加法原理之分类枚举(一).学生版
小学奥数 加法原理之分类枚举(一) 精选练习例题 含答案解析(附知识点拨及考点)
1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类;② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲知识要点教学目标7-1-1.加法原理之分类枚举(一)2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲模块一、分类枚举——数出来的种类【例1】小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】小宝买一种礼物有三类方法:第一类,买玩具,有8种方法;第二类,买课外书,有20种方法;第三种,买纪念品,有10种方法.根据加法原理,小宝买一种礼物有8+20+10=38种方法.【答案】38【巩固】有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】根据加法原理,共有6+4+3+2=15种取法.【答案】15【巩固】阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】解决这个问题有3类办法:从一班、二班、三班男生中任选1人,从一班18名男生中任选1人有18种选法:同理,从二班20名男生中任选1人有20种选法;从三班16名男生中任意选1人有16种选法;根据加法原理,从四年级3个班中任选一名男生当升旗手的方法有:18201654++=种.【答案】54【例2】和为15的两个非零自然数共有对。
小学奥数教程:加法原理之分类枚举(一)全国通用(含答案)
1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类;② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲知识要点教学目标7-1-1.加法原理之分类枚举(一)模块一、分类枚举——数出来的种类【例1】小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】小宝买一种礼物有三类方法:第一类,买玩具,有8种方法;第二类,买课外书,有20种方法;第三种,买纪念品,有10种方法.根据加法原理,小宝买一种礼物有8+20+10=38种方法.【答案】38【巩固】有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】根据加法原理,共有6+4+3+2=15种取法.【答案】15【巩固】阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】解决这个问题有3类办法:从一班、二班、三班男生中任选1人,从一班18名男生中任选1人有18种选法:同理,从二班20名男生中任选1人有20种选法;从三班16名男生中任意选1人有16种选法;根据加法原理,从四年级3个班中任选一名男生当升旗手的方法有:18201654++=种.【答案】54【例2】和为15的两个非零自然数共有对。
小学奥数专题-加法原理之分类枚举(一).学生版
1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类;② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲 知识要点教学目标7-1-1.加法原理之分类枚举(一)模块一、分类枚举——数出来的种类【例 1】小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?【巩固】有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?【巩固】阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?【例 2】和为15的两个非零自然数共有对。
第一节,分类加法计数原理与分步乘法计数原理1
4
草地
思考
水路
狐狸总共有多少种
2种
安全地 方法逃到安全地?
陆路
3种
如果狐狸还有4辆自行车可以选择呢? 2+3+4=9种
探究1
如果完成一件事情有3类不同方案,在第 1类方案中有m1种不同的方法,在第2类方案中 有m2种不同的方法,在第3类方案中有m3类不 同的方法,那么完成这件事情有
一种方法就可完成这件 有各个步骤都完成了,才
事。
能完成这件事。
区别3
各类办法是互斥的, 并列的,独立的。
各步之间是关联的、独立 的,“关联”确保不遗 漏,”独立“确保不 重复。
即:类类互斥,步步独立
18
(1) 草地到安全地
完成这个事情有几类方案
两类
每类方案能否独立完成这件事情
能
每类方案中分别有几种不同的方法
2种 3种
完成这件事情共有多少种不同的方法
2+3=5种
3
互不相容
完成一件事有两类不同方案,在第1类方案中有 m种不同的方法,在第2类方案中有n种不同的方
法,那么完成这件事共有: N=m+n种不同的方法。 思考 原理使用的前提条件是什么?
分析: 分三类:
第一类:从第1层取,有4种方法;
第二类:从第2层取,有3种方法;
第三类:从第3层取,有2种方法。
所以从书架上任取1本书共有4+3+
2 =9 种不同的取法
15
问2.一个书架共有三层,第1层放有4 本不同的计算机书,第2层放有3本不 同的文艺书,第3层放有2本不同的体 育书。从书架的第1、2、3层各取1本 书,有多少种不同的取法?
原创1:1.1分类加法计数原理与分类乘法计数原理
根据分步计数原理,无重复数字的四位数有:N=5 × 4 × 3× 2=120(种)
巩固练习
4.羊村内的小羊们正热火朝天地举行运动会。绵羊族有8名运动员,盘羊族 有7名运动员,羚羊族有6名运动员。问:
第一章 计数原理
§1.1分类加法计数原理与分布乘法计数原理
高中数学选修2-3·精品课件
问题探究一:
喜羊羊与灰太狼故事
狼堡
羊村
灰太狼从狼堡 去羊村抓羊,他开飞机去有 2 条航线,骑 摩托车去有 3 条道路.请问灰太狼去羊村一共有几种不 同方法?
问题剖析
灰太狼做什么事情?
从狼堡到羊村抓羊
完成这个事情有几类方法?
区别3
各类办法是互相独立的。
各步之间是互相关联的。
即:类类独立,步步关联。
巩固练习
1.灰太狼开着飞机发现羊村正在开运动会,有12只羊在跳远、11只羊在跳 高、9只羊在标枪比赛、13只羊在铁饼比赛。灰太狼要从中抓一只羊,有多 少种不同的选择? 根据分类计数原理,不同的选法共有:N=12+11+9+13=45(种) 2.由数字1,2,3,4,5可以组成多少种可以有重复数字的四位数?
例4.核糖核酸(RNA)分子是在生物细胞中发现的化学成分,一个RNA分子 是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种 称为碱基的化学成分所占据,总共有4个不同的碱基,分别用A,C,G,U 表示,在一个RNA分子中,各种碱基能够以任意次序出现,所以在任意一个 位置上的碱基与其他位置上的碱基无关。假设有一类RNA分子由100个碱基 组成,那么能有多少种不同的RNA分子?
小学奥数枚举法解析:分类枚举知识点讲解
小学奥数枚举法解析:分类枚举知识点讲解小芳数钱,用的就是分类枚举的方法。
这是一种很重要的数学思考方法,在很多问题的思考过程中都发挥了很大的作用。
下面就让我们跟###一起来看看它的本领吧!经典试题例[1] 下图中有多少个三角形?分析我们能够根据图形特征将它分成3类:第一类:有6个;第2类:有6个;第3类:有3个;解 6+6+3=15(个)图中有15个三角形。
例[2]下图中有多少个正方形?分析根据正方形边长的大小,我们将它们分成4类。
第1类:由1个小正方形组成的正方形有24个;第2类:由4个小正方形组成的正方形有13个;第3类:由9个小正方形组成的正方形有 4个;第4类:由16个小正方形组成的正方形有1个。
解 24+13+4+1=42。
图中有42个正方形。
例[3] 在算盘上,用两粒珠子能够表示几个不同的三位数:分别是哪几个数?分析根据两粒珠子的位置,我们可将它们分成3类:第1类:两粒珠子都在上档,能够组成505,550;第2类:两粒珠子都在下档,能够组成101,110,200;第3类:一粒在上档,另一粒在下档,能够组成510,501,150,105,600。
解能够表示101,105,110,150,200,501,505,510,550,600共10个三位数。
例[4] 用数字7,8,9能够组成多少个不同的三位数?分别是哪几个数?分析根据百位上数字的不同,我们能够将它们分成三类:第1类:百位上的数字为7,有789,798;第2类:百位上的数字为8,有879,897;第3类:百位上的数字为9,有978,987。
解能够组成789,798,879,897,978,987共6个三位数。
例[5] 往返于南京和上海之间的沪宁高速列车沿途要停靠常州、无锡、苏州三站。
问:铁路部门要为这趟车准备多少种车票?分析我们能够根据列车的往与反把它们分成两大类(注:为了方便,我们将上述地点简称为宁、常、锡、苏、沪):在第一大类中,我们又能够根据乘客乘车时所在起点站的不同分成4类。
(小学奥数)加法原理之分类枚举(一)
1.使學生掌握加法原理的基本內容;2.掌握加法原理的運用以及與乘法原理的區別;3.培養學生分類討論問題的能力,瞭解分類的主要方法和遵循的主要原則. 加法原理的數學思想主旨在於分類討論問題,教授本講的目的也是為了培養學生分類討論問題的習慣,鍛煉思維的周全細緻.一、加法原理概念引入 生活中常有這樣的情況,就是在做一件事時,有幾類不同的方法,而每一類方法中,又有幾種可能的做法.那麼,考慮完成這件事所有可能的做法,就要用加法原理來解決.例如:王老師從北京到天津,他可以乘火車也可以乘長途汽車,現在知道每天有五次火車從北京到天津,有4趟長途汽車從北京到天津.那麼他在一天中去天津能有多少種不同的走法?分析這個問題發現,王老師去天津要麼乘火車,要麼乘長途汽車,有這兩大類走法,如果乘火車,有5種走法,如果乘長途汽車,有4種走法.上面的每一種走法都可以從北京到天津,故共有5+4=9種不同的走法.在上面的問題中,完成一件事有兩大類不同的方法.在具體做的時候,只要採用一類中的一種方法就可以完成.並且兩大類方法是互無影響的,那麼完成這件事的全部做法數就是用第一類的方法數加上第二類的方法數.二、加法原理的定義一般地,如果完成一件事有k 類方法,第一類方法中有1m 種不同做法,第二類方法中有2m 種不同做法,…,第k 類方法中有k m 種不同做法,則完成這件事共有12 k N m m m =+++……種不同方法,這就是加法原理.知識要點教學目標 7-1-1.加法原理之分類枚舉(一)加法原理運用的範圍:完成一件事的方法分成幾類,每一類中的任何一種方法都能完成任務,這樣的問題可以使用加法原理解決.我們可以簡記為:“加法分類,類類獨立”.分類時,首先要根據問題的特點確定一個適合於它的分類標準,然後在這個標準下進行分類;其次,分類時要注意滿足兩條基本原則:①完成這件事的任何一種方法必須屬於某一類;②分別屬於不同兩類的兩種方法是不同的方法.只有滿足這兩條基本原則,才可以保證分類計數原理計算正確.運用加法原理解題時,關鍵是確定分類的標準,然後再針對各類逐一計數.通俗地說,就是“整體等於局部之和”.三、加法原理解題三部曲1、完成一件事分N類;2、每類找種數(每類的一種情況必須是能完成該件事);3、類類相加枚舉法:枚舉法又叫窮舉法,就是把所有符合條件的對象一一列舉出來進行計數.分類討論的時候經常會需要把每一類的情況全部列舉出來,這時的方法就是枚舉法.枚舉的時候要注意順序,這樣才能做到不重不漏.例題精講模組一、分類枚舉——數出來的種類【例 1】小寶去給小貝買生日禮物,商店裏賣的東西中,有不同的玩具8種,不同的課外書20本,不同的紀念品10種,那麼,小寶買一種禮物可以有多少種不同的選法?【考點】加法原理之分類枚舉【難度】2星【題型】解答【關鍵字】分類討論思想【解析】小寶買一種禮物有三類方法:第一類,買玩具,有8種方法;第二類,買課外書,有20種方法;第三種,買紀念品,有10種方法.根據加法原理,小寶買一種禮物有8+20+10=38種方法.【答案】38【巩固】有不同的語文書6本,數學書4本,英語書3本,科學書2本,從中任取一本,共有多少種取法?【考點】加法原理之分類枚舉【難度】2星【題型】解答【關鍵字】分類討論思想【解析】根據加法原理,共有6+4+3+2=15種取法.【答案】15【巩固】陽光小學四年級有3個班,各班分別有男生18人、20人、16人.從中任意選一人當升旗手,有多少種選法?【考點】加法原理之分類枚舉【難度】2星【題型】解答【關鍵字】分類討論思想【解析】解決這個問題有3類辦法:從一班、二班、三班男生中任選1人,從一班18名男生中任選1人有18種選法:同理,從二班20名男生中任選1人有20種選法;從三班16名男生中任意選1人有16種選法;根據加法原理,從四年級3個班中任選一名男生當升旗手的方法有:18201654++=種.【答案】54【例 2】和為15的兩個非零自然數共有對。
小六数学第4讲:枚举法(学生版)
第四讲枚举法1.计数问题分为两个大类:2.枚举需要按照一定的顺序和一定的规律来进行分类,这样可以做到不重复和不遗漏。
3.枚举法的根本思想在于分类,通过分类可以将原本复杂的问题拆分成若干个比较简单的问题,然后再逐一进行分析。
分类的思想可以化繁为简,化复杂为简单。
4.可以利用“树形图”来方便的记录枚举的过程,有几类问题就分出几个分枝,逐层按照顺序不断分叉再一一筛选,留下符合条件的,去掉不符合条件的。
注意在枚举“不计次序”的问题时,只需考虑从小到大(或从大到小)排列的分枝,而不用理会其他情况。
5.计次序:6.不计次序:1.理解“枚举法”的含义。
2.能在题目中熟练运用枚举法解题。
例1:小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。
若两枚骰子的点数和为7,则小明胜;若点数和为8,则小红胜。
试判断他们两人谁获胜的可能性大。
例2:数一数,右图中有多少个三角形。
例3:在算盘上,用两颗珠子可以表示多少个不同的四位数?例4 有一只无盖立方体纸箱,将它沿棱剪开成平面展开图。
那么,共有多少种不同的展开图?例5:小明的暑假作业有语文、算术、外语三门,他准备每天做一门,且相邻两天不做同一门。
如果小明第一天做语文,第五天也做语文,那么,这五天作业他共有多少种不同的安排?例6:一次数学课堂练习有3道题,老师先写出一个,然后每隔5分钟又写出一个。
规定:(1)每个学生在老师写出一个新题时,如果原有题还没有做完,那么必须立即停下来转做新题;(2)做完一道题时,如果老师没有写出新题,那么就转做前面相邻未解出的题。
解完各题的不同顺序共有多少种可能?例7:是否存在自然数n,使得n2+n+2能被3整除?A1.A、B、C、D、E、F六支球队进行单循环赛,当比赛进行到某一天时,统计出A、B、C、D、E五队已分别比赛了5、4、3、2、1场,由此可知,还没有与B队比赛的球队是()A. C队 B. D队 C. E队 D. F队2.写自然数1、2、3、…、1000,一共写了__个0()A. 90B. 171C. 189D. 1923.已知x,y都有整数,且xy=6,那么适合等式的解共有__8__组4.将6拆成两个或两个以上的自然数之和,共有多少种不同拆法?5.小明有10块糖,如果每天至少吃3块,吃完为止,那么共有多少种不同的吃法?B6.用五个1×2的小矩形纸片覆盖右图的2×5的大矩形,共有多少种不同盖法?7.15个球分成数量不同的四堆,数量最多的一堆至少有多少个球?8.数数右图中共有多少个三角形?9.甲、乙比赛乒乓球,五局三胜。
小学思维数学讲义:加法原理之分类枚举(一)-含答案解析
加法原理之分类枚举(一)1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类;② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲知识要点 教学目标模块一、分类枚举——数出来的种类【例1】小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】小宝买一种礼物有三类方法:第一类,买玩具,有8种方法;第二类,买课外书,有20种方法;第三种,买纪念品,有10种方法.根据加法原理,小宝买一种礼物有8+20+10=38种方法.【答案】38【巩固】有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】根据加法原理,共有6+4+3+2=15种取法.【答案】15【巩固】阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】解决这个问题有3类办法:从一班、二班、三班男生中任选1人,从一班18名男生中任选1人有18种选法:同理,从二班20名男生中任选1人有20种选法;从三班16名男生中任意选1人有16种选法;根据加法原理,从四年级3个班中任选一名男生当升旗手的方法有:18201654++=种.【答案】54【例2】和为15的两个非零自然数共有对。
小学三年级数学分类枚举知识点讲解
小学三年级数学分类枚举知识点讲解小学三年级数学分类枚举知识点讲解这篇小学三年级数学分类枚举知识点讲解是查字典数学网特地为大家整理的,希望对大家有所帮助!小芳为了给灾区儿童捐款,把储蓄罐里的钱全拿了出来。
她想数数有多少钱。
小朋友,你知道小芳是怎么数的吗?小芳是个聪明的孩子,她把钱按1分、2分、5分、1角、2角、5角、1元等分类去数。
所以很快就数好了。
小芳数钱,用的就是分类枚举的方法。
这是一种很重要的数学思考方法,在很多问题的思考过程中都发挥了很大的作用。
下面就让我们一起来看看它的本领吧!经典试题例[1] 下图中有多少个三角形?分析我们可以根据图形特征将它分成3类:第一类:有6个;第2类:有6个;第3类:有3个;解 6+6+3=15(个)图中有15个三角形。
例[2]下图中有多少个正方形?分析根据正方形边长的大小,我们将它们分成4类。
常州、无锡、苏州三站。
问:铁路部门要为这趟车准备多少种车票?分析我们可以根据列车的往与反把它们分成两大类(注:为了方便,我们将上述地点简称为宁、常、锡、苏、沪):在第一大类中,我们又可以根据乘客乘车时所在起点站的不同分成4类。
第1类:从宁出发:宁常,宁锡,宁苏,宁沪,4种; 第2类:从常出发:常锡,常苏,常沪,3种;第3类:从锡出发:锡苏,锡沪,2种;第4类:从苏出发:苏沪,1种。
我们同样可用刚才的方法将回来的车票分类,聪明的小朋友可能已经想到了,它的种数与第一大类完全相同。
解 (4+3+2=1)2=20(种)铁路部门要准备20种车票。
小结分类枚举的关键是正确分类,为此,必须注意两点:一、分类要全、枚举要清。
分类不全,就会造成遗漏。
如上面例1中,如果一不小心,把第3类丢了,就会造成差错。
当分类确定之后,要把每一类中每一个符合条件的对象都列举出来。
二、分类要清。
因为如果分不清,使第1类中有第2类,第2类中有第3类,互相包含,那么就会有重复。
这样结果也就很难正确了。
以上就是由查字典数学网为您提供的小学三年级数学分类枚举知识点讲解,希望给您的写作带来帮助!。
小学奥数 加法原理之分类枚举(一) 精选例题练习习题(含知识点拨)
1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类;② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲知识要点教学目标7-1-1.加法原理之分类枚举(一)模块一、分类枚举——数出来的种类【例 1】小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?【巩固】有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?【巩固】阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?【例 2】和为15的两个非零自然数共有对。
四年级奥林匹克数学基础资料库第20讲加法原理(一)
第20讲加法原理(一)例1从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。
一天中火车有4班,汽车有3班,轮船有2班。
问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?分析与解:一天中乘坐火车有4种走法,乘坐汽车有3种走法,乘坐轮船有2种走法,所以一天中从甲地到乙地共有:4+3+2=9(种)不同走法。
例2旗杆上最多可以挂两面信号旗,现有红色、蓝色和黄色的信号旗各一面,如果用挂信号旗表示信号,最多能表示出多少种不同的信号?分析与解:根据挂信号旗的面数可以将信号分为两类。
第一类是只挂一面信号旗,有红、黄、蓝3种;第二类是挂两面信号旗,有红黄、红蓝、黄蓝、黄红、蓝红、蓝黄6种。
所以一共可以表示出不同的信号3+6=9(种)。
以上两例利用的数学思想就是加法原理。
加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……在第n类方法中有mn种不同方法,那么完成这件任务共有N=m1+m2+…+m n种不同的方法。
乘法原理和加法原理是两个重要而常用的计数法则,在应用时一定要注意它们的区别。
乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积;加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和。
例3两次掷一枚骰子,两次出现的数字之和为偶数的情况有多少种?分析与解:两次的数字之和是偶数可以分为两类,即两数都是奇数,或者两数都是偶数。
因为骰子上有三个奇数,所以两数都是奇数的有3×3=9(种)情况;同理,两数都是偶数的也有9种情况。
根据加法原理,两次出现的数字之和为偶数的情况有9+9=18(种)。
例4用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。
问:共有多少种不同的染色方法?分析与解:本题与上一讲的例4表面上十分相似,但解法上却不相同。
《分类加法计数原理》 讲义
《分类加法计数原理》讲义在我们的日常生活和学习中,经常会遇到需要计算数量的情况。
比如,从家到学校有 3 条不同的路可走,从学校到图书馆有 2 条不同的路可走,那么从家经过学校到图书馆一共有多少种不同的走法?要解决这类问题,就需要用到计数原理,其中分类加法计数原理是非常基础且重要的。
一、什么是分类加法计数原理简单来说,分类加法计数原理指的是:完成一件事,如果有 n 类办法,在第 1 类办法中有 m1 种不同的方法,在第 2 类办法中有 m2 种不同的方法,……,在第 n 类办法中有 mn 种不同的方法,那么完成这件事共有 N = m1 + m2 +… + mn 种不同的方法。
为了更好地理解这个原理,我们来看几个具体的例子。
例 1:某班有男生 20 人,女生 15 人,从中选一名同学担任班长,有多少种不同的选法?在这个例子中,选班长这件事可以分成两类情况:选男生或者选女生。
选男生有 20 种不同的选法,选女生有 15 种不同的选法。
根据分类加法计数原理,总的选法一共有 20 + 15 = 35 种。
例 2:在所有的两位数中,个位数字大于十位数字的两位数有多少个?要解决这个问题,我们可以把两位数按十位数字进行分类。
当十位数字是 1 时,个位数字可以是 2、3、4、5、6、7、8、9,共8 个。
当十位数字是 2 时,个位数字可以是 3、4、5、6、7、8、9,共 7 个。
当十位数字是 3 时,个位数字可以是 4、5、6、7、8、9,共 6 个。
……当十位数字是 8 时,个位数字只能是 9,共 1 个。
所以,个位数字大于十位数字的两位数一共有 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36 个。
二、分类加法计数原理的特点1、完成一件事这意味着我们要有一个明确的目标事件,并且这个事件最终是要被完成的。
2、多种不同的办法这些办法是相互独立的,每一类办法都能够单独完成这件事。
3、类与类之间互斥也就是说,每一类办法之间不能有重叠的部分,不能既属于这一类又属于那一类。
分类加法计数原理
分类加法计数原理
分类加法计数原理是一种用于解决计数问题的方法。
它适用于将问题分解为多个独立部分,并计算每个部分的个数,然后将它们相加以得出最终的结果。
首先,我们将问题分成若干个互不重叠的部分,每个部分都是有限的。
然后,我们计算每个部分的个数,这可以通过直接计算或使用其他计数方法来完成。
最后,将每个部分的个数相加,就得到了最终的结果。
为了更好地理解分类加法计数原理,我们可以通过一个实际的例子来说明。
假设我们要计算从1到100的整数中,能同时被
2和3整除的个数。
我们可以将问题分解为两个部分:能被2
整除的数和能被3整除的数。
首先,我们计算能被2整除的数的个数。
从1到100的整数中,每隔2个数就有一个能被2整除的数,即有50个数。
然后,我们计算能被3整除的数的个数。
从1到100的整数中,每隔3个数就有一个能被3整除的数,即有33个数。
最后,我们将两个部分的个数相加,即50+33=83,即从1到100的整数中,能同时被2和3整除的数的个数为83。
通过这个例子,我们可以看到分类加法计数原理的应用过程。
根据问题的要求,将问题分解为多个独立部分,并计算每个部
分的个数,再将它们相加,得出最终的结果。
这种方法可以用于解决各种计数问题,如排列组合、选取对象等。
7-1-2 加法原理之分类枚举(二).学生版
1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:① 完成这件事的任何一种方法必须属于某一类;② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲 知识要点教学目标 7-1-2.加法原理之分类枚举(二)分类枚举——找规律【例 1】有一个电子表的表面用2个数码显示“小时”,另用2个数码显示“分”。
数学三年级暑假衔接第8讲《分类枚举》
数学三年级暑假衔接第8讲《分类枚举》小芳为了给灾区儿童捐款,把储蓄罐里的钱全拿了出来。
她想数数有多少钱。
小朋友,你知道小芳是怎么数的吗?小芳是个聪明的孩子,她把钱按1分、2分、5分、1角、2角、5角、1元等分类去数。
所以很快就好了。
小芳数钱,用的就是分类枚举的方法。
这是一种很重要的思考方法,在很多问题的思考过程中都发挥了很大的作用。
下面就让我们一起来看看它的本领吧!例题与方法例1.右图中有多少个三角形?例2.右图中有多少个正方形?例3.在算盘上,用两粒珠子可以表示几个不同的三位数?分别是哪几个数?例4.用数字1,2,3可以组成多少个不同的三位数?分别是哪几个数?例5.往返于南京和上海之间的泸宁高速列车沿途要停靠常州、无锡、苏州三站。
问:铁路部门要为这趟车准备多少种车票?例6.小明有面值为3角、5角的邮票各两枚。
他用灾些邮票能付多少种不同的邮资(寄信时,所需邮票的钱数)?例7.有一种用6位数表示日期的方法。
例如,用940812表示1994年8月12日。
用这种方法表示1991年全年的日期,那么全年中6位数字都不相同的日期共有多少天?练习与思考1.下图中有多少个三角形?(1)(2)2.右图中有多少个长方形?3.用0,1,2,3可组成多少个不同的三位数?4.从北京到南京的特快列车,中途要停靠9个站。
在几种不同标价的车票?5.用3张10元和2张50元一共可以组成多少咱币值(组成的钱数)?6.中、日、韩进行四国足球赛。
每两队踢一场。
按积分排名次,一共踢多少场?7.丽丽有红、蓝、黑帽子各一顶,红蓝、黑围巾各一条。
冬天,丽丽每天戴一顶帽子、围一条围巾,有几种不同的搭配方式?8.用例7的方法表示1994年的日期,6位数字各不相同的共有多少天?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.使学生掌握加法原理的基本内容;
2.掌握加法原理的运用以及与乘法原理的区别;
3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.
加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.
一、加法原理概念引入 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.
例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?
分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.
在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.
二、加法原理的定义
一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做
法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是
加法原理.
加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.
分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:
① 完成这件事的任何一种方法必须属于某一类;
② 分别属于不同两类的两种方法是不同的方法.
只有满足这两条基本原则,才可以保证分类计数原理计算正确.
运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.
三、加法原理解题三部曲
1、完成一件事分N 类;
2、每类找种数(每类的一种情况必须是能完成该件事);
3、类类相加
枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.
7-1-1.加法原理之分类枚举
知识要点
教学目标
例题精讲
模块一、分类枚举——数出来的种类
【例1】小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?
【巩固】有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?
【巩固】阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?
【例2】和为15的两个非零自然数共有对。
【例3】用1至8这八个自然数中的四个组成四位数,从个位到千位的数字依次增大,且任意两个数字的差都不是1,这样的四位数共有人。
【例4】三张数字卡片0,2,4可以组成______个能被4整除的不同整数。
【巩固】节目期间,小明将6个彩灯排成一列,其中有2个红灯,4个绿灯,如果两个红灯不相邻,则不同的排法有_________种(其中“红绿红绿绿绿”与“绿绿绿红绿红”类型算作一种)。
【例5】从1、2、3、4、5、6这些数中,任取两个数,使其和不能被3整除,则有_______种取法。
【巩固】从l~9这9个数码中取出3个,使它们的和是3的倍数,则不同取法有_______种。
【例6】小明的两个口袋中各有6张卡片,每张卡片上分别写着1,2,3,……,6。
从这两个口袋中各拿出一张卡片来计算上面所写两数的乘积,那么,其中能被6整除的不同乘积有_____个。
【例7】老师带着佳佳、芳芳和明明做计算练习.老师先分别给他们一个数,然后让他们每人取3张写有数的卡片.佳佳取的是3、6、7,芳芳取的是4、5、6,明明取的是4、5、8.这时老师让他们分别取自己卡片上的两个数相乘,再加上开始老师给他们的数.如果老师开始时给他们的数依次是234、235、236,而且他们计算都正确,那么可能算出_________个不同的数.
【例8】如果三位数m同时满足如下条件:⑴m的各位数字之和是7;⑵2m还是三位数,且各位数字之和为5.那么这样的三位数m共有个.
【例9】把数1,2,3,4,5,6分为三组(不考虑组内数的顺序也不考虑组间的顺序),每组两个数,每组的数之和互不相等且都不等于6,共有____________________种分法.
【例10】自然数12,456,1256这些数有一个共同的特点,相邻两个数字,左边的数字小于右边的数字.我们取名为“上升数”.用3,6,7,9这四个数,可以组成个“上升数”.
【巩固】自然数21,654,7521这些数有一个共同的特点,相邻两个数字,左边的数字大于右边的数字.我们取名为“下降数”.用4,6,7,9这四个数,可以组成个“下降数”.
【例11】将左下图中20张扑克牌分成10对,每对红心和黑桃各一张。
问:你能分出几对这样的牌,两张牌上的数的乘积除以10的余数是1?(将A看成1)
模块二、分类枚举——分类
【例12】甲、乙、丙三个工厂共订300份报纸,每个工厂至少订了99份,至多101份,问:一共有多少种不同的订法?
【巩固】大林和小林共有小人书不超过9本,他们各自有小人书的数目有多少种可能的情况?
【例13】从1~10中每次取两个不同的数相加,和大于10的共有多少种取法?
【巩固】从1~8中每次取两个不同的数相加,和大于10的共有多少种取法?
【例14】思思想将3个相同的小球放入A、B、C三个盒中,那么一共有________种不同的放法.
【例15】四个学生每人做了一张贺年片,放在桌子上,然后每人去拿一张,但不能拿自己做的一张.问:一共有多少种不同的方法?
【例16】一次,齐王与大将田忌赛马.每人有四匹马,分为四等.田忌知道齐王这次比赛马的出场顺序依次为一等,二等,三等,四等,而且还知道这八匹马跑的最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等,自己的四等.田忌有________种方法安排自己的马的出场顺序,保证自己至少能赢两场比赛.
【例17】给定三种重量的砝码(每种数量都有足够多个)3k g,11k g,17kg,将它们组合凑成100k g有种,不同的方法(每种砝码至少用一块。
)
【例18】把一元钱换成角币,有多少种换法?人民币角币的面值有五角、二角、一角三种.
【巩固】一把硬币全是2分和5分的,这把硬币一共有1元,问这里可能有多少种不同的情况?
【巩固】用若干个1分、2分、5分的硬币组成一角钱(不要求每种硬币都有),共有()种不同的方法.
【例19】用100元钱购买2元、4元或8元饭票若干张,没有剩钱,共有多少不同的买法?
【巩固】一个文具店橡皮每块5角、圆珠笔每支1元、钢笔每支2元5角.小明要在该店花5元5角购买两种文具,他有多少种不同的选择.
【巩固】有面值为1分,2分,5分的硬币各4枚,用它们去支付2角3分.问:有多少种不同的支付方法?
【例20】用1元、5元、10元、50元、100元人民币各一张,2元、20元人民币各两张,在不找钱的情况下,最多可以支付种不同的款额。