′B与直线b的交点N的位置即为所求,即在点N处造桥MN.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知例要在燃气管道l上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管道最短?【分析】本问题就是要在l上找一点C,使AC与CB的和最小.设B′是B关于直线l的对称点,本问题也就是要使AC与CB′的和最小.在连接AB′的线中,线段AB′最短.因此,线段AB′与直线l的交点C的位置即为所求.【教学说明】解决最短路径问题通常运用的知识有“过直线作已知点的对称点”,“两点的所有连线中,线段最短”等.三、师生互动,课堂小结这节课主要学习了最短路径问题,让学生相互交流体会与收获,并总结本课所学知识.完成练习册中本课时的练习.本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,教学时,根据本课内容特点,可依据其学科知识间联系调动课堂气氛,培养学生学习兴趣.非常感谢!您浏览到此文档。
人教版八年级数学上册教学设计:13.4 课题学习 最短路径问题
人教版八年级数学上册教学设计:13.4 课题学习最短路径问题一. 教材分析人教版八年级数学上册第十三章第四节“课题学习最短路径问题”主要是让学生了解最短路径问题的背景和意义,掌握利用图的性质和算法求解最短路径问题的方法。
通过本节课的学习,学生能够将所学的图的知识应用到实际问题中,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了图的基本概念和相关性质,如顶点、边、连通性等。
同时,学生也学习了一定的算法知识,如排序、查找等。
因此,学生在学习本节课时,能够将已有的知识和经验与最短路径问题相结合,通过自主探究和合作交流,理解并掌握最短路径问题的求解方法。
三. 教学目标1.了解最短路径问题的背景和意义,能运用图的性质和算法求解最短路径问题。
2.提高学生将实际问题转化为数学问题的能力,培养学生的逻辑思维和解决问题的能力。
3.增强学生合作交流的意识,提高学生的团队协作能力。
四. 教学重难点1.教学重点:最短路径问题的求解方法及其应用。
2.教学难点:理解并掌握最短路径问题的求解算法,能够灵活运用到实际问题中。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.算法教学法:以算法为主线,引导学生了解和掌握最短路径问题的求解方法。
3.合作学习法:学生进行小组讨论和合作交流,共同解决问题,提高团队协作能力。
六. 教学准备1.准备相关实际问题的案例,如城市间的道路网络、网络通信等。
2.准备算法教学的PPT,以便在课堂上进行讲解和演示。
3.准备练习题和拓展题,以便进行课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)通过展示实际问题案例,如城市间的道路网络,引导学生了解最短路径问题的背景和意义。
提问:如何找到两点之间的最短路径?引发学生的思考和兴趣。
2.呈现(10分钟)讲解最短路径问题的求解方法,如迪杰斯特拉算法、贝尔曼-福特算法等。
通过PPT演示算法的具体步骤和过程,让学生清晰地了解算法的原理和应用。
人教版-数学-八年级上册-册13.4 课题学习 最短路径问题 教案
13.4课题学习最短路径问题(1)学习目标:能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.学习重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.教学过程一、引入新知引言:前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”.二、探索新知问题1 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?追问1 这是一个实际问题,你打算首先做什么?将A ,B 两地抽象为两个点,将河l 抽象为一条直 线.追问2 你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?(1)从A 地出发,到河边l 饮马,然后到B 地;(2)在河边饮马的地点有无穷多处,把这些地点与A , B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l 上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小(如图).问题2 如图,点A ,B 在直线l 的同侧,点C 是直线上的一个动点,当 A B ll l A B C点C 在l 的什么位置时,AC 与CB 的和最小?追问2 你能利用轴对称的有关知识,找到上问中符合条件的点B ′吗? 作法:(1)作点B 关于直线l 的对称点B ′;(2)连接AB ′,与直线l 相交于点C .则点C 即为所求.问题3 你能用所学的知识证明AC +BC 最短吗?证明:如图,在直线l 上任取一点C ′(与点C 不重合),连接AC ′,BC ′,B ′C ′.由轴对称的性质知,BC =B ′C ,BC ′=B ′C ′. ∴ AC +BC = AC +B ′C = AB ′,AC ′+BC ′= AC ′+B ′C ′.在△AB ′C ′中,AB ′<AC ′+B ′C ′,∴ AC +BC <AC ′+BC ′.即 AC +BC 最短.三、运用新知练习 如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径.基本思路:由于两点之间线段最短,所以首先可连接PQ ,线段PQ 为旅游船最短路径中的必经线路.将河岸抽象为一条直线BC ,这样问题就转化为“点P ,Q 在直线BC 的同侧,如何在BC 上找到一点R ,使PR 与QR 的和最小”.四、归纳小结(1)本节课研究问题的基本过程是什么?(2)轴对称在所研究问题中起什么作用?五、布置作业练习册l A B A BC P Q 山 河岸 大桥。
八年级数学上册13.4课题学习最短路径问题说课稿(新版)新人教版
八年级数学上册 13.4 课题学习最短路径问题说课稿(新版)新人教版一. 教材分析八年级数学上册13.4课题学习“最短路径问题”是新人教版教材中的一项重要内容。
这一节内容是在学生掌握了平面直角坐标系、一次函数、几何图形的性质等知识的基础上进行学习的。
本节课的主要内容是最短路径问题的研究,通过实例引导学生了解最短路径问题的背景和意义,学会利用图论知识解决实际问题。
教材中给出了两个实例:光纤敷设和城市道路规划,让学生通过解决这两个实例来理解和掌握最短路径问题的求解方法。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于平面直角坐标系、一次函数等知识有了一定的了解。
但是,对于图论知识以及如何利用图论解决实际问题还比较陌生。
因此,在教学过程中,我需要引导学生理解和掌握图论知识,并能够将其应用到实际问题中。
三. 说教学目标1.知识与技能目标:让学生了解最短路径问题的背景和意义,掌握利用图论知识解决最短路径问题的方法。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,让学生体验到数学在实际生活中的应用价值。
四. 说教学重难点1.教学重点:最短路径问题的求解方法。
2.教学难点:如何将实际问题转化为图论问题,并利用图论知识解决。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过解决实际问题来学习和掌握最短路径问题的求解方法。
2.教学手段:利用多媒体课件辅助教学,通过展示实例和动画效果,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示光纤敷设和城市道路规划的实例,引导学生了解最短路径问题的背景和意义。
2.新课导入:介绍图论中最短路径的概念和相关的数学知识。
3.实例分析:分析光纤敷设和城市道路规划两个实例,引导学生将其转化为图论问题。
4.方法讲解:讲解如何利用图论知识解决最短路径问题,包括迪杰斯特拉算法和贝尔曼-福特算法等。
人教版八年级上册数学13.4 课题学习《最短路径问题》教案设计
第十三章第四节的《课题学习——最短路径问题》。
一、内容和内容解析最短路径问题在现实生活中经常遇到,初中阶段主要以“两点之间,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”为基础知识,有时还要借助轴对称、平移、旋转等变换进行研究.本节课利用“河边饮马地点的选择”问题,开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题.二、目标和目标解析1.教学目标基于以上分析,本节课我确定的教学目标是:能利用轴对称解决简单的最短路径问题,体会图形的变换在解决最值问题中的作用,感悟转化思想,进一步获得数学活动的经验,增强应用意识.本节课我确定的的教学重点是:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题,培养学生解决实际问题的能力.2. 教学目标解析要求学生能将实际问题中的“地点”、“河流”抽象为数学中的“点”、“线”,把实际问题抽象为数学问题;能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想.三、教学问题诊断分析最短路径问题从本质上说是极值问题,作为八年级的学生,在此之前很少接触,解决这方面问题的经验尚显不足,特别是面对具有实际背景的极值问题,更会感到陌生,无从下手.对于直线异侧的两点,如何在直线上找到一点,使这一点到这两点的距离之和最小,学生很容易想到连接这两点,所连线段与直线的交点就是所求的点.但对于直线同侧的两点,如何在直线上找到一点,使这一点到这两点的距离之和最小,一些学生会感到茫然,找不到解决问题的思路.在证明“最短”时,需要在直线上任取一点(与所求作的点不重合),证明所连线段和大于所求作的线段和,学生可能想不到,不会用.所以,本节课我确定的教学难点是:如何利用轴对称将最短路径问题转化为线段和最小问题.教学时,教师可从“直线异侧的两点”过渡到“直线同侧的两点”,为学生搭建“脚手架”.在证明“最短”时,教师可以告诉学生,证明“最大”、“最小”这类问题,常常要另选一个量,通过与求证的那个“最大”、“最小”的量进行比较来证明.由于另取的点具有任意性,所以结论对于直线上的每一点(所求作的点除外)都成立.四、教学过程设计1.创设问题情境引入:(课件展示行人践踏茵茵绿草穿越草坪)师:(1)同学们,生活中你见到过这样的现象吗?(2)他为什么选择走红色路线?(3)理由是什么?生:集体回答。
八年级数学人教版上册13.4课题学习最短路径问题(第一课时)优秀教学案例
(五)作业小结
1.作业布置:布置一些有关最短路径问题的课后作业,让学生进一步巩固所学知识,提高解决问题的能力。
2.作业反馈:对学生的作业进行及时批改和反馈,指出其中的错误和不足,给予肯定和建议。
3.课后拓展:鼓励学生参加数学竞赛、研究性学习等活动,拓宽视野,培养创新精神。同时,关注学生在学习过程中的情感态度和价值观的培养,引导他们关爱他人、乐于助人,形成良好的品德素养。
2.利用多媒体展示典型实例,让学生更好地理解和掌握最短路径问题的解决方法。
3.鼓励学生积极参与课堂讨论,培养他们的合作精神和团队意识。
4.注重个体差异,给予学生个性化的指导,帮助他们在原有基础上得到提高。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,让他们感受到数学在生活中的实际应用,提高学生学习数学的积极性。
4.反思与评价:引导学生进行自我反思和同伴评价,培养学生的批判性思维和自我改进的能力。同时,教师对学生的学习过程和结果进行评价,注重鼓励性评价,激发学生的学习兴趣和自信心。
5.课后拓展与情感态度培养:布置相关的课后作业,让学生进一步巩固所学知识,提高解决问题的能力。同时,关注学生在学习过程中的情感态度和价值观的培养,引导他们关爱他人、乐于助人,形成良好的品德素养。
五、案例亮点
1.生活情境导入:通过生活情境导入新课,使学生能够直观地感受到最短路径问题的实际意义,激发学生的学习兴趣和积极性。
2.多媒体辅助教学:利用多媒体展示典型的最短路径问题实例,使抽象的问题具体化、形象化,有助于学生更好地理解和掌握知识。
3.问题导向与小组合作:提出具有挑战性的问题,引导学生进行小组讨论和合作交流,培养学生的团队协作能力和解决问题的能力。
人教版八年级上册数学13.4 课题学习《最短路径问题》教案设计
13.4课题学习《最短路径问题》教学设计教学目标:知识与技能:通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短和垂线段最短。
过程与方法:让学生经历运用所学知识解决问题的过程,培养学生解决问题的能力,掌握探索最短路径问题的思想好方法。
情感态度与价值观:在数学学习活动中活动成功的体验,树立自信心,激发学习的兴趣,感受到数学与现实生活的密切联系。
教学重点:运用所学知识解决最短路径问题。
教学难点:选择合理的方法解决问题。
教学过程:最短路径问题(1)出示如图所示:从A地到B地有三条路可供选择,你会选择哪条路距离最短?你的理由是什么?两点之间,线段最短(2)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.例1:如图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?:解:如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.归纳:求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.例2:如图,如果A,B在燃气管道L的同旁,泵站应修在管道的什么地方,可使所用的输气管线最短?分析:点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.归纳:求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.练习:1 在图中直线l上找到一点M,使它到A,B两点的距离和最小.分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如图所示:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.(实际应用题)某中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b解:如图b.(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D的路线行走,所走的总路程最短。
人教版八年级上册数学13.4 课题学习《最短路径问题》教案
教学设计13.4最短路径问题永顺县溪州中学彭善玉一、教学设计思路:本节课是人民教育出版社出版九年制义务教育数学课本八年级数学《最短路径问题》,教材为我们提供了最短路径的概念和探索方法以及相应练习题。
这节课与实际生活息息相关,在内容上,它将两点之间线段最短,轴对称的性质紧密结合起来。
通过这节课的学习,可以培养学生探索与归纳能力,体会数学建模的思想,学会从复杂题目中找到原始的基本的数学模型。
本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,采用了我校“六步四维一体”的教学模式,启发式、探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生是学习的主体。
利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想证明,使学生在自主探索和合作交流中理解和掌握本节课的内容。
利用课件、微课、几何画板辅助教学,适时呈现问题情景,以丰富学生的感性与理性认识,增强直观效果,提高课堂效率。
二、教学目标1、知识与技能:(1)理解并掌握平面内位于直线同侧两个点,如何在直线上找到一个点,使得两点到直线上这点距离之和最小问题。
(2)能利用轴对称解决实际问题中的最短路径问题。
(3)通过独立思考,合作探究,培养学生运用数学知识解决实际问题的基本能力,感受学习成功的快乐。
2、过程与方法:(1)通过自主画图,小组讨论,共同比较等教学活动,探索与轴对称有关的最短路径问题,感受数学思考过程的条理性,发展推理能力和语言表达能力。
(2)通过几何画板把抽象问题具体化,直观地观察、分析把折线问题转化直线问题,体会转化思想在几何中的运用,让学生尝试从不同的角度寻求解决问题的方法,同时让学生体会从特殊到一般的认识问题的方法。
在解决问题的过程中渗透“化归”的思想,(3)能够倾听其他同学的发言,并能把自己的想法与其他同学交流,体会合作学习的过程与方法,感受合作的愉快。
人教版八年级上册13.4课题学习-最短路径问题教案
课题:13.4课题学习最短路径问题教学内容最短路径问题教学目标知识与技能:通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短和垂线段最短.过程与方法:让学生经历运用所学知识解决问题的过程,培养学生解决问题的能力,掌握探索最短路径问题的思想和方法.情感、态度与价值观:在数学教学活动中获得成功的体验,树立自信心,激发学生的学习兴趣,让学生感受数学与现实生活的密切联系.教学重点应用所学知识解决最短路径问题.教学难点选择合理的方法解决问题.教学方法合作交流,讲练结合.教学准备多媒体课件,三角板.教学过程设计设计意图教学过程一、复习引入(1)两点所连的线中,最短.(2)连接直线外一点与已知直线上各点的所有线段中,最短.我们研究过以上这两个问题,我们称它们为最短路径问题.同学们通过讨论下面两个问题,可以体会如何运用所学知识选择最短路径.(揭示课题)二、新知探究问题1首先我们来研究河边饮马问题.(河边饮马问题)如图所示,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?连接AB,与直线l相交于一点,根据“两点之间,线段最短”,可知这个交点即为所求.【思考】如果点A,B分别是直线l同侧的两个点,又应该如何解决?复习旧知,为新课学习提供理论依据.讨论交流.(1)牧马人到笔直的河边饮马,河边可以近似看成一条直线,假设到C点饮马,要保证所走的路径最短和哪些线段有关?(2)要利用我们学过的哪些知识?要经过怎样的图形变换转移到一条线段上?分组交流合作,在小组内达成共识的基础上,推选代表进行板演.幻灯片演示画法,指导学生证明AB'=AC+BC.(B,B'两点关于直线l对称)如果在直线上另外任取一点C',连接AC',BC',B'C'.怎样证明AC+CB<AC'+C'B?讨论交流完成.【总结方法】找出其中某一点关于直线的对称点,连接对称点与另一点,与直线的交点即为所求,证明时要利用三角形三边的关系来证明.(造桥选址问题)如图所示,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)我们可以把河的两岸看成两条平行线a和b,思考:(1)要保证路径最短就是要使哪些线段的和最小?(2)无论点M,N在什么位置,MN的长度是否发生变化?为什么?合作交流.结合学生讨论的结果,强调MN为定值,问题的关键就是要保证AM+NB的和最小.阅读教材第87页,合作交流思路展示教材图13.4 - 9的证明过程.证明AM+MN+NB<AM'+M'N'+N'B.证明:因为A'B<A'N'+N'B,所以A'N+NB<AM'+N'B.又因为AM=A'N,所以AM+NB<A'M+N'B.又MN=M'N',所以AM+MN+NB<AM'+M'N'+N'B.三、课堂小结最短路径问题,常用的方法是借助轴对称的知识转化,利用“两点之间,线段最短”来求线段和的最小值,从而解决最短路径问题.四、课堂练习1.如图所示,直线m表示一条河,点M,N表示两个村庄,欲在m上的某处修建一个给水站,向两个村庄供水,现有如图所示的四种铺设管道的方案,图中实线表示铺设的管道,则所需管道最短的方案是()解析:作点M关于直线m的对称点P',连接NP'交直线m 于P.根据两点之间,线段最短,可知选项D铺设的管道最短.故选D.2.如图(1)所示,在旷野上,一个人骑着马从A到B,半路上他必须先到河岸l的P点让马饮水,然后再到河岸m的Q点让马再次饮水,最后到达B点,他应该如何选择饮马地点P,Q,才能使所走路程AP+PQ+QB为最短(假设河岸l,m为直线)?(1)(2)解:如图(2)所示,作A点关于直线l的对称点A',B点关于直。
13.4课题学习 最短路径问题 教学设计
素养
目标
通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短的公理和三角形两边之和大于第三边的垂线段最短的定理。
运用所学知识解决问题的过程,培养学生解决问题的能力,掌握探索最短路径问题的思想方法。
在数学学习活动中获得成功的体验,树立自信心,激发学生的学习兴趣,让学生感受到数学与现实生活的密切联系。
布置任务,复习知识点
为课堂上涉及知识点做知识储备
新课导入(疑)
一.温故知新
问题1.“孝”是中华民族的传统美德,一代代的中国人应该将它传承下去。晴空万里的一天,何将军从军营(点A)出发,到一条笔直的市集(直线l)买礼品,然后到父母家(点B),何将军到市集的什么地方买礼品,可使所走的路径最短?(假设选中的最佳位置刚好能买到礼品)
生自己读题完成题目,并先行自我归纳模型特点、作图方法、证明思路。
1.设置问题:
(1)让生在学案上作图,用点P表示具体位置;
(2)说出这样的作图依据;
(3)简要证明为何最短?
2.分析这样的模型特点:
两个定点在直线异侧,一个动点在直线上。
3.归纳此模型的作图方法、依据、证明思路。
以学生学过的知识为基础引入课题,培养学生的学习兴趣.
再动手作图,做出最短路径。
归纳总结此模型与上述模型的异同,得到作图方法。
5.在学案上作图,并证明路径最短,可以小组合作。
由平移性质可知,AM=A'N,AA'=MN=M'N',AM'=A'N'.
AM+MN+BN转化为AA'+A'B,而AM'+M'N'+BN'转化为AA'+A'N'+BN'
人教版初中数学八年级上册 13.4 课题学习 最短路径问题 初中八年级上册数学教案教学设计课后反思
13.4 课题学习 最短路径问题教学设计教学目标1.能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟化归思想;2. 能将实际问题中的“地点”、“河”抽象为数学中的“点”、“线”,把实际问题抽象为数学问题,并能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟“转化”作用。
学情分析由于八年级学生首次遇到某条线段或线段和最小,所以无从下手,另外证明两条线段和最小时要选取另外一点,学生想不到、不会用,所以利用轴对称将最短路径问题转化为线段和最小问题,逻辑推理证明所求距离最短是本节课的难点。
重点难点重点:将实际问题抽象为数学问题;将同侧两点转化为异侧两点.难点:利用轴对称将最短路径问题转化为线段和最小问题,逻辑推理证明所求距离最短.教学准备:多媒体课件教学过程4.1 第一学时活动1创设情境、引入新课1、播放行人横穿马路出车祸视频。
2、同学们,看了这段视频,你们有何感想?接着播放交通安全常识。
3、同学们,人们为什么常常违规横穿马路呢?你们能用我们的数学知识来解释这个生活常识吗?现实生活中,我们常常涉及到选择最短路径问题,今天我们将利用大家前一阶段所学的知识解决生活中的实际问题:最短路径问题板书:§13.4 课题学习最短路径问题让我们穿越时空,回归到遥远的古希腊,来探究数学史上著名的“将军饮马问题”。
活动2探究“将军饮马问题”1、提出问题,抽象模型相传,古希腊亚历山大城里有一位久负盛名的学者,名叫海伦。
有一天,一位将军专程来拜访海伦,求教一个他百思不得其解的问题:从图中的A地出发,到一条笔直的河边l饮马,然后回到驻地B处,问到河边的什么地方饮马可使他所走的路线全程最短?精通数学、物理学的海伦稍加思索,就利用数学知识回答了这个问题,后来被称为“将军饮马问题”。
同学们,你是海伦,怎么将这个实际问题抽象为数学问题呢?2、化未知为已知,化“同侧”为“异侧”(1) 这l上有无数个点,究竟点C落在何处,才能使AC+BC最短呢?(2) 假如l同侧的两点A,B中的A点在l的另一侧,即A,B两点分别在直线l的异侧,如何在直线l上找到一点C,使AC+BC最短?为什么?(3) 回归刚才的问题:A,B两点在直线l的同一侧,如果能将B点转移到l的另一侧,问题就解决了,能否有这样一个桥梁实现这个目标呢?引导:将点A“移”到l 的另一侧A′处时要使直线l 上的任意一点C,都有CB =CB′,什么点满足这个条件呢?(4) 动手尝试,利用手中的作图工具寻找点C。
人教版八年级上册数学13.4课题学习最短路径问题优秀教学案例
(三)情感态度与价值观
1.让学生在解决实际问题的过程中,体验数学的乐趣,提高学生学习数学的兴趣。
2.培养学生面对困难时积极思考、勇于挑战的精神,增强学生的自信心。
3.使学生认识到数学在生活中的重要性,培养学生的数学应用意识和社会责任感。
三、教学重难点
2.跨学科教学:结合其他学科的知识,如地理、信息技术等,拓宽学生的知识视野,培养学生的综合能力。
六、教学资源
1.教材:人教版八年级上册数学教材。
2.辅助材料:相关的最短路径问题的案例、练习题和拓展问题。
3.现代教育技术:多媒体课件、网络资源等。
七、教学评价
1.学生评价:通过学生的课堂表现、作业完成情况和练习成绩等方面进行评价。
(二)讲授新知
在导入新课后,我会开始讲解最短路径问题的相关知识。首先,我会向学生们介绍最短路径问题的定义,让学生们明白什么是最短路径。接着,我会讲解解决最短路径问题的基本方法,如坐标系法、函数法等。在讲解的过程中,我会结合具体的例子,让学生们更直观地理解这些方法。
(三)学生小组讨论
在讲授完新知识后,我会让学生们进行小组讨论。我会给每个小组提供一个实际问题,让他们运用所学知识,合作解决这个最短路径问题。这样的讨论,可以培养学生的团队合作精神,也可以让学生们在实践中加深对知识的理解和应用。
3.互动评价:小组之间进行互动评价,相互学习和提高。
(四)反思与评价
1.自我反思:引导学生对自己的学习过程进行反思,发现自身的优点和不足,制定改进措施。
2.同伴评价:学生之间相互评价,给予意见和建议,促进共同进步。
3.教师评价:教师对学生的学习情况进行评价,关注学生的个体差异,给予鼓励和指导。
人教版八年级数学上《13.4课题学习最短路径问题》教学设计
人教版八年级数学上《13.4课题学习最短路径问题》教学设计一、教学内容利用轴对称特点研究生活中遇到的某些最短路径问题.二、教学目标1、认知目标:(1)能利用轴对称将最短路径问题转化为线段和最小问题。
(2)能通过逻辑推理证明所求距离最短。
(3)在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想。
2、能力目标:(1)经历问题探究的过程,将实际问题转化为数学问题,培养转化的能力。
(2)在解决问题过程中,养成良好的作图的习惯。
(3)感受图形变换、转化、数形结合、模型等思想方法。
3、情感目标:通过逐步讲解,运用合适的教学手段,提高学生学习的兴趣,归纳出方法和规律,积累解决数学问题的经验,提高学生的合作交流的意识,消除学生对此类问题的陌生感和恐惧感,提高学生解决问题的信心和能力。
三、重点难点重点:利用轴对称将最短路径问题转化为线段和最小问题。
难点:如何利用轴对称将最短路径问题转化为线段和最小问题。
四、教学过程1.复习回顾问题1:如图,从A点到B点有三条线路,哪条最短?说说你的理由. 师生活动:学生回答问题,说出理由:两点之间,线段最短.(让学生回顾“两点之间,线段最短”,为引入新课作准备.)问题2:如图,点A是直线l 外一点,点A到直线的所有线路中,最短的是?说说你的理由.师生活动:学生回答问题,说出理由:点到直线的距离,垂线段最短.(让学生回顾“连接直线外一点与直线上各点的所有线段中,垂线段最短”,为引入新课做准备.)问题3:如图,点A,点B是直线l两侧的点,请在直线l上找一点C,使AC+BC最短。
师生活动:学生回答,连接AB,线段AB与l的交点即为C点的位置.(让学生进一步感受“两点之间,线段最短”,为把“同侧的两点”转化为“异侧的两点”做铺垫.)2.新知探究<将军饮马问题>相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.你能将这个问题抽象为数学问题吗?师生活动:学生分组讨论,然后各小组总结归纳:(1)将A,B 两地抽象为两个点,将河l 抽象为一条直线;(2)在直线l上找到一点C,使AC与BC的和最小?(通过学生自己动手操作,在感知轴对称图形特征的基础上,抽象出轴对称图形的概念.)如图,点A,B 在直线l 的同侧,在直线l上找到一点C,使AC 与BC的和最小?师生活动:学生独立思考,尝试画图,相互交流.教师作适时提示:(1)如果点B在点A的异侧,如何在直线l上找到一点C,使AC 与BC的和最小(2)现在点B与点A在同侧,能否将点B移到l 的另一侧点处,且满足直线l上的任意一点C,都能保持?(3)你能根据轴对称的知识,找到(2)中符合条件的点吗?师生共同完成作图,作法如下:(1)作点B 关于直线l 的对称点B′;(2)连接AB′,与直线l 相交于点C.则点C 即为所求.(逐步引导学生,如何将同侧的两点转化为异侧的两点,为问题的解决提供思路,渗透转化思想.)问题4 :你能用所学的知识证明AC +BC最短吗?师生活动:学生独立思考,相互交流,师生共同完成证明过程.追问1:证明AC +BC最短时,为什么要在直线l上任取一点(与点C 但不重合)?师生活动:学生相互交流,教师适时点拨,最后达成共识:若直线l 上任意一点(与点C不重合)与A,B两点的距离和都大于AC +BC,就说明AC +BC最小.(让学生体会作法的正确性,提高逻辑思维能力.) 追问2:回顾前面的探究过程,我们是通过怎样的过程、借助什么解决问题的?师生活动:学生回答,相互补充:通过将BC转化为BC′,将原题中直线同侧两点转化为学生熟悉的直线异侧两点.(让学生在反思中,体会轴对称的桥梁作用,感悟转化思想,丰富数学活动经验.)练习如图牧马人从A地出发,先到草地边某一处牧马,再回到河边饮马,然后回到B处,请画出最短路径。
八年级数学上册-人教版八年级上册数学13.4课题学习最短路径问题教案1
13.4课题学习最短路径问题此时桥到这两乡村的距离之和最短.原因:两点之间线段最短.1.能利用轴对称解决简单的最短路径问题,领会图形的变化在解决最值问题中的作用,感悟转变思想.(要点)2.利用轴对称将最短路径问题转变为“两点之间,线段最短”问题.(难点)方法总结:求直线异侧的两点与直线上一点所连线段的和最小的问题,只需连结这一、情境导入两点,与直线的交点即为所求.相传,古希腊有一位久负盛名的学者,【种类二】运用轴对称解决距离最短名叫海伦.有一天,一位将军专门拜见海伦,问题讨教一个百思不得其解的问题:从图中的A在图中直线 l 上找到一点 M,使它地出发,到一条笔挺的河畔l 饮马,而后到到 A,B 两点的距离和最小.B地.到河畔什么地方饮马可使他所走的路线全程最短?分析:先确立此中一个点对于直线l 的二、合作研究对称点,而后连结对称点和另一个点,与直研究点:最短路径问题【种类一】两点的全部连线中,线段线 l 的交点 M即为所求的点.最短如下图,在河a两岸有、两解:如下图: (1)作点B对于直线lA B个乡村,此刻要在河上修筑一座大桥,为方的对称点 B′;(2)连结 AB′交直线 l 于点 M;便交通,要使桥到这两乡村的距离之和最(3) 点M即为所求的点.短,应在河上哪一点修筑才能知足要求?方法总结:利用轴对称解决最值问题应( 画出图形,做出说明 )注意题目要求,依据轴对称的性质、利用三角形的三边关系求解.分析:利用两点之间线段最短得出答【种类三】最短路径选址问题如图,小河畔有两个乡村,,A B案.要在河畔建一自来水厂向 A 村与 B村供水.(1) 若要使厂址到,两村的距离相等,A B解:如下图,连结 AB交直线 a 于点 P,则应选择在哪建厂 ( 要求:保存作图印迹,写出必需的文字说明)?解:如下图,以直线 l 为对称轴,作(2) 若要使厂址到A,B两村的水管最短,点 A对于直线 l 的对称点 A′,A′ B 的连线应建在什么地方?交 l 于点 C,则点 C即为所求.原因:在直线 l 上任找一点 C′(异于点 C),连结 CA,C′A,C′ A′, C′ B.由于点 A,A′对于直线 l对称,因此l 为线段′的垂直均分线,则AA有 CA= CA′,因此 CA- CB= CA′- CB=A′ B.分析:(1) 欲求到、两村的距离相等,又由于点 C′在 l 上,因此 C′ A= C′A′.A B在△ A′ BC′中, C′ A- C′ B= C′ A′-C′ B< A′ B,因此 C′ A′- C′ B<CA- CB.即作出 AB的垂直均分线与EF的交点即可,交点即为厂址所在地点;(2) 利用轴对称求最短路线的方法是作出 A 点对于直线EF的对称点 A′,再连结 A′B 交 EF于点 N,即方法总结:假如两点在一条直线的同可得出答案.侧,过两点的直线与原直线的交点处组成线解: (1)作出 AB的垂直均分线与EF的段的差最大,假如两点在一条直线的异侧,交点,交点即为厂址所在地点;M M过两点的直线与原直线的交点处组成的线段的和最小,都能够用三角形三边关系来推(2) 如下图:作A点对于直线EF的对理说明,往常依据最大值或最小值的状况取称点 A′,再连结A′B 交 EF于点 N,点 N即为所求.此中一个点的对称点来解决.【种类四】运用轴对称解决距离之差最大问题三、板书设计如下图,,B两点在直线l的课题学习最短路径问题A双侧,在 l 上找一点 C,使点 C 到点A、B1.求直线异侧的两点与直线上一点所的距离之差最大.连线段的和最小的问题,只需连结这两点,与直线的交点即为所求.2.求直线同侧的两点与直线上一点所连线段的和最小的问题,只需找到此中一个点对于这条直线的对称点,连结对称点与另分析:本题的打破点是作点( 或) 关一个点,则与该直线的交点即为所求.A B于直线l的对称点A′(或 B′),作直线经过本节课进一步领会数学与自然及人类社会的亲密联系,认识数学的价值.在A′ B( AB′)与直线 l 交于点 C,把问题转变互动沟通活动中,学习从不一样角度理解问题,追求解决问题的方法,并有效地解决问为三角形随意两边之差小于第三边来解决.题.领会在解决问题中与别人合作的重要性.领会运用数学的思想方式察看、剖析现实社会,解决平时生活中和其余学科中的问题,加强应用数学的意识.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言:
该教学设计(教案)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的教学设计(教案)是高效课堂的前提和保障。
(最新精品教学设计)
13.4课题学习—最短路径问题
教学内容解析:
本节课的主要内容是利用轴对称研究某些最短路径问题,最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之间,线段最短”“三角形两边之和大于第三边”为知识基础,有时还要借助轴对称、平移变换进行研究。
本节课以数学史中的一个经典故事----“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间、线段最短”的问题。
教学目标设置:
1、能利用轴对称解决简单的最短路径问题
2、在谈最短路径的过程中,体会“轴对称”的桥梁作用,感悟转化的数学思想。
教学重点难点:
重点:利用轴对称将最短路径问题转化为“两点之间、线段最短”问题。
难点:如何利用轴对称将最短路径问题转化为线段和最小问题。
学生学情分析:
1、八年级学生的观察、操作、猜想能力较强,但演绎推理、归纳和运用数学意识的思想比较薄弱,自主探究和合作学习能力也需要在课堂教学中进一步引导。
此年龄段的学生具有一定的探究精神和合作意识,能在一定的亲身经历和体验中获取一定的数学新知识,但在数学的说理上还不规范,集合演绎推理能力有待加强。
2、学生已经学习过“两点之间,线段最短。
”以及“垂线段最短”。
以及刚刚学习的轴对称和垂直平分线的性质作为本节知识的基础。
教学策略分析:
最短路径问题从本质上说是最值问题,作为八年级学生,在此前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手。
解答“当点A、B在直线l的同侧时,如何在l上找到点C,使AC与BC的和最小”,需要将其转化为“直线l异侧的两点,与直线l上的点的线段的和最小”的问题,为什么需要这样转化,怎样通过轴对称实现转化,一些学生会存在理解上和操作上的困难。
在证明“最短”时,需要在直线上任取一点(与所求做的点不重合),证明所连线段和大于所求作的线段和,这种思路和方法,一些学生想不到。
教学时,教师可以让学生首先思考“直线l异侧的两点,与直线l上的点的和最小”为学生搭建桥梁,在证明最短时,教师要适时点拨学生,让学生体会任意的作用。
教学条件分析:
在初次解决问题时,学生出现了多种方法,通过测量,发现利用轴对称将同侧两点转化为异侧两点求得的线段和比较短;进而利用几何画板通过动画演示,实验验证了结论的一般性;最后通过逻辑推理证明。
教具准备:直尺、几何画板,ppt
教学过程:
二探究新知1.探究一:
【故事引入】:唐朝诗人李颀在
《古从军行》中写道:“白日登
山望峰火,黄昏饮马傍交河.”
诗中就隐含着一个有趣的数学
问题,古时候有位将军,每天
从军营回家,都要经过一条笔
直的小河。
而将军的马每天要
到河边喝水,那么问题来了,
问题:怎样走才能使总路程最
短呢?
认真读题,仔细思考。
将实际问题中的“地点”
“河”抽象为数学中的
“点”“线”,把实际问题
抽象线段和最小问题。
从异侧问题入
手,由简到难,
逐步深入。
二探究新知2.探究二:
【变换情境】:后来将军把家搬
到了河的对面,若还是要带马
先到河边喝水,然后再回家,
应该怎样走,才能使总路程最
短呢?
(1)【转化】:你能将实际问题
抽象为数学问题吗?
【回答】:学生思考并回
答,如何将实际问题转化
为数学问题。
已知:直线L和同侧两点
A、B
求作:直线L上一点C,
使C满足AC+BC的值最
小。
学生主动探
索,充分发挥
学生的主动
性。
展示多种方
法,产生思维
冲突,引发学
生进一步探究
的学习欲望。