新课标2019数学高考二轮复习专题一集合逻辑用语不等式向量复数算法推理专题能力训练2不等式线性规划

合集下载

2019年高考数学大二轮复习专题一集合、常用逻辑用语、不等式、平面向量、算法、复数、推理与证明1.1

2019年高考数学大二轮复习专题一集合、常用逻辑用语、不等式、平面向量、算法、复数、推理与证明1.1

题型一
题型一 集合的概念及运算 集合的运算性质及重要结论 (1)A∪A=A,A∪∅=A,A∪B=B∪A. (2)A∩A=A,A∩∅=∅,A∩B=B∩A. (3)A∩(∁UA)=∅,A∪(∁UA)=U. (4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.
1.(2018·全国卷Ⅱ)已知集合 A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则 A 中元
答案: B
2.(2018·太原市模拟试题(一))已知命题 p:∃x0∈R,x02-x0+1≥0;命题 q: 若 a<b,则1a>1b,则下列为真命题的是( )
A.p∧q
B.p∧綈 q
C.綈 p∧q
D.綈 p∧綈 q
解析: 对于命题 p,当 x0=0 时,1≥0 成立,所以命题 p 为真命题,命题綈 p 为假命题;对于命题 q,当 a=-1,b=1 时,1a<1b,所以命题 q 为假命题,命题 綈 q 为真命题,所以 p∧綈 q 为真命题,故选 B.素的个数为( )Fra bibliotekA.9
B.8
C.5
D.4
解析: 将满足 x2+y2≤3 的整数 x,y 全部列举出来,即(-1,-1),(-1,0),
(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有 9 个.
故选 A.
答案: A
2.(2018·天津卷)设全集为 R,集合 A={x|0<x<2},B={x|x≥1},则 A∩(∁RB)
A∩B=B,则实数 a 的取值范围是( )
A.a<1
B.a≤1
C.a>2
D.a≥2
解析: 集合 B={x|x2-3x+2<0}={x|1<x<2},由 A∩B=B 可得 B⊆A,所以

2019年高考数学二轮复习课件及学案专题一 集合、常用逻辑用语、算法、复数、推理与证明、不等式2-1-1

2019年高考数学二轮复习课件及学案专题一 集合、常用逻辑用语、算法、复数、推理与证明、不等式2-1-1

A=B B,B⃘
[对点训练] 1.(2018· 北京卷)设 a,b 均为单位向量,则“|a-3b|=|3a+ b|”是“a⊥b”的( ) B.必要而不充分条件 D.既不充分也不必要条件
A.充分而不必要件 C.充分必要条件
[解析]
|a-3b|=|3a+b|⇔|a-3b|2=|3a+b|2⇔a2-6a· b+9b2
q,所以綈 q 是綈 p 的充分不必要条件,即 p 是 q 的充分不必要
条件,故选 A.
[答案] A
4.(2018· 山西五校联考)已知 p:(x-m)2>3(x-m)是 q:x2+ 3x - 4<0 的 必 要 不 充 分 条 件 , 则 实 数 m 的 取 值 范 围 为 ________________.
2.集合运算中的常用方法 (1)数轴法:若已知的集合是不等式的解集,用数轴法求解. (2)图象法:若已知的集合是点集,用图象法求解. (3)Venn 图法: 若已知的集合是抽象集合, 用 Venn 图法求解.
[对点训练] 1.(2018· 全国卷Ⅱ)已知集合 A={(x,y)|x2+y2≤3,x∈Z,y ∈Z},则 A 中元素的个数为( A.9
=9a2+6a· b+b2⇔2a2+3a· b-2b2=0,又∵|a|=|b|=1,∴a· b=0 ⇔a⊥b,故选 C.
[答案]
C
2. (2017· 天津卷)设 ( )
π π 1 θ∈R, 则“θ-12<12”是“sinθ<2”的
A.充分而不必要条件 C.充要条件
B.必要而不充分条件 D.既不充分也不必要条件
[解析]
)
B.8
C.5
D.4
由题意可知 A={(-1,0), (0,0), (1,0), (0, -1), (0,1),

2019高考数学大二轮复习 专题1 集合与常用逻辑用语、不等式 第1讲 集合与常用逻辑用语课件 理

2019高考数学大二轮复习 专题1 集合与常用逻辑用语、不等式 第1讲 集合与常用逻辑用语课件 理

y
函数y=ln(1-x2)的值 域,即(-∞,0]
C={(x,y)|y=ln(1-x2)}
(x,y)
函数y=ln(1-x2)的图象 上所有的点
D={直线l|l满足的方程是 kx+y=10,k∈R}
直线l
除直线x=0外,所有过 点(0,10)的直线
(2)抓元素个数:集合的子集个数取决于该集合中元素的个数.
<-1}.在数轴上表示出集合A,如图所示.
由图可得∁RA={x|-1≤x≤2}.故选B. 答案:B
1.集合问题的核心——元素
(1)抓代表元素:区分数集与点集、图形集,要看集合的代表元素.如:
集合
代表元素
实质
A={x|y=ln(1-x2)}
x
函数y=ln(1-x2)的定义 域,即(-1,1)
B={y|y=ln(1-x2)}
专题1 集合与常用逻辑用语、不等式
第1讲 集合与常用逻辑用语
[考情考向分析] 1. 集合是高考必考知识点,经常以不等式解集、函数的定义域、值域为背景考查
集合的运算,近几年有时也会出现一些集合的新定义问题. 2. 高考中考查命题的真假判断或命题的否定,考查充要条件的判断.
考点一 集合的关系与运算
1.(求交集)已知集合A={x|x2-6x+5≤0},B={x|y=log2(x-2)},则A∩B= ( )
即 x=0 时,等号成立,所以该命题为假命题;
对于命题 q,因为 sin x+cos x= 2sin(x+π4),
又 x∈[0,π2],所以 x+π4∈[π4,34π].
所以 sin(x+π4)∈[ 22,1],
故 2sin(x+π4)∈[1, 2].
显然方程 sin x+cos x=12在[0,π2]内无解,所以该命题为假命题. 故p∧q为假命题,綈p∧q为假命题,p∧綈q为假命题,綈p∧綈q为真命题.故选A. 答案:A

2019年(人教A版)数学高考第二轮复习 数学复习(专题1)集合与常用逻辑用语、函数与导数(4)》课件

2019年(人教A版)数学高考第二轮复习  数学复习(专题1)集合与常用逻辑用语、函数与导数(4)》课件

y=55x×-512-x2-12×05.25+-00.2.55+பைடு நூலகம் 0.25x
0≤x≤5, x>5.
∴y=4.75x-12x2-0.5 0≤x≤5, 12-0.25x x>5.
所以把利润表示为年产量的函数关系是 y=4.75x-12x2-0.5 0≤x≤5,
∴t1 与 t2 同号,因此方程只能有两个相等的实数解,
∴-m2 >0,
∴m=-2.
Δ=m2-4=0,
当 m=-2 时,t=1.∴x=0,
故函数 f(x)的零点是 x=0.
( 文 )(2014·山 西 太 原 五 中 月 考 ) 已 知 函 数 f(x) =
|sinx|,x∈[-π,π]
画出 f(x)在(-3,3)上的图象,cosx 的图象又熟知,运用数
形结合,如图所示,从“形”中找出图象分别在 x 轴上、下部
分的对应“数”的区间为(-π2,-1)∪(0,1)∪(π2,3).
(2014·哈三中二模)对实数 a 和 b,定义运算“*”:a*b=
a,a-b≤1 b,a-b>1
(理)已知 f(x)是定义在(-3,3)上的奇函数,当 0<x<3 时,f(x) 的图象如图所示,那么不等式 f(x)cosx<0 的解集是( )
A.(-3,-π2)∪(0,1)∪(π2,3) B.(-π2,-1)∪(0,1)∪(π2,3) C.(-3,-1)∪(0,1)∪(1,3) D.(-3,-π2)∪(0,1)∪(1,3)
[点评] ①分段函数的最大值:分段函数的最值应分段求出y的最值(或范围)进 行比较,取较大者,如本题第(2)问;
②问题的转化:转化过程应注意等价性、全面性.如
1°利润=销售总收入-(固定成本+直接消耗成本).

2019年高考数学二轮复习集合、常用逻辑用语、算法、复数、推理与证明、不等式第三讲 不等式、线性规划

2019年高考数学二轮复习集合、常用逻辑用语、算法、复数、推理与证明、不等式第三讲 不等式、线性规划

第三讲不等式、线性规划考点一不等式的解法求解不等式的方法(1)对于一元二次不等式,应先化为一般形式ax2+bx+c>0(a≠0),再求相应一元二次方程ax2+bx+c=0(a≠0)的根,最后根据相应二次函数图象与x轴的位置关系,确定一元二次不等式的解集.(2)解简单的分式、指数、对数不等式的基本思想是把它们等价转化为整式不等式(一般为一元二次不等式)求解.(3)解决含参数不等式的难点在于对参数的恰当分类,关键是找到对参数进行讨论的原因,确定好分类标准,有理有据、层次清楚地求解.[对点训练]1.(2018·湖南衡阳一模)若a,b,c为实数,且a<b<0,则下列结论正确的是()A.ac2<bc2 B.1 a< 1 bC.ba>ab D.a2>ab>b2[解析]∵c为实数,∴取c=0,得ac2=0,bc2=0,此时ac2=bc2,故选项A不正确;1a-1b=b-aab,∵a<b<0,∴b-a>0,ab>0,∴b-aab>0,即1a>1b,故选项B不正确;∵a<b<0,∴取a=-2,b=-1,则ba=-1-2=12,ab=2,此时ba<ab,故选项C不正确;∵a<b<0,∴a2-ab=a(a-b)>0,∴a2>ab,又∵ab-b2=b(a-b)>0,∴ab>b2,故选项D正确,故选D.[答案] D2.(2018·福建六校联考)已知函数f (x )=⎩⎨⎧x ,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-∞,-2)∪(1,+∞) C .(-1,2)D .(-2,1)[解析] 易知f (x )在R 上是增函数,∵f (2-x 2)>f (x ),∴2-x 2>x ,解得-2<x <1,则实数x 的取值范围是(-2,1),故选D.[答案] D3.(2018·贵阳一模)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( )A .(-∞,-1)∪(3,+∞)B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞)[解析] 关于x 的不等式ax -b <0即ax <b 的解集是(1,+∞),∴a =b <0, ∴不等式(ax +b )(x -3)>0可化为 (x +1)(x -3)<0,解得-1<x <3, ∴所求不等式的解集是(-1,3),故选C. [答案] C4.(2018·山西太原一模)当x >1时不等式x +1x -1≥a 恒成立,则实数a 的取值范围是( )A .(-∞,3]B .[3,+∞)C .(-∞,2]D .[2,+∞) [解析] ∵x >1,∴x +1x -1=x -1+1x -1+1≥2(x -1)×1x -1+1=3,当且仅当x -1=1x -1,即x =2时等号成立,所以最小值为3,∴a ≤3,即实数a 的取值范围是(-∞,3],故选A.[答案] A[快速审题] (1)看到有关不等式的命题或结论的判定,想到不等式的性质.(2)看到解不等式,想到求解不等式的方法步骤.(1)求解一元二次不等式的3步:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集.(2)解一元二次不等式恒成立问题的3种方法:①图象法;②分离参数法;③更换主元法.考点二 基本不等式的应用1.基本不等式:a +b2≥ab (1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)应用:两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ).当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. [对点训练]1.下列结论中正确的是( ) A .lg x +1lg x 的最小值为2 B.x +1x的最小值为2 C.sin 2x +4sin 2x 的最小值为4 D .当0<x ≤2时,x -1x 无最大值[解析] 对于A,lg x 可能小于0;对于B,要使函数y =x +1x 有意义,则x >0,x+1x≥2x ·1x =2,当且仅当x =1x,即x =1时取等号;对于C,当且仅当sin 2x =4sin 2x ,即sin x =2时取等号,但sin x 的最大值为1;对于D,x -1x 在(0,2]上为增函数,因此有最大值,故选B.[答案] B2.(2018·吉林长春二模)已知x >0,y >0,且x +y =2xy ,则x +4y 的最小值为( ) A .4 B.72 C.92 D .5[解析] 由x +y =2xy 得1x +1y =2.由x >0,y >0,x +4y =12(x +4y )⎝ ⎛⎭⎪⎫1x +1y =12⎝ ⎛⎭⎪⎫5+4y x +x y ≥12(5+4)=92,当且仅当4y x =x y 时等号成立,即x +4y 的最小值为92,故选C.[答案] C3.(2018·海淀期末)已知正实数a ,b 满足a +b =4,则1a +1+1b +3的最小值为________.[解析] ∵a +b =4,∴a +1+b +3=8,∴1a +1+1b +3=18[(a +1)+(b +3)]⎝ ⎛⎭⎪⎫1a +1+1b +3=18⎝ ⎛⎭⎪⎫2+b +3a +1+a +1b +3≥18(2+2)=12,当且仅当a +1=b +3,即a =3,b =1时取等号,∴1a +1+1b +3的最小值为12.[答案] 124.(2018·河南洛阳一模)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为________.[解析] 依题意知a >0,b >0,则1a +2b ≥22ab =22ab ,当且仅当1a =2b ,即b =2a时,“=”成立.因为1a +2b =ab ,所以ab ≥22ab,即ab ≥22,所以ab 的最小值为2 2.[答案]2 2[快速审题]看到最值问题,想到“积定和最小”,“和定积最大”.利用基本不等式求函数最值的3个关注点(1)形式:一般地,分子、分母有一个一次、一个二次的分式结构的函数以及含有两个变量的函数,特别适合用基本不等式求最值.(2)条件:利用基本不等式求最值需满足“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.(3)方法:使用基本不等式时,一般通过“拆、拼、凑”的技巧把求最值的函数或代数式化为ax+bx(ab>0)的形式,常用的方法是变量分离法和配凑法.考点三线性规划问题1.线性目标函数z=ax+by最值的确定方法把线性目标函数z=ax+by化为y=-ab x+zb,可知zb是直线ax+by=z在y轴上的截距,要根据b的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.2.常见的目标函数类型(1)截距型:形如z=ax+by,可以转化为y=-ab x+zb,利用直线在y轴上的截距大小确定目标函数的最值;(2)斜率型:形如z=y-bx-a,表示区域内的动点(x,y)与定点(a,b)连线的斜率;(3)距离型:形如z=(x-a)2+(y-b)2,表示区域内的动点(x,y)与定点(a,b)的距离的平方;形如z=|Ax+By+C|,表示区域内的动点(x,y)到直线Ax+By+C=0的距离的A2+B2倍.[对点训练]1.(2018·天津卷)设变量x ,y 满足约束条件⎩⎨⎧x +y ≤5,2x -y ≤4,-x +y ≤1,y ≥0,则目标函数z =3x +5y 的最大值为( )A .6B .19C .21D .45[解析] 由变量x ,y 满足的约束条件画出可行域(如图中阴影部分所示). 作出初始直线l 0:3x +5y =0,平移直线l 0,当直线经过点A (2,3)时,z 取最大值,即z max =3×2+5×3=21,故选C.[答案] C2.(2018·广东肇庆二模)已知实数x ,y 满足约束条件⎩⎨⎧2x -y ≥0,y ≥x ,y ≥-x +b ,若z =2x+y 的最小值为3,则实数b =( )A.94B.32 C .1 D.34[解析] 作出不等式组对应的平面区域,如图中阴影部分所示.由z =2x +y 得y =-2x +z , 平移直线y =-2x ,由图可知当直线y =-2x +z 经过点A 时,直线y =-2x +z 的纵截距最小,此时z 最小,为3,即2x +y =3.由⎩⎨⎧2x +y =3,y =2x ,解得⎩⎪⎨⎪⎧x =34,y =32,即A ⎝ ⎛⎭⎪⎫34,32,又点A 也在直线y =-x +b 上,即32=-34+b ,∴b =94,故选A. [答案] A3.(2018·江西九江二模)实数x ,y 满足线性约束条件⎩⎨⎧x -a ≤0,x +y -2≥0,2x -y +2≥0,若z=y -1x +3的最大值为1,则z 的最小值为( ) A .-13 B .-37 C.13 D .-15[解析] 作出可行域如图中阴影部分所示,目标函数z =y -1x +3的几何意义是可行域内的点(x ,y )与点A (-3,1)两点连线的斜率,当取点B (a,2a +2)时,z 取得最大值1,故2a +2-1a +3=1,解得a =2,则C (2,0).当取点C (2,0)时,z 取得最小值,即z min =0-12+3=-15,故选D.[答案] D4.设x ,y满足约束条件⎩⎨⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =(x +1)2+y 2的取值范围是________.[解析]由⎩⎨⎧x -y =0,x +2y =1,解得⎩⎪⎨⎪⎧x =13,y =13,即C ⎝ ⎛⎭⎪⎫13,13.(x +1)2+y 2的几何意义是区域内的点(x ,y )与定点(-1,0)间距离的平方. 由图可知,点(-1,0)到直线AB :2x +y +1=0的距离最 小,为|-2+1|5=55,故z min =15;点(-1,0)到点C 的距离最大,故z max =⎝ ⎛⎭⎪⎫13+12+⎝ ⎛⎭⎪⎫132=179.所以z =(x +1)2+y 2的取值范围是⎣⎢⎡⎦⎥⎤15,179. [答案] ⎣⎢⎡⎦⎥⎤15,179[快速审题] (1)看到最优解求参数,想到由最值列方程(组)求解.(2)看到最优解的个数不唯一,想到直线平行;看到形如z =(x -a )2+(y -b )2和形如z =y -bx -a,想到其几何意义.(3)看到最优解型的实际应用题,想到线性规划问题,想到确定实际意义.求目标函数的最值问题的3步骤(1)画域,根据线性约束条件,画出可行域;(2)转化,把所求目标函数进行转化,如截距型,即线性目标函数转化为斜截式;如斜率型,即根据两点连线的斜率公式,转化为可行域内的点与某个定点连线的斜率;平方型,即根据两点间距离公式,转化为可行域内的点与某个定点的距离;(3)求值,结合图形,利用函数的性质,确定最优解,求得目标函数的最值.1.(2016·全国卷Ⅰ)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( )A.⎝ ⎛⎭⎪⎫-3,-32 B.⎝ ⎛⎭⎪⎫-3,32 C.⎝ ⎛⎭⎪⎫1,32 D.⎝ ⎛⎭⎪⎫32,3[解析] ∵x 2-4x +3<0⇔(x -1)(x -3)<0⇔1<x <3, ∴A ={x |1<x <3}.∵2x -3>0⇔x >32,∴B =⎩⎨⎧⎭⎬⎫x |x >32, ∴A ∩B =⎩⎨⎧⎭⎬⎫x |32<x <3=⎝ ⎛⎭⎪⎫32,3,故选D.[答案] D2.(2018·北京卷)设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},则( ) A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)∉A C .当且仅当a <0时,(2,1)∉A D .当且仅当a ≤32时,(2,1)∉A[解析]若(2,1)∈A ,则有⎩⎨⎧2-1≥1,2a +1>4,2-a ≤2,解得a >32.结合四个选项,只有D 说法正确,故选D.[答案] D3.(2018·全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<ab D .ab <0<a +b[解析] 解法一:∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0,排除C.∵0<log 0.20.3<log 0.20.2=1,log 20.3<log 20.5=-1,即0<a <1,b <-1,∴a +b <0,排除D.∵b a =log 20.3log 0.20.3=lg0.2lg2=log 20.2,∴b -b a =log 20.3-log 20.2=log 232<1,∴b <1+b a⇒ab <a +b ,排除A,故选B.解法二:易知0<a <1,b <-1,∴ab <0,a +b <0, ∵1a +1b =log 0.30.2+log 0.32=log 0.30.4<1, 即a +bab <1,∴a +b >ab , ∴ab <a +b <0,故选B.[答案] B4.(2018·全国卷Ⅰ)若x ,y 满足约束条件⎩⎨⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为________.[解析] 由x ,y 所满足的约束条件画出对应的可行域(如图中阴影部分所示).作出初始直线l 0:3x +2y =0,平移直线l 0,当经过点A (2,0)时,z 取最大值,即z max =3×2=6.[答案] 65.(2018·天津卷)已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________. [解析] 由已知,得2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b =22-6=14,当且仅当2a =2-3b 时等号成立,由a =-3b ,a -3b +6=0,得a =-3,b =1, 故当a =-3,b =1时,2a+18b 取得最小值14.[答案] 141.不等式作为高考命题热点内容之一,多年来命题较稳定,多以选择、填空题的形式进行考查,题目多出现在第5~9或第13~15题的位置上,难度中等,直接考查时主要是简单的线性规划问题,关于不等式性质的应用、不等式的解法以及基本不等式的应用,主要体现在其工具作用上.2.若不等式与函数、导数、数列等其他知识交汇综合命题,难度较大.热点课题3求解不等式中参数范围问题[感悟体验]1.(2018·合肥模拟)在区间(1,2)上不等式x2+mx+4>0有解,则m的取值范围为()A.m>-4 B.m<-4C.m>-5 D.m<-5[解析]记f(x)=x2+mx+4,要使不等式x2+mx+4>0在区间(1,2)上有解,需满足f(1)>0或f(2)>0,即m+5>0或2m+8>0,解得m>-5,故选C.[答案] C2.(2018·海淀模拟)当0<m<12时,若1m+21-2m≥k2-2k恒成立,则实数k的取值范围为()A.[-2,0)∪(0,4] B.[-4,0)∪(0,2] C.[-4,2] D.[-2,4][解析]因为0<m<12,所以12×2m×(1-2m)≤12×⎣⎢⎡⎦⎥⎤2m+(1-2m)22=18⎝ ⎛⎭⎪⎫当且仅当2m =1-2m ,即m =14时取等号,所以1m +21-2m =1m (1-2m )≥8,又1m +21-2m≥k 2-2k 恒成立,所以k 2-2k -8≤0,所以-2≤k ≤4.所以实数k 的取值范围是[-2,4],故选D.[答案] D专题跟踪训练(九)一、选择题1.如果a <b <0,那么下列不等式成立的是( ) A.1a <1b B .ab <b 2 C .-ab <-a 2D .-1a <-1b[解析] 解法一(利用不等式性质求解):由a <b <0,得b -a >0,ab >0,故1a -1b =b -a ab >0,即1a >1b ,故A 项错误;由a <b <0,得b (a -b )>0,故ab >b 2,故B 项错误;由a <b <0,得a (a -b )>0,即a 2>ab ,故-ab >-a 2,故C 项错误;由a <b <0,得a -b <0,ab >0,故-1a -⎝ ⎛⎭⎪⎫-1b =a -bab <0,即-1a <-1b 成立,故选D. 解法二(特殊值法):令a =-2,b =-1,则1a =-12>-1=1b ,ab =2>1=b 2,-ab =-2>-4=-a 2,-1a =12<1=-1b .故A,B,C 项错误,D 正确,故选D.[答案] D2.已知a ∈R ,不等式x -3x +a ≥1的解集为p ,且-2∉p ,则a 的取值范围为( )A .(-3,+∞)B .(-3,2)C .(-∞,2)∪(3,+∞)D .(-∞,-3)∪[2,+∞)[解析] ∵-2∉p ,∴-2-3-2+a <1或-2+a =0,解得a ≥2或a <-3,故选D.[答案] D3.(2018·大连一模)设函数f (x )=⎩⎨⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)[解析] 由题意得,f (1)=3,所以f (x )>f (1)=3,即f (x )>3, 如果x <0,则x +6>3,可得-3<x <0;如果x ≥0,则x 2-4x +6>3,可得x >3或0≤x <1. 综上,不等式的解集为(-3,1)∪(3,+∞), 故选A. [答案] A4.(2018·长春第二次质检)若关于x 的不等式ax -b >0的解集是(-∞,-2),则关于x 的不等式ax 2+bx x -1>0的解集为( )A .(-2,0)∪(1,+∞)B .(-∞,0)∪(1,2)C .(-∞,-2)∪(0,1)D .(-∞,1)∪(2,+∞)[解析] 关于x 的不等式ax -b >0的解集是(-∞,-2),∴a <0,ba =-2,∴b =-2a ,∴ax 2+bx x -1=ax 2-2ax x -1.∵a <0,∴x 2-2x x -1<0,解得x <0或1<x <2,故选B.[答案] B5.(2018·河南平顶山一模)若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是( )A .a ≥15B .a >15C .a <15D .a ≤15[解析] 因为对任意x >0,xx 2+3x +1≤a 恒成立,所以对x ∈(0,+∞),a ≥⎝ ⎛⎭⎪⎫x x 2+3x +1max ,而对x ∈(0,+∞),xx 2+3x +1=1x +1x +3≤12x ·1x +3=15,当且仅当x =1x 时等号成立,∴a ≥15,故选A. [答案] A6.(2018·江西师大附中摸底)若关于x ,y 的不等式组⎩⎨⎧x ≤0,x +y ≥0,kx -y +1≥0表示的平面区域是等腰直角三角形区域,则其表示的区域面积为( )A.12或14B.12或18 C .1或12D .1或14[解析] 由不等式组表示的平面区域是等腰直角三角形区域,得k =0或1,当k =0时,表示区域的面积为12;当k =1时,表示区域的面积为14,故选A.[答案] A7.(2018·昆明质检)设变量x ,y 满足约束条件⎩⎨⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17[解析]解法一(图解法):已知约束条件⎩⎨⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0所表示的平面区域为下图中的阴影部分(包含边界),其中A (0,2),B (3,0),C (1,3).根据目标函数的几何意义,可知当直线y =-25x +z5过点B (3,0)时,z 取得最小值2×3+5×0=6,故选B.解法二(界点定值法):由题意知,约束条件⎩⎨⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0所表示的平面区域的顶点分别为A (0,2),B (3,0),C (1,3).将A ,B ,C 三点的坐标分别代入z =2x +5y ,得z =10,6,17,故z 的最小值为6,故选B.[答案] B8.(2018·合肥一模)在关于x 的不等式x 2-(a +1)x +a <0的解集中至多包含2个整数,则a 的取值范围是( )A .(-3,5)B .(-2,4)C .[-3,5]D .[-2,4][解析] 关于x 的不等式x 2-(a +1)x +a <0可化为(x -1)(x -a )<0.当a =1时,不等式的解集为∅;当a >1时,不等式的解集为1<x <a ;当a <1时,不等式的解集为a <x <1.要使得解集中至多包含2个整数,则a ≤4且a ≥-2,所以实数a 的取值范围是[-2,4],故选D.[答案] D9.若实数x ,y 满足⎩⎨⎧x -y +1≤0,x >0,y ≤2,则z =2y2x +1的取值范围是( )A.⎣⎢⎡⎦⎥⎤43,4B.⎣⎢⎡⎭⎪⎫43,4 C .[2,4]D .(2,4][解析] 作出不等式组对应的平面区域如图中阴影部分(不包括边界OB )所示,其中A (1,2),B (0,2).z =2y 2x +1=yx +12=y -0x -⎝ ⎛⎭⎪⎫-12,则z 的几何意义是可行域内的点P (x ,y )与点M ⎝ ⎛⎭⎪⎫-12,0所连直线的斜率. 可知k MA =2-01-⎝ ⎛⎭⎪⎫-12=43,k MB=2-00-⎝ ⎛⎭⎪⎫-12=4,结合图形可得43≤z <4. 故z =2y 2x +1的取值范围是⎣⎢⎡⎭⎪⎫43,4,故选B.[答案] B10.(2018·四川资阳诊断)已知a >0,b >0,且2a +b =ab ,则a +2b 的最小值为( )A .5+2 2B .8 2C .5D .9[解析] 解法一:∵a >0,b >0,且2a +b =ab ,∴a =bb -2>0,解得b >2. 则a +2b =b b -2+2b =1+2b -2+2(b -2)+4≥5+22b -2·2(b-2)=9,当且仅当b =3,a =3时等号成立,其最小值为9,故选D.解法二:∵a >0,b >0,∴ab >0. ∵2a +b =ab ,∴1a +2b =1,∴(a +2b )⎝ ⎛⎭⎪⎫1a +2b =5+2b a +2a b ≥5+22b a ·2a b=5+4=9.当且仅当2b a =2ab 时,等号成立,又2a +b =ab ,即a =3,b =3时等号成立,其最小值为9,故选D.[答案] D11.(2018·湖南湘东五校联考)已知实数x ,y 满足⎩⎨⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,且z =x +y的最大值为6,则(x +5)2+y 2的最小值为( )A .5B .3 C. 5 D. 3[解析]如图,作出不等式组⎩⎨⎧x +2y ≥0,x -y ≤0,0≤y ≤k对应的平面区域,如图阴影部分所示.由z =x +y ,得y =-x +z ,平移直线y =-x ,由图可知当直线y =-x +z 经过点A 时,直线y =-x +z 在y 轴上的截距最大,此时z 最大,为6,即x +y =6.由⎩⎨⎧x +y =6,x -y =0得A (3,3), ∵直线y =k 过点A ,∴k =3.(x +5)2+y 2的几何意义是可行域内的点(x ,y )与D (-5,0)的距离的平方,由可行域可知,[(x +5)2+y 2]min 等于D (-5,0)到直线x +2y =0的距离的平方.则(x +5)2+y 2的最小值为⎝ ⎛⎭⎪⎫|-5|12+222=5,故选A.[答案] A12.(2018·广东清远一中一模)若正数a ,b 满足:1a +1b =1,则1a -1+9b -1的最小值为( )A .16B .9C .6D .1[解析] ∵正数a ,b 满足1a +1b =1,∴a +b =ab ,1a =1-1b >0,1b =1-1a >0,∴b >1,a >1,则1a -1+9b -1≥29(a -1)(b -1)=29ab -(a +b )+1=6⎝ ⎛⎭⎪⎫当且仅当a =43,b =4时等号成立,∴1a -1+9b -1的最小值为6,故选C. [答案] C 二、填空题[解析] 不等式x -2x -3<0等价于(x -2)(x -3)<0,解得2<x <3, 故不等式x -2x -3<0的解集为(2,3),即M =(2,3). 由log 12 (x -2)≥1,可得⎩⎪⎨⎪⎧x -2>0,x -2≤12,解得2<x ≤52,所以N =⎝ ⎛⎦⎥⎤2,52.故M ∩N =⎝ ⎛⎦⎥⎤2,52.[答案] ⎝ ⎛⎦⎥⎤2,5214.(2018·全国卷Ⅱ)若x ,y 满足约束条件⎩⎨⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,则z =x +y 的最大值为________.[解析] 由线性约束条件画出可行域(如图中阴影部分所示).当直线x +y -z =0经过点A (5,4)时,z =x +y 取得最大值,最大值为9. [答案] 915.(2018·安徽合肥一模)某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A 、B 两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时.A ,B 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为________千元.[解析] 设生产甲产品x 件,生产乙产品y 件,利润为z 千元,则 ⎩⎨⎧2x +3y ≤480,6x +y ≤960,z =2x +y ,作出⎩⎨⎧x ≥0,y ≥0,2x +3y ≤480,6x +y ≤960表示的可行域如图中阴影部分所示,作出直线2x +y =0,平移该直线,当直线z =2x +y 经过直线2x +3y =480与直线6x+y=960的交点(150,60)(满足x∈N,y∈N)时,z取得最大值,为360.[答案]36016.(2018·郑州高三检测)若正数x,y满足x2+3xy-1=0,则x+y的最小值是________.[解析]对于x2+3xy-1=0可得y=13⎝⎛⎭⎪⎫1x-x,∴x+y=2x3+13x≥229=223(当且仅当x=22时,等号成立),故x+y的最小值是223.[答案]22 3。

2019高考数学二轮复习 专题一 集合、常用逻辑用语、算法、复数、推理与证明、不等式 第一讲 集合、

2019高考数学二轮复习 专题一 集合、常用逻辑用语、算法、复数、推理与证明、不等式 第一讲 集合、

第一讲集合、常用逻辑用语考点一集合的概念及运算1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.2.集合运算中的常用方法(1)数轴法:若已知的集合是不等式的解集,用数轴法求解.(2)图象法:若已知的集合是点集,用图象法求解.(3)Venn图法:若已知的集合是抽象集合,用Venn图法求解.[对点训练]1.(2018·全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9 B.8C.5 D.4[解析]由题意可知A={(-1,0),(0,0),(1,0),(0,-1),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)},故集合A中共有9个元素,故选A.[答案] A2.(2018·江西南昌二中第四次模拟)设全集U=R,集合A={x|log2x≤2},B={x|(x -3)(x+1)≥0},则(∁U B)∩A=( )A.(-∞,-1] B.(-∞,-1]∪(0,3)C.[0,3) D.(0,3)[解析]集合A={x|log2x≤2}={x|0<x≤4},集合B={x|(x-3)(x+1)≥0}={x|x≥3或x≤-1}.因为全集U=R,所以∁U B={x|-1<x<3},所以(∁U B)∩A=(0,3),故选D.[答案] D3.(2018·河南开封模拟)设集合U=R,A={x|2x(x-2)<1},B={x|y=ln(1-x)},则图中阴影部分表示的集合为( )A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}[解析] 易知A ={x |2x (x -2)<1}={x |x (x -2)<0}={x |0<x <2},B ={x |y =ln(1-x )}={x |1-x >0}={x |x <1},则∁U B ={x |x ≥1},阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}.[答案] B4.已知集合A ={x |x 2-3x -10≤0},B ={x |m +1≤x ≤2m -1}.若A ∪B =A ,则实数m 的取值范围是________.[解析] 由A ∪B =A 知B ⊆A .因为A ={x |-2≤x ≤5},①若B =∅,则m +1>2m -1,即m <2,此时A ∪B =A ;②若B ≠∅,则m +1≤2m -1,即m ≥2,由B ⊆A 得⎩⎪⎨⎪⎧-2≤m +1,2m -1≤5,解得-3≤m ≤3.又因为m ≥2,所以2≤m ≤3.由①②知,当m ≤3时,A ∪B =A .[答案] m ≤3[快速审题] (1)看到集合中的元素,想到代表元素的意义;看到点集,想到其对应的几何意义.(2)看到数集中元素取值连续时,想到借助数轴求解交、并、补集等;看到M ⊆N ,想到集合M 可能为空集.解决集合问题的3个注意点(1)集合含义要明确:构成集合的元素及满足的性质.(2)空集要重视:已知两个集合的关系,求参数的取值,要注意对空集的讨论. (3)“端点”要取舍:要注意在利用两个集合的子集关系确定不等式组时,端点值的取舍问题,一定要代入检验,否则可能产生增解或漏解现象.考点二 充分与必要条件的判断充分、必要条件与充要条件的含义若p 、q 中所涉及的问题与变量有关,p 、q 中相应变量的取值集合分别记为A ,B ,那么有以下结论:A B B A A1.(2018·北京卷)设a ,b 均为单位向量,则“|a -3b |=|3a +b |”是“a ⊥b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件[解析] |a -3b |=|3a +b |⇔|a -3b |2=|3a +b |2⇔a 2-6a ·b +9b 2=9a 2+6a ·b +b 2⇔2a 2+3a ·b -2b 2=0,又∵|a |=|b |=1,∴a ·b =0⇔a ⊥b ,故选C .[答案] C2.(2017·天津卷)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] ∵⎪⎪⎪⎪⎪⎪θ-π12<π12⇔-π12<θ-π12<π12⇔0<θ<π6,sin θ<12⇔θ∈⎝ ⎛⎭⎪⎫2k π-7π6,2k π+π6,k ∈Z ,⎝ ⎛⎭⎪⎫0,π6⎝⎛⎭⎪⎫2k π-7π6,2k π+π6,k∈Z ,∴“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件.[答案] A3.已知条件p :x +y ≠-2,条件q :x ,y 不都是-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[解析] 因为p :x +y ≠-2,q :x ≠-1或y ≠-1,所以綈p :x +y =-2,綈q :x =-1且y =-1,因为綈q ⇒綈p 但綈p ⇒/綈q ,所以綈q 是綈p 的充分不必要条件,即p 是q的充分不必要条件.[答案] A4.(2018·山西五校联考)已知p:(x-m)2>3(x-m)是q:x2+3x-4<0的必要不充分条件,则实数m的取值范围为________________.[解析]p对应的集合A={x|x<m或x>m+3},q对应的集合B={x|-4<x<1},由p是q 的必要不充分条件可知B A,∴m≥1或m+3≤-4,即m≥1或m≤-7.[答案]m≥1或m≤-7[快速审题] 看到判断充分、必要条件,想到定条件,找推式,想到命题所对应集合间的包含关系.充分、必要条件的3种判断方法(1)利用定义判断:直接判断“若p,则q”“若q,则p”的真假.在判断时,确定条件是什么,结论是什么.(2)从集合的角度判断:利用集合中包含思想判定.抓住“以小推大”的技巧,即小范围推得大范围,即可解决充分必要性的问题.(3)利用等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假.考点三命题真假的判定与命题的否定1.四种命题的关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.2.复合命题真假的判断方法含逻辑联结词的命题的真假判断:“p∨q”有真则真,其余为假;“p∧q”有假则假,其余为真;“綈p”与“p”真假相反.3.全称量词与存在量词(1)全称命题p:∀x∈M,p(x),它的否定綈p:∃x0∈M,綈p(x0).(2)特称命题p:∃x0∈M,p(x0),它的否定綈p:∀x∈M,綈p(x).[对点训练]1.(2018·山东泰安联考)下列命题正确的是( )A .命题“∃x ∈[0,1],使x 2-1≥0”的否定为“∀x ∈[0,1],都有x 2-1≤0” B .若命题p 为假命题,命题q 是真命题,则(綈p )∨(綈q )为假命题 C .命题“若a 与b 的夹角为锐角,则a ·b >0”及它的逆命题均为真命题D .命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”[解析] 对于选项A ,命题“∃x ∈[0,1],使x 2-1≥0”的否定为“∀x ∈[0,1],都有x 2-1<0”,故A 项错误;对于选项B ,p 为假命题,则綈p 为真命题;q 为真命题,则綈q为假命题,所以(綈p )∨(綈q )为真命题,故B 项错误;对于选项C ,原命题为真命题,若a ·b >0,则a 与b 的夹角可能为锐角或零角,所以原命题的逆命题为假命题,故C 项错误;对于选项D ,命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”,故选项D 正确.因此选D .[答案] D2.(2018·清华大学自主招生能力测试)“∀x ∈R ,x 2-πx ≥0”的否定是( ) A .∀x ∈R ,x 2-πx <0 B .∀x ∈R ,x 2-πx ≤0 C .∃x 0∈R ,x 20-πx 0≤0D .∃x 0∈R ,x 20-πx 0<0[解析] 全称命题的否定是特称命题,所以“∀x ∈R ,x 2-πx ≥0”的否定是“∃x 0∈R ,x 20-πx 0<0”.故选D .[答案] D3.(2018·湖南师大附中模拟)已知命题p :∃x 0∈(-∞,0),2x 0<3x 0;命题q :∀x ∈⎝ ⎛⎭⎪⎫0,π2,sin x <x ,则下列命题为真命题的是( ) A .p ∧q B .p ∨(綈q ) C .(綈p )∧qD .p ∧(綈q )[解析] 因为当x <0时,⎝ ⎛⎭⎪⎫23x >1,即2x >3x,所以命题p 为假命题,从而綈p 为真命题;因为当x ∈⎝⎛⎭⎪⎫0,π2时,x >sin x ,所以命题q 为真命题,所以(綈p )∧q 为真命题,故选C .[答案] C4.(2018·豫西南五校联考)若“∀x ∈⎣⎢⎡⎦⎥⎤-π4,π3,m ≤tan x +2”为真命题,则实数m的最大值为________.[解析] 由x ∈⎣⎢⎡⎦⎥⎤-π4,π3可得-1≤tan x ≤3,∴1≤tan x +2≤2+3,∵“∀x ∈⎣⎢⎡⎦⎥⎤-π4,π3,m ≤tan x +2”为真命题,∴实数m 的最大值为1. [答案] 1[快速审题] (1)看到命题真假的判断,想到利用反例和命题的等价性.(2)看到命题形式的改写,想到各种命题的结构,尤其是特称命题、全称命题的否定,要改变的两个地方.(3)看到含逻辑联结词的命题的真假判断,想到联结词的含义.解决命题的判定问题应注意的3点(1)判断四种命题真假有下面两个途径,一是先分别写出四种命题,再分别判断每个命题的真假;二是利用互为逆否命题是等价命题这一关系来判断它的逆否命题的真假.(2)要判定一个全称命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立.要判定一个特称(存在性)命题是真命题,只要在限定集合M中,至少能找到一个x=x0,使p(x0)成立即可.(3)含有量词的命题的否定,需从两方面进行:一是改写量词或量词符号;二是否定命题的结论,两者缺一不可.1.(2018·全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}[解析]化简A={x|x<-1或x>2},∴∁R A={x|-1≤x≤2}.故选B.[答案] B2.(2018·全国卷Ⅲ)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0} B.{1}C.{1,2} D.{0,1,2}[解析]∵A={x|x≥1},B={0,1,2},∴A∩B={1,2},故选C[答案] C3.(2017·全国卷Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B 中元素的个数为( )A .3B .2C .1D .0[解析] 集合A 表示单位圆上的所有的点,集合B 表示直线y =x 上的所有的点.A ∩B 表示直线与圆的公共点,显然,直线y =x 经过圆x 2+y 2=1的圆心(0,0),故共有两个公共点,即A ∩B 中元素的个数为2.[答案] B4.(2018·天津卷)设x ∈R ,则“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] 由⎪⎪⎪⎪⎪⎪x -12<12得-12<x -12<12,解得0<x <1.由x 3<1得x <1.当0<x <1时能得到x <1一定成立;当x <1时,0<x <1不一定成立.所以“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件. [答案] A5.(2018·北京卷)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________.[解析] 根据函数单调性的概念,只要找到一个定义域 为[0,2]的不单调函数,满足在定义域内有唯一的最小值点,且f (x )min =f (0)即可,除所给答案外,还可以举出f (x )=⎩⎪⎨⎪⎧0,x =0,1x,0<x ≤2等.[答案] f (x )=sin x ,x ∈[0,2](答案不唯一)1.集合作为高考必考内容,多年来命题较稳定,多以选择题形式在前3题的位置进行考查,难度较小.命题的热点依然会集中在集合的运算方面,常与简单的一元二次不等式结合命题.2.高考对常用逻辑用语考查的频率较低,且命题点分散,其中含有量词的命题的否定、充分必要条件的判断需要关注,多结合函数、平面向量、三角函数、不等式、数列等内容命题。

(文理通用)2019届高考数学大二轮复习 第1部分 专题1 集合、常用逻辑用语等 第1讲 集合与常用逻辑用语

(文理通用)2019届高考数学大二轮复习 第1部分 专题1 集合、常用逻辑用语等 第1讲 集合与常用逻辑用语

高考真题体验
• 1.(文)(2018·全国卷Ⅰ,1)已知集合A={0,2},B={-2
,-1A,0,1,2},则A∩B=( )
• A.{0,2}
B.{1,2}
• C.{0} D.{-2,-1,0,1,2}
• [解析] A∩B={0,2}∩{-2,-1,0,1,2}={0,2}.
• 故选A.
(理)(2018·全国卷Ⅰ,2)已知集合 A={x|x2-x-2>0},则∁RA=( B ) A.{x|-1<x<2} B.{x|-1≤x≤2} C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2} [解析] ∵ x2-x-2>0,∴ (x-2)(x+1)>0,∴ x>2 或 x<-1,即 A={x|x>2 或 x<-1}.在数轴上表示出集合 A,如图所示.
根据真值表可知 p∧(綈 q)为真命题,p∧q,(綈 p)∧q,(綈 p)∧(綈 q)为假命题.
故选 B.
(理)(2017·山东卷,3)已知命题 p:∀x>0,ln(x+1)>0;命题 q:若 a>b,则 a2>b2. 下列命题为真命题的是( B )
A.p∧q
B.p∧(綈 q)
C.(綈 p)∧q
D.(綈 p)∧(綈 q)
• 故选C.
• (理)(2018·全国卷Ⅱ,2)已知集合A={(x,y)|x2+y2≤3, x∈Z,y∈ZA},则A中元素的个数为( )
• A.9 B.8
• C.5 D.4
• [解析] 将满足x2+y2≤3的整数x,y全部列举出来,即(- 1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1 ,-1),(1,0),(1,1),共有9个.

高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案理

高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案理

第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合的补集运算·T2本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合中元素个数问题·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算与指数不等式解法·T1Ⅱ卷已知集合交集求参数值·T2Ⅲ卷已知点集求交点个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的并集运算、一元二次不等式的解法·T2Ⅲ卷集合的交集运算、一元二次不等式的解法·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解. (2)若已知的集合是点集,用数形结合法求解. (3)若已知的集合是抽象集合,用Venn 图求解.(1)(2018·南宁模拟)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B =( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9 B.8C.5 D.4解析:将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.答案:A2.(2018·德州模拟)设全集U=R,集合A={x∈Z|y=4x-x2},B={y|y=2x,x>1},则A∩(∁U B)=( )A.{2} B.{1,2}C.{-1,0,1,2} D.{0,1,2}解析:由题意知,A={x∈Z|4x-x2≥0}={x∈Z|0≤x≤4}={0,1,2,3,4},B={y|y>2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3) D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x +x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m,n为两个非零向量,则“m与n共线”是“m·n=|m·n|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当m与n反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n=|m·n|,则m·n=|m|·|n|cos〈m,n〉=|m|·|n|·|cos 〈m,n〉|,则cos〈m,n〉=|cos〈m,n〉|,故cos〈m,n〉≥0,即0°≤〈m,n〉≤90°,此时m与n不一定共线,即必要性不成立.故“m与n共线”是“m·n=|m·n|”的既不充分也不必要条件,故选D.答案:D快审题看到充分与必要条件的判断,想到定条件,找推式(即判定命题“条件⇒结论”和“结论⇒条件”的真假),下结论(若“条件⇒结论”为真,且“结论⇒条件”为假,则为充分不必要条件).用妙法根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1”或y≠1的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.避误区“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.[练通——即学即用]1.(2018·胶州模拟)设x,y是两个实数,命题“x,y中至少有一个数大于1”成立的充分不必要条件是( )A.x+y=2 B.x+y>2C.x2+y2>2 D.xy>1解析:当⎩⎪⎨⎪⎧x≤1y≤1时,有x+y≤2,但反之不成立,例如当x=3,y=-10时,满足x+y≤2,但不满足⎩⎪⎨⎪⎧x≤1y≤1,所以⎩⎪⎨⎪⎧x≤1y≤1是x+y≤2的充分不必要条件.所以“x+y>2”是“x,y中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:根据祖暅原理,“A,B在等高处的截面积恒相等”是“A,B的体积相等”的充分不必要条件,即綈q是綈p的充分不必要条件,即命题“若綈q, 则綈p”为真,逆命题为假,故逆否命题“若p,则q”为真,否命题“若q,则p”为假,即p是q的充分不必要条件,选A.答案:A授课提示:对应学生用书第115页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.由图可得∁R A={x|-1≤x≤2}.故选B.答案:B2.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x ≤3解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32. 答案:B4.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.6.(2018·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a>b,则a+c≤b+c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b,则a+c≤b+c”,故选A.答案:A7.(2018·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________.解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2.答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。

2019年高考数学大二轮复习专题一集合、常用逻辑用语、不等式、平面向量、算法、复数、推理与证明1.3

2019年高考数学大二轮复习专题一集合、常用逻辑用语、不等式、平面向量、算法、复数、推理与证明1.3

题型一
题型一 平面向量的概念及线性运算 (1)在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要 有方向不能盲目转化; (2)在用三角形加法法则时要保证“首尾相接”,结果向量是第一个向量的起 点指向最后一个向量终点所在的向量;在用三角形减法法则时要保证“同起点”, 结果向量的方向是指向被减向量.
1.(2018·全国卷Ⅱ)已知向量 a,b 满足|a|=1,a·b=-1,则 a·(2a-b)=( )
A.4
B.3
C.2
D.0
解析: a·(2a-b)=2a2-a·b=2|a|2-a·b.
∵|a|=1,a·b=-1,∴原式=2×12+1=3.
故选 B.
答案: B
2.(2018·南宁二中、柳州高中联考)已知单位向量 a,b 满足|a+b|=|a-b|,则



集合、常用逻辑用语、不等式、平 面向量、算法、复数、推理与证明
第 3 课时 平面向量
高考对本部分考查主要从以下方面进行: (1)平面向量的基本定理及基本运算,即向量的有关概 念,加、减法的几何意义,线性表示以及坐标运算等. (2)平面向量的数量积的基本运算及其应用,这也是历 年高考命题的热点.
答案: B
2.(2018·全国卷Ⅰ)在△ABC 中,AD 为 BC 边上的中线,E 为 AD 的中点,则
E→B=( )
A.34A→B-14A→C
B.14A→B-34A→C
C.34A→B+14A→C
D.14A→B+34A→C
解析: 作出示意图如图所示. E→B=E→D+D→B=12A→D+12C→B =12×12(A→B+A→C)+12(A→B-A→C) =34A→B-14A→C. 故选 A. 答案: A

高三数学二轮复习第一篇专题突破专题一集合、常用逻辑用语、平面向量、不等式、复数、算法、推理与证明刺第

高三数学二轮复习第一篇专题突破专题一集合、常用逻辑用语、平面向量、不等式、复数、算法、推理与证明刺第
A.
1 2
)
B.
2 2
C. 2
D.2
2i(1 i) 2i 2(1 i) 12 12 = = =1+i.∴|z|= 1 i (1 i)(1 i) 2
答案 C ∵(1+i)z=2i,∴z= =
2 .
z =2(i为虚数单位), 3.(2017江西南昌十校第二次模拟)已知复数z满足z+ z 是z的共轭复数,|z|= 2 ,则复数z的虚部为 ( 其中
方法归纳
1.与复数的相关概念和复数的几何意义有关的问题的解题思路:(1)变形 分离出实部和虚部,把复数的非代数形式化为代数形式.(2)根据条件,列 方程(组)求解. 2.与复数z的模|z|和共轭复数有关的问题的解题策略:(1)设出复数z的代 数形式z=a+bi(a,b∈R),代入条件.(2)根据已知条件解决.
跟踪集训
1.(2017江西五市部分学校第三次联考)已知i为虚数单位,复数z满足z(2+
10 i)= ,则z= ( 1 i
)
A.-1-3i
C.1+3i
B.-1+3i
D.1-3i
10 1 i
10 =1-3i. (1 i)(2 i)
答案 D 因为z(2+i)= ,所以z=
2.(2017山西八校第一次联考)设复数z满足(1+i)z=2i,则|z|= (
)
A.1
B.i
C.±i
D.±1
答案 D 设z=a+bi(a,b∈R),则 z =a-bi,由z+ z =2可得2a=2,解得a=1,所
2 以z=1+bi,由|z|=b ,解得b=±1,选D. 1 =2

2019高考数学二轮复习 专题一 集合、常用逻辑用语、算法、复数、推理与证明、不等式 第三讲 不等式学案 理

2019高考数学二轮复习 专题一 集合、常用逻辑用语、算法、复数、推理与证明、不等式 第三讲 不等式学案 理

第三讲 不等式、线性规划考点一 不等式的解法求解不等式的方法(1)对于一元二次不等式,应先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集.(2)解简单的分式、指数、对数不等式的基本思想是把它们等价转化为整式不等式(一般为一元二次不等式)求解.(3)解决含参数不等式的难点在于对参数的恰当分类,关键是找到对参数进行讨论的原因,确定好分类标准,有理有据、层次清楚地求解.[对点训练]1.(2018·湖南衡阳一模)若a ,b ,c 为实数,且a <b <0,则下列结论正确的是( ) A .ac 2<bc 2B .1a <1bC .b a >a bD .a 2>ab >b 2[解析] ∵c 为实数,∴取c =0,得ac 2=0,bc 2=0,此时ac 2=bc 2,故选项A 不正确;1a -1b=b -a ab ,∵a <b <0,∴b -a >0,ab >0,∴b -a ab >0,即1a >1b,故选项B 不正确;∵a <b <0,∴取a =-2,b =-1,则b a =-1-2=12,a b =2,此时b a <a b ,故选项C 不正确;∵a <b <0,∴a 2-ab =a (a -b )>0,∴a 2>ab ,又∵ab -b 2=b (a -b )>0,∴ab >b 2,故选项D 正确,故选D .[答案] D2.(2018·福建六校联考)已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)[解析] 易知f (x )在R 上是增函数,∵f (2-x 2)>f (x ),∴2-x 2>x ,解得-2<x <1,则实数x 的取值范围是(-2,1).故选D .[答案] D3.(2018·贵阳一模)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( )A .(-∞,-1)∪(3,+∞)B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞)[解析] 关于x 的不等式ax -b <0即ax <b 的解集是(1,+∞),∴a =b <0, ∴不等式(ax +b )(x -3)>0可化为 (x +1)(x -3)<0,解得-1<x <3, ∴所求不等式的解集是(-1,3).故选C . [答案] C4.(2018·山西太原一模)当x >1时不等式x +1x -1≥a 恒成立,则实数a 的取值范围是( )A .(-∞,3]B .[3,+∞)C .(-∞,2]D .[2,+∞)[解析] ∵x >1,∴x +1x -1=x -1+1x -1+1≥2(x -1)×1x -1+1=3,当且仅当x -1=1x -1,即x =2时等号成立,所以最小值为3,∴a ≤3,即实数a 的取值范围是(-∞,3].故选A .[答案] A[快速审题] (1)看到有关不等式的命题或结论的判定,想到不等式的性质.(2)看到解不等式,想到求解不等式的方法步骤.(1)求解一元二次不等式的3步:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集.(2)解一元二次不等式恒成立问题的3种方法:①图象法;②分离参数法;③更换主元法.考点二 基本不等式的应用1.基本不等式:a +b2≥ab(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)应用:两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ).当且仅当a =b 时取等号. (2)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号.(3)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +a b≥2(a ,b 同号),当且仅当a =b 时取等号. [对点训练]1.下列结论中正确的是( ) A .lg x +1lg x 的最小值为2B .x +1x的最小值为2C .sin 2x +4sin 2x 的最小值为4 D .当0<x ≤2时,x -1x无最大值[解析] 对于A ,lg x 可能小于0;对于B ,要使函数y =x +1x有意义,则x >0,x +1x≥2x ·1x=2,当且仅当x =1x,即x =1时取等号;对于C ,当且仅当sin 2x =4sin 2x ,即sin x =2时取等号,但sin x 的最大值为1;对于D ,x -1x在(0,2]上为增函数,因此有最大值.故选B .[答案] B2.(2018·吉林长春二模)已知x >0,y >0,且x +y =2xy ,则x +4y 的最小值为( ) A .4 B .72 C .92D .5[解析] 由x +y =2xy 得1x +1y =2.由x >0,y >0,x +4y =12(x +4y )⎝ ⎛⎭⎪⎫1x +1y =12⎝ ⎛⎭⎪⎫5+4y x +x y ≥12(5+4)=92,当且仅当4y x =x y 时等号成立,即x +4y 的最小值为92.故选C . [答案] C3.(2018·海淀期末)已知正实数a ,b 满足a +b =4,则1a +1+1b +3的最小值为________. [解析] ∵a +b =4,∴a +1+b +3=8,∴1a +1+1b +3=18[(a +1)+(b +3)]⎝⎛⎭⎪⎫1a +1+1b +3=18⎝ ⎛⎭⎪⎫2+b +3a +1+a +1b +3≥18(2+2)=12,当且仅当a +1=b +3,即a =3,b =1时取等号,∴1a +1+1b +3的最小值为12. [答案] 124.(2018·河南洛阳一模)若实数a ,b 满足1a +2b=ab ,则ab 的最小值为________.[解析] 依题意知a >0,b >0,则1a +2b ≥22ab=22ab,当且仅当1a =2b,即b =2a 时,“=”成立.因为1a +2b=ab ,所以ab ≥22ab,即ab ≥22,所以ab 的最小值为2 2.[答案] 2 2[快速审题] 看到最值问题,想到“积定和最小”,“和定积最大”.利用基本不等式求函数最值的3个关注点(1)形式:一般地,分子、分母有一个一次、一个二次的分式结构的函数以及含有两个变量的函数,特别适合用基本不等式求最值.(2)条件:利用基本不等式求最值需满足“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.(3)方法:使用基本不等式时,一般通过“拆、拼、凑”的技巧把求最值的函数或代数式化为ax +bx(ab >0)的形式,常用的方法是变量分离法和配凑法.考点三 线性规划问题1.线性目标函数z =ax +by 最值的确定方法把线性目标函数z =ax +by 化为y =-a b x +z b ,可知z b是直线ax +by =z 在y 轴上的截距,要根据b 的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.2.常见的目标函数类型(1)截距型:形如z =ax +by ,可以转化为y =-a b x +z b,利用直线在y 轴上的截距大小确定目标函数的最值;(2)斜率型:形如z =y -bx -a,表示区域内的动点(x ,y )与定点(a ,b )连线的斜率; (3)距离型:形如z =(x -a )2+(y -b )2,表示区域内的动点(x ,y )与定点(a ,b )的距离的平方;形如z =|Ax +By +C |,表示区域内的动点(x ,y )到直线Ax +By +C =0的距离的A 2+B 2倍.[对点训练]1.(2018·天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤5,2x -y ≤4,-x +y ≤1,y ≥0,则目标函数z =3x+5y 的最大值为( )A .6B .19C .21D .45[解析] 由变量x ,y 满足的约束条件画出可行域(如图中阴影部分所示).作出初始直线l 0:3x +5y =0,平移直线l 0,当直线经过点A (2,3)时,z 取最大值,即z max =3×2+5×3=21,故选C .[答案] C2.(2018·广东肇庆二模)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y ≥0,y ≥x ,y ≥-x +b ,若z =2x +y的最小值为3,则实数b =( )A .94 B .32 C .1D .34[解析] 作出不等式组对应的平面区域,如图中阴影部分所示. 由z =2x +y 得y =-2x +z , 平移初始直线y =-2x ,由图可知当直线y =-2x +z 经过点A 时,直线y =-2x +z 的纵截距最小,此时z 最小,为3,即2x +y =3.由⎩⎪⎨⎪⎧2x +y =3,y =2x ,解得⎩⎪⎨⎪⎧x =34,y =32,即A ⎝ ⎛⎭⎪⎫34,32,又点A 也在直线y =-x +b 上,即32=-34+b ,∴b =94.故选A .[答案] A3.(2018·江西九江二模)实数x ,y 满足线性约束条件⎩⎪⎨⎪⎧x -a ≤0,x +y -2≥0,2x -y +2≥0,若z =y -1x +3的最大值为1,则z 的最小值为( )A .-13B .-37C .13D .-15[解析] 作出可行域如图中阴影部分所示,目标函数z =y -1x +3的几何意义是可行域内的点(x ,y )与点A (-3,1)两点连线的斜率,当取点B (a,2a +2)时,z 取得最大值1,故2a +2-1a +3=1,解得a =2,则C (2,0).当取点C (2,0)时,z 取得最小值,即z min =0-12+3=-15.故选D .[答案] D4.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =(x +1)2+y 2的取值范围是________.[解析]由⎩⎪⎨⎪⎧x -y =0,x +2y =1,解得⎩⎪⎨⎪⎧x =13,y =13,即C ⎝ ⎛⎭⎪⎫13,13.(x +1)2+y 2的几何意义是区域内的点(x ,y )与定点(-1,0)间距离的平方. 由图可知,点(-1,0)到直线AB :2x +y +1=0的距离最小,为|-2+1|5=55,故z min=15;点(-1,0)到点C 的距离最大,故z max =⎝ ⎛⎭⎪⎫13+12+⎝ ⎛⎭⎪⎫132=179.所以z =(x +1)2+y 2的取值范围是⎣⎢⎡⎦⎥⎤15,179.[答案] ⎣⎢⎡⎦⎥⎤15,179 [快速审题] (1)看到最优解求参数,想到由最值列方程(组)求解.(2)看到最优解的个数不唯一,想到直线平行;看到形如z =(x -a )2+(y -b )2和形如z =y -bx -a,想到其几何意义. (3)看到最优解型的实际应用题,想到线性规划问题,想到确定实际意义.求目标函数的最值问题的3步骤(1)画域,根据线性约束条件,画出可行域;(2)转化,把所求目标函数进行转化,如截距型,即线性目标函数转化为斜截式;如斜率型,即根据两点连线的斜率公式,转化为可行域内的点与某个定点连线的斜率;平方型,即根据两点间距离公式,转化为可行域内的点与某个定点的距离;(3)求值,结合图形,利用函数的性质,确定最优解,求得目标函数的最值.1.(2016·全国卷Ⅰ)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( ) A .⎝⎛⎭⎪⎫-3,-32 B .⎝⎛⎭⎪⎫-3,32C .⎝ ⎛⎭⎪⎫1,32D .⎝ ⎛⎭⎪⎫32,3 [解析] ∵x 2-4x +3<0⇔(x -1)(x -3)<0⇔1<x <3, ∴A ={x |1<x <3}.∵2x -3>0⇔x >32,∴B =⎩⎨⎧⎭⎬⎫x |x >32,∴A ∩B =⎩⎨⎧⎭⎬⎫x |32<x <3=⎝ ⎛⎭⎪⎫32,3.故选D . [答案] D2.(2018·北京卷)设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},则( ) A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)∉A C .当且仅当a <0时,(2,1)∉A D .当且仅当a ≤32时,(2,1)∉A[解析] 若(2,1)∈A ,则有⎩⎪⎨⎪⎧2-1≥1,2a +1>4,2-a ≤2,解得a >32.结合四个选项,只有D 说法正确.故选D .[答案] D3.(2018·全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<abD .ab <0<a +b[解析] 解法一:∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0,排除C . ∵0<log 0.20.3<log 0.20.2=1,log 20.3<log 20.5=-1,即0<a <1,b <-1,∴a +b <0,排除D .∵b a =log 20.3log 0.20.3=lg0.2lg2=log 20.2,∴b -b a =log 20.3-log 20.2=log 232<1,∴b <1+ba⇒ab <a +b ,排除A .故选B .解法二:易知0<a <1,b <-1,∴ab <0,a +b <0,∵1a +1b=log 0.30.2+log 0.32=log 0.30.4<1,即a +bab<1,∴a +b >ab , ∴ab <a +b <0.故选B . [答案] B4.(2018·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为________.[解析] 由x ,y 所满足的约束条件画出对应的可行域(如图中阴影部分所示).作出初始直线l 0:3x +2y =0,平移直线l 0,当经过点A (2,0)时,z 取最大值,即z max=3×2=6.[答案] 65.(2018·天津卷)已知a ,b ∈R ,且a -3b +6=0,则2a+18b 的最小值为________.[解析] 由已知,得2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b =22-6=14,当且仅当2a=2-3b时等号成立,由a =-3b ,a -3b +6=0,得a =-3,b =1, 故当a =-3,b =1时,2a+18b 取得最小值14.[答案] 141.不等式作为高考命题热点内容之一,多年来命题较稳定,多以选择、填空题的形式进行考查,题目多出现在第5~9或第13~15题的位置上,难度中等,直接考查时主要是简单的线性规划问题,关于不等式性质的应用、不等式的解法以及基本不等式的应用,主要体现在其工具作用上.2.若不等式与函数、导数、数列等其他知识交汇综合命题,难度较大.热点课题3 求解不等式中参数范围问题[感悟体验]1.(2018·合肥模拟)在区间(1,2)上不等式x 2+mx +4>0有解,则m 的取值范围为( ) A .m >-4 B .m <-4 C .m >-5D .m <-5[解析] 记f (x )=x 2+mx +4,要使不等式x 2+mx +4>0在区间(1,2)上有解,需满足f (1)>0或f (2)>0,即m +5>0或2m +8>0,解得m >-5.故选C .[答案] C2.(2018·海淀模拟)当0<m <12时,若1m +21-2m≥k 2-2k 恒成立,则实数k 的取值范围为( )A .[-2,0)∪(0,4]B .[-4,0)∪(0,2]C .[-4,2]D .[-2,4][解析] 因为0<m <12,所以12×2m ×(1-2m )≤12×⎣⎢⎡⎦⎥⎤2m +(1-2m )22=18⎝ ⎛⎭⎪⎫当且仅当2m =1-2m ,即m =14时取等号,所以1m +21-2m =1m (1-2m )≥8,又1m +21-2m ≥k 2-2k 恒成立,所以k 2-2k -8≤0,所以-2≤k ≤4.所以实数k 的取值范围是[-2,4].故选D .[答案] D专题跟踪训练(九)一、选择题1.如果a <b <0,那么下列不等式成立的是( ) A .1a <1bB .ab <b 2C .-ab <-a 2D .-1a <-1b[解析] 解法一(利用不等式性质求解):由a <b <0,得b -a >0,ab >0,故1a -1b =b -aab>0,即1a >1b,故A 项错误;由a <b <0,得b (a -b )>0,故ab >b 2,故B 项错误;由a <b <0,得a (a-b )>0,即a 2>ab ,故-ab >-a 2,故C 项错误;由a <b <0,得a -b <0,ab >0,故-1a -⎝ ⎛⎭⎪⎫-1b =a -b ab <0,即-1a <-1b成立.故D 项正确. 解法二(特殊值法):令a =-2,b =-1,则1a =-12>-1=1b,ab =2>1=b 2,-ab =-2>-4=-a 2,-1a =12<1=-1b.故A ,B ,C 项错误,D 正确.[答案] D2.已知a ∈R ,不等式x -3x +a≥1的解集为p ,且-2∉p ,则a 的取值范围为( ) A .(-3,+∞)B .(-3,2)C .(-∞,2)∪(3,+∞)D .(-∞,-3)∪[2,+∞)[解析] ∵-2∉p ,∴-2-3-2+a <1或-2+a =0,解得a ≥2或a <-3.[答案] D3.(2018·大连一模)设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)[解析] 由题意得,f (1)=3,所以f (x )>f (1)=3,即f (x )>3, 如果x <0,则x +6>3,可得-3<x <0;如果x ≥0,则x 2-4x +6>3,可得x >3或0≤x <1. 综上,不等式的解集为(-3,1)∪(3,+∞). 故选A . [答案] A4.(2018·长春第二次质检)若关于x 的不等式ax -b >0的解集是(-∞,-2),则关于x 的不等式ax 2+bxx -1>0的解集为( )A .(-2,0)∪(1,+∞)B .(-∞,0)∪(1,2)C .(-∞,-2)∪(0,1)D .(-∞,1)∪(2,+∞)[解析] 关于x 的不等式ax -b >0的解集是(-∞,-2),∴a <0,b a=-2,∴b =-2a ,∴ax 2+bx x -1=ax 2-2ax x -1.∵a <0,∴x 2-2x x -1<0,解得x <0或1<x <2.故选B .[答案] B5.(2018·河南平顶山一模)若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是( )A .a ≥15B .a >15C .a <15D .a ≤15[解析] 因为对任意x >0,xx 2+3x +1≤a 恒成立,所以对x ∈(0,+∞),a ≥⎝ ⎛⎭⎪⎫x x 2+3x +1max,而对x ∈(0,+∞),x x 2+3x +1=1x +1x+3≤12x ·1x+3=15, 当且仅当x =1x 时等号成立,∴a ≥15.[答案] A6.(2018·江西师大附中摸底)若关于x ,y 的不等式组⎩⎪⎨⎪⎧x ≤0,x +y ≥0,kx -y +1≥0表示的平面区域是等腰直角三角形区域,则其表示的区域面积为( )A .12或14 B .12或18 C .1或12D .1或14[解析] 由不等式组表示的平面区域是等腰直角三角形区域,得k =0或1,当k =0时,表示区域的面积为12;当k =1时,表示区域的面积为14,故选A .[答案] A7.(2018·昆明质检)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17[解析] 解法一(图解法):已知约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0所表示的平面区域为下图中的阴影部分(包含边界),其中A (0,2),B (3,0),C (1,3).根据目标函数的几何意义,可知当直线y =-25x +z5过点B (3,0)时,z 取得最小值2×3+5×0=6.解法二(界点定值法):由题意知,约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0所表示的平面区域的顶点分别为A (0,2),B (3,0),C (1,3).将A ,B ,C 三点的坐标分别代入z =2x +5y ,得z =10,6,17,故z 的最小值为6.[答案] B8.(2018·合肥一模)在关于x 的不等式x 2-(a +1)x +a <0的解集中至多包含2个整数,则a 的取值范围是( )A .(-3,5)B .(-2,4)C .[-3,5]D .[-2,4][解析] 关于x 的不等式x 2-(a +1)x +a <0可化为(x -1)(x -a )<0.当a =1时,不等式的解集为∅;当a >1时,不等式的解集为1<x <a ;当a <1时,不等式的解集为a <x <1.要使得解集中至多包含2个整数,则a ≤4且a ≥-2,所以实数a 的取值范围是[-2,4],故选D .[答案] D9.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,则z =2y2x +1的取值范围是( ) A .⎣⎢⎡⎦⎥⎤43,4 B .⎣⎢⎡⎭⎪⎫43,4 C .[2,4]D .(2,4][解析] 作出不等式组对应的平面区域如图中阴影部分(不包括边界OB )所示,其中A (1,2),B (0,2).z =2y 2x +1=y x +12=y -0x -⎝ ⎛⎭⎪⎫-12,则z 的几何意义是可行域内的点P (x ,y )与点M ⎝ ⎛⎭⎪⎫-12,0所连直线的斜率.可知k MA =2-01-⎝ ⎛⎭⎪⎫-12=43,k MB =2-00-⎝ ⎛⎭⎪⎫-12=4,结合图形可得43≤z <4.故z =2y 2x +1的取值范围是⎣⎢⎡⎭⎪⎫43,4. [答案] B10.(2018·四川资阳诊断)已知a >0,b >0,且2a +b =ab ,则a +2b 的最小值为( ) A .5+2 2 B .8 2 C .5D .9[解析] 解法一:∵a >0,b >0,且2a +b =ab ,∴a =bb -2>0,解得b >2.则a +2b =bb -2+2b =1+2b -2+2(b -2)+4≥5+22b -2·2(b -2)=9,当且仅当b =3,a =3时等号成立,其最小值为9.解法二:∵a >0,b >0,∴ab >0. ∵2a +b =ab ,∴1a +2b=1,∴(a +2b )⎝ ⎛⎭⎪⎫1a +2b=5+2b a +2a b≥5+22b a ·2a b=5+4=9.当且仅当2b a =2ab时,等号成立,又2a +b =ab ,即a =3,b =3时等号成立,其最小值为9.[答案] D11.(2018·湖南湘东五校联考)已知实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,且z =x +y 的最大值为6,则(x +5)2+y 2的最小值为( )A .5B .3C . 5D . 3[解析] 如图,作出不等式组⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k对应的平面区域,由z =x +y ,得y =-x +z ,平移直线y =-x ,由图可知当直线y =-x +z 经过点A 时,直线y =-x +z 在y 轴上的截距最大,此时z最大,为6,即x +y =6.由⎩⎪⎨⎪⎧x +y =6,x -y =0得A (3,3),∵直线y =k 过点A ,∴k =3.(x +5)2+y 2的几何意义是可行域内的点(x ,y )与D (-5,0)的距离的平方,由可行域可知,[(x +5)2+y 2]min 等于D (-5,0)到直线x +2y =0的距离的平方.则(x +5)2+y 2的最小值为⎝⎛⎭⎪⎫|-5|12+222=5.故选A .[答案] A12.(2018·广东清远一中一模)若正数a ,b 满足:1a +1b =1,则1a -1+9b -1的最小值为( )A .16B .9C .6D .1[解析] ∵正数a ,b 满足1a +1b =1,∴a +b =ab ,1a =1-1b >0,1b =1-1a>0,∴b >1,a >1,则1a -1+9b -1≥29(a -1)(b -1)=29ab -(a +b )+1=6⎝ ⎛⎭⎪⎫当且仅当a =43,b =4时等号成立,∴1a -1+9b -1的最小值为6,故选C . [答案] C 二、填空题13.已知集合,则M ∩N=________.[解析] 不等式x -2x -3<0等价于(x -2)(x -3)<0, 解得2<x <3,故不等式x -2x -3<0的解集为(2,3),即M =(2,3). 由log 12 (x -2)≥1,可得⎩⎪⎨⎪⎧x -2>0,x -2≤12,解得2<x ≤52,所以N =⎝ ⎛⎦⎥⎤2,52. 故M ∩N =⎝ ⎛⎦⎥⎤2,52. [答案] ⎝⎛⎦⎥⎤2,5214.(2018·全国卷Ⅱ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,则z =x +y 的最大值为________.[解析] 由线性约束条件画出可行域(如图中阴影部分所示).当直线x +y -z =0经过点A (5,4)时,z =x +y 取得最大值,最大值为9. [答案] 915.(2018·安徽合肥一模)某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A 、B 两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时.A ,B 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为________千元.[解析] 设生产甲产品x 件,生产乙产品y 件,利润为z 千元,则⎩⎪⎨⎪⎧2x +3y ≤480,6x +y ≤960,z=2x +y ,作出⎩⎪⎨⎪⎧x ≥0,y ≥0,2x +3y ≤480,6x +y ≤960表示的可行域如图中阴影部分所示,作出直线2x +y =0,平移该直线,当直线z =2x +y 经过直线2x +3y =480与直线6x +y =960的交点(150,60)(满足x ∈N ,y ∈N )时,z 取得最大值,为360.[答案] 36016.(2018·郑州高三检测)若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是________.[解析] 对于x 2+3xy -1=0可得y =13⎝ ⎛⎭⎪⎫1x -x ,∴x +y =2x 3+13x ≥229=223(当且仅当x =22时,等号成立),故x +y 的最小值是223. [答案]223。

2019年高考数学二轮复习专题一集合、逻辑用语、不等式等专题能力训练3平面向量与复数文

2019年高考数学二轮复习专题一集合、逻辑用语、不等式等专题能力训练3平面向量与复数文

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……专题能力训练3 平面向量与复数一、能力突破训练1.(2018全国Ⅰ,文2)设z=+2i,则|z|=()A.0B.C.1D.2.如图所示的方格纸中有定点O,P,Q,E,F,G,H,则=()A. B.C. D.3.设a,b是两个非零向量,下列结论正确的为()A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|4.在复平面内,若复数z的对应点与的对应点关于虚轴对称,则z=()A.2-iB.-2-iC.2+iD.-2+i5.(2018全国Ⅱ,文4)已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=()A.4B.3C.2D.06.下面是关于复数z=的四个命题:p1:| z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为-1,其中的真命题为()A.p2,p3B.p1,p2C.p2,p4D.p3,p47.已知菱形ABCD的边长为a,∠ABC=60°,则=()A.- a2B.- a2C. a2D. a28.设向量a=(x,x+1),b=(1,2),且a⊥b,则x= .9.(2018全国Ⅲ,文13)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ= .10.在△ABC中,若=4,则边AB的长度为.11.已知a=(cos θ,sin θ),b=(,-1),f(θ)=a·b,则f(θ)的最大值为.12.过点P(1,)作圆x2+y2=1的两条切线,切点分别为A,B,则= .13.在平面直角坐标系中,O为坐标原点,已知向量=(2,2),=(4,1),在x轴上取一点P,使有最小值,则点P的坐标是.14.设D,E分别是△ABC的边AB,BC上的点,|AD|=|AB|,|BE|=|BC|.若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.二、思维提升训练15.若z=4+3i,则=()A.1B.-1C.iD.i16.如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=,I2=,I3=,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I317.已知两点M(-3,0),N(3,0),点P为坐标平面内一动点,且||·||+=0,则动点P(x,y)到点M(-3,0)的距离d的最小值为()A.2B.3C.4D.618.已知a∈R,i为虚数单位,若为实数,则a的值为.19.已知两个单位向量a,b的夹角为60°,c=t a+(1-t)b.若b·c=0,则t= .20.在任意四边形ABCD中,E,F分别是AD,BC的中点,若=λ+μ,则λ+μ= .21.已知a,b∈R,i是虚数单位.若(a+i)(1+i)=b i,则a+b i= .专题能力训练3平面向量与复数一、能力突破训练1.C解析因为z=+2i=+2i=i,所以|z|=1.2.C解析设a=,以OP,OQ为邻边作平行四边形,则夹在OP,OQ之间的对角线对应的向量即为向量a=.因为a和长度相等,方向相同,所以a=,故选C.3.C解析设向量a与b的夹角为θ.对于A,可得cos θ=-1,因此a⊥b不成立;对于B,满足a⊥b 时|a+b|=|a|-|b|不成立;对于C,可得cos θ=-1,因此成立,而D显然不一定成立.4.D解析=2+i所对应的点为(2,1),关于虚轴对称的点为(-2,1),故z=-2+i.5.B解析a·(2a-b)=2a2-a·b=2-(-1)=3.6.C解析z==-1-i,故|z|=,p1错误;z2=(-1-i)2=(1+i)2=2i,p2正确;z的共轭复数为-1+i,p3错误;p4正确.7.D解析如图,设=a,=b.则=()·=(a+b)·a=a2+a·b=a2+a·a·cos60°=a2+a2=a2.8.- 解析∵a⊥b,∴a·b=x+2(x+1)=0,解得x=-.9. 解析 2a+b=2(1,2)+(2,-2)=(4,2),c=(1,λ),由c∥(2a+b),得4λ-2=0,得λ=.10.2解析由=4,=4,得=8,于是·()=8,即=8,故||2=8,得||=2.11.2解析f(θ)=a·b=cos θ-sin θ=2=2cos,故当θ=2kπ-(k∈Z)时,f(θ)max=2.12. 解析由题意可作右图,∵OA=1,AP=,又PA=PB,∴PB=.∴∠APO=30°.∴∠APB=60°.∴=||||·cos 60°=.13.(3,0)解析设点P的坐标为(x,0),则=(x-2,-2),=(x-4,-1),=(x-2)(x-4)+(-2)×(-1)=x2-6x+10=(x-3)2+1.当x=3时,有最小值1.此时点P的坐标为(3,0).14. 解析由题意)=-,故λ1=-,λ2=,即λ1+λ2=.二、思维提升训练15.D解析因为z=4+3i,所以它的模为|z|=|4+3i|==5,共轭复数为=4-3i.故i,选D.16.C解析由题图可得OA<AC<OC,OB<BD<OD,∠AOB=∠COD>90°,∠BOC<90°,所以I2=>0,I1=<0,I3=<0,且|I1|<|I3|,所以I3<I1<0<I2,故选C.17.B解析因为M(-3,0),N(3,0),所以=(6,0),||=6,=(x+3,y),=(x-3,y).由||·||+=0,得6+6(x-3)=0,化简得y2=-12x,所以点M是抛物线y2=-12x 的焦点,所以点P到M的距离的最小值就是原点到M(-3,0)的距离,所以d min=3.18.-2解析∵i为实数,∴-=0,即a=-2.19.2解析∵c=t a+(1-t)b,∴b·c=t a·b+(1-t)|b|2.又|a|=|b|=1,且a与b的夹角为60°,b·c=0,∴0=t|a||b|cos 60°+(1-t),0=t+1-t.∴t=2.20.1解析如图,因为E,F分别是AD,BC的中点,所以=0,=0.又因为=0,所以.①同理.②由①+②得,2+()+()=,所以).所以λ=,μ=.所以λ+μ=1.21.1+2i解析因为(a+i)(1+i)=a-1+(a+1)i=b i,a,b∈R,所以解得故a+b i=1+2i.。

2019届高考数学二轮复习1回顾1集合、常用逻辑用语、复数学案(含解析)

2019届高考数学二轮复习1回顾1集合、常用逻辑用语、复数学案(含解析)

回顾1集合、常用逻辑用语、复数[必记知识]集合(1)集合的运算性质①A∪B=A⇔B⊆A;②A∩B=B⇔B⊆A;③A⊆B⇔∁U A⊇∁U B.(2)子集、真子集个数计算公式对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n -1,2n-2.(3)集合运算中的常用方法若已知的集合是不等式的解集,用数轴求解;若已知的集合是点集,用数形结合法求解;若已知的集合是抽象集合,用Venn图求解.四种命题之间的相互关系四种命题的真假关系否命题与命题的否定的区别全称命题的否定是特称命题,特称命题的否定是全称命题,如下所述:命题 命题的否定 [写量词和否定结论. 全称命题与特称命题真假的判断方法(1)复数z =a +b i(a ,b ∈R )的分类 ①z 是实数⇔b =0; ②z 是虚数⇔b ≠0; ③z 是纯虚数⇔a =0且b ≠0. (2)共轭复数复数z =a +b i 的共轭复数z -=a -b i. (3)复数的模复数z =a +b i 的模|z |=a 2+b 2. (4)复数相等的充要条件a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). 特别地,a +b i =0⇔a =0且b =0(a ,b ∈R ). (5)复数的运算法则加减法:(a +b i)±(c +d i)=(a ±c )+(b ±d )i ; 乘法:(a +b i)(c +d i)=(ac -bd )+(ad +bc )i ;除法:(a +b i)÷(c +d i)=ac +bd c 2+d 2+bc -adc 2+d 2i.(其中a ,b ,c ,d ∈R .)[必会结论]集合运算的重要结论(1)A ∩B ⊆A ,A ∩B ⊆B ;A ⊆A ∪B ,B ⊆A ∪B ,A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A ;A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A .(2)若A ⊆B ,则A ∩B =A ;反之,若A ∩B =A ,则A ⊆B .若A ⊆B ,则A ∪B =B ;反之,若A ∪B =B ,则A ⊆B .(3)A ∩∁U A =∅,A ∪∁U A =U ,∁U (∁U A )=A .(4)∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).一些常见词语的否定(1)定义法:正、反方向推理,若p ⇒q ,则p 是q 的充分条件(或q 是p 的必要条件);若p ⇒q ,且q ⇒/ p ,则p 是q 的充分不必要条件(或q 是p 的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A ⊆B ,则A 是B 的充分条件(B 是A 的必要条件);若A =B ,则A 是B 的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题. 复数的几个常见结论 (1)(1±i)2=±2i. (2)1+i 1-i =i ,1-i 1+i=-i. (3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0(n ∈N ).(4)ω=-12±32i ,且ω0=1,ω2=ω-,ω3=1,1+ω+ω2=0.[必练习题]1.设集合M ={x ∈Z |-3<x <2},N ={x ∈Z |-1≤x ≤3},则M ∩N 等于( ) A .{0,1} B .{-1,0,1,2} C .{0,1,2} D .{-1,0,1}答案:D2.已知集合A ={x |x 2-4x +3<0},B ={y |y =2x -1,x ≥0},则A ∩B 等于( ) A .∅ B .[0,1)∩(3,+∞) C .A D .B答案:C3.设i 是虚数单位,则复数2i1-i在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案:B4.若a 为实数,则(2+a i)(a -2i)=-4i ,则a 等于( ) A .-1 B .0 C .1 D .2答案:B5.已知集合A ={1,2,3,4,5},B ={5,6,7},C ={(x ,y )|x ∈A ,y ∈A ,x +y ∈B },则C 中所含元素的个数为( )A .5B .6C .12D .13答案:D6.设命题甲:ax 2+2ax +1>0的解集是实数集R ;命题乙:0<a <1,则命题甲是命题乙成立的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件答案:C7.下列四个命题:①若x >0,则x >sin x 恒成立;②命题“若x -sin x =0,则x =0”的逆否命题为“若x ≠0,则x -sin x ≠0”; ③“命题p ∧q 为真”是“命题p ∨q 为真”的充分不必要条件; ④命题“∀x ∈R ,x -ln x >0”的否定是“∃x 0∈R ,x 0-ln x 0<0”. 其中正确命题的个数是( ) A .1B .2C .3D .4答案:C8.已知A ={(x ,y )|y =2x +5},B ={(x ,y )|y =1-2x },则A ∩B =________. 答案:{(-1,3)}9.i 是虚数单位,若2+i1+i =a +b i(a ,b ∈R ),则lg(a +b )的值为________.答案:010.已知命题p :∃x 0∈R ,x 20+ax 0+a <0,若綈p 是真命题,则实数a 的取值范围是________. 答案:[0,4]。

2019年高考数学大二轮复习专题一集合常用逻辑用语不等式平面向量算法复数推理与证明1.2不等式课件2

2019年高考数学大二轮复习专题一集合常用逻辑用语不等式平面向量算法复数推理与证明1.2不等式课件2

题型三
题型三
基本不等式
a+b 基本不等式: 2 ≥ ab (1)基本不等式成立的条件:a>0,b>0. (2)等号成立的条件:当且仅当 a=b 时取等号. (3)应用:两个正数的积为常数时,它们的和有最小值;两个正数的和为常数 时,它们的积有最大值.
1.下列结论正确的是(
)
1 A.当 x>0 且 x≠1 时,lg x+ ≥2 lg x 1 B.当 x>0 时, x+ ≥2 x 1 C.当 x≥2 时,x+ 的最小值为 2 x 1 D.当 0<x≤2 时,x- x 无最大值
x-y+2≥0, 2.(2018· 开封市高三定位考试)已知实数 x,y 满足约束条件x+2y+2≥0, x≤1, 则
1x-2y z=2 的最大值是(
) 1 B.16 D.64
1 A.32 C.32
解析: 法一:作出不等式组表示的平面区域,如图中 阴影部分所示,设 u=x-2y,由图知,当 u=x-2y 经过点 A(1,3)时取得最小值,即 umin=1-2×3=-5,此时
与定点(0,-1)连线的斜率的取值范围,由图可知,当直线过点 C(1,2)时,斜率最 2--1 大,为 =3. 1-0
答案:
3
5.(2018· 合肥市第一次教学质量检测)某企业生产甲、乙两种产品,销售利润 分别为 2 千元/件、1 千元/件.甲、乙两种产品都需要在 A,B 两种设备上加工,生 产一件甲产品需用 A 设备 2 小时,B 设备 6 小时;生产一件乙产品需用 A 设备 3 小时,B 设备 1 小时.A,B 两种设备每月可使用时间数分别为 480 小时、960 小 时,若生产的产品都能及时售出,则该企业每月利润的最大值为________千元.

(理通用)2019届高考数学大二轮复习-第1部分 专题1 集合、常用逻辑用语等 第2讲 向量运算与复

(理通用)2019届高考数学大二轮复习-第1部分 专题1 集合、常用逻辑用语等 第2讲 向量运算与复
• (3)关注程序框图和基本算法语句的应用与判别,尤其是含循环结 构的程序框图要高度重视.
• (4)掌握各种推理的特点和推理过程,同时要区分不同的推理形式 ,对归纳推理要做到归纳到位、准确;对类比推理要找到事物的 相同点,做到类比合,对演绎推理要做到过程严密.
• 预测2019年命题热点为:
• (1)利用平面向理的基本运算解决数量积、夹角、模或垂直、共线 等问题,与三角函数、解析几何交汇命题.
第一部分
专题强化突破
专题一 集合、常用逻辑用语、向量、复数、 算法、推理与证明、不等式及线性规划
第二讲 向量运算与复数运算、算法、推理与证明
1
高考考点聚焦
2
核心知识整合
3
高考真题体验
4
命题热点突破
5
课后强化训练
高考考点聚焦
高考考点
平面向量的 运算及运用
复数的概念 及运算
程序框图
合情推理
考点解读
B.-45+35i
C.-35-45i
D.-35+45i
[解析] 11-+22ii=1-12+i21i+2 2i=11--4+2i42i=-35+4i=-35+45i.
故选 D.
3.(2018·全国卷Ⅱ,4)已知向量 a,b 满足|a|=1,a·b=-1,则 a·(2a-b)=( B )
A.4
B.3
1.忽略复数的定义: 在解决与复数概念有关的问题时,在运用复数的概念时忽略某一条件而致误. 2.不能准确把握循环次数 解答循环结构的程序框图(流程图)问题,要注意循环次数,防止多一次或少一次 的错误. 3.忽略特殊情况:两个向量夹角为锐角与向量的数量积大于 0 不等价;两个向 量夹角为钝角与向量的数量积小于 0 不等价.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题能力训练2 不等式、线性规划
能力突破训练
1.已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()
A.B.ln(x2+1)>ln(y2+1)
C.sin x>sin y
D.x3>y3
2.已知函数f(x)=(x-2)(ax+b)为偶函数,且在区间(0,+∞)内单调递增,则f(2-x)>0的解集为()
A.{x|x>2或x<-2}
B.{x|-2<x<2}
C.{x|x<0或x>4}
D.{x|0<x<4}
3.不等式组的解集为()
A.(0,)
B.(,2)
C.(,4)
D.(2,4)
4.(2017北京,理4)若x,y满足则x+2y的最大值为()
A.1
B.3
C.5
D.9
5.已知函数f(x)=(ax-1)(x+b),若不等式f(x)>0的解集是(-1,3),则不等式f(-2x)<0的解集是()
A.
B.
C.
D.
6.(2017天津,理2)设变量x,y满足约束条件则目标函数z=x+y的最大值为()
A. B.1 C. D.3
7.(2017陕西咸阳二模)已知实数x,y满足的取值范围是()
A. B.[3,11]
C. D.[1,11]
8.已知变量x,y满足约束条件若z=2x-y的最大值为2,则实数m等于()
A.-2
B.-1
C.1
D.2
9.已知变量x,y满足约束条件若x+2y≥-5恒成立,则实数a的取值范围为()
A.(-∞,-1]
B.[-1,+∞)
C.[-1,1]
D.[-1,1)
10.(2017全国Ⅲ,理13)若x,y满足约束条件则z=3x-4y的最小值
为.
11.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.
12.设不等式组表示的平面区域为D,若指数函数y=a x的图象上存在区域D上的
点,则a的取值范围是.
思维提升训练
13.(2017广东湛江调研)已知x,y满足约束条件若z=y-ax取得最大值的最优解不唯一,则实数a的值为()
A.或-1
B.或2
C.1或2
D.-1或2
14.设对任意实数x>0,y>0,若不等式x+≤a(x+2y)恒成立,则实数a的最小值为()
A.B.
C.D.
15.设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为8,则ab的最大值为.
16.已知x,y∈(0,+∞),2x-3=,则的最小值为.
17.若函数f(x)=·lg x的值域为(0,+∞),则实数a的最小值为.
18.已知存在实数x,y满足约束条件则R的最小值是.
参考答案
专题能力训练2不等式、线性规划
能力突破训练
1.D解析由a x<a y(0<a<1)知,x>y,故x3>y3,选D.
2.C解析∵f(x)=ax2+(b-2a)x-2b为偶函数,
∴b-2a=0,即b=2a,∴f(x)=ax2-4a.∴f'(x)=2ax.又f(x)在区间(0,+∞)上单调递增,∴a>0.
由f(2-x)>0,得a(x-2)2-4a>0,
∵a>0,∴|x-2|>2,解得x>4或x<0.
3.C解析由|x-2|<2,得0<x<4;由x2-1>2,得x>或x<-,取交集得<x<4,故选C.
4.D解析由题意画出可行域(如图).。

相关文档
最新文档