第六章工程中的弯曲变形问题(续)
材料力学第六章 弯曲变形
4
2
C
B
)
=
A
( A)q C
l q
( B )q
(b)
B
( wC )q
l
θ B ( θ B )q ( θ B ) M e
+
Me
(c)
Mel ql 24 EI 6 EI
3
A
B
( B ) M e
( A ) MC ( wC ) M
e
e
l
例题3
AB梁的EI为已知,求梁中间C截面挠度.
F1l 2 F2 la 0.4 400 200 B ( ) 16 EI 3 EI 210 1880 16 3 +0.423 10-4 (rad)
F1l a F2a F2a l wC 5.19 106 m 16 EI 3 EI 3 EI wmax w (3)校核刚度: l l
x A
dx
F
x
C' dω
B
d tg dx
二、挠曲线的微分方程
1.纯弯曲时曲率与弯矩的关系
M EI
1
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则
1 M ( x) ( x) EI
2.由数学得到平面曲线的曲率
F
1 | w | 3 2 2 ( x) (1 w )
q
A x B
w w F wq
+
w wF wq
例1 已知:EI, F,q .求C点挠度 F q
A
C a a
B
Fa 3 ( wC )F 6 EI
材料力学第6章弯曲变形
M1 EIw1
Fb x1 l
2 x1
" EIw2
Fb M2 x2 F ( x2 a ) l
2 x2 2
EIw1
Fb C1 l 2
x2 a Fb F C2 (i) EIw2 l 2 2
工学院
§6.2 挠曲线的微分方程
纯弯曲情况下,弯矩与曲率 间的关系(5.1):
M EI
1
--(a)
横力弯曲时,梁截面上有弯矩也有剪力,对于跨 度远大于截面高度的梁,剪力对弯曲变形的影响可以 省略,(a)式便可以作为横力弯曲变形的基本方程。其 中,M和1/ρ都是x的函数。
工学院
§6.2 挠曲线的微分方程
(o) (p)
CB段 (a x2 l )
Fb 2 3l 2 2 2 l b 3 x ( x a ) 2 2 6l b Fb 2 l 2 2 3 EIw2 l b x x ( x a ) 2 2 6l b 2 EIw2
车床主轴的变形过大会影响 齿轮的啮合和轴承的配合, 造成磨损不匀,产生噪音, 降低寿命以及影响加工精度。
工学院
§6.1 工程中的弯曲变形问题
吊车梁的变形过大,会 使梁上小车行走困难, 出现爬坡现象,还会引 起较严重的振动。
变形超过允许数值,即 使在弹性范围内,也被 认为是一种失效现象。
工学院
§6.1 工程中的弯曲变形问题
l
2
b
2
3
工学院
§6.3 用积分法求弯曲变形—实例3
7). 讨论
上面得到最大挠度表达式为: 3 1 Fb 2 2 wmax l b 9 3 EIl
材料力学习题册答案_第6章_弯曲变形
得 x=0.519l
所以
W
m
ax
=0.00652
ql 4 EI
3 用叠加法求如图 7 所示各梁截面 A 的挠度和转角。EI 为已知常数。
解 A 截面的挠度为 P 单独作用与 M 0 单独作用所产生的挠度之和。 查表得:
y AP
Pl 3 24 EI
y = M 0l 2 Pl 3
AM 0
8EI
度 y = Fl 3 。 C 32 EI
4. 如图 4 所示两梁的横截面大小形状均相同,跨度为 l , 则两梁的力 图 相同 ,两梁的变形 不同 。(填“相同”或“不同”)
5. 提高梁的刚度措施有 提高Wz 、 降低 M MAX 等。 四、计算题 1 用积分法求图 5 所示梁 A 截面的挠度和 B 截面的转角。
8EI
y y 则 y A
AP
= Pl 3
AM0 12 EI
同理,A 截面的转角为 P 单独作用与 M 0 单独作用所产生的转角之和。
查表得
AP
Pl 2 8EI
对于 AM0 可求得该转角满足方程 EI =-Plx+C 边界条件 x=0 0 可得 C=0
现 4 个积分常数,这些积分常数需要用梁的 边界 条件和 光滑连
续 条件来确定。
2. 用积分法求图 2 所示梁变形法时,边界条件为:YA 0,A 0,YD 0 ;
连续条件为:
YA
1
YA
2
,
B
1
B
2
,
YC3.
如图
3
所示的外伸梁,已知
B
截面转角
B
=
Fl 2 16 EI
,则 C 截面的挠
于零的截面处。
工程力学第六章 弯曲变形
荷情况有关,而且还与梁的材料、截面尺寸、形
状和梁的跨度有关。所以,要想提高弯曲刚度,
就应从上述各种因素入手。
一、增大梁的抗弯刚度EI 二、减小跨度或增加支承 三、改变加载方式 48EI
作 业
1、2、4(a、e)
§6-3 用叠加法计算梁的变形 梁的刚度计算
一、用叠加法计算梁的变形
在材料服从胡克定律、且变形很小的前提下, 载荷与它所引起的变形成线性关系。 当梁上同时作用几个载荷时,各个载荷所引 起的变形是各自独立的,互不影响。若计算几个 载荷共同作用下在某截面上引起的变形,则可分 别计算各个载荷单独作用下的变形,然后叠加。
例: 梁AB,横截面为边长为a的正方形,
弹性模量为E1;杆BC,横截面为直径为d的圆 形,弹性模量为E2。试求BC杆的伸长及AB梁 中点的挠度。
例:用叠加法求图示梁B端的挠度和转角。
解:
二、梁的刚度计算
刚度条件:
max [ ] max [ ]
[w]、[θ]是构件的许可挠度和转角,它们决定
q
B
x
l
由边界条件: x 0时, 0 x l时, 0
ql 3 , D0 得: C 24
梁的转角方程和挠曲线方程分别为:
y
q 2 3 3 (6lx 4 x l ) 24 EI
q
B
x
l
A qx (2lx 2 x 3 l 3 ) 24 EI
ql 3 24 EI
l 2
x
P AC 解: 段:M ( x ) x 2 y P EI " x 2 A P 2 EI ' x C x 4 l 2 P 3 EI x Cx D 12
第六章 弯曲变形
§6-3 积分法求弯曲变形
挠曲线的近似微分方程 积分一次:
d M ( x) ' dx C dx EI z
d 2 M ( x) 2 dx EI z
转角方程
积分二次:
M ( x) ( dx)dx Cx D EI z
挠曲线方程
C、D为积分常数,由梁的约束条件决定。
1 1 4 qL3 qL4 ( qx x ) EI 24 6 8
29
例2
图示一抗弯刚度为 EI 的简支梁,在全梁上受集度为q 的
均布荷载作用.试求此梁的挠曲线方程和转角方程,并确定其 max 和 wmax
q A l B
q
解:由对称性可知,梁的两 个支反力为
A
x
B
FRA FRB
7
§6-1 工程中的弯曲变形问题
2、工程有时利用弯曲变形达到某种要求。
汽车板簧应有较大的弯曲变形,
才能更好的缓解车辆受到的冲击和振动作用.
目录
8
§6-1 工程中的弯曲变形问题
当今时代汽车工业飞速发展, 道路越来越拥挤, 一旦发生碰撞,你认为车身的变形是大好还是小好?
目录
9
§6-1 工程中的弯曲变形问题
0
21
梁的边界条件
ω
简支梁:
L
x
x 0:
0
x L:
0
22
连续性条件:
边界条件
ω A
P
B a L C x
x 0: x L:
0
0
连续性条件
x a:
C
左
C 右
C 右
23
C
左
刘鸿文版材料力学第六章
F6bl
(l2
b2 ) x1
CB 段: a x2 l
y
F
A A
DC
FAy x1
x2
a
ym ax b
B B x
FBy
EI
Fb 2 2l
2
x2
F 2
(
x2
a)2
Fb (l2 6l
b2 )
EIy2
Fb 6l
x32
F 6
(
x2
a)3
F6lb (l2 b2 ) x2
目录
§6-3 用积分法求弯曲变形
目录
§6-5 简单超静定梁
例7 梁AB 和BC 在B 处铰接,A、C 两端固定,梁的抗弯刚度均为EI,F = 40kN, q = 20kN/m。画梁的剪力图和弯矩图。
解 从B 处拆开,使超静定结构变成两个悬臂 梁。
MA
FA FB
FB FB
yB2
yB1
FB
变形协调方程为: 物理关系
yB1 yB 2
4
EI
ql 4 48EI
ql 4 16 EI
11ql 4 ( ) 384 EI
3
ql 3
B i 1 Bi 24EI
ql 3 16EI
ql 3 3EI
11ql 3 ( ) 48EI
目录
§6-4 用叠加法求弯曲变形
例4 已知:悬臂梁受力如图示,q、l、
yC
EI均为已知。求C截面的挠度yC和转角C
§6-4 用叠加法求弯曲变形
讨论 叠加法求变形有什么优缺点?
目录
§6-5 简单超静定梁
1.基本概念: 超静定梁:支反力数目大于有效平衡方程数目的梁 多余约束:从维持平衡角度而言,多余的约束 超静定次数:多余约束或多余支反力的数目。 相当系统:用多余约束力代替多余约束的静定系统
弯曲变形求解方法
①建立刚度条件,解决刚度问题
②建立变形协调条件,解决超静定问题
③为振动计算奠定基础。
§6.2挠曲线的微分方程
一、概念
以简支梁为例,以变形前的轴线为x轴,垂直向上为y轴,xoy平面为梁的纵向对称面。
①挠曲线:
在对称弯曲情况下,变形后梁的轴线为xoy平面内的一条曲线,此曲线称为挠曲线。
②挠度:
一、梁的刚度条件
在工程中,梁除了要满足强度条件外,还要满足刚度条件。梁的刚度条件为
式中 ——最大挠跨比;
——许用挠跨比。许用挠跨比可从设计规范中查得,一般在 ~ 之间。
[例6-2]受力情况如图9-42a所示的简支梁,由型号为45a工字钢制成。材料的许用应力 MPa, ,材料的弹性模量为 GPa,试校核梁的强度和刚度。
梁的任一截面形心的竖直位移称为挠度。
③挠曲线的方程式:
w=f(x)
④转角:弯曲变形中,梁的横截面对其原来位置转过的角度θ,称为截面转角。根据平面假设,梁的横截面变形前,垂直于轴线,变形后垂直于挠曲线。故
⑤挠度w和转角θ是度量弯曲变形的两个基本量。
⑥挠度与转角符号规定:在图示坐标中,挠度向上为正,反时针的转角为正。
[解](1)作梁的弯矩图(图9-42b)。
由图可知: kN·m
(2)校核梁的强度。
查型号为45a工字钢知,惯性矩 cm4,抗弯截面系数 cm3。
梁内最大正应力
N/mm2=103.18MPa<
梁满足强度要求。
(3)校核梁的刚度
用叠加法计算梁跨中的挠度为
mm
=18.5mm
< =0.002
梁满足刚度要求。此梁安全。
二、提高梁刚度的措施
要提高梁的刚度,应从影响梁刚度的各个因素来考虑。梁的挠度和转角与作用在梁上的荷载、梁的跨度、支座条件及梁的抗弯刚度有关,因此,要降低挠度,提高刚度,可采用以下措施:
第六章受弯构件2
六、影响梁整体稳定的主要因素
★1.侧向抗弯刚度、抗扭刚度; ★2.受压翼缘的自由长度(受压翼缘侧向支承点间距); ★3.荷载作用种类; ★4.荷载作用位置; ★5.梁的支座情况。
七、提高梁整体稳定性的主要措施
1.增加受压翼缘的宽度; 2.在受压翼缘设置侧向支撑。
八、不需要计算稳定性的受弯构件
【失稳】构件侧向刚度弱,扭转刚度弱侧向变 形和扭转变形大。 【稳定】提高刚度,约束变形。 情形一:梁受压翼缘与混凝土板连续连接, 可不计算整体稳定性,楼板刚度大,约束梁 平面外变形,但在施工阶段可能刚度不足。 情形二: 设上下翼缘侧向支撑。 情形三: 加密次梁或支撑间距。
2
(a )
M
z
u
M
du dz
Z
X X’
Z’ 图 2
du M dz
在x’ z’ 平面内为梁的侧向弯曲,其弯矩的平衡方程为:
d u − EI y 2 = M ϕ dz
2
(b)
u
由于梁端部夹支,中部任意 截面扭转时,纵向纤维发生 了弯曲,属于约束扭转,其 扭转的微分方程为:
Y
Y’
v
X Y
X X ’
Y’
轧制普通工字钢简支梁的φb
项 次 1 荷载情况 集 中 上翼 跨 荷 缘 中 载 无 作 下翼 侧 用 缘 向 于 支 均 承 布 上翼 缘 点 荷 的 载 梁 作 下翼 用 缘 于 跨中有侧向支 承点的梁(不 论荷载作用点 在截面高度上 的位置) 工字 钢型 10~2 号 0 22~3 2 10~2 36~6 0 3 22~4 0 10~2 45~6 0 3 22~4 0 10~2 45~6 0 3 22~4 0 10~2 45~6 0 3 22~4 0 45~6 3 自由长度 2 2.00 2.40 2.80 3.10 5.50 7.30 1.70 2.10 2.60 2.50 4.00 5.60 2.20 3.00 4.00 3 1.30 1.48 1.60 1.95 2.80 3.60 1.12 1.30 1.45 1.55 2.20 2.80 1.39 1.80 2.20 4 0.99 1.09 1.07 1.34 1.84 2.30 0.84 0.93 0.97 1.08 1.45 1.80 1.01 1.24 1.38 5 0.80 0.86 0.83 1.01 1.37 1.62 0.68 0.73 0.73 0.83 1.10 1.25 0.79 0.96 1.01 6 0.68 0.72 0.68 0.82 1.07 1.20 0.57 0.60 0.59 0.68 0.85 0.95 0.66 0.76 0.80 (m) 7 0.58 0.62 0.56 0.69 0.86 0.96 0.50 0.51 0.50 0.56 0.70 0.78 0.57 0.65 0.66 8 0.53 0.54 0.50 0.63 0.73 0.80 0.45 0.45 0.44 0.52 0.60 0.65 0.52 0.56 0.56 9 0.48 0.49 0.45 0.57 0.64 0.69 0.41 0.40 0.38 0.47 0.52 0.55 0.47 0.49 0.49 10 0.43 0.45 0.40 0.52 0.56 0.60 0.37 0.36 0.35 0.42 0.46 0.49 0.42 0.43 0.43
材料力学 第6章 梁的弯曲变形
(c)
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
在本章所取的坐标系中,
上凸的曲线w″为正值,下凸的为负值。
如图6-5所示。 按弯矩正负号的规定,正弯矩对应着负的w″, 负弯矩对应着正的w″,故(c)式
w
M (x)
(1
w2 )3 2
EI z
在小变形情况下, w dw 是一个很小的量, dx
则 w'2为高阶微量,可略去不计,故
挠曲线的近似微分方程
M x
w EI z
EIw''= −M (x)
(6-1b)
图6-5
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
6.4 积分法计算梁的变形
对于等直梁,可以直接积分,计算梁的挠度和转角。 将式(6-1b)积分一次,得到
EIw′ = EIθ = −∫ M (x) dx + C
maxFl 2 2EI来自A xyF
θmax B
x
wmax
l
图6-7 例题 6-1 图
wm a x
Fl 3 3EI
θ max为正值,表明梁变形后,截面B顺时针转动;
wmax为正值,表明点B位移向下。
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
例题6-2 一简支梁受均布荷载q作用,如图6-8所示。试求梁的转角方程和 挠度方程, 并确定最大挠度和A、B截面的转角。设梁的弯曲刚度为EI。
A x
y
F
θmax B
x
wmax
l
进行两次积分,得到
EIw EI Flx Flx2 C
(a)
2
EIw Flx2 Fx3 Cx D
材料力学简明教程(景荣春)课后答案第六章
( ) wA
= − q0l 4 30EI
↓
,θB
= q0l3 24EI
(顺)
讨论:请读者按右手坐标系求 wA ,θB 并与以上解答比较。
(c)
(c1)
解 图(c1)
( ) ∑ M B = 0 , FC
= − Me l
↓
CA 段
M
=
−
Me l
x1
⎜⎛ 0 ⎝
≤
x1
<
l 2
⎟⎞ ⎠
AB 段
M
=
−
Me l
l 2
≤
x2
≤
l ⎟⎞ ⎠
Ew1′′
=
3 8
qlx1
−
1 2
qx12
EIw1′
=
3 16
qlx12
−
1 6
qx13
+
C1
EIw1
=
1 16
qlx13
−
1 24
qx14
+
C1 x1
+
D1
EIw′2′
=
3 8
qlx2
−
ql 2
⎜⎛ ⎝
x2
−
l ⎟⎞ 4⎠
EIw′2
=
3 16
qlx22
−
ql 4
⎜⎛ ⎝
x2
24
EIw′(l) = 0 ,− q l 3 + 3Al 2 + 2Bl = 0
6
解式(a),(b)得
A = ql , B = − ql 2
12
24
即挠曲线方程为
EIw = − q x4 + ql x3 − ql 2 x2 24 12 24
材料力学知识点
第六章弯曲变形知识要点1、弯曲变形的概念1)、挠曲线弯曲变形后梁的轴线变为挠曲线。
平面弯曲时,挠曲线为外力作用平面内的平面曲线。
2)、平面弯曲时的变形在小变形情况下,梁的任意二横截面绕各自的中性轴作相对转动,杆件的轴线变为平面曲线,其变形程度以挠曲线的曲率来度量。
1》纯弯曲时,弯矩—曲率的关系(由上式看出,若弯曲刚度EI为常数则曲率为常数,即挠曲线为圆弧线)2》横力弯曲时,弯矩—曲率的关系3)、平面弯曲时的位移1》挠度——横截面形心在垂直于梁轴线方向上的线位移,以表示。
2》转角——横截面绕其中性轴旋转的角位移,以表示。
挠度和转角的正负号由所选坐标系的正方向来确定。
沿y轴正方向的挠度为正。
转角的正负号判定规则为,将x轴绕原点旋转90°而与y轴重合,若转角与它的转向相同,则为正,反之为负。
4)、挠曲线近似微分方程5)、受弯曲构件的刚度条件,2、积分法求梁的挠度和转角由积分常数C、D由边界条件和连续性条件确定。
对于梁上有突变载荷(集中力、集中力偶、间断性分布力)的情况,梁的弯矩M(x)不是光滑连续函数,应用上式时,应分段积分,每分一段就多出现两个积分常数。
因此除了用边界条件外,还要用连续性条件确定所有的积分常数。
边界条件:支座对梁的位移(挠度和转角)的约束条件。
连续条件:挠曲线的光滑连续条件。
悬臂梁边界条件:固定端挠度为0,转角为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等简支梁边界条件:固定绞支座或滑动绞支座处挠度为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等连接铰链处,左右两端挠度相等,转角不等3、叠加原理求梁的挠度和转角1)、叠加原理各载荷同时作用下梁任一截面的挠度和转角等于各个载荷单独作用时同一截面挠度和转角的代数和。
2)、叠加原理的限制叠加原理要求梁某个截面的挠度和转角与该截面的弯矩成线性关系,因此要求:1》弯矩M和曲率成线性关系,这就要求材料是线弹性材料2》曲率与挠度成线性关系,这就要求梁变形为小变形4、弯曲时的超静定问题——超静定梁1)、超静定梁约束反力数目多于可应用的独立的静力平衡方程数的梁称为超静定梁,它的未知力不能用静力平衡方程完全确定,必须由变形相容条件和力与变形间的物理关系建立补充方程,然后联立静力平衡方程与补充方程,求解所有的未知数。
第六章弯曲变形分析
第六章 弯曲变形分析梁是机械与工程结构中最常见的构件。
本章内容包括梁的内力、平面弯曲中横截面上的正应力和切应力分布规律,以及梁的变形计算。
6.1 梁的内力● 梁的概念当杆件受到矢量方向垂直于轴线的外力或外力偶作用时,其轴线将由直线变为曲线,如图6–1(a)。
以轴线变弯为主要特征的变形形式称为弯曲,凡是以弯曲变形为主的杆件,工程上称为梁,如车辆的轮轴、房屋的梁及桥梁等。
在分析计算中,通常用梁的轴线代表梁,如图6–1(b)。
在工程实际中,大多数梁都具有一个纵向对称面;而外力也作用在该对称面内。
在这种情况下,梁的变形对称于纵向对称面,且变形后的轴线也在对称图6–1 梁 图6–2 对称弯曲图6–3 梁的约束 图6–4 三类静定梁面内,即所谓的对称弯曲,如图6–2。
它是弯曲问题中最基本、最常见的情况。
本章只讨论梁的对称弯曲。
图6–3表示了梁的三种常见约束形式及相应的约束力:可动铰支座(图6–3(a)),固定铰支座(图6–3(b))和(平面)固定端约束(图6–3(c))。
在以上三种约束方式下,有三种常见的梁形式,如图6–4所示。
图6–4(a)为简支梁,两端分别为固定铰支座和活动铰支座;图6–4(b)为悬臂梁,一端固定端约束,一端自由;图6–4(b)为外伸梁,它是具有一个或两个外伸部分的简支梁。
这三种梁都是静定梁。
作用在梁上的外载荷,常见的有集中力偶M (图6–5(a))、分布载荷q (图6–5(b))和集中力F (图6–5(c))。
在实际问题中,q 为常数的均布载荷较为常见。
● 梁的剪力与弯矩在4.2中已经介绍了求杆件内力的通用方法,即截面法。
具体到梁,其内力分量为剪力和弯矩,规定当剪力相对于横截面的转向为顺时针为正,使杆件发生上凹下凸的弯矩为正,如图4–5(b)和(c)。
例6–1:如图6–6所示悬臂梁,受均布载荷q ,在B 点处受矩为2qa M =的力偶作用,试绘梁的剪力图与弯矩图。
解:设固定端的约束力和约束力偶为C R 和C M ,则由平衡方程00=-=∑qa R F C y ,qa R C =05.102=--⋅=∑C C M qa qa a m ,221qa M C = 以杆件左端为坐标原点,以B 为分界面,将梁分为AB 和BC 两段。
工程力学2第六章 弯曲变形
§6-4 用叠加法求弯曲变形
设梁上有n 个载荷同时作用,任意截面上的弯矩 为M(x),转角为 ,挠度为y,则有:
d2y EI 2 EIy'' M ( x ) dx n
由弯矩的叠加原理知: 所以, 即,
§6–3 用积分法求弯曲变形 (Beam deflection by integration )
一、微分方程的积分 (Integrating the differential equation )
M ( x) w EI
若为等截面直梁, 其抗弯刚度EI为一常量上式可改写成
EIw M ( x )
代入求解,得
1 Fb 3 C1 C 2 Fbl 6 6l D1 D2 0
FAy x1
ymax
x2
a
b
目录
§6-3 用积分法求弯曲变形
5)确定转角方程和挠度方程
AC 段: 0 x1 a
Fb 2 Fb 2 EI 1 x1 (l b2 ) 2l 6l
Fb 3 Fb 2 EIy1 x1 ( l b 2 ) x1 6l 6l
转角
4、挠度与转角的关系 ( Relationship between deflection and slope): w
A
tg w ' w '( x )
B
x
C C'
转角
w挠度
挠曲线
B
5、挠度和转角符号的规定
(Sign convention for deflection and slope) 挠度 向上为正,向下为负. 转角 自x 转至切线方向,逆时针转为正,顺时针转为负. w
《材料力学》第六章-弯曲变形
当载荷P处于梁中点,即b=l/2时,xl=0.5l;
当载荷P移至支座B,即b→0时
x1
l2 0.577l 3
即使在这种极端的情况下,最大挠度的位置距中 点只有0.077l,也就是说点的位置影响甚小,最大挠 度总是发生在梁跨中点的附近。可以认为在工程中 当有一集中力作用在简支梁上时,梁的最大挠度发 生在梁的中点,其结果误差不超过3%。
§6.1 工程中的弯曲变形问题
工程中有些受弯构件在载荷作用下虽能满足强度 要求,但由于弯曲变形过大,刚度不足,仍不能保证 构件的正常工作,成为弯曲变形问题。
出现“爬坡”现象
使齿轮啮合力沿齿宽分布极 不均匀,加速齿轮的磨损。
一、挠度和转角
构件的弯曲变形通常用截面的挠度和转角度量。
梁在横向力作用下发生弯曲变形, y
§6.3 用积分法求弯曲变形
一、积分法求弯曲变形 w Mx
EI
积分
挠曲线近似微分方程
w E 1IM xd x C
积分
转角方程
w E 1IM xd x CD x 挠曲线方程
式中C和D是待定的积分常数,可根据梁的具体条件来确定。
积分法计算梁的变形的步骤: 1.建立梁截面的弯矩方程式M(x); 2.代人挠曲线近似微分方程式,并积分; 3.确定积分常数,得到具体的挠度和转角方程式; 4.求梁任一截面的转角和挠度。
令
w1 10 F 2lx b12-F 6lb l2-b2 0
当a>b时,x1<a,wmax发生在AC段内。
得: x1
l2 -b2 3
wm若求最大转角,求θA、θB,比较大小,取其大者。
当
x1
l2 -b2 3
wmax-
Fb 9
第六章 弯曲应力(习题解答)
6-3、图示矩形截面梁受集中力作用,试计算1-1横截面上a 、b 、c 、d 四点的正应力。
解:(1)外力分析,判变形。
荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。
中性轴z 轴过形心C 与载荷垂直,沿水平方向。
(2)内力分析,弯矩图如图(b )所示,1-1横截面的弯矩为:1115230(M -=-⨯=-⋅kN m)(3)应力分析,梁上边有弯矩图,上侧纤维受拉。
1-1横截面上的a 点处于拉伸区,正应力为正;c 点处于中性层上,正应力为零;b 、d 两点处于压缩区,正应力为负。
3111111max2301011.1110.1800.36a a zzzM M M y y I I W σ---⨯=⋅=⋅===⨯⨯Pa MPa 。
11.11b a σσ=-=-MPa0c σ= 31133010(0.1500.050)7.4110.1800.312d d zM y I σ-⨯=-⋅=-⨯-=-⨯⨯Pa MPa37M kN V 图(kN)(a)(c)(b)(c)(e)(d)2+q l /8MkN ·m)(f)(b)180q题6-3图 题6-5图6-5、两根矩形截面简支木梁受均布荷载q 作用,如图所示。
梁的横截面有两种情况,一是如图(b)所示是整体,另一种情况如图(c)所示是由两根方木叠合而成(二方木间不加任何联系且不考虑摩擦)。
若已知第一种情况整体时梁的最大正应力为10MPa ,试计算第二种情况时梁中的最大正应力,并分别画出危险截面上正应力沿高度的分布规律图示。
解:(1)外力分析,判变形。
荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。
第一种情况中性层为过轴线的水平纵向面,中性轴z 轴过整体形心C 与载荷垂直,沿水平方向。
而第二种情况,两根木梁以各自的水平纵向面为中性层发生弯曲,两根中性轴为与荷载垂直的水平形心主轴。
如图所示。
(2)内力分析,判危险面:弯矩图如图(b )所示,跨中截面为危险面。
刘鸿文版材力第六章 弯曲变形 (2)
q
RB
ql RA = RB = 2
A
B
x
y
l
例题 6 -2 图
此梁的弯矩方程及挠曲线微分方程分别为
ql 1 2 q M(x) = x − qx = (lx − x2 ) 2 2 2 q EIw' ' = M(x) = (lx − x2 ) 2 (a) (b)
RA
A
x
q
RB
B x
y
l
q EIw ' = M(x) = (lx − x2 ) ' 2
w"Байду номын сангаас 0
o y
M M
x
ν"> 0
o 图 6 -2 x
M>0
w '' (1 + w ' )
2
2
3
2
M (x) = EI
(6 -1) )
w' 与 1 相比十分微小而可以忽略不计 故上式可近似为: 相比十分微小而可以忽略不计, 故上式可近似为:
M(x) w "= EI
(6 -2 a) )
此式称为 梁的挠曲线近似微分方程 近似原因 : (1) 略去了剪力的影响 ; (2) 略去了w′2 项。 略去了 ′
若为等截面直梁, 其抗弯刚度EI为一常量上式可改写成 若为等截面直梁 其抗弯刚度 为一常量上式可改写成
EIw = M(x)
''
(6 -2 b) )
上式积分一次得转角方程
EIw' = EIθ = ∫ M(x)dx + C 1
再积分一次, 再积分一次 得挠曲线方程
(6 -3 a) )
材料力学第六章弯曲变形
以图示悬臂梁为例: x
A
w
q qy
2.梁的变形可以用以下两个位移度量:
F Bx
B1
① 挠度:梁横截面形心的竖向位移y,向下的挠度为正 ② 转角:梁横截面绕中性轴转动的角度q,顺时针转动为正
简支梁
挠度方程:挠度是轴线坐标x的函数
转角方程(小变形下):转角与挠度的关系
=tan =dy =f ´(xd)x
梁在简单荷载作用下的转 角和挠度可从表中查得。
例3 图示悬臂梁,其弯曲刚度EI为常数,求B点转角和挠度。
q
A
C
F
1.在F作用下:
查表: BF
Fl 2 2EI
,
yBF
Fl 3 3EI
B
2.在q作用下:
查表: Cq
q(l / 2)3 6EI
ql3 48 EI
A A
qBF
F
B
q(l / 2)4 ql4
M图 Fl / 4
Wz
M max
35 103 160 106
2.19 10 4 m3
3、梁的刚度条件为:
Fl3 l 48EIz 500
解得
Iz
500 Fl 2 48 E
500 35 103 42 48 200 109
2.92 10 5 m4
由型钢表中查得,22a工字钢的弯曲截面系数Wz=3.09×l0-4m3 ,惯性矩 Iz=3.40×10-5m4,可见.选择.22a工字钢作梁将同时满足强度和刚度要求。
提高梁刚度的措施:
y ln EI
1.增大梁的弯曲刚度 EI;主要增大截面惯性矩I值,在截面 面积不变的情况下,采用适当形状,尽量使面积分布在距中性轴 较远的地方。例如:工字形、箱形等。
材料力学第六章
解 1)将梁上的载荷分解
wC wC1 wC2 wC3
B B1 B2 B3
2)查表得3种情形下C截面的 挠度和B截面的转角。
wC1
5ql 4 384EI
wC 2
ql 4 48EI
ql 4 wC3 16EI
B1
ql 3 24EI
B1
ql 3 16EI
B3
ql 3 3EI
wC1
wC2 wC3
3)进行变形比较,列出变形协调
条件
wB 0
4)叠加法
wB (wB )F (wB )FBy 0
MA A
MFAAy A
FAy A
A
MA A FA y
MA A AA
MA A A
F
B
C
2a (a) B
aF C
2a
Ba C
((ba))
B B (b)
F C
C
(c)
FBy F
B
FF C
BB
(c)
FBy
CC
B12 a
Fa 2l 3EI
w1 wB11 wB12
w2
B2a
Fl 2a 16 EI
w w1 w2
用叠加法求跨度中点挠度
解: wc wc1 wc2
由于 wc wc2
=
故
wc
1 2
wc1
1 5q0l 4 5q0l 4 2 384EI 768EI
-
解: wc wc1 wc2
当 d w 0 时,w为极值
dx
EI1
Fb 2l
x2 1
Fb 6l
(l 2
b2 )
E I 2
Fb 2l
x22
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解出积分常数C=0,D=0。将C值和D值代入式上两式,
就得到具体的转角和挠度方程式为:
1 [PLx 1 Px 2 ] PLx [2 x ]
EI
2
2EI L
y 1 [ 1 PLx 2 1 Px3 ] PLx 2 [3 x ]
EI 2
6
6EI L
C]
y
1 EI
[ ( (M ( x))dx)dx
Cx
D]
利用位移边界条件确定积分常数
积分法计算梁的变形(续)
2.位移边界条件 P
D
A
P
C
B
固定支座
铰支座
• 支点位移条件
fD 0 θD 0
• 连续条
fA 0 fB 0
件f C
fC
• 光滑条
件θ C
θ C
或写成 f C左 f C右
或写成 θC左 θC右
梁的变形是弹性的,则梁轴线的挠曲线又叫做 平面弹性曲线。
工程中的弯曲变形问题(续)
y
C y
C1
P x
• 4. 转角与挠曲线的关系:
tg d y y
dx
dy
dx
小变形
第二节 挠曲线近似微分方程
Differential Equation of beam deformation
已知曲率为 k( x) 1 M ( x)
工程中的弯曲变形问题(续)
y θ B΄
A
C΄ y B
xC
x
l
P
工程中的弯曲变形问题(续)
y
变形前梁截面:平面
P
C
y
x
C1
变形后梁轴
变形后梁截面:仍为平面
梁截面转角:
线 挠曲线 挠度:y
工程中的弯曲变形问题(续)
• 1.挠度:横截面形心沿垂直于轴线方向的线位移
•
用 y 表示,与坐标y 同向为正,反之为负
条件: 材料服从胡克定律和小变形 挠度和转角均与载荷成线性关系
叠加原理: 承受复杂载荷时,可分解成几种简单载荷,
利用简单载荷作用下的位移计算结果,叠加后得 在复杂载荷作用下的挠度和转角。
第五节 弯曲刚度计算
y [y] max
[ ] max
其中:[y]——梁的许用挠度值(cm mm) [θ]——梁的许用转角值(弧度 (rad))
接上页
(2)积分:由于被切削工件为等截面杆,EI为常数, 可提到积分号外。积分一次得:
d 2y dx2
1 EI
P(L
x)
再积分一次得:
dy 1 [PLx 1 Px2 C]
dx EI
2
y 1 [ 1 PLx 2 1 Px3 Cx D]
EI 2
6
接上页
(3)确定积分常数C和D:由工件的支承情况可知, 在x为零的截面处,其转角和挠度为零,即
提高弯曲刚度的措施(续)
5、预加反弯度
f
练习
悬臂梁AB上有一弯架BC附于其自由端B,有一集中力 P作用于弯架的端点C,试求使B点竖直挠度为零时尺寸a和
l的比值。
l
A
B
C
P
a
(2)用叠加法求梁C截面处的挠度yc和支座B处的 转角θB
yc(P1 )
P1a 2 3EI
(l
a)
2103 100 2 (400 100 ) 3 200 103 1.885 106
8.84 103 mm ()
B(P1 )
P1al 3EI
2103 100 400 3 200 103 1.885 106
积分常数
A
B
P=20kN
D
E
需6个边界条件和 连续条件
a
a
a
2ቤተ መጻሕፍቲ ባይዱkN·m
B点:fB 0, B BA D点:fD fD , D D
(-) B
D
E
(+)
E点:fE 0, E E
10kN·m a=2m
边界条件、连续条件应用举例(续)
弯矩图分三段,共
6个积分常数
A
需6个边界条件和
P
B
CD
铰连接
P2
P1
A
l 2
B
l 2
C a
接上页
y
P2
P1
A
l 2
B
C =A
l 2
a
l
2
θB(P1)
P1
B
l 2
Cx a
yc(P1)
y
+A l 2
P2 θB(P2)
B
l 2
Cx a
yc(P2)
接上页
解:(1)求空心主轴横截面的惯性矩
Iz
(D4 d4 ) 64
64
(84 4
40 4 )
1.885
106 mm 4
连续条件
CD
A
B
A点:f A 0, A 0
B点:f B左 f B右
C点:f C左 f C右 C左 C右
D点:fD 0
例1 图(a)为车床上用三爪夹紧工件进行切削的示意图。图(b) 为 其 计 算 简 图 。 若 车 刀 作 用 于 工 件 上 的 力 P=360N 。 工 件 直 径 d=1.5cm,长度L = 7.5cm,工件材料的弹性模量E=200GPa,试问由 于工件弯曲变形而产生的最大直径误差是多少?
例题
机床主轴的支承和受力可以简化为如图所示之外伸梁。其 中P1为由于切削而施加于卡盘上的力,P2为齿轮间的相互 作用力(主动力)。主轴为空心圆截面,外径D=80mm, 内径d=40mm,l=400mm,a=100mm, P1=2kN,P2=1kN。 材料的弹性模量E=200GPa。规定主轴的许用挠度和许用转 角为:卡盘C处的挠度不超过两轴承间距的1/104,轴承B处 的转角不超过1/103(rad)。试校核主轴的刚度。
EI
d2y dx 2
M ( x)
积分法求梁变形的基本步骤:
①写出弯矩方程;若弯矩不能用一个函数给出要分
段写出
②由挠曲线近似微分方程,积分出转角、挠度函数
③利用边界条件、连续条件确定积分常数如果分 n
段写出弯矩方程,则有 2 n 个积分常数
边界条件、连续条件应用举例
弯矩图三段,共6个
q=10kN/m
接上页
(4) 确定最大挠度:
ymax
PL3 6EI
[3 1]
PL3 3EI
将具体数值代入则得:
ymax
360 7.53
3 20106 1.54
0.0102(cm)
64
(5)求最大的直径误差:设最大的直径误差为△d ,则
d 2 ymax 2 0.0102 0.0204 (cm)
第四节 用叠加法计算梁的变形
l
8qll 4
ym2ax q3824EI
y
max
(a) 8ql 4 384EI
(a) l q5ql 4
ymax 384EI
q (c)
l
5ql 4 ymax 3l84EI
y max
5ql 4 (3c8) 4EI
ql
ql
2
2
l
l
4
4
ql l ql
2
y max
ql l
5.5ql 42 384EqIll
B B(P1) B(P2 ) 0.707104 0.26510-4 -0.44210-4rad()
yc
6.19
103
mm
1 104
400 4.0102 mm
有
yc l
6.19103 400
1.548105
[
y l
]
B 0.442104 rad [] 0.1102 rad
0.707 104 rad()
B(P2 )
P2l 2 16EI
1103 400 2 16 200 103 1.885 106
0.265 104 rad
(
)
接上页
yc(P2) B(P2)a 0.265104 100 2.6510-3mm()
叠加后得
yc yc(P1) yc(P2) 8.84103 2.6510-3 -6.1910-3mm()
y L
d
A x L
B x
P
(a)
(b)
图 21-5
已知:P=360N d=1.5cm L = 7.5cm E=200GPa 求:由于工件弯曲变形而产生的最大直径误差是多少?
y L
d
A x L
B x
P
(a)
(b)
(1)列出弯矩方程及图挠2度1-5曲线微分方程
M (x) PL x 得: d 2y 1 P( L x ) dx2 EI
位移边界条件(续)
P
D
C
铰连接
fC左 fC右 θC左 θC右
积分法求梁变形(续)
①适用于小变形、线弹性材料、细长构件的平面 弯曲
②可应用于各种载荷的等截面或变截面梁的位移 ③积分常数由挠曲线变形的几何相容条件(边界 条件、连续条件)确定 ④优点——使用范围广,精确; 缺点——计算 较繁
积分法求梁变形(续)
dx 2
EI z
对于等截面直梁,可写成如下形式:
EI d 2 y M (x) dx 2
应用条件:(1)平面弯曲
(2)纯弯曲或l/h≥5的横力弯曲
(3)应力小于比例极限
(4)变形很小
第三节 积分法计算梁的变形
1.微分方程的积分
d2y dx 2
M ( x) EI
dy dx