北师大版七年级下册数学:4 用尺规作三角形
北师大版数学七年级下册4.4《用尺规作三角形》教案
1.教学重点
-理解并掌握尺规作图的基本方法和步骤,特别是作等边三角形、等腰三角形以及给定两边和夹角的三角形。
-掌握如何使用尺规准确、快速地作出三角形,并能够识别和利用尺规作图中的关键点和线段。
-应用尺规作图解决实际问题,如构造特定长度的线段、角度的平分等。
举例解释:
-重点讲解如何通过给定三边长度作出三角形,强调任意两边之和大于第三边的原理。
其次,在新课讲授环节,我注意到学生在理解尺规作图的基本概念和步骤上存在一定的困难。尤其是圆规的使用方法,需要我在课堂上多次示范和讲解。在以后的教学中,我考虑增加一些互动环节,让学生亲自动手操作,以便更好地理解和掌握尺规作图的技巧。
在实践活动和小组讨论环节,我发现学生们表现得非常积极,他们能够将所学知识应用到解决实际问题中。但是,也有些小组在讨论过程中出现了偏离主题的现象。针对这个问题,我应该在活动开始前明确讨论的主题和目标,并在讨论过程中适时引导,确保讨论的有效性。
-在实际问题中灵活运用尺规作图,解决非标准情况下的几何问题。
举例解释:
-难点在于让学生理解为何仅用直尺和圆规就能作出各种精确图形,可以通过历史背景介绍和实际操作来加深理解。
-针对圆规的使用技巧,难点在于如何让学生掌握圆规在不同情况下的定位和画弧,可以通过反复练习和示范来帮助学生掌握。
-对于非标准情况下的尺规作图,难点在于如何引导学生分析问题,例如在给定两边和夹角时,如何确定第三边的位置。可以通过问题驱动的教学方法,让学生在尝试和讨论中找到解决策略。
2.增加课堂互动,让学生多动手、多思考,提高他们的实践能力和解决问题的能力。
3.对不同水平的学生进行分层教学,关注每个学生的个体差异,提高他们的自信心。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
北师大版七年级数学下册第四章 三角形4 用尺规作三角形
ED C
C.△ABC 就是所求作的三角形. A
BF
例2 已知三角形的三条边,求作这个三角形.
已知:线段 a,b,c.
a
b
c
求作:△ABC,使 AB = c,AC = b,BC = a.
作法:(1)作一条线段 BC = a;
A
(2)分别以 B,C 为圆心,以 c,b 为
半径画弧,两弧交于 A 点;
B
新知一览
三角形的内角和
认识三角形
三角形的三边关系
三角形的中线、角平分线
图形的全等
三角形的高
三角形
探索三角形 全等的条件
用尺规作三角形
边边边 角角边
角边角 边角边
利用三角形全等测距离
七年级下册数学(北师版)
第四章 三角形
4.4 用尺规作三角形
复习导入 1. 尺规作图的工具是无刻度直尺和圆规; 2. 我们已经会用尺规作一条线段等于已知 线段、作一个角等于已知角.
C
(3)连接 AB,AC. 则△ABC 就是所求作的三角形.
拓展: 在△ABC 中,BC=5 cm,AC=3 cm,AB=3.5 cm,
∠B=36°,∠C=44°,请你选择适当数据,画与△ABC
全等的三角形(用三种方法画图,不写作法,但要在所
画的三角形中标出用到的数据).
A
A
A
36°
36° 44°
B
5 cm C B
5 cm C B
5 cm C
作法1示例: (1) 作线段 BC=5 cm; (2) 以 C 为圆心,3 cm 为半径画弧;
(3) 以 B 为圆心,3.5 cm 为半径画弧,两弧相交于点 A;
(4) 连接 AB,AC,则△ABC 为所求作的三角形. A
新北师大版七年级数学下册《用尺规作三角形》教案
4.4 用尺规作三角形〖教学目标〗1.知识与技能:掌握利用尺规作三角形的基本方法。
2.过程与方法:(1)经历在给定条件下(两角夹边、两边夹角和三边),利用尺规作出三角形的过程;(2)能结合三角形全等的条件与同伴交流作图过程和结果的合理性。
3.情感与态度:在利用尺规作图的过程中,培养自信心、动手能力和探索精神。
〖教学设计〗(一)巧设现实情境,引入新课师:在第二章我们已学习过用尺规作一条线段等于已知线段,作一个角等于已知角。
现在回忆一下用尺规作图的一般步骤。
生:用尺规作图的步骤有:已知、求作。
师:他的回答对吗?生:他的回答不完整,应该还有分析、作法。
(点评:让学生在倾听其他同学发言的过程中,培养学生的批判意识和怀疑精神。
) 师:很好。
下面大家来作一条线段等于已知线段。
生:(小组讨论后一位同学回答)已知:线段a。
求作:一条线段,使它等于a。
图1作法:(1)作射线AC;(2)在射线AC上截取AB=a。
则线段AB就是所求作的线段。
图2(点评:教师让学生分组讨论,有意识地培养他们合作学习的能力。
)师:好,那如何作一个角等于已知角呢?生:已知:∠AOB。
求作:一个角,使它等于∠AOB。
图3作法:(1)作射线O′A′;(2)以O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;(3)以O′为圆心,以OC的长为半径画弧,交O′A′于点C′;(4)以点C′为圆心,以CD的长为半径画弧,交前弧于点D′;(5)过D′作射线O′B′。
则∠A′O′B′就是所求作的角。
图4师:很好,大家基本掌握了用尺规作线段和角。
边和角是三角形的基本元素,如果给了一些三角形的基本元素,你能用尺规作出一个三角形,使它满足已知条件吗?这节课我们就利用尺规作一个三角形与已知三角形全等。
(二)讲授新课师:下面我们来做一做:已知三角形的两边及其夹角,求作这个三角形。
如何求作这个图形呢?(师生共析:需要先写出已知、求作,然后进行分析,最后作图形,写作法。
北师大版七下数学4.4用尺规作三角形教案2
北师大版七下数学4.4用尺规作三角形教案2一. 教材分析北师大版七下数学4.4用尺规作三角形教案2主要介绍了用尺规作三角形的方法。
通过学习,学生能够掌握用尺规作三角形的基本步骤和技巧,提高他们的几何作图能力。
此节课的内容与实际生活和其它学科有着紧密的联系,有助于培养学生的应用意识和综合能力。
二. 学情分析学生在学习本节课之前,已经掌握了尺规作图的基本知识和技巧,对几何图形有了一定的认识。
但部分学生在实际操作过程中,可能对细节处理不够到位,对作图步骤的理解和运用仍有待提高。
因此,在教学过程中,教师需要关注学生的个体差异,针对性地进行指导。
三. 教学目标1.知识与技能:使学生掌握用尺规作三角形的基本方法和步骤。
2.过程与方法:培养学生的几何作图能力,提高观察、思考和动手能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.重点:用尺规作三角形的基本方法和步骤。
2.难点:在实际操作过程中,如何准确地完成作图步骤,处理细节问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究用尺规作三角形的方法。
2.利用多媒体辅助教学,直观地展示作图过程,提高学生的理解能力。
3.采用分组讨论、合作学习的方式,培养学生的团队协作能力。
4.注重实践操作,引导学生动手实践,提高学生的动手能力。
六. 教学准备1.准备尺规作图的教学素材,如尺子、圆规、直尺等。
2.准备多媒体教学设备,如投影仪、计算机等。
3.准备分组讨论的桌椅,以便学生合作学习。
七. 教学过程1.导入(5分钟)教师通过复习尺规作图的基本知识和技巧,引导学生回顾已学过的内容,为新课的学习做好铺垫。
2.呈现(10分钟)教师利用多媒体展示用尺规作三角形的过程,引导学生观察和思考,让学生对用尺规作三角形有一个直观的认识。
3.操练(10分钟)教师引导学生分组进行实践操作,让学生亲自动手用尺规作三角形。
教师在此过程中要加强巡视指导,关注学生的个体差异,及时给予帮助和解答疑问。
北师大版七年级数学下册第四章三角形复习三角形全等的判定及其应用与尺规作三角形课件
与尺规作三角形
全等三角形的性质
全等三角形的对应边相等,对应角相等。
书写格式:
∵△ABC≌ △DFE ∴ AB=DF, BC=FE, AC=DE (全等三角形的对应边相等) ∠ A= ∠ D, ∠ B= ∠ F ,
∠ C= ∠ E (全等三角形的对应角相等)
全等三角形的条件
证明两条线段 相等:可以放 在一个三角形 中证等腰
例3:如图,点B在线段AE上,∠CAE=∠DAE, ∠CBE=∠DBE.求证:EC=ED.
例4 如图,已知点E在△ABC的外部,点D在BC边上, DE交AC于F,若∠1=∠2=∠3,AC=AE,则有( D ) A.△ABD≌△AFD B.△AFE≌△ADC C.△AEF≌△DFC D.△ABC≌△ADE
类型2 对称模型
图形特点:沿公共边或者公共顶点所在某条直线折叠可得 两三角形重合
常见模型: 类型3 旋转模型
图形特点:共顶点,绕该顶点旋转可得到两三角形重合
类型4 一线三等角
图形特点:同一条线上有三个相等的角
类型5 组合模型 平移+旋转模型
平移+对称模型
图形特点:将其中一个三角形平移至与另一个三角形对应顶点重合,然后 两三角形可关于这点所在直线对称变换后重合,或者绕该顶点旋转后重合
三角形全等判定方法一
三边分别相等的两个三角形全等。
(可以简写为“边边边”或“SSS”)。
A
用符号语言表达为:
在△ABC和△ DEF中
B
C
AB=DE
D
BC=EF
CA=FD
∴ △ABC ≌△ DEF(SSS)E
F
三角形全等的判定二
两角及其夹边分别相等的两个三角 形全等. 简记为 “角边角”或“ASA” 。
北师大版数学七年级下册第四章三角形第4节用尺规做三角形课堂练习
第四章三角形第4节用尺规做三角形课堂练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.尺规作图作AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP,由作法得OCP ODP△≌△的根据是()A.SAS B.ASA C.AAS D.SSS2.用直尺和圆规作两个全等三角形,如图,能得到△COD△△C'O'D'的依据是()A.SAA B.SSS C.ASA D.AAS3.不能用尺规作图作出唯一三角形的是()A.已知两角和夹边B.已知两边和夹角C.已知两角和其中一角的对边D.已知两边和其中一边的对角4.如图所示,过点P画直线a的平行线b的作法的依据是()A.两直线平行,同位角相等B.同位角相等,两直线平行C.两直线平行,内错角相等D.内错角相等,两直线平行5.已知△BOP 与OP 上点C ,点A (在点C 的右边),李玲现进行如下操作:△以点O 为圆心,OC 长为半径画弧,交OB 于点D ;△以点A 为圆心,OC 长为半径画弧MN ,交OA 于点M ;△以点M 为圆心,CD 长为半径画弧,交弧MN 于点E ,作射线AE ,操作结果如图所示,下列结论不能由上述操作结果得出的是( ).A .△ACD=△EAPB .△ODC=△AEMC .OB△AED .CD△ME6.下列作图属于尺规作图的是( ). A .画线段3cm MN =B .用量角器画出AOB ∠的平分线C .用三角尺作过点A 垂直于直线l 的直线D .已知α∠,用没有刻度的直尺和圆规作AOB ∠,使2AOB α∠=∠ 7.在△ABC 中,AB=AC ,△A=80°,进行如下操作:△以点B 为圆心,以小于AB 长为半径作弧,分别交BA 、BC 于点E 、F ; △分别以E 、F 为圆心,以大于12EF 长为半径作弧,两弧交于点M ;△作射线BM 交AC 于点D , 则△BDC 的度数为( ).A .100°B .65°C .75°D .105°8.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC =BC,则下列选项正确的是()A.B.C.D.评卷人得分二、填空题9.如图所示,已知线段a,用尺规作出△ABC,使AB=a,BC=AC=2a.作法:(1)作一条线段AB=_________ ;(2)分别以______ 、______为圆心,以________为半径画弧,两弧交于C点;(3)连接_________、________,则△ABC就是所求作的三角形.10.用不带刻度的直尺和圆规作一个角等于已知角的示意图如图,则可说明=A OB AOB'''∠∠,其中判断COD C O D'''∆∆≌的依据是______.11.已知,△AOB .求作:△A′O′B′,使△A′O′B′=△AOB .作法:△以________为圆心,________为半径画弧.分别交OA,OB于点C,D .△画一条射线O′A′,以________为圆心,________长为半径画弧,交O′A′于点C′,△以点________为圆心________长为半径画弧,与第2步中所画的弧交于点D′.△过点________画射线O′B′,则△A′O′B′=△AOB .12.如图,在△ABC中,△C=90°,△B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则△ADB=________.13.用尺规作一个角等于已知角如下图所示,则说明∠AOB=∠A′O′B′的依据是______(填“SSS” “SAS” “AAS” 或“ASA”)14.已知:AOB∠,求作AOB∠的平分线;如图所示,填写作法:△_________________________________________________________________.△ _________________________________________________________________.△ _________________________________________________________________.评卷人得分三、解答题15.如图,已知线段a和α∠,求作Rt ABC∆,使190,,2C BC a ABCα∠=︒=∠=∠(使用直尺和圆规,并保留作图痕迹).16.下面是小明设计的“已知两线段及一角作三角形”的尺规作图过程.已知:线段m,n及△O .求作:△ABC,使得线段m,n及△O分别是它的两边和一角.作法:如图,△以点O为圆心,m长为半径画弧,分别交△O的两边于点M ,N;△画一条射线AP,以点A为圆心,m长为半径画弧,交AP于点B;△以点B为圆心,MN长为半径画弧,与第△步中所画的弧相交于点D;△画射线AD;△以点A为圆心,n长为半径画弧,交AD于点C;△连接BC ,则△ABC即为所求作的三角形.请回答:(1)步骤△得到两条线段相等,即= ;(2)△A=△O的作图依据是;(3)小红说小明的作图不全面,原因是.17.如图,已知△α和△β,线段c,用直尺和圆规作出△ABC,使△A=△α,△B=△β,AB=c(要求画出图形,并保留作图痕迹,不必写出作法)18.如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?请用尺规作图标出它的位置.19.已知:线段a,△α.求作:等腰△ABC,使其腰长AB为a,底角△B为△α.要求:用尺规作图,不写作法和证明,但要清楚地保留作图痕迹.20.按要求作图(保留组图痕迹,不必写作法)用直尺和圆规做一个角,使它等于△α参考答案:1.D【解析】【详解】解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于12CD长为半径画弧,两弧交于点P,即CP=DP;再有公共边OP,根据“SSS”即得△OCP△△ODP.故选D.2.B【解析】【分析】利用作法可以得到OD=OD′=OC=OC′,CD=C′D′,然后根据全等三角形的判定方法可判断△COD△△C'O'D'.【详解】解:由作法得OD=OD′=OC=OC′,CD=C′D′,所以可根据“SSS”证明△COD△△C'O'D'.故选:B.【点睛】本题考查作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.也考查了全等三角形的判定.3.D【解析】【分析】把尺规作图的唯一性转化成全等三角形的判定,根据全等三角形的判定方法逐项判定即可.【详解】A. 已知两角和夹边,满足ASA,可知该三角形是唯一的;B. 已知两边和夹角,满足SAS,可知该三角形是唯一的;C. 已知两角和其中一角的对边,满足AAS,可知该三角形是唯一的;D. 已知两边和其中一边的对角,满足SSA,不能确定三角形是唯一的.故选D. 【点睛】本题主要考查全等三角形的判定方法,解决本题的关键是要熟练掌握全等三角形的判定方法. 4.D 【解析】 【详解】解:如图所示,根据图中直线a 、b 被c 所截形成的内错角相等,可得依据为内错角相等,两直线平行. 故选D. 5.A 【解析】 【分析】证明△OCD△△AME ,根据平行线的判定定理即可得出结论. 【详解】在△OCD 和△AME 中, OC AM OD AE CD ME =⎧⎪=⎨⎪=⎩, △△OCD △△AME (SSS ),△△DCO =△EMA ,△O =△OAE ,△ODC =△AEM . △CD △ME ,OB △AE . 故.B.C.D 都可得到, △△OCD △△AME ,△△DCO =△AME ,则△ACD =△EAP 不一定得出, 故选:A. 【点睛】考查作图-作一个角等于已知角,全等三角形的判定与性质,平行线的判定等,比较基础. 6.D 【解析】 【详解】解:根据尺规作图的定义:只能用没有刻度的直尺和圆规作图,不难判断,只有D 选项属于尺规作图.故选D.【点睛】点睛:掌握尺规作图的概念.7.D【解析】【分析】利用等腰三角形的性质结合三角形内角和定理得出△ABC=△C=50°,再利用角平分线的性质与作法得出即可.【详解】△AB=AC,△A=80°,△△ABC=△C=50°,由题意可得:BD平分△ABC,则△ABD=△CBD=25°,△△BDC的度数为:△A+△ABD=105°.故选D.【点睛】此题主要考查了基本作图以及等腰三角形的性质,得出BD平分△ABC是解题关键.8.B【解析】【详解】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选B.考点:作图—复杂作图9.a;A;B;2a;AC BC【解析】【详解】作法:(1)作一条线段AB=a;(2)分别以A. B 为圆心,以2a 为半径画弧,两弧交于C 点;(3)连接AC 、BC ,则△ABC 就是所求作的三角形.故答案为a ;A ;B ;2a ;AC ,BC.10.SSS【解析】【分析】观察作图过程,分别是以点O '为圆心,以OC (或OD )为半径作弧,再以C '为圆心,以CD 为半径作弧得到,根据全等三角形的判定定理可得结果【详解】解:由图可得△A O B '''的得出过程如下:先以点O '为圆心,以OC (或OD )为半径作弧,再以C '为圆心,以CD 为半径作弧,两弧相交于点D连结O D ''并延长,得射线O B ''即得△A O B '''由作图过程可知:在△COD 与△C O D '''中OD O D OC O C CD C D '''''=⎧'⎪=⎨⎪=⎩ 故COD C O D '''∆∆≌(SSS )故答案为:SSS【点睛】本题考查全等三角形的判定方法,解题的关键是能通过观察图形,理解作图过程 11. O 任意长 O′ OC C CD D′【解析】【分析】根据作一个角等于已知角的作图方法解答即可.【详解】△以O 为圆心,任意长为半径画弧.分别交OA , OB 于点C 、D .△画一条射线O′A′,以O′为圆心,OC 长为半径画弧,交O′A′于点C′,△以点C为圆心CD长为半径画弧,与第2步中所画的弧交于点D′.△过点D′画射线O′B′,则△A′O′B′=△AOB.故答案为:(1). O;(2). 任意长;(3). O′;(4). OC;(5). C ;(6). CD ;(7). D′【点睛】本题主要考查了作一个角等于已知角,是基本作图,需熟练掌握.12.125°【解析】【分析】根据角平分线的作法可得AD平分△CAB,再根据三角形内角和定理可得△ADB的度数.【详解】解:由题意可得:AD平分△CAB,△△C=90°,△B=20°,△△CAB=70°,△△CAD=△BAD=35°,△△ADB=180°﹣20°﹣35°=125°.故答案为125°.【点睛】此题主要考查了角平分线的作法以及角平分线的定义,熟练根据角平分线的定义得出△DAB度数是解题关键.13.SSS【解析】【详解】分析: 由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD△△C'O'D',则△COD△△C'O'D',即△A'O'B'=△AOB(全等三角形的对应角相等).详解: 作图的步骤:△以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D,△任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′,△以C′为圆心,CD长为半径画弧,交前弧于点D′,△过点D′作射线O′B′,所以△A′O′B′就是与△AOB相等的角,作图完毕.在△OCD与△O′C′D′,O′C′=OCO′D′=ODC′D′=CD△△OCD△△O′C′D′(SSS ),△△A′O′B′=△AOB,显然运用的判定方法是SSS.故答案为:SSS.点睛:本题主要考查作已知角的等角的方法和原理,解决本题的关键是要熟练掌握作已知角的等角的方法.14. 以O 为圆心,适当长为半径作弧,交OA 于点M ,交OB 于点N ; 分别以M 、N 为圆心,大于12MN 的长为半径作弧,两弧在△AOB 内部交于点C ; 作射线OC .则射线OC 即为所求.【解析】【详解】(1)以O 为圆心,适当长为半径作弧,交OA 于点M ,交OB 于点N ;(2)分别以M 、N 为圆心,大于12MN 的长为半径作弧,两弧在△AOB 内部交于点C ; (3)作射线OC ,则射线OC 即为所求.点睛:本题考查了角平分线这一基本作图,是利用了三角形全等的SSS 判定方法进行作图的.15.见解析【解析】【分析】先作射线CM ,在CM 上截取CB=a ,过点C 作垂线CN ,垂足为C ,在点B 处作12ABC α∠=∠,角的另一边交射线CN 于点A ,即可得到图形.解:如下图,作1 2α∠的角;如图,Rt ABC∆为所求.【点睛】本题考查了基本作图,作三角形,作角,作线段,解题的关键是掌握基本作图的方法和步骤进行画图.16.(1)BD,MN; (2)三边对应相等的两个三角形全等;全等三角形的对应角相等;(3)小明没有对已知中的边和角的位置关系分类讨论.【解析】【分析】根据题意,按步骤解答即可.【详解】(1)BD,MN;(2)三边对应相等的两个三角形全等;全等三角形的对应角相等;(3)小明没有对已知中的边和角的位置关系分类讨论.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.17.详见解析.【解析】试题分析:先作△MAN=α,再在AM上取AB=c,再以B为顶点作△ABC=β,两角的一边交于点C,△ABC就是所求三角形.试题解析:如图,△ABC就是所求三角形.考点:尺规作图18.见解析.【解析】【分析】根据题意,电视信号发射塔既在线段AB的垂直平分线上,又在两条公路所夹角的平分线上.故两线交点即为发射塔的位置.利用角平分线的性质以及作法和线段垂直平分线的作法与性质分别得出即可.【详解】根据题意,电视信号发射塔既在线段AB的垂直平分线上,又在两条公路所夹角的平分线上.故两线交点即为发射塔的位置.如图所示:点P就是发射塔修建的位置.【点睛】本题考查了作图与角平分线以及垂直平分线的性质,解题的关键是熟练的掌握角平分线以及垂直平分线的性质并且能根据题意作图.19.见解析【解析】【分析】△作一底角△B为△α;△在△B的一边上截取AB=a;△以点A为圆心,AB长为半径画弧,与△B的另一边相交于点C,连接BC,△ABC就是所求的等腰三角形ABC.【详解】如图所示,△ABC即为所求.20.见解析【解析】【分析】根据作一个角等于已知角的方法作图即可.【详解】如图所示:【点睛】此题主要考查了基本作图,关键是熟练掌握作一个角等于已知角的方法.。
北师大版七年级数学下册第四章三角形同步练习4.4用尺规作三角形
课时作业(三十四)[第四章4用尺规作三角形]一、选择题1.下列属于尺规作图的是()A.用量角器和刻度尺画△ABC,使∠A=45°,AB=5 cm,∠B=60°B.用三角尺画△ABC,使∠A=30°,∠B=60°,AB=6 cmC.作△ABC时,用圆规作出∠A等于已知的∠α,∠B等于已知的∠β,用刻度尺截取AB等于已知线段aD.用圆规和无刻度的直尺作△ABC,使AB=c,BC=a,AC=b2.用直尺和圆规作一个角等于已知角,如图K-34-1,能得出∠A′O′B′=∠AOB的依据是()图K-34-1A.SAS B.SSS C.ASA D.AAS3.用尺规作图,下列条件中可能作出两个不同三角形的是()A.已知两边及其夹角B.已知两边及其中一边的对角C.已知两角及其夹边D.已知三条边4.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三条边C.三角形的两个角和它们的夹边D.三角形的三个角二、填空题5.已知线段a,b,c,求作△ABC,使BC=a,AC=b,AB=c,下列作法的合理顺序为________.①分别以点B,C为圆心,c,b为半径在BC的同侧作弧,两弧交于点A;②作直线BM,在BM上截取BC=a;③连接AB,AC,则△ABC就是所求作的三角形.三、解答题6.已知:线段a,∠α(如图K-34-2).求作:△ABC,使AB=AC=a,∠B=∠α.图K-34-27.如图K-34-3所示,已知线段a和∠α,求作:△ABC,使BC=a,∠B=∠C=∠α.图K-34-38.如图K-34-4,△ABC中,AB=2.1 cm,AC=1.5 cm,∠B=30°,∠C=45°.请你从中选择适当的数据,画与△ABC全等的三角形,要求至少用三种不同的方法画,不写画法,但要在画出的每一个图中标出方法所用到的数据.图K-34-4操作讨论题已知线段b,c,h,求作△ABC,使AC=b,AB=c,AD⊥BC,D为垂足,且AD=h.这样的三角形你能作出几个?图K-34-5详解详析[课堂达标]1.D 2.B 3.B4.A5.②①③6.解:作法:(1)作∠DBC=∠α;(2)在射线BD上截取BA=a;(3)以点A为圆心,a为半径画弧交BC于另一点C.连接AC.则△ABC即为所求作的三角形(如图).7.[解析] 已知两角及其夹边求作三角形,可以先作夹的线段,而后在线段两端构造角.解:作法:(1)作线段BC=a;(2)以BC为一条边,分别以B,C为顶点,在BC同侧作出∠CBA=∠BCA=∠α,另两条边交于点A,连接AB,AC,则△ABC即为所求(如图).8.解:如图.[素养提升]解:能作出2个.如图所示,△ABC和△ABC′就是所求作的三角形.。
北师大版七下数学第4章三角形4.4用尺规作三角形教案
北师大版七下数学第4章三角形4.4用尺规作三角形教案一. 教材分析北师大版七下数学第4章三角形4.4用尺规作三角形教案,主要让学生掌握用尺规作三角形的方法,培养学生的作图能力和几何思维。
本节课内容是学生在学习了三角形的性质和三角形的全等之后,进一步探究如何用尺规作三角形,从而提高学生的几何作图技能和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的性质和三角形的全等知识,对尺规作图也有一定的了解。
但部分学生对尺规作图的操作方法不够熟练,对作图过程中的注意事项不够明确。
因此,在教学过程中,教师需要关注学生的个体差异,有针对性地进行教学,提高学生的作图能力和几何思维。
三. 教学目标1.知识与技能目标:让学生掌握用尺规作三角形的方法,能独立完成简单的三角形作图任务。
2.过程与方法目标:通过实践操作,培养学生的作图能力和几何思维。
3.情感态度与价值观目标:激发学生对几何学科的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.教学重点:用尺规作三角形的方法和步骤。
2.教学难点:如何熟练运用尺规作三角形,以及作图过程中的注意事项。
五. 教学方法1.采用问题驱动法,引导学生主动探究用尺规作三角形的方法。
2.利用多媒体辅助教学,展示作图过程,提高学生的直观感受。
3.注重实践操作,让学生在动手实践中掌握作图方法。
4.分组讨论与合作,培养学生的团队合作意识和交流能力。
六. 教学准备1.准备尺规作图的道具,如直尺、圆规、铅笔等。
2.准备三角形作图的案例,以便学生在实践中参考。
3.制作多媒体课件,展示作图过程和注意事项。
七. 教学过程1.导入(5分钟)利用多媒体课件展示一些生活中的三角形图形,引导学生关注三角形在现实生活中的应用,激发学生的学习兴趣。
同时,复习三角形的基本性质和全等知识,为学习尺规作三角形打下基础。
2.呈现(10分钟)教师简要介绍尺规作三角形的方法和步骤,然后演示一遍作图过程。
北师大版数学七年级下册4.4《用尺规作三角形》教学设计
北师大版数学七年级下册4.4《用尺规作三角形》教学设计一. 教材分析《用尺规作三角形》是北师大版数学七年级下册第4章“几何图形的画法”中的一个知识点。
在此之前,学生已经学习了如何用直尺和圆规作线段、圆和角,而本节课将引导学生利用这些基本作图工具来作三角形。
教材通过具体的操作步骤和实例,让学生理解和掌握用尺规作三角形的方法和技巧。
二. 学情分析七年级的学生已经具备了一定的几何图形认知基础,对直尺和圆规的使用也不再陌生。
但他们在作图过程中可能还存在一些问题,如作图精度不高、操作不规范等。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同学生提供适当的指导。
三. 教学目标1.知识与技能目标:让学生掌握用尺规作三角形的基本方法和技巧。
2.过程与方法目标:通过实践活动,培养学生动手操作能力和几何思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.重点:用尺规作三角形的方法和技巧。
2.难点:如何确保作图的精度和规范性。
五. 教学方法1.引导发现法:教师通过提问、引导,让学生自主发现和总结作图方法。
2.实践操作法:让学生亲自动手操作,提高实践能力。
3.合作交流法:鼓励学生之间相互讨论、合作,共同解决问题。
六. 教学准备1.准备直尺、圆规、白纸等作图工具。
2.设计好相关教学问题和实例。
3.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)教师通过提问:“我们已经学会了用直尺和圆规作线段、圆和角,那么能否用这些工具来作三角形呢?”引导学生思考,激发学生的学习兴趣。
2.呈现(10分钟)教师通过多媒体展示几种常见的三角形,如等边三角形、等腰三角形等,让学生对三角形有更直观的认识。
3.操练(10分钟)教师提出具体问题,如:“请用直尺和圆规作一个边长为4cm的等边三角形。
”学生动手操作,教师巡回指导。
4.巩固(5分钟)教师提出一些有关三角形的问题,如:“已知一个三角形的两边长分别为3cm和4cm,求第三边的可能长度。
七年级数学下册4.4用尺规作三角形同步练习1(新版)北师大版
4.4 用尺规作三角形基础训练1.基本尺规作图包括:①作一条线段等于___________;②作一个角等于___________;③作一个角的___________;④作一条线段的___________;⑤过一点作已知直线的___________.2.尺规作图的画图工具是( )A.刻度尺、圆规B.三角板和量角器C.直尺和量角器D.没有刻度的直尺和圆规3.如图,用尺规作出∠OBF=∠AOB,作图痕迹是( )A.以点B为圆心,OD为半径的弧B.以点B为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧4.利用尺规作三角形,有三种基本类型:(1)已知三角形的两边及其夹角,求作符合要求的三角形,其作图依据是“”;(2)已知三角形的两角及其夹边,求作符合要求的三角形,其作图依据是“”;(3)已知三角形的三边,求作符合要求的三角形,其作图依据是“”.5.已知三边作三角形,用到的基本作图是( )A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作一条线段等于已知线段的和6.利用基本作图方法,不能作出唯一三角形的是( )A.已知两边及其夹角B.已知两角及其夹边C.已知两边及一边的对角D.已知三边7.根据下列已知条件,能唯一画出△ABC的是( )A.∠A=36°,∠B=45°,AB=4B.AB=4,BC=3,∠A=30°C.AB=3,BC=4,CA=1D.∠C=90°,AB=68.如图,小敏做试题时,不小心把题目中的三角形用墨水弄污了一部分,她想在一块白纸上作一个完全一样的三角形,然后粘贴在上面,她作图的依据是( )A.SSSB.SASC.ASAD.AAS9.下列尺规作图,能判断AD是△ABC边上的高是( )10.如图,已知线段a,b和∠α=40°,你能作出符合如下要求的唯一三角形吗?AB=a,BC=b,∠A=∠α,若能,写出作法;若不能,请说明理由.11.如图是数轴的一部分,其单位长度为a,已知在△ABC中,AB=3a,BC=4a,AC=5a.用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法).12.如图,已知线段a,c,∠α.求作△ABC,使BC=a,AB=c,∠ABC=∠α.提升训练13.如图,已知∠α,∠β且∠α>∠β.求作∠γ,使∠γ=∠α-∠β.14.市政建筑公司要在学校东面分别建造一座桥和一个汽车站(汽车站在学校的正东方向),桥在汽车站北面,现已知学校到桥、桥到汽车站及学校到汽车站的距离分别为500 m,500 m,250 m,请根据以上信息确定桥与汽车站应分别建在何处,在下面图纸上标出来(不写作法,保留作图痕迹);这三个场所构成一个什么形状的三角形?15. “综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形,请列举出所有满足条件的三角形;(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).参考答案1.【答案】①已知线段②已知角③平分线④垂直平分线⑤垂线2.【答案】D3.【答案】D4.【答案】(1)SAS (2)ASA (3)SSS5.【答案】C解:在已知三边作三角形时,是作边等于已知线段,即作一条线段等于已知线段.6.【答案】C解:能作出唯一三角形的是能够得出三角形全等的条件,“已知两边及一边的对角”,即“SSA”是不能判定三角形全等的.7.【答案】A 8.【答案】C 9.【答案】B10.解:如图,能作出两个三角形:△ABC'和△ABC,所以不能作出唯一的符合要求的三角形.理由:SSA不能说明两个三角形全等,所以一般情况下,已知两边和其中一边的对角不能作出唯一的三角形.11.解:如图.解:作法如下:(1)在数轴上截取AC=5a.(2)分别以A,C为圆心,以3a,4a为半径画弧,两弧相交于点B.(3)连接AB,BC,则△ABC即为所求作的三角形.12.解:(1)作∠MBN=∠α.(2)在射线BM上截取BA=c,在射线BN上截取BC=a.(3)连接AC,则△ABC即为所求作的三角形(如图).13.解:如图.(1)作射线OA.(2)以OA为一边,作∠BOA,使∠BOA=∠α.(3)以OB为一边在∠AOB内作∠BOC,使∠BOC=∠β,则∠AOC=∠α-∠β.故∠AOC=∠γ就是所求作的角.14.解:如图,A为汽车站的位置,B为桥的位置,这三个场所构成一个等腰三角形.15.解:(1)共九种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4).(2)只有a=2,b=3,c=4的一个三角形.如图,△ABC即为满足条件的三角形.。
七年级数学下册第四章三角形4用尺规作三角形直角三角形全等的判定、尺规作图、测距离试题北师大版
直角三角形全等的判定、尺规作图、测距离知识点一:直角三角形的判定1.直角三角形全等的判定条件——HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等.2.直角三角形全等的判定方法的综合运用.判定两个直角三角形全等的方法有五种,即SSS、SAS,ASA.AAS,HL.3.判定条件的选择技巧(1)上述五种方法是判定两直角三角形全等的方法,但有些方法不可能运用.如SSS,因为有两边对应相等就能够判定两个直角三角形全等.(2)判定两个直角三角形全等,必须有一组对应边相等.(3)证明两个直角三角形全等,可以从两个方面思考:①是有两边相等的,可以先考虑用HL,再考虑用SAS;②是有一锐角和一边的,可考虑用ASA或AAS.例1.如图所示,有两个长度相等的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯的水平方向的长度DF相等,则∠ABC+∠DFE=________.分析:本题解决问题的关键是证明Rt△ABC≌Rt△DEF,由此,我们也知道三角形全等是解决问题的有力工具.解:由现实意义及图形提示可知CA⊥BF,ED⊥BF,即∠BAC=∠EDF=90°.又因为BC=EF,AC=DF,可知Rt△ABC≌Rt△DEF.得∠DFE=∠ACB.因为∠ACB+∠ABC=90°,故∠ABC+∠DFE=90°.例2.如图所示,△ABC中,AD是它的角平分线,BD=CD,DE.DF分别垂直于AB.AC,垂足为E.F.求证BE=CF.解:在△AED和△AFD中,∠ ∠ (垂直的定义)∠ ∠ (角平分线的定义)(公共边)所以△AED≌△AFD(AAS).所以DE=DF(全等三角形的对应边相等).在Rt△BDE和Rt△CDF中, (已知) (已证)所以Rt△BDE≌△Rt△CDF(HL).所以BE= CF(全等三角形的对应边相等).例3.如图所示,已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:CF=DF.分析:要证CF=DF,可连接AC.AD后,证△ACF≌△ADF即可.证明:连结AC.AD.在△ABC和△AED中,所以AC=AD(全等三角形的对应边相等).因为AF⊥CD(已知),所以∠AFC=∠AFD=90°(垂直定义).在Rt△ACF和Rt△ADF中,(已证) (公共边)所以Rt△ACF≌Rt△ADF(HL).所以CF=DF(全等三角形的对应边相等).例4.已知在△ABC与△A′B′C′中,CD.C′D′分别是高,且AC=A′C′,AB=A′B′,CD=C′D′,试判断△ABC 与△A′B′C′是否全等,说说你的理由.分析:分析已知条件,涉及到三角形的高线,而三角形的高线有在三角形内、外或形上三种情形,故需分类讨论. 解:情形一,如果△ABC与△A′B′C′都为锐角三角形,如图所示.因为CD.C′D′分别是△ABC.△A′B′C′的高.所以∠ADC=∠A′D′C′=90°.在△ADC和△A′D′C′中∴Rt△ADC≌Rt△A′D′C′,则∠A=∠A′.在△ABC与△A′B′C′中,∴△ABC≌△A′B′C′(SAS).情形二,当△ABC为锐角三角形,△A′B′C′为钝角三角形,如图.显然△ABC与△A′B′C′不全等.情形三,当△ABC与△A′B′C′都为钝角三角形时,如图.由CD.C′D′分别为△ABC和△A′B′C′的高,所以∠ADC=∠A′D′C′=90°,在Rt△ADC和Rt△A′D′C′中,CD=C′D′,AC=A′C′∴Rt△ACD≌Rt△A′C′D′,∴∠CAD=∠C′A′D′.∴∠CAB=∠C′A′B′,在△ABC与△A′B′C′中∴△ABC≌△A′B′C′.例5.阅读下题及证明过程:如图,已知D是△ABC中BC边上的一点,E是AD上一点,EB=EC,∠BAE=∠CAE,求证:∠ABE=∠ACE.证明:在△ABE和△ACE中∴△ABE≌△ACE 第一步∴∠ABE=∠ACE 第二步上面的证明过程是否正确?若正确,请写出每一步推理的根据,若不正确,请指出错在哪一步,并写出你认为正确的证明过程.分析:用三角形全等的判定条件去判断,易发现错在第一步,它不符合全等三角形的条件,因此需另辟途径.由题设知,当结论成立时,必有△ABE≌△ACE,而由已知条件不能求证这两个三角形全等,故需将这两个三角形中重新构造出全等三角形.解:上面的证明过程不正确,错在第一步,正确的证明过程如下:过E作EG⊥AB于G,EH⊥AC于H.如图所示则∠BGE=∠CHE=90°在△AGE与△AHE中∴△AGE≌△AHE∴EG=EH在Rt△BGE与Rt△CHE中,EG=EH,BE=CE.∴Rt△BGE≌Rt△CHE,∴∠ABE=∠ACE.例6.已知:如图所示,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD.(1)求证:BE⊥AC;(2)若把条件BF=AC和结论BE⊥AC互换,那么这个命题成立吗?(1)证明:因为AD⊥BC(已知),所以∠BDA=∠ADC=90°(垂直定义),∠1+∠2=90°(直角三角形两锐角互余).在Rt△BDF和Rt△ADC中, (已知) (已知)所以Rt△BDF≌Rt△ADC(HL).所以∠2=∠C(全等三角形的对应角相等).因为∠1+∠2=90°(已证),所以∠1+∠C=90°.因为∠1+∠C+∠BEC=180°(三角形内角和等于180°),所以∠BEC=90°.所以BE⊥AC(垂直定义);(2)证明:命题成立,因为BE⊥AC,AD⊥BC,所以∠BDF=∠ADC=90°(垂直定义).所以∠1+∠C=90°,∠DAC+∠C=90°.所以∠1=∠DAC(同角的余角相等).在△BFD与△ACD中,∠ ∠ (已证)∠ ∠ °(已证)(已知)所以△BFD≌△ACD(AAS).所以BF=AC(全等三角形的对应边相等).知识二:利用三角形全等测距离通过探索三角形全等,得到了“边边边”,“边角边”,“角边角”,“角角边”定理,用这些定理能够判断两个三角形是否全等,掌握了这些知识,就具备了“利用三角形全等测距离”的理论基础.体会数学与生活的密切联系,能够利用三角形全等解决生活中的实际问题.在解决实际问题时确定方案使不能直接测量的物体间的距离转化为可以测量的距离(即把距离的测量转化为三角形全等的问题).例1.如图,有一湖的湖岸在A.B之间呈一段圆弧状,A.B间的距离不能直接测得.•你能用已学过的知识或方法设计测量方案,求出A.B间的距离吗?答案:要测量A.B间的距离,可用如下方法:(1)过点B作AB的垂线BF,在BF上取两点C.D,使CD=BC,再定出BF的垂线DE,使A.C.E在一条直线上,根据“角边角公理”可知△EDC≌△ABC.因此:DE=BA.•即测出DE的长就是A.B之间的距离.(如图甲)(2)从点B出发沿湖岸画一条射线BF,在BF上截取BC=CD,过点D作DE∥AB,使A.•C.E在同一直线上,这时△EDC≌△ABC,则DE=BA.即DE的长就是A.B间的距离.(•如图乙)例2.如图、小红和小亮两家分别位于A.B两处隔河相望,要测得两家之间的距离,请你设计出测量方案.分析:本题的测量方案实际上是利用三角形全等的知识构造两个全等三角形,使一个三角形在河岸的同一边,通过测量这个三角形中与AB相等的线段的长,就可求出两家的距离.方案:如图,在点B所在的河岸上取点C,连接BC并延长到D,使CD=CB,利用测角仪器使得∠B=∠D,A.C.E三点在同一直线上.测量出DE的长,就是AB的长.因为∠B=∠D,CD=CB,∠ACB=∠ECD,所以△ACB≌△ECD,所以AB=DE.知识点三:尺规作图1.用尺规作三角形的根据是三角形全等的条件.2.尺规作图的几何语言①过点×、点×作直线××;或作直线××;或作射线××;②连接两点××;或连接××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;④在××上截取××=××;⑤以点×为圆心,××的长为半径作圆(或弧);⑥以点×为圆心,××的长为半径作弧,交××于点×;⑦分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×.3.用尺规作图具有以下三个步骤①已知:当题目是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;②求作:能根据题目写出要求作出的图形及此图形应满足的条件;③作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹. 对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.例1.已知三角形的两角及其夹边,求作这个三角形.已知:∠α,∠β,线段c(如图).求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.请按照给出的作法作出相应的图形.例2.如图,已知线段a,b,c,满足a+b>c,用尺规作图法作△ABC,使BC=a,AC=b,AB=c.错误作法:(1)作线段AB=c;(2)作线段BC=a;(3)连接AC,则△ABC就是所求作的三角形(如图).分析:本题第2步作线段BC=a,在哪个方向作,∠CBA的度数是多少是不确定,所以这步的作法不正确,不能保证AC的长一定等于b.错误的原因在于没有真正理解用尺规作三角形的方法.正确作法:(1)作射线CE;(2)在射线CE上截取CB=a;(3)分别以C,B为圆心,b,c长为半径画弧,两弧交于点A.连接AC.AB,则△ABC为所求作的三角形(如图).例3.已知两边和其中一边上的中线,求作三角形.已知线段A.b 和 m.求作△ABC,使BC=a,AC=b,BC边上的中线等于m.分析:如果BC已作出,则只要确定顶点A.由于AD是中线,则D为BC的中点,A在以D为圆心,m为半径的圆上,又AC=b,点A也在以C为圆心b为半径的圆上,因此点A是这两个轨迹的交点.作法:1.作线段BC=a.2.分别以B.C为圆心,大于 长为半径画弧,在BC两侧各交于一点M、N,连接M、N交BC于点D.3.分别以D为圆心,m长为半径作弧,以C为圆心,b长为半径作弧,两弧交于点A.4.分别连接AB.AC.则△ABC就是所求作的三角形.思考:假定△ABC已经作出,其中 BC=a,AC=b,中线 AD=m.显然,在△ADC中,AD=m,DC= ,AC=b,所以△ADC若先作出.然后由BD= 的关系,可求得顶点B的位置,同样可以作出△ABC.作法请同学们自己写出.1.如图,DB⊥AB,DC⊥AC,垂足分别为B.C,且BD=CD,求证:AD平分∠BAC.证明:∵DB⊥AB,DC⊥AC∴∠B=∠C=90°在Rt△ABD和Rt△ACD中∴Rt△ABD≌Rt△ACD(HL)∴∠1=∠2∴AD平分∠BAC.2.如图,已知AB=AC,AB⊥BD,AC⊥CD,AD和BC相交于点E,求证:(1)CE=BE;(2)CB⊥AD.证明:(1)∵AB⊥BD,AC⊥CD∴∠ABD=∠ACD=90°在Rt△ABD和Rt△ACD中∴Rt△ABD≌Rt△ACD (HL)∴∠1=∠2在△ABE和△ACE中∴△ABE≌△ACE(SAS)∴BE=CE(2)∵△ABE≌△ACE∴∠3=∠4又∵∠3+∠4=180°∴∠3=90°∴CB⊥AD3.如图,已知一个角∠AOB,你能否只用一块三角板作出它的平分线吗?说明方法与理由.解:能.作法:(1)在OA,OB上分别截取OM=ON(2)过M作MC⊥OA,过N作ND⊥OB,MC交ND于P(3)作射线OP则OP为∠AOB的平分线证明:∵MC⊥OA.ND⊥OB∴∠1=∠2=90°在Rt△OMP和Rt△ONP中∴Rt△OMP≌Rt△ONP(HL)∴∠3=∠4∴OP平分∠AOB.4.如图,AB=AD,BC=DE,且BA⊥AC,DA⊥AE,你能证明AM=AN吗?解:能.理由如下:∵BA⊥AC,DA⊥AE,∴∠BAC=∠DAE=90° 在 Rt△ABC 和 Rt△ADE 中∴Rt△ABC≌Rt△ADE(HL) ∴∠C=∠E,AC=AE 在△AMC 和△ANE 中∴△AMC≌△ANE(ASA),∴AM=AN. 5.如图,CE⊥AB,DF⊥AB,垂足分别为 E.F,且 AE=BF,AD=BC,则(1)△ADF 和△BEC 全等吗?为什么? (2)CM 与 DN 相等吗?为什么?解: (1)△ADF≌△BCE,理由如下:∵CE⊥AB,DF⊥AB ∴∠1=∠2=∠3=∠4=90° 又∵AE=BF,∴AF=BE 在 Rt△ADF 和 Rt△BCE 中∴Rt△ADF≌Rt△BCE(HL) (2)CM=DN,理由如下: ∵△ADF≌△BCE ∴DF=CE,∠A=∠B 在△AME 和△BNF 中∴△AME≌△BNF(ASA) ∴ME=NF,又∵CE=DF ∴MC=ND. 6.如图所示,已知线段 a,b,∠α ,求作△ABC,使 BC=a,AC=b,∠ACB=∠α ,•根据作图在下面空格中填上适 当的文字或字母. (1)如图甲所示,作∠MCN=________; (2)如图乙所示,在射线 CM 上截取 BC=________,在射线 CN 上截取 AC=________. (3)如图丙所示,连接 AB,△ABC 就是_________.答案:∠α ,a,b,所求作的三角形. 7.已知线段 a 及锐角α ,求作:三角形 ABC,使∠C=90°,∠B=∠α ,BC=A.作法:(1)作∠MCN=90°; (2)以 C 为圆心,a 为半径,在 CM 上截取 CB=a; (3)以 B 为顶点,BC 为一边作∠ABC=∠α ,交 CN 于点 A.连接 AB,则△ABC 即为所求作的三角形. 8.你一定玩过跷跷板吧!如图是贝贝和晶晶玩跷跷板的示意图,支柱 OC 与地面垂直,点 O 是横板 AB 的中点,AB 可以绕着点 O 上下转动,当 A 端落地时,∠OAC=20°.(1)横板上下可转动的最大角度(即∠A′OA)是多少? (2)在上下转动横板的过程中,两人上升的最大高度 AA′,BB′有何数量关系?为什么?解:(1)∵OC⊥AB′,∠OAC=20°, ∴∠AOC=90°-20°=70°, 同理可求∠B′OC=70°, ∴∠AOA′=180°-2×70°=40°;(2)AA′=BB′, 如图所示,连接 AA′、BB′, ∵AB=A′B′,∠BAB′=∠A′B′A,AB′=B′A, ∴△A′AB′≌△BB′A,∴AA′=BB′. 9.有一池塘,要测池塘两端 A.B 间的距离,可先在平地上取一个可以直接到达 A 和 B 的点 C,连接 AC 并延长到 D, 使 CD=CA,连接 BC 并延长到 E,使 CE=CB,连接 DE,量出 DE 的长,这个长就是 A.B 之间的距离。
七年级数学下册 第4章 三角形 4.4 用尺规作三角形课件
2021/12/10
图4-4-7
第六页,共三十三页。
例 小明(xiǎo mínɡ)教材上的三角形被墨迹污染了一部分,如图4-4-8,他想在作业 本上画一个与教材上完全一样的三角形,他该怎么办?你能帮助他画出 来吗?
求作的三角形.
2021/12/10
第四页,共三十三页。
图4-4-5 注意(zhùyì):已知三角形的两角及其中一角的对边,也可以作出一个三角形,可 以先求出三角形的第三个角,从而转化为已知三角形的两角及其夹边求 作三角形.
2021/12/10
第五页,共三十三页。
3.已知三角形的三条边,求作三角形.如图4-4-6,已知线段a,b,c,求作 △ABC,使AB=c,AC=b,BC=a.
图4-4-8
分析(fēnxī) 已知两角及其夹边,可依据ASA求作三角形.
解析 作法:(1)作线段A'B'=AB;(2)以点A'为顶点(dǐngdiǎn)作∠B'A'M=∠1;(3)以点
B'为顶点作∠A'B'N=∠2,B'N与A'M交于点C',则△A'B'C'就是所求作的三
角形.
2021/12/10
2021/12/10
第九页,共三十三页。
2.如图4-4-1,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以 点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点
北师大版七年级数学下册:4.4用尺规作三角形(含解析)
北师大版七年级数学下册:4.4用尺规作三角形(含解析) 1 / 17北师大版七年级数学下册:4.4用尺规作三角形(含解析)一、单选题1.已知三边作三角形时,用到所学知识是( )A .作一个角等于已知角B .作一个角使它等于已知角的一半C .在射线上取一线段等于已知线段D .作一条直线的平行线或垂线2.根据下列已知条件,能画出唯一的△ABC 的是( )A .3cm AB =, 7cm BC =, 4cm AC = B .3cm AB =, 7cm BC =, 8cm AC =C .30A ∠=︒, 3cm AB =D .30A ∠=︒, 100B ∠=︒, 50C ∠=︒3.如图AOB ∠,以OB 为边作BOC ∠,使2BOC AOB ∠=∠,那么下列说法正确的是( ).A .3AOC AOB ∠=∠ B .AOC AOB ∠=∠ C .AOC BOC ∠>∠D .AOB AOC ∠=∠或3AOC AOB ∠=∠4.如图,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A ′O ′B ′=∠AOB 的依据是( )A .SSSB .SASC .AASD .ASA5.根据下列条件作出的三角形不唯一是( )A .AB=6,∠A=60°,∠C=40°B .AB=5,BC=4,CA=6C .AB=5,AC=4,∠C=40°D .∠A=50°,AB=8,AC=66.下列选项所给条件能画出唯一ABC ∆的是( )A .50A ∠=︒, 30B ∠=︒, 2AB = B .4AC =, 5AB =, 60B ∠=︒C .90C ∠=︒, 90AB =D .3AC =, 4AB =, 8BC =7.已知∠AOB ,用尺规作一个角∠A ’O ’B ’等于已知角∠AOB 的作图痕迹如图所示,则判断∠AOB=∠A ’O ’B ’所用到的三角形全等的判断方法是( )A .SASB .ASAC .AASD .SSS8.已知∠BOP 与OP 上点C ,点A (在点C 的右边),李玲现进行如下操作:①以点O 为圆心,OC 长为半径画弧,交OB 于点D ;②以点A 为圆心,OC 长为半径画弧MN ,交OA 于点M ;③以点M 为圆心,CD 长为半径画弧,交弧MN 于点E ,作射线AE ,操作结果如图所示,下列结论不能由上述操作结果得出的是( ).A .∠ACD=∠EAPB .∠ODC=∠AEMC .OB ∥AED .CD ∥ME9.如图,点C 在AOB ∠的OB 边上,用尺规作出了CN OA ,作图痕迹中, FG 是( )北师大版七年级数学下册:4.4用尺规作三角形(含解析)A.以点C为圆心,OD为半径的弧 B.以点C为圆心,DM为半径的弧C.以点E为圆心,DM为半径的弧 D.以点E为圆心,OD为半径的弧二、解答题10.如图,已知a和∠α,用尺规作一个三角形ABC,使AB=AC=2a,∠BAC=180°-∠α。
北师大版七下册数学3.4《用尺规作三角形》知识点精讲
要点二、三角形全等的实际应用
在现实生活中,有很多问题需要用全等三角形的知识来解决.
【典型例题】
类型一、基本作图
1、作图:已知线段a、b,画一条线段使它等于2a﹣b.
(要求:用尺规作图,并写出已知、求作、结论,保留作图痕迹,不写作法)
【思路点拨】可先画出一条线段等于2a,然后再在这条线段上截去b,剩余线段即为所求线段.
类型二、作三角形
2、已知∠α和线段a和b,作一个三角形,使其中一个角等于∠α,且这个角的两边长分别为a和b.(要求:用尺规作图,并写出已知、求作、保留作图痕迹)
已知:
求作:
【思路点拨】先作∠ACB=∠α,然后以点C为圆心,以a长为半径画弧,与边BC相交于点B,再以点C为圆心,以b的长为半径画弧与CA 相交于点A,连接AB即可得解.
【解析】
解:已知:∠α,线段a,b,
求作:△ABC,是∠C=∠α,BC=a,AC=b,
如图所示,△ABC即为所求作的三角形.
【总结升华】本题考查了复杂作图,主要利用了作一个角等于已知角,作一条线段等于已知线段,都是基本作图,需熟练掌握.
类型三、三角形全等的实际应用
3、如图所示,公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB、BC、CD三段路旁各有一只小石凳E、M、F,M恰好为BC的中点,且E、F、M在同一直线上,在BE道路上停放着一排小汽车,从而无法直接测量B、E之间的距离,你能想出解决的方法吗?请说明其中的道理.
【思路点拨】先根据SAS判定△BEM≌△CFM,从而得出CF=BE,即测量BE之间的距离相当于测量CF之间的距离.
图文导学。
七年级数学下册第四章三角形4.4用尺规作三角形作业设计新版北师大版
4.4 用尺规作三角形一.选择题(共6小题)1.下列四种基本尺规作图分别表示,则对应选项中作法错误的是()A.作一个角等于已知角B.作一个角的平分线C.作一条线段的垂直平分线D.过直线外一点P作已知直线的垂线2.作∠AOB的平分线OC,按以下作图方法错误的是()A.B.C.D.3.如图,点C在∠AOB的OB边上,用尺规作出了∠AOB=∠NCB,作图痕迹中,弧FG 是()(第3题图)A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧4.尺规作图作∠AOB的平分线如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,连结CD,则下列结论一定正确的个数有()个.①∠AOP=∠BOP;②OC=PC;③OA∥DP;④OP是线段CD的垂直平分线.(第4题图)A.1 B.2 C.3 D.45.小聪用直尺和圆规作角平分线,方法如下:①利用三角板上的刻度,在OA和OB 上分别截取OM、ON,使OM=ON;②分别过M、N作OM、ON的垂线,交于点P;③作射线OP,则OP为∠AOB的平分线,小聪用尺规作角平分线时,用到的三角形全等的判定方法是()(第5题图)A.SSS B.SAS C.ASA D.HL6.如图所示,已知线段a,b,c(a>b+c),求作线段AB,使AB=a﹣b﹣c.下面利用尺规作图正确的是()(第6题图)A.B.C.D.二.填空题(共4小题)7.在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的垂线.已知:如图1,直线l及其外一点A.求作:l的垂线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,连接AB;(2)以A为圆心,AB长为半径作弧,交直线l于点D;(3)分别以B、D为圆心,AB长为半径作弧,两弧相交于点C;(4)作直线AC.直线AC即为所求(如图2).小云作图的依据是.(第7题图)8.已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是.(第8题图)9.如图,尺规作图作出∠CAB的平分线,则∠ADC=°.(第9题图)10.如图,使用圆规作图,看图填空:(第10题图)(1)在射线AM上线段= ;(2)以点为圆心,以线段为半径作弧交于点;(3)分别以点和点为圆心,以大于PQ的长为半径作弧,两弧分别交于点和点;(4)以点为圆心,以任意长为半径作弧,分别交∠AOB两边,于点,点.三.解答题(共29小题)11.如图,在△ABC中,∠BAC=50°,∠C=60°,AD⊥BC,(1)用尺规作图作∠ABC的平分线BE,且交AC于点E,交AD于点F(不写作法,保留作图痕迹);(2)求∠BFD的度数.(第11题图)12.按要求用直尺作图:如图,平面上有A,B,C三点,画直线AC、射线BC、线段AB、在射线BC上取一点D,使BD=AB,并连接AD.(第 12题图)13.已知:如图,在△ABC中,AB=AC,BE是AC边上的高.(1)用直尺和圆规作出AB边上的高CD交AB于点D,交BE于点O(要求保留作图痕迹)(2)判断△OBC是什么三角形,并说明理由.(第13题图)14.如图,已知△ABC,按要求作图.(1)过点A作BC的垂线段AD;(2)过C作AB、AC的垂线分别交AB于点E、F;(3)AB=15,BC=7,AC=20,AD=12,求点C到线段AB的距离.(第14题图)15.如图点P是∠ABC内一点画图:①过点P作BC的垂线,D是垂足;②过点P作BC的平行线交AB于E,过点P作AB的平行线交BC于F.(第15题图)参考答案一.1.C 2.D 3.D 4.B 5.D 6.D二.7.四条边都相等的四边形是菱形;菱形的对角线互相垂直 8.SSS 9.70 10.(1)截取,AB,a;(2)A,r,FB,C;(3)P,Q,M,N;(4)O,OA,OB,C,D.三.11.解:(1)如答图,BE即为所求;(第11题答图)(2)∵∠BAC=50°、∠C=60°,∴∠ABC=180°﹣∠BAC﹣∠C=70°,由(1)知,BE平分∠ABC,∴∠DBC=∠ABC=35°,又∵AD⊥BC,∴∠ADB=90°,则∠BFD=90°﹣∠DBC=55°.12.解:如答图.(第12题答图)13.解:(1)△ABC的高CD如答图.(第13题答图)(2)△OBC是等腰三角形.理由如下:∵BD、CE是△ABC的高,∴∠BEC=∠CDB=90°∵AB=AC∴∠ABC=∠ACB∵BC=BC∴△BCE≌△CBD(AAS),∴∠CBE=∠BCD,∴BO=CO即△OBC是等腰三角形.14.解:(1)如图,AD为所作;(2)如图,CE、CF为所作;(第14题答图)(3)∵S=•AB•CE=•BC•AD,△ABC∴CE===,即点C到线段AB的距离为.15.解:如答图.①PD即为所求;②PE,PF即为所求.(第15题答图)文末学习倡导书:学习不是三天打鱼,两天晒网。
2024北师大版数学七年级下册4.4《用尺规作三角形》教学设计
2024北师大版数学七年级下册4.4《用尺规作三角形》教学设计一. 教材分析《用尺规作三角形》是北师大版数学七年级下册4.4节的内容。
本节课的主要内容是让学生掌握用尺规作三角形的方法,培养学生的几何作图能力,为后续学习其他几何图形打下基础。
教材通过具体的例子引导学生探究用尺规作三角形的方法,并归纳总结出规律。
二. 学情分析七年级的学生已经掌握了基本的尺规作图技巧,对几何图形有一定的认识。
但是,对于用尺规作三角形的方法,他们可能还比较陌生。
因此,在教学过程中,需要通过具体的例子和实践活动,让学生理解和掌握用尺规作三角形的方法。
三. 教学目标1.知识与技能目标:让学生掌握用尺规作三角形的方法,能独立完成用尺规作三角形的练习。
2.过程与方法目标:通过观察、操作、探究等活动,培养学生的几何作图能力。
3.情感态度与价值观目标:让学生体验到数学的趣味性和实用性,增强学生对数学的兴趣。
四. 教学重难点1.教学重点:用尺规作三角形的方法。
2.教学难点:如何引导学生发现并总结用尺规作三角形的规律。
五. 教学方法1.采用问题驱动的教学方法,通过设置问题引导学生思考和探究。
2.利用多媒体辅助教学,展示用尺规作三角形的过程,增强学生的直观感受。
3.学生进行实践活动,让学生亲自动手操作,提高学生的实践能力。
六. 教学准备1.准备多媒体课件,展示用尺规作三角形的过程。
2.准备尺规作图的工具,如直尺、圆规等。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用多媒体展示一些用尺规作三角形的图片,引导学生思考:这些三角形是如何用尺规作出来的?激发学生的兴趣和好奇心。
2.呈现(10分钟)教师通过讲解和示范,向学生介绍用尺规作三角形的方法。
讲解过程中,要注意讲解清楚每一步的操作方法和注意事项。
3.操练(10分钟)学生分组进行实践活动,用尺规作三角形。
教师巡回指导,解答学生的问题,纠正学生的错误。
4.巩固(10分钟)学生独立完成一些用尺规作三角形的练习题,检验自己是否掌握了所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后作业:
• 完成111页第5题
已知:线段 a,b,c。
a
b
c
求作:△ABC,使AB=c,AC=b,BC=a。 尝试自己分析并作出这个三角形。
3.已知三角形的三条边,求作这个三角形。
已知:线段 a,b,c。
a
b
c
求作:△ABC,使BC=a,AC=b,AB=c。
作法:(1)作一条线段BC=a;
A
(2)分别以B,C为圆心,以c,
c b
α
a
已知:∠α,线段a 求作:△ABC,使∠B=∠α,∠C=2∠α,BC=a
3.已知:线段a,用尺规作△ABC,使AB=a,BC=AC=2a
已知:线段a
a
求作:△ABC,使AB=a,BC=AC=2a
课堂小结:
• 用尺规作三角形: • 作草图,分析作图步骤,尺规作图,写出
结论。 • 注意问题: • 1.用尺规作图,保留作图痕迹。 • 2.要写出结论。
b为半径画弧,两弧交于A点;
B
a
C
(3)连接AB,AC。
∴△ABC就是所求作的三角形。两个三角形的三
思考:你所作的三角形与同伴 边对应相等,
所作的三角形比较,它们全等 两个三角形全等
吗?为什么?
(边边边或SSS)
小结: 如何完成用尺规作三角形的作图题? 1.在草稿纸上作出草图,并标出已知的边和角;
作图步骤:(2)可先作__,再作__,最后作__
小结:
2.已知三角形的两角及夹边,求作这 个三角形。 回顾作三角形的2种方法:
1.角→边→角 2. 边→角→角
思考:你所作的三角形与同伴所作的三角 形比较,它们全等吗?为什么?
两个三角形的两角及夹边对应相等, 两个三角形全等(角边角或ASA)
3.已知三角形的三条边,求作这个三角 形。
已知:线段a , c , ∠α。
a
c
α
求作:△ABC,使BC=a,AB=c,∠ABC=∠α。
画草图,分析作图步骤:
(1)先作__,再作__,最后作__。 按步骤作图。 (2)先作__,再作__,最后作__。 按步骤作图。
小结:
1.已知三角形的两边及夹角,求作这 个三角形。 回顾作三角形的2种方法:
第四章 三角形
4 用尺规作三角形
知识回顾:
基本作图:
1.用尺规作一条线段等于已知线段
已知:线段AB
A
求作:线段CD,使CD=AB
B
A
2.用尺规作一个角等于已知角已知:∠AOBO NhomakorabeaB
求作:∠A′O′B′,使∠A′O′B′=∠AOB
你能利用尺规作一个三角形与已知三角形全等吗?
新课学习:
1.已知三角形的两边及夹角,求作这个 三角形。
1.边→角→边 2. 角→边→边
思考:你所作的三角形与同伴所作的三角 形比较,它们全等吗?为什么?
两个三角形的两边及夹角对应相等, 两个三角形全等(边角边或SAS)
2.已知三角形的两角及其夹边,求作这 个三角形。
已知:∠α,∠β,线段c。
α
β
c
求作:△ABC,使∠A=∠α ,∠B=∠β,AB=c。 画草图,分析作图步骤:(1)可先作__,再作 __,最后作__。 第1种作法: (1)作∠DAF=∠α;(2)在射线AF上截取线段AB=c; (3)以B为顶点,以BA为一边,作∠ABE=∠β,BE交 AD于点C. ∴△ABC就是所求作的三角形。
2.确定作图的步骤。
3.作图(保留作图痕迹),写出结论。
1.你能用尺规作一个直角三角形,使其 两条直角边分别等于已知线段a,b吗?
a
b
已知:直角,线段a,b 求作:Rt△ABC,使∠A=90°,AB=a,AC=b
2.已知∠α和线段a,用尺规作一个三角形, 使其一个内角等于∠α,另一个内角等于 2∠α ,且这两个角的夹边等于a。