传送带模型

合集下载

动力学中的典型传送带模型-高三

动力学中的典型传送带模型-高三

“传送带”模型1.水平传送带模型项目图示运动情况判断方法情景1可能一直加速,也可能先加速后匀速若v22μg≤l,物、带能共速情景2当v0>v时,可能一直减速,也可能先减速再匀速;当v0<v时,可能一直加速,也可能先加速再匀速若|v2-v20|2μg≤l,物、带能共速情景3传送带较短时,滑块一直减速达到左端;传送带较长时,滑块还要被传送带传回右端若v202μg≤l,物块能返回2.倾斜传送带模型项目图示运动情况判断方法情景1可能一直加速,也可能先加速后匀速若v22a≤l,物、带能共速情景2可能一直加速,也可能先加速后匀速,还可能先以a1加速后以a2加速若v22a≤l,物、带能共速;若μ≥tan θ,物、带共速后匀速;若μ<tan θ,物体以a2加速(a2<a)(1)解题关键1:对物体所受的摩擦力进行正确的分析判断。

(2)解题关键2:物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻。

【例2】(多选)如图所示,绷紧的水平传送带足够长,且以v1=2 m/s的恒定速率运行。

初速度大小v2=3 m/s的小墨块从与传送带等高的光滑水平地面(图中未画出)上的A处滑上传送带,墨块可视为质点。

若从墨块滑上传送带开始计时,墨块在传送带上运动5 s后与传送带的速度相同,则()A.墨块与传送带速度相同之前,受到传送带的摩擦力方向水平向右B.墨块在传送带上滑行的加速度大小a=0.2 m/s2C.墨块在传送带上留下的痕迹长度为4.5 mD.墨块在传送带上留下的痕迹长度为12.5 m【拓展提升1】若将【例2】中的v1、v2的值改为v1=3 m/s,v2=2 m/s,求墨块在传送带上留下的痕迹长度。

考向倾斜传送带解决倾斜传送带问题时要特别注意mg sin θ与μmg cos θ的大小和方向的关系,进一步判断物体所受合力与速度方向的关系,确定物体运动的情况。

【例3】(多选)如图所示,一足够长的倾斜传送带顺时针匀速转动。

(完整版)高中物理传送带模型(解析版)

(完整版)高中物理传送带模型(解析版)

送带模型1.模型特征(1)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。

其中v0>v返回时速度为v,当v0<v返回时速度为v0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a1加速后以a2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能一直减速2. 注意事项(1)传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向(2)传送带与物体运动的牵制。

牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。

(3) 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。

【典例1】如图所示,传送带的水平部分长为L ,运动速率恒为v ,在其左端无初速放上木块,若木块与传送带间的动摩擦因数为μ,则木块从左到右的运动时间可能是( )A.L v +v 2μgB.L vC.2L μgD.2L v【答案】 ACD【典例2】如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间. 【答案】 (1)4 s (2)2 s【典例3】如图所示,与水平面成θ=30°的传送带正以v =3 m/s 的速度匀速运行,A 、B 两端相距l =13.5 m 。

传送带模型汇总

传送带模型汇总

传送带模型的优势
1 高效性
传送带模型可以实现自动 化传输,节省人力和时间 成本。
2 可靠性
3 可定制性
传送带模型运作稳定,减 少物体损坏和丢失的风险。
传送带模型可以根据需求 进行定制,适应不同物体 和场景。
传送带模型的不足
限制物体尺寸
传送带模型使用有限的尺寸,不适用于过大或过重的物体。
可能占用空间
传送带模型汇总
本演示将介绍传送带模型的定义、基本原理、应用领域、优势、不足、发展 前景,并提供结论和总结。让我们一起探索这个引人入胜的话题。
传送带模型的定义
传送带模型是一种用于物体或信息传递的工程设备,通过连续移动的传送带 将物体从一个地方转移到另一个地方。
传送带模型的Βιβλιοθήκη 本原理1 传送带传送带由驱动装置、张紧装置和传送带材料组成,通过不断循环的运动来传输物体。
传送带模型需要占用一定的空间,对于场地有限的环境不太合适。
传送带模型的发展前景
随着自动化技术和物流需求的不断增长,传送带模型有望在各个行业中得到 更广泛的应用和改进,提升物体传输的效率和准确性。
结论和总结
传送带模型是一种既古老又现代的物体传输技术,它在生产制造、物流和交通等领域发挥着重要作用。我们期 待看到它未来的创新和发展。
2 传送物体
物体被放置在传送带顶部,随着传送带的运动,物体被带到目的地。
传送带模型的应用领域
生产制造
传送带模型广泛用于生产制造行 业,加速生产流程并提高效率。
航空旅行
传送带模型在航空旅行中用于行 李传送系统,方便旅客的行李投 放和取出。
邮政服务
传送带模型被邮政服务用于包裹 分拣和投递,提高速度和准确性。

2023年高考物理二轮复习核心素养微专题(一)模型建构——传送带模型

2023年高考物理二轮复习核心素养微专题(一)模型建构——传送带模型

核心素养微专题(一)模型建构——传送带模型传送带是将物体从一处传向另一处应用比较广泛的一种传送装置,与日常生活联系紧密,以其为素材的计算题大多具有情境多样、条件隐蔽、过程复杂的特点。

主要知识涉及运动学规律、牛顿运动定律、功能关系等。

常见类型如下:1.水平传送带:项目图示滑块可能的运动情况情境1 (1)可能一直加速(2)可能先加速后匀速情境2 (1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情境3 (1)传送带较短时,滑块一直减速到达左端(2)传送带较长时,滑块还要被传送带传回右端。

其中当v0>v时,返回时速度为v;当v0<v时,返回时速度为v02.倾斜传送带:项目图示滑块可能的运动情况情境1 (1)可能一直加速(2)可能先加速后匀速情境2 (1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情境3 (1)可能一直加速(2)可能先加速后匀速(3)可能一直匀速(4)可能先以a1加速后以a2加速情境4 (1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速【模型1】水平传送带(2022·重庆模拟)如图为地铁入口安检装置简易图,水平传送带AB长度为l,传送带右端B与水平平台等高且平滑连接,物品探测区域长度为d,其右端与传送带右端B重合。

已知:传送带匀速运动的速度大小为v,方向如图,物品(可视为质点)由A端无初速度释放,加速到传送带速度一半时恰好进入探测区域,最后匀速通过B端进入平台并减速至0,各处的动摩擦因数均相同,空气阻力忽略不计,重力加速度为g。

求:(1)物品与传送带间的动摩擦因数μ;(2)物品运动的总时间t。

【解析】(1)设物品做匀加速直线运动的加速度大小为a,则(v2)2=2a(l-d)μmg=ma联立解得a=v 28(l-d),μ=v28(l-d)g(2)设物品匀加速到v走过的位移为s。

高三物理知识点传送带模型

高三物理知识点传送带模型

高三物理知识点传送带模型高三物理知识点:传送带模型传送带模型是物理学中对运动的描述和解释的一种简化模型。

它常被用来说明物体在平稳运动状态下的变化规律和相关的物理概念。

本文将介绍传送带模型的基本原理和应用,以及与高考物理相关的知识点。

一、传送带模型的基本原理传送带模型基于以下假设:1. 假设传送带平稳运行,即传送带的速度保持不变;2. 假设系统在相对运动中处于稳态,即不受到外力的干扰;3. 假设传送带的运动与物体的运动具有良好的耦合性。

在传送带模型中,我们可以将物体视作一个质点,其运动状态由位置、速度和加速度等因素决定。

通过对物体所受的驱动力和阻力进行分析,可以得到物体在传送带上的运动规律。

二、传送带模型的应用1. 平抛运动:传送带模型可以用来解释物体在水平平面上的平抛运动。

在这种情况下,传送带的速度影响了物体的水平速度,而垂直方向的运动受到重力的影响。

根据传送带模型,物体的横向速度与传送带速度相等,而垂直速度受到重力加速度的影响。

这样,我们可以推导出物体在水平平面上的轨迹、飞行时间和最大高度等参数。

2. 斜抛运动:传送带模型也可以应用于物体在斜面上的抛体运动。

在这种情况下,传送带的速度和斜面的倾角会对物体的运动产生影响。

根据传送带模型,物体的速度可以分解为沿斜面和垂直斜面的分量。

这样,我们可以得到物体在斜面上的运动规律,包括滑动距离、飞行时间和最大高度等参数。

三、与高考物理相关的知识点传送带模型是理解和应用以下高考物理知识点的基础:1. 运动规律:通过传送带模型,我们可以更深入地理解运动物体的速度、加速度和运动规律。

包括匀速直线运动、匀加速直线运动等。

2. 平衡力分析:传送带模型可以帮助我们分析物体所受的平衡力和非平衡力。

比如,在平抛运动中,物体的横向速度受到传送带的平衡力,而垂直速度受到重力的非平衡力。

3. 牛顿定律:传送带模型也可以用来解释和应用牛顿定律。

在斜抛运动中,我们可以分析物体受到的斜面作用力和重力作用力,并根据牛顿定律推导运动方程。

高中物理传送带模型总结

高中物理传送带模型总结

高中物理传送带模型总结开始运动的传送带(b) 、 (c)“传送带模型”1.模型特征 一个物体以速度vO(vO >0)在另一个匀 速运动的物体上 力学系统可看做 模型,如图(a)、 示.2•建模指导水平传送带问题:求解的关键在于对物体所受的摩擦力 进行正确的分析判断•判断摩擦力时要注意比较物体的 运动速度与传送带的速度,也就是分析物体在运动位移 x(对地)的过程中速度是否和传送带速度相等.物体的 速度与传送带速度相等的时刻就是物体所受摩擦力发生 突变的时刻• 水平传送带模型:滑块可能的运融储况芾最1fl T) 〔1」匚能一直加世 〔2)可能先加速后匀速 ⑴话r 时.irk-也可紐碱it 再勺豐时*可能一亘如询,也可能牛加谏再勻谏1•传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L=5 m并以v o = 2 m/s的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数卩= 0.2 , g取10 m/s.(1)求旅行包经过多长时间到达传送带的右端;(2)若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件?最誉三°短时间是多少?2.如图所示,一质量为m=0.5kg的小物体从足够高的光滑曲面上自由滑下,然后滑上一水平传送带。

已知物体与传送带之间的动摩擦因数为a=0.2,传送带水平部分的长度L=5m,两端的传动轮半径为R=0.2m ,在电动机的带动下始终以3 =15/rads的角亠速度沿顺时针匀速转运,传送带下表面离Qzzc 地面的高度h不变。

如果物体开始沿曲面下滑时距传送带表面的高度为H初速度为零,g取10m/s2.求:(1)当H=0.2m时,物体通过传送带过程中,电动机多消耗的电能。

(2)当H=1.25m时,物体通过传送带后,在传送带上留下的划痕的长度。

专题19 动力学中的“传送带模型” (解析版)

专题19 动力学中的“传送带模型” (解析版)

专题19 动力学中的“传送带模型”专题导航目录常考点 动力学中的“传送带模型”分类分析 ............................................................................................................... 1 考点拓展练习 . (9)常考点 动力学中的“传送带模型”分类分析【典例1】如图,一水平的浅色长传送带上放置一质量为m 的煤块(可视为质点) ,煤块与传送带之间的动摩擦因数为μ.初始时,传送带与煤块都是以速度v 作匀速直线运动;现让传送带以加速度a 作匀减速运动,速度减为零后保持静止;又经过一段时间,煤块静止,传送带上留下了一段黑色痕迹,重力加速度大小为g ,则痕迹长度为( )A .22v gμB .22v aC .2222v v g a μ+ D .2222v v g aμ- 【解析】传送带的运动是匀减速直线运动,加速度为a ,减速到零运动的位移为:x 1=22v a,而煤块的运动也是匀减速直线运动,根据牛顿第二定律:=a g μ煤,减速到零运动走过的位移为x 2=22v gμ,由于煤块和皮带是同一方向运动的,所以痕迹的长度即相对位移为:222122v v x x x g aμ∆=-=-,故D 正确,ABC 错误。

【典例2】重物A 放在倾斜的传送带上,它和传送带一直相对静止没有打滑,传送带与水平面的夹角为θ,如图所示,传送带工作时,关于重物受到的摩擦力的大小,下列说法正确的是( )A.重物静止时受到的摩擦力一定小于它斜向上匀速运动时受到的摩擦力B.重物斜向上加速运动时,加速度越大,摩擦力一定越大C.重物斜向下加速运动时,加速度越大,摩擦力一定越大D.重物斜向上匀速运动时,速度越大,摩擦力一定越大【解析】AD.重物静止时,受到的摩擦力大小F f=mg sinθ重物匀速上升时,受到的摩擦力大小仍为mg sinθ,且与速度大小无关,AD错误;B.重物斜向上加速运动时,根据牛顿第二定律,摩擦力F f′=mg sinθ+ma加速度越大,摩擦力越大,B正确;C.重物沿斜面向下加速运动时F f″=mg sinθ-ma或F f″=ma-mg sinθ加速度越大,摩擦力不一定越大,C错误。

2023年浙江省高三物理高考复习专题知识点模型精讲精练 第10讲 传送带模型(含详解)

2023年浙江省高三物理高考复习专题知识点模型精讲精练 第10讲 传送带模型(含详解)

第10讲传送带模型一.水平传送带模型已知传送带长为L,速度为v,与物块间的动摩擦因数为μ,则物块相对传送带滑动时的加速度大小a=μg。

项目图示滑块可能的运动情况情景1v0=0时,物块加速到v的位移x=v22μg(1)一直加速若x≥L即v≥2μgL时,物块一直加速到右端。

(2)先加速后匀速若x<L即v<2μgL时,物块先加速后匀速;情景2如图甲,当v0≠0,v0与v同向时,(1)v0>v时,一直减速,或先减速再匀速当v0>v时,物块减速到v的位移x=v20-v22μg,若x<L,即v0>v> v20-2μgL,物块先减速后匀速;若x≥L,即v≤ v20-2μgL,物块一直减速到右端。

(2)当v=v0时,物块相对传送带静止随传送带匀速运动到右端。

(3)v0<v时,或先加速再匀速,或一直加速当v0<v时,物块加速到v的位移x=v2-v202μg,若x<L,即v0<v< v20+2μgL,物块先加速后匀速;若x≥L,即v≥ v20+2μgL,物块一直加速到右端。

情景3如图乙,v0≠0,v0与v反向,物块向右减速到零的位移x =v202μg(1)传送带较短时,滑块一直减速达到左端若x≥L,即v0≥2μgL,物块一直减速到右端;(2)传送带较长时,滑块还要被传送带传回右端。

即x<L,即v0<2μgL,则物块先向右减速到零,再向左加速(或加速到v后匀速运动)直至离开传送带。

若v 0>v,返回时速度为v,若v0<v,返回时速度为v0二. 倾斜传送带模型物块在倾斜传送带上又可分为向上传送和向下传送两种情况,物块相对传送带速度为零时,通过比较μmgcosθ与mgsinθ的大小关系来确定物块是否会相对传送带下滑,μ>tanθ时相对静止,μ<tanθ时相对下滑。

项目图示滑块可能的运动情况情景1(一)若0≤v0<v且μ>tanθ(1)一直加速传送带比较短时,物块一直以a=μgcosθ-gsinθ向上匀加速运动。

传送带模型

传送带模型
(3)若小物体以水平向左初速度v0 = 3 m/s 冲上B点,它能否被传到A点? 若能,求从B到A的时间 ,若不能,求它返回B点的时间 . (4)若小物体以 水平向左初速度v0 = 4 .4 m/s 冲上B点呢?
A
v
B
A
v
B
【典例精析】如图所示,传送带与地面倾角θ=37°,从A到B长度为16m, 传送带以10m/s的速率逆时针转动。在传送带的上端A处无初速地放一个质 量为0.5kg的物体,它与传送带之间的动摩擦因数为0.5。求物体从A运动到 B所需时间是多少?(g取10m/s2,sin37°=0.6,cos37°=0.8)
A.粮袋到达B端的速度与v比较,可能大,可能小或也可能相等
B.粮袋开始运动的加速度为g(sin θ-μcos θ),若L足够大,则以后将以速度 v做匀速运动
C.若μ≥tan θ,则粮袋从A端到B端一定是一直做加速运动
D.不论μ大小如何,粮袋从A端到B端一直做匀加速运动,且加速度a≥gsin θ
【解析】A
第11讲 传送带模型
知识梳理
传送带的两种模型:核心要点是共速时,摩擦力会突变 (1)水平传送带: 若无外力,共速时,摩擦力突为零,此后匀速
v0
v
v
v0 v
(1)倾斜传送带:除重力外,无其他外力,则共速时:
(1)若μ ≥ tanθ ,则f 突变为静摩擦且f =mgsinθ,此后 匀速;
(1)若μ < tanθ ,则f 仅方向突变,f = μ mgcosθ,此后 匀仍然做匀变速;
θ
θ
【典例精析】如图所示,水平传送带AB长为5m,以v = 4 m/s 匀速运动。一 小物体与传送带之间的动摩擦因素为0.2. 重力加速度g取10 m/s2 .

高中物理重要方法典型模型突破13-模型专题(5)-传送带模型(解析版)

高中物理重要方法典型模型突破13-模型专题(5)-传送带模型(解析版)

专题十三 模型专题(5) 传送带模型【重点模型解读】传送带模型是高中既典型又基础的物理模型,且容易结合生活实际来考察生活实际问题,传送带模型的考查分为两方面,一方面是动力学问题考察(包括划痕),另一方面是能量转化问题考查。

一、模型认识 项目 图示滑块可能的运动情况滑块受(摩擦)力分析 情景1①可能一直加速受力f=μmg②可能先加速后匀速先受力f=μmg ,后f=0情景2①v 0>v 时,可能一直减速,也可能先减速再匀速 受力f=μmg 先受力f=μmg ,后f=0②v 0<v 时,可能一直加速,也可能先加速再匀速 受力f=μmg 先受力f=μmg ,后f= 情景3①传送带较短时,滑块一直减速达到左端受力f=μmg②传送带较长时,滑块还要被传送带传回右端。

其中,若v 0>v,返回时速度为v;若v 0<v,返回时速度为v 0 受力f=μmg (方向一直向右)减速和反向加速时受力f=μmg (方向一直向右),匀速运动f=0 情景4①可能一直加速受摩擦力f =μmg cos θ ②可能先加速后匀速先受摩擦力f=μmgcosθ,后f=mgsinθ(静) 情景5①可能一直以同一加速度a 加速 受摩擦力f=μmgcosθ ②可能先加速后匀速 先受摩擦力f=μmgcosθ,后f=mgsinθ(静) ③可能先以a 1加速后以a 2加速先受摩擦力f=μmgcosθ,后受反向的摩擦力f=μmgcosθ二、传送带模型问题的关键(1)对物体所受的摩擦力进行正确的分析判断。

(2)物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻。

三、解答传送带问题应注意的事项(1)比较物块和传送带的初速度情况,分析物块所受摩擦力的大小和方向,其主要目的是得到物块的加速度。

(2)关注速度相等这个特殊时刻,水平传送带中两者一块匀速运动,而倾斜传送带需判断μ与tan θ的关系才能决定物块以后的运动。

(3)要注意摩擦力做功情况的分析,摩擦生热的能量损失计算时要注意相对位移的分析。

传送带模型--2024年高三物理二轮常见模型(解析版)

传送带模型--2024年高三物理二轮常见模型(解析版)

2024年高三物理二轮常见模型专题传送带模型特训目标特训内容目标1水平传送带模型(1T-5T)目标2倾斜传送带模型(6T-10T)目标3电磁场中的传送带模型(11T-15T)【特训典例】一、水平传送带模型1如图所示,足够长的水平传送带以v0=2m/s的速度沿逆时针方向匀速转动,在传送带的左端连接有一光滑的弧形轨道,轨道的下端水平且与传送带在同一水平面上,滑块与传送带间的动摩擦因数为μ=0.4。

现将一质量为m=1kg的滑块(可视为质点)从弧形轨道上高为h=0.8m的地方由静止释放,重力加速度大小取g=10m/s2,则()A.滑块刚滑上传送带左端时的速度大小为4m/sB.滑块在传送带上向右滑行的最远距离为2.5mC.滑块从开始滑上传送带到第一次回到传送带最左端所用的时间为2.5sD.滑块从开始滑上传送带到第一次回到传送带最左端的过程中,传动系统对传送带多做的功为12J【答案】AD【详解】A.滑块刚滑上传送带左端时的速度大小为v=2gh=2×10×0.8m/s=4m/s选项A正确;B.滑块在传送带上向右滑行做减速运动的加速度大小为a=μg=4m/s2向右运动的最远距离为x m=v22a=422×4m=2m选项B错误;C.滑块从开始滑上传送带到速度减为零的时间t1=va =1s位移x1=v2t1=2m然后反向,则从速度为零到与传送带共速的时间t2=v0a=0.5s位移x2=v02t2=0.5m然后匀速运动回到传送带的最左端的时间t3=x1-x2v0=0.75s滑块从开始滑上传送带到第一次回到传送带最左端所用的时间为t=t1+t2+t3=2.25s选项C错误;D.滑块从开始滑上传送带到第一次回到传送带最左端的过程中,传动系统对传送带多做的功等于传送带克服摩擦力做功W=μmg(v0t1+v0t2)=12J选项D正确。

故选AD。

2如图甲所示,一足够长的水平传送带以某一恒定速度顺时针转动,一根轻弹簧一端与竖直墙面连接,另一端与工件不拴接。

动力学中的传送带模型

动力学中的传送带模型

动力学中的传送带模型一、模型概述物体在传送带上运动的情形统称为传送带模型.因物体与传送带间的动摩擦因数、斜面倾角、传送带速度、传送方向、滑块初速度的大小和方向的不同,传送带问题往往存在多种可能,因此对传送带问题做出准确的动力学过程分析,是解决此类问题的关键.二、两类模型1.水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0〉v时,可能一直减速,也可能先减速再匀速(2)v0〈v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v返回时速度为v02.倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能先加速后匀速(3)可能一直匀速(4)可能先以a1加速后以a2加速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速1.如图3-2-11所示,传送带保持v0=1 m/s的速度运动.现将一质量m=0.5 kg的物体从传送带左端放上,设物体与传送带间动摩擦因数μ=0。

1,传送带两端水平距离x=2.5 m,则物体从左端运动到右端所经历的时间为(g取10 m/s2)()图3-2-11A.错误!s B.(错误!-1) sC.3 s D.5 s【答案】 C2、(2014届大连模拟)如图3-2-19所示,水平传送带A、B两端相距x=3.5 m,物体与传送带间的动摩擦因数μ=0。

1,物体滑上传送带A端的瞬时速度v A=4 m/s,到达B端的瞬时速度设为v B。

下列说法中正确的是()A.若传送带不动,v B=3 m/sB.若传送带逆时针匀速转动,v B一定等于3 m/sC.若传送带顺时针匀速转动,v B一定等于3 m/sD.若传送带顺时针匀速转动,v B有可能等于3 m/s【解析】当传送带不动时,物体从A到B做匀减速运动,a=μg=1 m/s2,物体到达B点的速度v B=错误!=3 m/s。

高考物理一轮复习导学案传送带板块模型

高考物理一轮复习导学案传送带板块模型

功能关系的综合应用——传送带模型、“滑块—木板”模型【传送带模型】1.传送带克服摩擦力做的功:W=f x传(x传为传送带对地的位移)2.系统产生的内能:Q=f x相对(x相对为总的相对路程).3.求解电动机由于传送物体而多消耗的电能一般有两种思路①运用能量守恒以倾斜传送带为例,多消耗的电能为E电,则:E电=ΔE k+ΔE p+Q.②运用功能关系传送带多消耗的电能等于传送带克服阻力做的功E电=fx传(特别注意:如果物体在倾斜传送带上的运动分匀变速和匀速两个运动过程,这两个过程中传送带都要克服摩擦力做功,匀变速运动过程中两者间的摩擦力是滑动摩擦力,匀速运动过程中两者间的摩擦力是静摩擦力) 4.传送带问题分析流出图:(一)水平传送带例1 如图所示,长为5m的水平传送带以2m/s的速度顺时针匀速转动,将质量为1kg的小物块无初速度放在传送带左侧。

已知传送带与小物块之间的动摩擦因数为0.1,最大静摩擦力等于滑动摩擦力,重力加速度g 取10m/s2,求小滑块在传送带上运动过程中:(1)传送带对小物块做的功;(2)传送带与小物块摩擦产生的热量;(3)因放上小物块,电动机多消耗的电能。

变式:若小滑块以3m/s的速度从右端滑上传送带,求:(1)传送带与小物块摩擦产生的热量;(2)传送带克服摩擦力做功。

(二)倾斜传送带例2 如图所示,传送带与水平面间的夹角为30°,其中A、B两点间的距离为3.5m,传送带在电动机的带动下以v=2m/s的速度顺时针匀速转动。

现将一质量4kg的小物块(可视为质点)轻放在传送带的B点,已知小物块与传送带间的动摩擦因数μ=√3,g为取10m/s2,则在传送带将小物块从B点传送到A点的过程中:2(1)摩擦力对小物块做的功;(2)摩擦产生的热量;(3)因放小物块而使得电动机多消耗的电能。

例3如图所示,传送带与水平地面的夹角为θ=37°,A、B两端间距L=16m,传送带以速度v=10m/s 沿顺时针方向运动。

传送带模型高中物理

传送带模型高中物理

传送带模型高中物理在高中物理课程中,我们经常会遇到传送带模型这一概念。

传送带是一种常见的输送工具,可在工业领域中用于将物体从一个地方输送到另一个地方。

在物理学中,传送带模型用于讨论关于速度、位移和加速度的概念。

本文将探讨传送带模型的基本原理以及相关的物理学知识。

传送带模型的基本原理传送带通常由一个带子组成,这个带子会沿着一定的路径移动,从而将上面的物体一起移动。

在传送带模型中,我们通常关注的是带子的运动速度以及上面的物体在带子上的运动情况。

假设传送带的速度为v b,则对于静止在传送带上的物体,它在传送带上的速度为传送带速度v b。

在传送带模型中,我们常用的参考系是以传送带速度为参考系,即以传送带为静止参考系。

在这个参考系下,我们可以分析上面的物体在传送带上的运动情况。

传送带模型中的物理学知识在传送带模型中,我们通常会讨论上面的物体在传送带上的位移、速度和加速度。

对于静止在传送带上的物体来说,它在传送带上的位移等于物体在实验室参考系下的位移。

而速度和加速度则有一些特殊的关系。

假设物体在传送带上的速度为v,传送带速度为v b,则物体在实验室参考系下的速度v′为v′=v+v b。

同样地,物体在传送带上的加速度a和实验室参考系下的加速度a′之间也存在对应关系。

实例分析为了更好地理解传送带模型,我们可以通过一个实例来进行分析。

假设有一条传送带,其速度为v b=2m/s,一个物体在传送带上以速度v=3m/s向右移动。

那么物体在实验室参考系下的速度是多少?根据前面的分析,物体在实验室参考系下的速度v′等于传送带速度v b与物体在传送带上的速度v之和,即v′=v+v b=3m/s+2m/s=5m/s。

因此,物体在实验室参考系下的速度为5m/s,向右移动。

结论通过以上分析,我们对传送带模型的基本原理以及在高中物理中的应用有了初步的了解。

传送带模型在物理学中有着重要的作用,可以帮助我们更好地理解物体在不同参考系下的运动情况。

高中物理传送带模型总结

高中物理传送带模型总结

高中物理传送带模型总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII“传送带模型”1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c)所示.2.建模指导水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.水平传送带模型:1.传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L=5 m,并以v0=2 m/s的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g取10 m/s2 .(1)求旅行包经过多长时间到达传送带的右端;(2)若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件最短时间是多少2.如图所示,一质量为m=0.5kg的小物体从足够高的光滑曲面上自由滑下,然后滑上一水平传送带。

已知物体与传送带之间的动摩擦因数为μ=0.2,传送带水平部分的长度L=5m,两端的传动轮半径为R=0.2m,在电动机的带动下始终以ω=15/rads的角速度沿顺时针匀速转运,传送带下表面离地面的高度h不变。

如果物体开始沿曲面下滑时距传送带表面的高度为H,初速度为零,g取10m/s2.求:(1)当H=0.2m时,物体通过传送带过程中,电动机多消耗的电能。

(2)当H=1.25m时,物体通过传送带后,在传送带上留下的划痕的长度。

(3) H在什么范围内时,物体离开传送带后的落地点在同一位置。

3.如图所示,质量为m=1kg的物块,以速度v0=4m/s滑上正沿逆时针方向转动的水平传送带,此时记为时刻t=0,传送带上A、B两点间的距离L=6m,已知传送带的速度v=2m/s,物块与传送带间的动摩擦因数μ=0.2,重力加速度g取10m/s2.关于物块在传送带上的整个运动过程,下列表述正确的是()A.物块在传送带上运动的时间为4sB.传送带对物块做功为6JC.2s末传送带对物体做功的功率为0D.整个运动过程中由于摩擦产生的热量为18J4.如图10所示,水平传送带A、B两端相距s=3.5m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度v A=4m/s,到达B端的瞬时速度设为v B。

高中物理传送带模型总结

高中物理传送带模型总结

“传送带模型”1.模型特征一个物体以速度v0v0≥0在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图a、b、c所示.2.建模指导水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x对地的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.水平传送带模型:1.传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L=5 m,并以v0=2 m/s的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g取10 m/s2.1求旅行包经过多长时间到达传送带的右端;2若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件最短时间是多少2.如图所示,一质量为m=0.5kg 的小物体从足够高的光滑曲面上自由滑下,然后滑上一水平传送带;已知物体与传送带之间的动摩擦因数为μ=0.2,传送带水平部分的长度L=5m ,两端的传动轮半径为R=0.2m ,在电动机的带动下始终以ω=15/rads的角速度沿顺时针匀速转运,传送带下表面离地面的高度h不变;如果物体开始沿曲面下滑时距传送带表面的高度为H,初速度为零,g取10m/s2.求:1当H=0.2m 时,物体通过传送带过程中,电动机多消耗的电能;2当H=1.25m 时,物体通过传送带后,在传送带上留下的划痕的长度;3 H在什么范围内时,物体离开传送带后的落地点在同一位置;3.如图所示,质量为m=1kg的物块,以速度v0=4m/s滑上正沿逆时针方向转动的水平传送带,此时记为时刻t=0,传送带上A、B两点间的距离L=6m,已知传送带的速度v=2m/s,物块与传送带间的动摩擦因数μ=0.2,重力加速度g取10m/s2.关于物块在传送带上的整个运动过程,下列表述正确的是A.物块在传送带上运动的时间为4sB.传送带对物块做功为6JC.2s末传送带对物体做功的功率为0D.整个运动过程中由于摩擦产生的热量为18J4.如图10所示,水平传送带A、B两端相距s=3.5m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度v A=4m/s,到达B端的瞬时速度设为v B;下列说法中正确的是A.若传送带不动,v B=3m/sB.若传送带逆时针匀速转动,v B一定等于3m/sC.若传送带顺时针匀速转动,v B一定等于3m/sD.若传送带顺时针匀速转动,v B有可能等于3m/s倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.倾斜传送带模型:P Q 5. 如图所示,传送带与水平面间的倾角为θ=37°,传送带以10 m/s 的速率运行,在传送带上端A 处无初速度地放上质量为0.5 kg 的物体,它与传送带间的动摩擦因数为0.5,若传送带A 到B 的长度为16 m,则物体从A 运动到B 的时间为多少 取g =10 m/s26. 如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s2求:1传送带顺时针转动时,物体从顶端A 滑到底端B 的时间;2传送带逆时针转动时,物体从顶端A 滑到底端B 的时间.7. 如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角θ=30°.现把质量为10 kg 的工件轻轻地放在传送带底端P 处,由传送带传送至顶端Q 处.已知P 、Q 之间的距离为4 m,工件与传送带间的动摩擦因数为μ=32,取g =10 m/s2.1通过计算说明工件在传送带上做什么运动;2求工件从P 点运动到Q 点所用的时间.传送带问题1.物块从光滑曲面上的P 点自由滑下,通过粗糙的静止水平传送带以后落到地面上Q点,若传送带的皮带轮沿逆时针方向转动起来,使传送带随之运动,再把物块放到P点自由滑下,则:A. 物块将仍落在Q 点B. 物块将会落在Q 点的左边C. 物块将会落在Q 点的右边D. 物块有可能落不到地面上2、 如图示,物体从Q 点开始自由下滑,通过粗糙的静止水平传送带后,落在地面P 点,若传送带按顺时针方向转动;物体仍从Q 点开始自由下滑,则物体通过传送带后:A. 一定仍落在P 点B. 可能落在P 点左方C. 一定落在P 点右方D. 可能落在P 点也可能落在P 点右方3.如图所示,传送带不动时,物体由皮带顶端A 从静止开始下滑到皮带底端B 用的时间为t ,则:A. 当皮带向上运动时,物块由A 滑到B 的时间一定大于tB. 当皮带向上运动时,物块由A 滑到B 的时间一定等于tC. 当皮带向下运动时,物块由A 滑到B 的时间可能等于tD. 当皮带向下运动时,物块由A 滑到B 的时间可能小于t4、水平传送带长4.5m,以3m/s 的速度作匀速运动;质量m=1kg 的物体与传Q P A B送带间的动摩擦因数为0.15,则该物体从静止放到传送带的一端开始,到达另一端所需时间为多少 这一过程中由于摩擦产生的热量为多少 这一过程中带动传送带转动的机器做多少功 g 取10m/s 2;5、如图示,质量m=1kg 的物体从高为h=0.2m 的光滑轨道上P 点由静止开始下滑,滑到水平传送带上的A 点,物体和皮带之间的动摩擦因数为μ=0.2,传送带AB 之间的距离为L=5m,传送带一直以v=4m/s 的速度匀速运动, 求:1物体从A 运动到B 的时间是多少2物体从A 运动到B 的过程中,摩擦力对物体做了多少功3物体从A 运动到B 的过程中,产生多少热量4物体从A 运动到B 的过程中,带动传送带转动的电动机多做了多少功6.一传送皮带与水平面夹角为30°,以2m/s 的恒定速度顺时针运行;现将一质量为10kg 的工件轻放于底端,经一段时间送到高2m 的平台上,工件与皮带间的动摩擦因数为μ= 23,取g=10m/s 2 求带动皮带的电动机由于传送工件多消耗的电能7.一水平的浅色长传送带上放置一煤块可视为质点,煤块与传送带之间的动摩擦因数为μ;初始时,传送带与煤块都是静止的;现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动;经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动;求此黑色痕迹的长度;8.一平直的传送带以速率v=2m/s 匀速运行,传送带把A 处的工件运送到B 处,A 、B 相距L=30m;从A 处把工件轻轻放到传送带上,经过时间t=20s 能传送到B 处;假定A 处每间隔一定时间放上一个工件,每小时运送共建7200个,每个工件的质量为2kg1传送带上靠近B 端的相邻两工件的距离2不及轮轴出的摩擦,求带动传送带的电动机的平均功率9、如图所示,水平传送带AB长L=8.3m,质量为M=1kg 的木块随传送带一起以v 1=2m/s 的速度向左匀速运动传送带的传送速度恒定,木块与传送带间的动摩擦因数 =0.5.当木块运动至最左端A点时,一颗质量为m=20g 的子弹以v 0=300m/s 水平向右的速度正对射入木块并穿出,穿出速度v=50m/s,以后每隔1s 就有一颗子弹射中木块,设子弹射穿木块的时间极短,且每次射入点各不相同,g 取10m/s 2.求:1第一颗子弹射入木块并穿出时,木块速度多大2在被第二颗子弹击中前,木块向右运动离A点的最大距离3木块在传送带上最多能被多少颗子弹击中 3h BA P v L10、如图甲示,水平传送带的长度L=6m,传送带皮带轮的半径都为R=0.25m,现有一小物体可视为质点以恒定的水平速度v 0滑上传送带,设皮带轮顺时针匀速转动,当角速度为ω时,物体离开传送带B 端后在空中运动的水平距离为s,若皮带轮以不同的角速度重复上述动作保持滑上传送带的初速v 0不变,可得到一些对应的ω和s 值,将这些对应值画在坐标上并连接起来,得到如图乙中实线所示的 s- ω图象,根据图中标出的数据g 取10m/s 2 ,求:1滑上传送带时的初速v 0以及物体和皮带间的动摩擦因数μ2B 端距地面的高度h3若在B 端加一竖直挡板P,皮带轮以角速度ω′=16rad/s 顺时针匀速转动,物体与挡板连续两次碰撞的时间间隔t′为多少 物体滑上A 端时速度仍为v 0,在和挡板碰撞中无机械能损失11.一传送带装置示意如图,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形圆弧由光滑模板形成,未画出,经过CD 区域时是倾斜的,AB 和CD 都与BC 相切;现将大量的质量均为m 的小货箱一个一个在A 处放到传送带上,放置时初速为零,经传送带运送到D 处,D 和A 的高度差为h ;稳定工作时传送带速度不变,CD 段上各箱等距排列,相邻两箱的距离为L;每个箱子在A 处投放后,在到达B 之前已经相对于传送带静止,且以后也不再滑动忽略经BC 段时的微小滑动;已知在一段相当长的时间T 内,共运送小货箱的数目为N;这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦;求电动机的平均输出功率P;24 0 乙甲。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Байду номын сангаас 当 物 体 运 动 速 度 等 于 传 送 带 速 度 瞬 间 , 有 mgsin 37°>
μmgcos 37°,则下一时刻物体相对传送带向下运动,受到传
送带向上的滑动摩擦力——摩擦力发生突变.设当物体下
滑速度大于传送带转动速度时物体的加速度为 a2,则 a2=
mgsin
37°-μmgcos m
37°=2
传送带模型
一,传送带的基础模型 水平传送带模型
项目
基础 情景
图示
滑块可能的运动情况
(1)可能一直加速 (2)可能先加速后匀速
【典例1】 水平传送带被广泛地应用于机场和火车站,如 图3-3-6所示为一水平传送带装置示意图.绷紧的传送 带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg的行李无初速度地放在A处,传送带对行李的滑动摩擦 力使行李开始做匀加速直线运动,随后行李又以与传送 带相等的速率做匀速直线运动.设行李与传送带之间的 动摩擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s2.
项目
图示
情景1
滑块可能的运动情况
(1)可能一直加速 (2)可能先加速后匀速
情景2
(1)可能一直加速 (2)可能先加速后匀速 (3)可能先以a1加速后以a2加速
情景3 v0<v
情景4
(1)可能一直加速 (2)可能先加速后匀速 (3)可能先以a1加速后以a2加速
(1)可能一直加速 (2)可能一直匀速 (3)可能先减速后反向加速
即学即练1 如图3-3-7所示,倾角为37°,长为l=16 m的 传送带,转动速度为v=10 m/s,动摩擦因数μ=0.5,在传 送带顶端A处无初速度地释放一个质量为m=0.5 kg的物 体.已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2.求:
图3-3-7 (1)传送带顺时针转动时,物体从顶端A滑到底端B的时间; (2)传送带逆时针转动时,物体从顶端A滑到底端B的时间.
解析 (1)传送带顺时针转动时,物体相对传送带向下运动, 则物体所受滑动摩擦力沿斜面向上,相对传送带向下匀加 速运动,根据牛顿第二定律有 mg(sin 37°-μcos 37°)=ma 则 a=gsin 37°-μgcos 37°=2 m/s2, 根据 l=12at2 得 t=4 s.
(2)传送带逆时针转动,当物体下滑速度小于传送带转动速
有同向 初速度 情景2
(2) v0>v时,可能一直减速, 也可能先减速再匀速
项目 有反 向初 速度 情景3
有反 向初 速度 情景4
图示
滑块可能的运动情况
(3)传送带较短时,滑块一直减速 达到左端
(4)传送带较长时,滑块还要被传
送带传回右端.其中v0>v返回时 速度为v,当v0<v返回时速度为v0
2.倾斜传送带模型
3,运用牛顿定律列方程求解 4,利用临界条件的解极值问题
图3-3-6
(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度 的大小; (2)求行李做匀加速直线运动的时间; (3)如果提高传送带的运行速率,行李就能被较快地传送 到B处,求行李从A处传送到B处的最短时间和传送带对 应的最小运行速率. 审题指导 关键词:①无初速度地放在A处. ②行李开始做匀加速直线运动. ③随后行李又以与传送带相等的速率做匀加速直线运动. 对行李受力分析 行李运动过程先匀加速后匀速直线运 动 利用牛顿第二定律、运动学公式求解未知量.
m/s2
x2=l-x1=11 m 又因为 x2=vt2+12a2t22,则有 10t2+t22=11, 解得:t2=1 s(t2=-11 s 舍去) 所以 t 总=t1+t2=2 s.
答案 (1)4 s (2)2 s
牛顿定律 传送和滑块-滑板问题
小结:1,分析好各物体的受力情况 画出受力分析图
2,分析好各物体的运动情况 画出运动过程图
解析 (1)行李刚开始运动时,受力如 图所示,滑动摩擦力:Ff=μmg=4 N 由牛顿第二定律得:Ff=ma 解得:a=1 m/s2 (2)行李达到与传送带相同速率后不 再加速,则:v=at,解得 t=va=1 s
(3)行李始终匀加速运行时间最短,且加速度仍为 a=1 m/s2,当行李到达右端时,有:v2min=2aL 解得:vmin= 2aL=2 m/s 故传送带的最小运行速率为 2 m/s 行李运行的最短时间:tmin=vmain=2 s 答案 (1)4 N 1 m/s2 (2)1 s (3)2 s 2 m/s
反思总结 对于传送带问题,一定要全面掌握上面提到的几 类传送带模型,尤其注意要根据具体情况适时进行讨论,看 一看有没有转折点、突变点,做好运动阶段的划分及相应动 力学分析.
一,传送带模型情景拓展总结
1.水平传送带模型
项目
图示
滑块可能的运动情况
有同向 初速度 情景1
(1) v0<v时,可能一直加速, 也可能先加速再匀速
度时,物体相对传送带向上运动,则物体所受滑动摩擦力
沿传送带向下,设物体的加速度大小为 a1,由牛顿第二定
律得,mgsin 37°+μmgcos 37°=ma1
则有
a1=mgsin
37°+μmgcos m
37°=10
m/s2
设当物体运动速度等于传送带转动速度时经历的时间为 t1, 位移为 x1,则有 t1=av1=1100 s=1 s,x1=12a1t12=5 m<l=16 m
相关文档
最新文档