2018年秋高中数学 课时分层作业1 任意角 新人教A版必修4
高中数学 课时跟踪训练1 任意角 新人教A版必修4-新人教A版高一必修4数学试题
课时跟踪训练(一)(时间45分钟) 题型对点练(时间20分钟)题组一 任意角的概念 1.给出下列说法: ①锐角都是第一象限角; ②第一象限角一定不是负角; ③第二象限角是钝角;④小于180°的角是钝角、直角或锐角.其中正确命题的序号为________(把正确命题的序号都写上).[解析]①正确;②错,若顺时针旋转终边落在第一象限,则为负角;③错,第二象限角不都是钝角,钝角都是第二象限角;④错,小于180°的角包括负角和零角.[答案]①2.将时钟拨快20分钟,则分针转过的度数是________.[解析] 时钟拨快20分钟,相当于转了13小时.因为时针转过1小时,分针转-360°,所以时针转13小时,分针转过的度数为13×(-360°)=-120°.[答案] -120°3.写出图(1),(2)中的角α,β,γ的度数.[解] 题干图(1)中,α=360°-30°=330°; 题干图(2)中,β=-360°+60°+150°=-150°;γ=360°+60°+(-β)=360°+60°+150°=570°.题组二 终边相同的角与象限角4.与405°角终边相同的角是( )A .k ·360°-45°,k ∈ZB .k ·180°-45°,k ∈ZC .k ·360°+45°,k ∈ZD .k ·180°+45°,k ∈Z[解析] 因为405°=360°+45°,所以与405°终边相同的角为k ·360°+45°,k ∈Z .[答案] C5.-435°角的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限[解析] 因为-435°=-360°-75°,而-75°为第四象限角,所以-435°为第四象限角.[答案] D6.若角α,β的终边相同,则α-β的终边在( ) A .x 轴的非负半轴 B .y 轴的非负半轴 C .x 轴的非正半轴D .y 轴的非正半轴[解析]∵角α,β终边相同,∴α=k ·360°+β(k ∈Z ),∴α-β=k ·360°(k ∈Z ),故α-β的终边在x 轴的非负半轴上.[答案] A题组三 角αn,(n ∈N *)所在象限的确定7.已知α为第一象限角,则α2所在的象限是( )A .第一象限或第二象限B .第一象限或第三象限C .第二象限或第四象限D .第二象限或第三象限[解析] 由于k ·360°<α<k ·360°+90°,k ∈Z , 得k ·180°<α2<k ·180°+45°,当k 为偶数时,α2为第一象限角;当k 为奇数时,α2为第三象限角.[答案] B8.已知角2α的终边在x 轴的上方,那么α是( ) A .第一象限角 B .第一、二象限角 C .第一、三象限角D .第一、四角限角[解析] 由题意知k ·360°<2α<180°+k ·360°(k ∈Z ),故k ·180°<α<90°+k ·180°(k ∈Z ),按照k 的奇偶性进行讨论.当k =2n (n ∈Z )时,n ·360°<α<90°+n ·360°(n ∈Z ),∴α在第一象限;当k =2n +1(n ∈Z )时,180°+n ·360°<α<270°+n ·360°(n ∈Z ),∴α在第三象限.故α在第一或第三象限.[答案] C综合提升练(时间25分钟)一、选择题1.给出下列四个命题:①-75°角是第四象限角;②225°角是第三象限角;③475°角是第二象限角;④-315°角是第一象限角,其中真命题有( )A .1个B .2个C .3个D .4个[解析]①正确;②正确;③中475°=360°+115°,因为115°为第二象限角,所以475°也为第二象限角,正确;④中-315°=-360°+45°,因为45°为第一象限角,所以-315°也为第一象限角,正确.[答案] D2.终边在直线y =-x 上的所有角的集合是( ) A .{α|α=k ·360°+135°,k ∈Z } B .{α|α=k ·360°-45°,k ∈Z } C .{α|α=k ·180°+225°,k ∈Z } D .{α|α=k ·180°-45°,k ∈Z }[解析] 因为直线y =-x 为二、四象限角平分线,所以角终边落到第四象限可表示为k ·360°-45°=2k ·180°-45°,k ∈Z ;终边落到第二象限可表示为k ·360°-180°-45°=(2k -1)·180°-45°,k ∈Z ,综上可得终边在直线y =-x 上的所有角的集合为{α|α=k ·180°-45°,k ∈Z }.[答案] D3.若φ是第二象限角,那么φ2和90°-φ都不是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角[解析]∵φ是第二象限角,∴k ·360°+90°<φ<k ·360°+180°,k ∈Z , ∴k ·180°+45°<φ2<k ·180°+90°,k ∈Z ,∴φ2是第一或第三象限角,而-φ是第三象限角, ∴90°-φ是第四象限角,故选B. [答案] B 二、填空题4.与角-1560°终边相同的角的集合中,最小正角是________,最大负角是________. [解析] 由于-1560°÷360°=-4×360°-120° 即最大负角为-120°,最小正角为240°. [答案] 240° -120°5.若α,β两角的终边互为反向延长线,且α=-120°,则β=________. [解析] 由题意知,β角的终边与60°角终边相同,则β=k ·360°+60°,k ∈Z . [答案]k ·360°+60°,k ∈Z 三、解答题6.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.[解] 由题意可知,α+β=-280°+k ·360°,k ∈Z ,∵α,β都是锐角,∴0°<α+β<180°. 取k =1,得α+β=80°.① ∵α-β=670°+k ·360°,k ∈Z .∵α,β都是锐角,∴{ 0°<α<90°-90°<-β<0°, ∴-90°<α-β<90°.取k =-2,得α-β=-50°.② 由①②,得α=15°,β=65°.7.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB上;(2)终边落在直线OA上;(3)终边落在阴影区域内(含边界).[解](1)终边落在射线OB上的角的集合为S1={α|α=60°+k·360°,k∈Z}.(2)终边落在直线OA上的角的集合为S2={α|α=30°+k·180°,k∈Z}.(3)终边落在阴影区域内(含边界)的角的集合为S3={α|30°+k·180°≤α≤60°+k·180°,k∈Z}.。
高中数学 1.1.1任意角 新人教A版必修4(2)
【解】 终边在30°角的终边所在直线上的角的集合为 S1={α|α=30°+k·180°,k∈Z},终边在180°-75°=105°角 的终边所在直线上的角的集合为S2={α|α=105°+k·180°,k ∈Z},因此,终边在图中阴影部分内的角α的取值范围为 {α|α=30°+k·180°≤α<105°+k·180°,k∈Z}.
终边相同的角
所有与角α终边相同的角,连同角α在内,可构成一 个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边 相同的角,都可以表示成角α与 整数个周角 的和.
5.终边相同的角相等吗?相等的角终边相同吗? 答:终边相同的角不一定相等,它们相差360°的整数 倍;相等的角,终边相同.
1.解读任意角的概念 (1)用运动的观点来定义角,就可以把角的概念推广到 任意角,包括任意大小的正角、负角和零角. (2)对角的概念的认识关键是抓住“旋转”二字. ①要明确旋转的方向; ②要明确旋转的大小; ③要明确射线未作任何旋转时的位置.
2.终边相同的角的关注点 所有与角α终边相同的角,连同角α在内可以用式子 k·360°+α,k∈Z表示,在运用时需注意以下四点: (1)k是整数,这个条件不能漏掉. (2)α是任意角. (3)k·360°与α之间用“+”连接,如k·360°-30°应看成 k·360°+(-30°),k∈Z. (4)终边相同的角不一定相等,终边相同的角有无数 个,它们相差周角的整数倍.相等的角终边一定相同.
课堂篇02
合作探究
终边相同的角及象限角
【例1】 将下列各角表示为k·360°+α(k∈ Z,0°≤α<360°)的形式,并指出是第几象限角.
(1)420°;(2)-510°;(3)1 020°.
【解】 (1)420°=360°+60°, 而60°角是第一象限角,故420°是第一象限角. (2)-510°=-2×360°+210°, 而210°是第三象限角,故-510°是第三象限角. (3)用1 020°除以360°的商为2,余数为300°, 即1 020°=2×360°+300°, 而300°是第四象限角,故1 020°是第四象限角.
高中数学(人教版)必修四课时作业:1.1.1任意角(Word版,有答案)
高中数学学习材料金戈铁骑整理制作1.1.1任意角1.下列角中终边与330°相同的角是( )A .30°B .-30°C .630°D .-630°2.-1120°角所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.把-1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )的形式是( )A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360°4.终边在第二象限的角的集合可以表示为( )A .{α∣90°<α<180°}B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }D .{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z }5.下列命题是真命题的是( )Α.三角形的内角必是一、二象限内的角 B .第一象限的角必是锐角C .不相等的角终边一定不同D .{}Z k k ∈±⋅=,90360| αα={}Z k k ∈+⋅=,90180|αα 6.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=C C .A ⊂CD .A=B=C7.已知角2α的终边在x 轴的上方,那么α是( )A .第一象限角B .第一、二象限角C .第一、三象限角D .第一、四象限角8.若α是第四象限的角,则α-180是 .(89上海) 9.写出—720°到720°之间与—1068°终边相同的角的集合___________________.10.与1991°终边相同的最小正角是________, 绝对值最小的角是_______________.11.若角α的终边为第二象限的角平分线,则α的集合为______________________.12.在0°到360°范围内,与角-60°的终边在同一条直线上的角为 .13.求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角:(1) 210-; (2)731484'-.。
高中数学第一章三角函数课时作业41.2.1任意角的三角函数(第1课时)新人教A版必修4
课时作业(四) 1.2.1 任意角的三角函数(第一课时)1.(高考真题·湖南卷)cos330°=( ) A.12 B .-12C.32D .-32答案 C2.cos 2600°等于( ) A .±32 B.32C .-32D.12答案 D 解析cos 2600°=|cos120°|=|-12|=12,故选D.3.点A(sin2 018°,cos2 018°)在直角坐标平面上位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 C解析 注意到2 018°=360°×5+(180°+38°),因此2 018°角的终边在第三象限,sin2 018°<0,cos2 018°<0,所以点A 位于第三象限,选C. 4.sin2 020°cos2 020°tan2 020°的值( ) A .大于0 B .小于0 C .等于0 D .不存在 答案 A解析 由诱导公式一,得sin2 020°cos2 020°tan2 020°=sin220°cos220°tan220°,因为220°是第三象限角,所以sin220°<0,cos220°<0,tan220°>0.所以sin2 020°·cos2 020°tan2 020°>0.5.设α为第三象限角,且|sin α2|=-sin α2,则α2是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 答案 D解析 ∵α是第三象限的角,∴α2是二、四象限的角.又∵|sin α2|=-sin α2,∴sin α2<0,∴α2是第四象限角.6.已知角α的终边与单位圆交于点(-32,-12),则sin α的值为( ) A .-32B .-12C.32D.12答案 B解析 由任意角的三角函数定义易知:sin α=y =-12,故选B.7.已知tanx>0,且sinx +cosx>0,那么角x 是第几象限角( ) A .一 B .二 C .三 D .四答案 A解析 ∵tanx>0,∴x 是第一或第三象限角. 又∵sinx +cosx>0,∴x 是第一象限角.8.若角α终边与直线y =3x 重合,且sin α<0,又P(m ,n)为角α终边上一点,且|OP|=10,则m -n 等于( ) A .2 B .-2 C .4 D .-4答案 A解析 因为角α 终边与y =3x 重合,且sin α<0,所以α为第三象限角,∴P(m ,n)中m<0且n<0,据题意得⎩⎪⎨⎪⎧n =3m ,m 2+n 2=10,解得⎩⎪⎨⎪⎧m =-1,n =-3,∴m -n =2. 9.已知cos θ·tan θ<0,那么角θ是( ) A .第一或第二象限角 B .第二或第三角限角 C .第三或第四象限角 D .第一或第四象限角答案 C解析 若cos θ·tan θ<0,则⎩⎪⎨⎪⎧cos θ>0,tan θ<0或⎩⎪⎨⎪⎧cos θ<0,tan θ>0.10.若点P(3,y)是角α终边上的一点,且满足y<0,cos α=35,则tan α=( )A .-34B.34C.43 D .-43答案 D11.已知角α终边上一点P 的坐标为(cos π5,sin π5),则α=________.答案 2k π+π5,k ∈Z解析 ∵⎩⎪⎨⎪⎧cos α=cos π5,sin α=sin π5,∴α是与π5终边相同的角.∴α=2k π+π5,k ∈Z .12.已知角α的终边经过(2a -3,4-a),且cos α≤0,sin α>0,则实数a 的取值范围是________. 答案 a≤3213.(高考真题·江西卷)已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P(4,y)是角θ终边上一点,且sin θ=-255,则y =________.答案 -814.函数y =|sinx|sinx +cosx |cosx|+|tanx|tanx 的值域是________.答案 {3,-1}解析 当x 是第一象限角时, 原式=sinx sinx +cosx cosx +tanxtanx =3;当x 是第二象限角时, sinx>0,cosx<0,tanx<0.原式=sinx sinx +-cosx cosx +tanx -tanx =-1;当x 是第三象限角时, sinx<0,cosx<0,tanx>0,原式=sinx -sinx +-cosx cosx +tanx tanx =-1;当x 是第四象限角时,sinx<0,cosx>0,tanx<0,原式=sinx -sinx +cosx cosx +tanx-tanx=-1;综上可知,sinx |sinx|+|cosx|cosx +tanx|tanx|的值为3或-1.15.计算:(1)sin390°+cos(-660°)+3tan405°-cos540°; (2)sin(-7π2)+tan π-2cos0+tan 9π4-sin 7π3.解析 (1)原式=sin(360°+30°)+cos(-2×360°+60°)+3tan(360°+45°)-cos(360°+180°)=sin30°+cos60°+3tan45°-cos180° =12+12+3×1-(-1)=5. (2)原式=sin(-4π+π2)+tan π-2cos0+tan(2π+π4)-sin(2π+π3)=sin π2+tan π-2cos0+tan π4-sin π3=1+0-2+1-32=-32. 16.已知角θ终边上一点P(x ,3)(x≠0),且cos θ=1010x ,求sin θ,tan θ的值. 解析 ∵r=x 2+9,cos θ=x r ,∴1010x =x x 2+9.又x≠0,则x =±1.又y =3>0,∴θ是第一或第二象限角.当θ为第一象限角时,sin θ=31010,tan θ=3;当θ为第二象限角时,sin θ=31010,tan θ=-3.1.下列说法正确的是( )A .对任意角α,如果α终边上一点坐标为(x ,y),都有tan α=yxB .设P(x ,y)是角α终边上一点,因为角α的正弦值是yr ,所以正弦值与y 成正比C .正角的三角函数值是正的,负角的三角函数值是负的,零的三角函数值是零D .对任意象限的角θ,均有|tan θ|+|1tan θ|=|tan θ+1tan θ|答案 D解析 对选项A ,x =0时不成立;对于选项B ,sin α仅是一个比值,与P 点选取无关,不随y 的变化而变化;对于选项C ,一全二正弦,三切四余弦;对于选项D ,对于象限角θ而言,tan θ和1tan θ同号.故选D.2.有下列命题:①终边相同的角的同名三角函数的值相等; ②终边不同的角的同名三角函数的值不等; ③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P(x ,y)是其终边上的一点,则cos α=-x x 2+y2.其中正确的命题是________. 答案 ①3.设α角属于第二象限,且|cos α2|=-cos α2,则 α2角属于________象限.答案 三解析 ∵α是第二象限角, ∴2k π+π2<α<2k π+π,k ∈Z .∴k π+π4<α2<k π+π2,k ∈Z .∴α2在第一,三象限,又|cos α2|=-cos α2, ∴cos α2≤0.∴α2角属于第三象限. 4.已知P(-3,y)为角β的终边上的一点,且sin β=1313,求y 的值. 分析 本题主要考查的是三角函数的定义,y 的值可用方程方法解出. 解析 ∵P(-3,y), ∴r =3+y 2,sin β=y 3+y2.由已知得y 3+y2=1313.解方程得y =±12.经检验y =-12不合题意,应舍去,故y 的值为12.。
高中数学人教A版必修4 1.1.1 任意角 作业 Word版含解析
[A.基础达标]1.下列说法正确的是( )A .终边相同的角都相等B .钝角比第三象限角小C .第一象限角不都是锐角D .锐角不都是第一象限角解析:选C.终边相同的角相差360°的整数倍,并不一定相等,故A 错误;钝角并不一定比第三象限角小,如-135°是第三象限角,显然-135°比钝角小,故B 错;锐角一定是第一象限角,但第一象限角未必都是锐角,故C 正确,D 错误.2.若角α的终边经过点M (0,-3),则角α( )A .是第三象限角B .是第四象限角C .既是第三象限角,又是第四象限角D .不是任何象限的角解析:选D.因为点M (0,-3)在y 轴负半轴上,所以角α的终边不在任何象限.3.若角α满足α=45°+k ·180°,k ∈Z ,则角α的终边落在( )A .第一或第三象限B .第一或第二象限C .第二或第四象限D .第三或第四象限解析:选A.当k 为奇数时,角α与225°角终边相同,在第三象限;当k 为偶数时,角α与45°角终边相同,在第一象限.4.已知α是第三象限角,则-α是第________象限角.( )A .四B .三C .二D .一解析:选C.∵α是第三象限角,∴k ·360°+180°<α<k ·360°+270°,k ∈Z .则-k ·360°-270°<-α<-k ·360°-180°,k ∈Z .∴-α是第二象限角.5.若角α与β的终边相同,则角α-β的终边( )A .在x 轴的非负半轴上B .在x 轴的非正半轴上C .在y 轴的非正半轴上D .在y 轴的非负半轴上解析:选A.由已知可得α=β+k ·360°(k ∈Z ),∴α-β=k ·360°(k ∈Z ),∴α-β的终边在x 轴的非负半轴上.6.在-360°~720°之间,与-367°角终边相同的角是________.解析:与-367°角终边相同的角可表示为α=k ·360°-367°,k ∈Z .当k =1,2,3时,α=-7°,353°,713°,这三个角都是符合条件的角.答案:-7°,353°,713°7.若时针走过2小时40分,则分针走过的角是________.解析:2小时40分=83小时,-360°×83=-960°,故分针走过的角为-960°. 答案:-960°8.有一个小于360°的正角,这个角的6倍的终边与x 轴的非负半轴重合,则这个角为________.解析:由题意知,6α=k ·360°,k ∈Z ,所以α=k ·60°,k ∈Z .又因为α是小于360°的正角,所以满足条件的角α的值为60°,120°,180°,240°,300°.答案:60°,120°,180°,240°,300°9.求所有与所给角终边相同的角的集合,并求出其中的最小正角和最大负角.(1)-210°;(2)-1 484°37′.解:(1)因为-210°=-360°+150°,所以与-210°终边相同的角的集合为{α|α=k·360°+150°,k∈Z}.其中最小正角为150°,最大负角为-210°.(2)因为-1 484°37′=-5×360°+315°23′,所以与-1 484°37′终边相同的角的集合为{α|α=k·360°+315°23′,k∈Z},其中最小正角为315°23′,最大负角为-44°37′.10.如图,写出阴影部分(包括边界)的角的集合,并指出-950°12′是否是该集合中的角.解:题图阴影部分(包括边界)的角的范围是k·360°≤α≤k·360°+125°,k∈Z,所求集合为{α|k·360°≤α≤k·360°+125°,k∈Z},因为-950°12′=-3×360°+129°48′,所以-950°12′不是该集合中的角.[B.能力提升]1.集合A={α|α=k·90°-36°,k∈Z},B={β|-180°<β<180°},则A∩B等于() A.{-36°,54°} B.{-126°,144°}C.{-126°,-36°,54°,144°} D.{-126°,54°}解析:选C.令k=-1,0,1,2,则A,B的公共元素有-126°,-36°,54°,144°.故选C.2.如果角α与角γ+45°的终边重合,角β与角γ-45°的终边重合,那么角α与角β的关系为()A.α+β=0°B.α-β=90°C.α+β=2k·180°(k∈Z)D.α-β=2k·180°+90°(k∈Z)解析:选D.由条件知α=γ+45°+k1·360°(k1∈Z),β=γ-45°+k2·360°(k2∈Z).将两式相减消去γ,得α-β=(k1-k2)·360°+90°,即α-β=2k·180°+90°(k∈Z).3.设集合A={x|k·360°+60°<x<k·360°+300°,k∈Z},B={x|k·360°-210°<x<k·360°,k∈Z},则A∩B=________.解析:因为A={x|k·360°+60°<x<k·360°+300°,k∈Z},B={x|k·360°+150°<x<k·360°+360°,k∈Z},所以A∩B={x|k·360°+150°<x<k·360°+300°,k∈Z}.答案:{x|k·360°+150°<x<k·360°+300°,k∈Z}4.如图所示,终边落在直线y=3x上的角的集合为________.解析:终边落在射线y=3x(x≥0)上的角的集合是S1={α|α=60°+k·360°,k∈Z},终边落在射线y=3x(x≤0)上的角的集合是S2={α|α=240°+k·360°,k∈Z}.于是终边落在直线y=3x上的角的集合是S={α|α=60°+k·360°,k∈Z}∪{α|α=240°+k·360°,k∈Z}={α|α=60°+2k·180°,k∈Z}∪{α|α=60°+(2k+1)·180°,k∈Z}={α|α=60°+n·180°,n∈Z}.答案:{α|α=60°+n ·180°,n ∈Z }5.已知角α=2 015°.(1)把α改写成k ·360°+β(k ∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α终边相同,且-360°≤θ<720°.解:(1)用2 015°除以360°商为5,余数为215°.∴k =5.∴α=5×360°+215°(β=215°).∴α为第三象限角.(2)与2 015°终边相同的角为k ·360°+2 015°(k ∈Z ),令-360°≤k ·360°+2 015°<720°(k ∈Z ),解得-2 375360≤k <-1 295360(k ∈Z ), ∴k =-6,-5,-4.将k 的值代入k ·360°+2 015°中,得角θ的值为-145°,215°,575°.6.(选做题)写出如图所示阴影部分的角α的范围.解:(1)因为与45°角终边相同的角可写成45°+k ·360°,k ∈Z 的形式,与-180°+30°=-150°角终边相同的角可写成-150°+k ·360°,k ∈Z 的形式.所以图①阴影部分的角α的范围可表示为{α|-150°+k ·360°<α≤45°+k ·360°,k ∈Z }.(2)同理可表示图②中角α的范围为{α|45°+k ·360°≤α≤300°+k ·360°,k ∈Z }.。
新人教A版必修四第一章1.1.1任意角知识梳理及重难点题型(含解析版)
.1.1.1 任意角重难点题型【举一反三系列】知识链接【知识点 1 任意角的概念】1.任意角定义构成要素表示2.角的分类分类正角负角零角角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形 始边、顶点、终边常用大写字母 A ,B ,C 等表示腊字母 α,β,γ 等表示;特别的,当角作为变量时,常用字母 x 表示.定义按逆时针方向旋转形成的角叫做正角按顺时针方向旋转形成的角叫做负角一条射线没有作任何旋转形成的角叫做零角【知识点 2 象限角与非象限角】1.象限角当角的顶点与坐标原点重合,角的始边与 x 轴的非负半轴重合,则角的终边(除端点外)在第几象限,就称这个角为第几象限角.2.象限角的集合表示象限角集合表示第一象限角{x | k ⋅ 360o < α < k ⋅ 360o + 90o , k ∈ Z }第二象限角{x | k ⋅ 360o + 90o < α < k ⋅ 360o + 180o , k ∈ Z }第三象限角{x | k ⋅ 360o + 180o < α < k ⋅ 360o + 270o , k ∈ Z }第四象限角{x | k ⋅ 360o + 270o < α < k ⋅ 360o + 360o , k ∈ Z }3.非象限角βββββ β{ }当角的顶点与坐标原点重合,角的始边与 x 轴的非负半轴重合,如果角的终边落在坐标轴上,就认为这个角不属于任何一个象限.4.非象限角的集合表示 角的终边位置x 轴的非负半轴集合表示{ | β = k ⨯ 360 , k ∈ Z }x 轴的非正半轴{ | β = k ⨯ 360+ 180, k ∈ Z }x 轴上{ | β = k ⨯180 , k ∈ Z }y 轴非负半轴y 轴非正半轴{ | β = k ⨯ 360{ | β = k ⨯ 360+ 90 , k ∈ Z }- 90 , k ∈ Z}y 轴上{ | β = k ⨯180+ 90, k ∈ Z }【知识点 3 终边相同的角】一般地,所有与角 α 终边相同的角,连同角 α 在内,可构成一个集合 S = β | β = α + k ⋅ 360 , k ∈ Z ,即任一与角 α 终边相同的角,都可以表示成角α 与整个周角的和.举一反三【考点 1 象限角与集合间的基本关系】【例 1】(2019 春•杜集区校级月考)设 A ={小于 90°的角},B ={第一象限角},则 A ∩B 等于()A .{锐角}B .{小于 90°的角}C .{第一象限角}D .{α|k •360°<α<k •360°+90°(k ∈Z ,k ≤0)}【考点 3 已知 α 终边所在象限求 2α, α, 】【变式 1-1】(2019 秋•钦南区校级月考)已知 A ={第一象限角},B ={锐角},C ={小于 90°的角},那么A 、B 、C 关系是() A .A ∩C =CB .B ⊆CC .B ∪A =CD .A =B =C【变式 1-2】(2019 秋•黄陵县校级月考)设 A ={θ|θ 为锐角},B ={θ|θ 为小于 90°的角},C ={θ|θ 为第一象限的角},D ={θ|θ 为小于 90°的正角},则下列等式中成立的是()A .A =B B .B =C C .A =CD .A =D【变式 1-3】(2019 秋•宜昌月考)设 M ={α|α=k •90°,k ∈Z }∪{α|α=k •180°+45°,k ∈Z },N ={α|α=k•45°,k ∈Z },则() A .M ⊆NB .M ⊇NC .M =ND .M ∩N =∅【考点 2 求终边相同的角】【例 2】(2019 春•娄底期末)下列各角中与 225°角终边相同的是()A .585°B .315°C .135°D .45°【变式 2-1】(2018 春•武功县期中)下列各组角中,终边相同的角是()A .﹣398°,1042°C .﹣398°,38° B .﹣398°,142°D .142°,1042°【变式 2-2】(2018 春•武邑县校级期末)与﹣457°角终边相同角的集合是()A .{α|α=k •360°+457°,k ∈Z }C .{α|α=k •360°+263°,k ∈Z } B .{α|α=k •360°+97°,k ∈Z }D .{α|α=k •360°﹣263°,k ∈Z }【变式 2-3】(2018 春•林州市校级月考)在 0°~360°范围内,与﹣853°18'终边相同的角为()A .136°18'B .136°42'C .226°18'D .226°42'α2 3【例 3】(2018 秋•宜昌期末)已知 α 为锐角,则 2α 为()2是(A.第一象限角C.第一或第二象限角B.第二象限角D.小于180°的角【变式3-1】(2018•徐汇区校级模拟)若α是第二象限的角,则α的终边所在位置不可能是()3A.第一象限B.第二象限C.第三象限D.笫象限【变式3-2】(2019春•北碚区校级期中)已知α为第二象限角,则α所在的象限是()2A.第一或第二象限C.第一或第三象限B.第二或第三象限D.第二或第四象限【变式3-3】(2019秋•宜城市校级月考)如果α是第三象限角,则-α)A.第一象限角C.第一或第三象限角B.第一或第二象限角D.第二或第四象限角【考点4终边对称的角的表示法】【例4】(2019春•南京期中)若角α=m•360°+60°,β=k•360°+120°,(m,k∈Z),则角α与β的终边的位置关系是()A.重合C.关于x轴对称B.关于原点对称D.关于y轴对称【变式4-1】若角α的终边与45°角的终边关于原点对称,则α=.【变式4-2】若角α和β的终边关于直线x+y=0对称,且α=﹣60°,则角β的集合是.【变式4-3】已知α=﹣30°,若α与β的终边关于直线x﹣y=0对称,则β=;若α与β的终边关于y轴对称,则β=;若α与β的终边关于x轴对称,则β=.(2)集合 M = ⎨ x | x = ⨯180︒ + 45︒, k ∈ Z ⎬ ,N = ⎨ x | x = ⨯180︒ + 45︒, k ∈ Z ⎬ 那么两集合的关系是什么?k k 2 4【考点 5 已知终边求角】【例 5】(2019 春•凉州区校级月考)已知 α=﹣1910°.(1)把角 α 写成 β+k •360°(k ∈Z ,0°≤β<360°)的形式,指出它是第几象限的角;(2)求出 θ 的值,使 θ 与 α 的终边相同,且﹣720°≤θ<0°.【变式 5-1】若角 α 的终边落在直线 x +y =0 上,求在[﹣360°,360°]内的所有满足条件的角 α.【变式 5-2】已知 α、β 都是锐角,且 α+β 的终边与﹣280°角的终边相同,α﹣β 的终边与 670°角的终边相同,求∠α、∠β 的大小.【变式 5-3】(2018 春•武功县期中)已知角 α=45°;(1)在区间[﹣720°,0°]内找出所有与角 α 有相同终边的角 β;⎧ ⎫ ⎧ ⎫ ⎩ ⎭ ⎩ ⎭【考点 6 已知角终边的区域确定角】【例 6】写出角的终边在阴影中的角的集合.【变式 6-1】如图所示;(1)分别写出终边落在 0A ,0B 位置上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.【变式6-2】用集合表示顶点在原点,始边重合于x轴非负半轴,终边落在阴影部分内的角(不含边界).【变式6-3】已知角x的终边落在图示阴影部分区域,写出角x组成的集合.1.1.1任意角重难点题型【举一反三系列】知识链接【知识点1任意角的概念】1.任意角.β定义构成要素表示2.角的分类分类正角负角零角角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形 始边、顶点、终边常用大写字母 A ,B ,C 等表示腊字母 α,β,γ 等表示;特别的,当角作为变量时,常用字母 x 表示.定义按逆时针方向旋转形成的角叫做正角按顺时针方向旋转形成的角叫做负角一条射线没有作任何旋转形成的角叫做零角【知识点 2 象限角与非象限角】1.象限角当角的顶点与坐标原点重合,角的始边与 x 轴的非负半轴重合,则角的终边(除端点外)在第几象限,就称这个角为第几象限角.2.象限角的集合表示象限角集合表示第一象限角{x | k ⋅ 360o < α < k ⋅ 360o + 90o , k ∈ Z }第二象限角{x | k ⋅ 360o + 90o < α < k ⋅ 360o + 180o , k ∈ Z }第三象限角{x | k ⋅ 360o + 180o < α < k ⋅ 360o + 270o , k ∈ Z }第四象限角{x | k ⋅ 360o + 270o < α < k ⋅ 360o + 360o , k ∈ Z }3.非象限角当角的顶点与坐标原点重合,角的始边与 x 轴的非负半轴重合,如果角的终边落在坐标轴上,就认为这个角不属于任何一个象限.4.非象限角的集合表示 角的终边位置x 轴的非负半轴集合表示{ | β = k ⨯ 360 , k ∈ Z }ββββ β{ }x 轴的非正半轴{ | β = k ⨯ 360+ 180, k ∈ Z }x 轴上{ | β = k ⨯180 , k ∈ Z }y 轴非负半轴y 轴非正半轴{ | β = k ⨯ 360{ | β = k ⨯ 360+ 90 , k ∈ Z }- 90 , k ∈ Z}y 轴上{ | β = k ⨯180+ 90, k ∈ Z }【知识点 3 终边相同的角】一般地,所有与角 α 终边相同的角,连同角 α 在内,可构成一个集合 S = β | β = α + k ⋅ 360 , k ∈ Z ,即任一与角 α 终边相同的角,都可以表示成角α 与整个周角的和.举一反三【考点 1 象限角与集合间的基本关系】【例 1】(2019 春•杜集区校级月考)设 A ={小于 90°的角},B ={第一象限角},则 A ∩B 等于()A .{锐角}B .{小于 90°的角}C .{第一象限角}D .{α|k •360°<α<k •360°+90°(k ∈Z ,k ≤0)}【分析】先求出 A ={锐角和负角},B ={α|k •360°<α<k •360°+90°,k ∈Z },由此利用交集的定义给求出 A ∩B .【答案】解:∵A ={小于 90°的角}={锐角和负角},B ={第一象限角}={α|k •360°<α<k •360°+90°,k ∈Z },∴A ∩B ={α|k •360°<α<k •360°+90°(k ∈Z ,k ≤0)}.D故选:D .【点睛】本题考查交集的求法,是基础题,解题时要认真审题,注意任意角的概念的合理运用.【变式 1-1】(2019 秋•钦南区校级月考)已知 A ={第一象限角},B ={锐角},C ={小于 90°的角},那么A 、B 、C 关系是() A .A ∩C =CB .B ⊆CC .B ∪A =CD .A =B =C【分析】分别判断,A ,B ,C 的范围即可求出【答案】解解:∵A ={第一象限角}=(k •360°,90°+k •360°),k ∈Z ;B ={锐角}=(0,90°),C ={小于 90°的角}=(﹣∞,90°)∴B ⊆C ,故选:B .【点睛】本题考查了任意角的概念和角的范围,属于基础题.【变式 1-2】(2019 秋•黄陵县校级月考)设 A ={θ|θ 为锐角},B ={θ|θ 为小于 90°的角},C ={θ|θ 为第一象限的角},D ={θ|θ 为小于 90°的正角},则下列等式中成立的是()A .A =B B .B =C C .A =CD .A =D【分析】根据 A ={θ|θ 为锐角}={θ|0°<θ<90°},D ={θ|θ 为小于 90°的正角}={θ|0°<θ<90°},可得结论.【答案】解:根据 A ={θ|θ 为锐角}={θ|0°<θ<90°}, ={θ|θ 为小于 90°的正角}={θ|0°<θ<90°},可得 A =D .故选:D .【点睛】本题考查象限角和任意角,考查学生对概念的理解,比较基础.【变式 1-3】(2019 秋•宜昌月考)设 M ={α|α=k •90°,k ∈Z }∪{α|α=k •180°+45°,k ∈Z },N ={α|α=k•45°,k ∈Z },则( )A.M⊆N B.M⊇N C.M=N D.M∩N=∅【分析】讨论k为偶数和k为奇数时,结合N的表示,从而确定N与M的关系.【答案】解:∵N={α|α=k•45°,k∈Z},∴当k为偶数,即k=2n时,n∈Z,α=k•45°=2n•45°=n•90°,∴当k为奇数,即k=2n+1时,n∈Z,α=k•45°=(2n+1)•45°=n•90°+45°,又M={α|α=k•90°,k∈Z}∪{α|α=k•180°+45°,k∈Z},∴M⊆N.故选:A.【点睛】本题主要考查了集合之间的关系与应用问题,是基础题.【考点2求终边相同的角】【例2】(2019春•娄底期末)下列各角中与225°角终边相同的是()A.585°B.315°C.135°D.45°【分析】写出与225°终边相同的角,取k值得答案.【答案】解:与225°终边相同的角为α=225°+k•360°,k∈Z,取k=1,得α=585°,∴585°与225°终边相同.故选:A.【点睛】本题考查终边相同角的表示法,是基础题.【变式2-1】(2018春•武功县期中)下列各组角中,终边相同的角是()A.﹣398°,1042°C.﹣398°,38°B.﹣398°,142°D.142°,1042°【分析】根据终边相同的角的定义,化﹣398°和1042°为α+k•360°,k∈Z的形式,再判断即可.【答案】解:由题意,﹣398°=322°﹣2×360°,1042°=322°+2×360°,142°,38°;这四个角中,终边相同的角是﹣398°和1042°.故选:A.【点睛】本题考查了终边相同角的概念与应用问题,是基础题.)【变式2-2】(2018春•武邑县校级期末)与﹣457°角终边相同角的集合是(A.{α|α=k•360°+457°,k∈Z}B.{α|α=k•360°+97°,k∈Z}C.{α|α=k•360°+263°,k∈Z}D.{α|α=k•360°﹣263°,k∈Z}【分析】终边相同的角相差了360°的整数倍,又263°与﹣457°终边相同.【答案】解:终边相同的角相差了360°的整数倍,设与﹣457°角的终边相同的角是α,则α=﹣457°+k•360°,k∈Z,又263°与﹣457°终边相同,∴{α|α=263°+k•360°,k∈Z},故选:C.【点睛】本题考查终边相同的角的概念及终边相同的角的表示形式.)【变式2-3】(2018春•林州市校级月考)在0°~360°范围内,与﹣853°18'终边相同的角为(A.136°18'B.136°42'C.226°18'D.226°42'【分析】直接由﹣853°18'=﹣3×360°+226°42′得答案.【答案】解:由﹣853°18'=﹣3×360°+226°42′,可得,在0°~360°范围内,与﹣853°18'终边相同的角为226°42′,2,3】3的终边所在位置不可能是(故选:D.【点睛】本题考查终边相同的角的表示法,是基础题.【考点3已知α终边所在象限求2α,αα【例3】(2018秋•宜昌期末)已知α为锐角,则2α为()A.第一象限角B.第二象限角C.第一或第二象限角D.小于180°的角【分析】写出α的范围,直接求出2α的范围,即可得到选项.【答案】解:α为锐角,所以α∈(0°,90°),则2α∈(0°,180°),故选:D.【点睛】本题考查象限角与轴线角,基本知识的考查,送分题.【变式3-1】(2018•徐汇区校级模拟)若α是第二象限的角,则αA.第一象限B.第二象限C.第三象限D.笫象限【分析】写出第二象限的角的集合,得到的范围,分别取k值得答案.【答案】解:∵α是第二象限角,∴90°+k•360°<α<180°+k•360°,k∈Z.则30°+k•120°<<60°+k•120°,k∈Z.当k=0时,30°<<60°,α为第一象限角;当k=1时,150°<<180°,α为第二象限角;当k=2时,270°<<300°,α为第四象限角.)2是(由上可知,的终边所在位置不可能是第三象限角.故选:C.【点睛】本题考查象限角及轴线角,考查终边相同角的集合,是基础题.【变式3-2】(2019春•北碚区校级期中)已知α为第二象限角,则α所在的象限是()2A.第一或第二象限C.第一或第三象限B.第二或第三象限D.第二或第四象限【分析】用不等式表示第二象限角α,再利用不等式的性质求出满足的不等式,从而确定角的终边在的象限.【答案】解:∵α是第二象限角,∴k•360°+90°<α<k•360°+180°,k∈Z,则k•180°+45°<<k•180°+90°,k∈Z,令k=2n,n∈Z有n•360°+45°<<n•360°+90°,n∈Z;在一象限;k=2n+1,n∈z,有n•360°+225°<<n•360°+270°,n∈Z;在三象限;故选:C.【点睛】本题考查象限角的表示方法,不等式性质的应用,通过角满足的不等式,判断角的终边所在的象限【变式3-3】(2019秋•宜城市校级月考)如果α是第三象限角,则-αA.第一象限角B.第一或第二象限角)C.第一或第三象限角D.第二或第四象限角【分析】由α是第三象限角,得到180°+k•360°<α<270°+k•360°,k∈Z,从而能求出﹣的取值范围,由此能求出﹣所在象限.【答案】解:∵α是第三象限角,∴180°+k•360°<α<270°+k•360°,k∈Z,∴﹣135°﹣k•180°<﹣<﹣90°﹣k•180°,∴﹣是第一或第三象限角.故选:C.【点睛】本题考查角所在象限的判断,是基础题,解题时要认真审题,注意第三象限角的取值范围的合理运用.【考点4终边对称的角的表示法】【例4】(2019春•南京期中)若角α=m•360°+60°,β=k•360°+120°,(m,k∈Z),则角α与β的终边的位置关系是()A.重合C.关于x轴对称B.关于原点对称D.关于y轴对称【分析】结合角的终边相同的定义进行判断即可.【答案】解:α的终边和60°的终边相同,β的终边与120°终边相同,∵180°﹣120°=60°,∴角α与β的终边的位置关系是关于y轴对称,故选:D.【点睛】本题主要考查角的终边位置关系的判断,结合角的关系是解决本题的关键.【变式4-1】若角α的终边与45°角的终边关于原点对称,则α=.【分析】角α的终边与45°角的终边关于原点对称,可得α=k•360°+225°,(k∈Z).【答案】解:∵角α的终边与45°角的终边关于原点对称,∴α=k•360°+225°,(k∈Z).故答案为:α=k•360°+225°,(k∈Z).【点睛】本题考查了终边相同的角,属于基础题.【变式4-2】若角α和β的终边关于直线x+y=0对称,且α=﹣60°,则角β的集合是.【分析】求出β∈[0°,360°)时角β的终边与角α的终边关于直线y=﹣x对称的值,再根据终边相同的角写出角β的取值集合.【答案】解:若β∈[0°,360°),则由角α=﹣60°,且角β的终边与角α的终边关于直线y=﹣x对称,可得β=330°,所以当β∈R时,角β的取值集合是{β|β=330°+k•360°,k∈Z}.故答案为:{β|β=330°+k•360°,k∈Z}.【点睛】本题主要考查了终边相同的角的定义和表示方法,是基础题.【变式4-3】已知α=﹣30°,若α与β的终边关于直线x﹣y=0对称,则β=;若α与β的终边关于y轴对称,则β=;若α与β的终边关于x轴对称,则β=.【分析】由题意画出图形,然后利用终边相同角的表示法得答案.【答案】解:如图,设α=﹣30°所在终边为OA,则关于直线x﹣y=0对称的角β的终边为OB,终边在OB上的最小正角为120°,故β=120°+k•360°,k∈Z;关于y轴对称的角β的终边为OC,终边在OC上的最小正角为210°,故β=210°+k•360°,k∈Z;关于x轴对称的角β的终边为OD,终边在OD上的最小正角为30°,故β=30°+k•360°,k∈Z.故答案为:120°+k•360°,k∈Z;210°+k•360°,k∈Z;30°+k•360°,k∈Z.【点睛】本题考查终边相同角的表示法,数形结合使问题更加直观,是基础题.【考点5已知终边求角】【例5】(2019春•凉州区校级月考)已知α=﹣1910°.(1)把角α写成β+k•360°(k∈Z,0°≤β<360°)的形式,指出它是第几象限的角;(2)求出θ的值,使θ与α的终边相同,且﹣720°≤θ<0°.【分析】(1)利用终边相同的假的表示方法,把角α写成β+k•360°(k∈Z,0°≤β<360°)的形式,然后指出它是第几象限的角;(2)利用终边相同的角的表示方法,通过k的取值,求出θ,且﹣720°≤θ<0°.【答案】解:(1)∵﹣1910°=﹣6×360°+250°,180°<250°<270°,∴把角α写成β+k•360°(k∈Z,0°≤β<360°)的形式为:﹣1910°=﹣6×360°+250°,它是第三象限的角.(2)∵θ与α的终边相同,∴令θ=k•360°+250°,k∈Z,k=﹣1,k=﹣2满足题意,得到θ=﹣110°,﹣470°.【点睛】本题考查终边相同角的表示方法,基本知识的考查.【变式5-1】若角α的终边落在直线x+y=0上,求在[﹣360°,360°]内的所有满足条件的角α.【分析】求出角α的终边相同的角,然后求解在[﹣360°,360°]内的所有满足条件的角α.【答案】解:角α的终边落在直线x+y=0上,则直线的倾斜角为:45°,角α的终边的集合为:{α|α=k•180°+45°,k∈Z}.当k=﹣2时,α=﹣315°,k=﹣1时,α=﹣135°,k=0时,α=45°,k=1时,α=225°,在[﹣360°,360°]内的所有满足条件的角α:﹣315°,135°,45°,225°.【点睛】本题考查终边相同角的表示,考查计算能力.【变式5-2】已知α、β都是锐角,且α+β的终边与﹣280°角的终边相同,α﹣β的终边与670°角的终边相同,求∠α、∠β的大小.【分析】按照终边相同角的表示方法将α+β、α﹣β表示出来,然后解出α、β,由α、β都是锐角得到所求.【答案】解:因为α+β的终边与﹣280°角的终边相同,α﹣β的终边与670°角的终边相同,所以α+β=﹣280°+360°k;α﹣β=670°+360°k;k∈Z;(2)集合 M = ⎨ x | x = ⨯180︒ + 45︒, k ∈ Z ⎬ ,N = ⎨ x | x = ⨯180︒ + 45︒, k ∈ Z ⎬ 那么两集合的关系是什么?k k 2 4 两式相加,2α=390°+720°k =360°+30°+720°k =30°+720°k ;α=15°+360°k ;因为 α,β 是锐角,所以 α=15°;β=65°.【点睛】本题考查了终边相同角的表示,利用方程组的思想求两角,属于基础题.【变式 5-3】(2018 春•武功县期中)已知角 α=45°;(1)在区间[﹣720°,0°]内找出所有与角 α 有相同终边的角 β;⎧ ⎫ ⎧ ⎫ ⎩ ⎭ ⎩ ⎭【分析】(1)所有与角 α 有相同终边的角可表示为 45°+k ×360°(k ∈Z ),列出不等式解出整数 k ,即得所求的角.(2)先化简两个集合,分整数 k 是奇数和偶数两种情况进行讨论,从而确定两个集合的关系.【答案】解析:(1)由题意知:β=45°+k ×360°(k ∈Z ),则令﹣720°≤45°+k ×360°≤0°,得﹣765°≤k ×360°≤﹣45°,解得 ,从而 k =﹣2 或 k =﹣1,代回 β=﹣675°或 β=﹣315°.(2)因为 M ={x|x =(2k +1)×45°,k ∈Z }表示的是终边落在四个象限的平分线上的角的集合;而集合 N ={x|x =(k +1)×45°,k ∈Z }表示终边落在坐标轴或四个象限平分线上的角的集合,从而:M ⊊N .k 【点睛】(1)从终边相同的角的表示入手分析问题,先表示出所有与角 α 有相同终边的角,然后列出一个关于 k 的不等式,找出相应的整数 k ,代回求出所求解;(2)可对整数 k 的奇、偶数情况展开讨论.【考点 6 已知角终边的区域确定角】【例 6】写出角的终边在阴影中的角的集合.【分析】利用象限角的表示方法、终边相同的角的集合性质即可得出.【答案】解:图 1:角的集合为{α|30°+k ×360°≤α≤120°+k •360°,k ∈Z };图 2:角的集合为{α|﹣210°+k •360°≤α≤30°+k •360°,k ∈Z };图 3:角的集合为{α|﹣45°+k •360°≤α≤30°+k •360°,k ∈Z };图 4:角的集合为{α|60°+k •360°≤α≤120°+k •360°, ∈Z }∪{α|240°+k •360°≤α≤300°+k •360°, k ∈Z }.【点睛】本题考查了象限角的表示方法、终边相同的角的集合性质,考查了推理能力与计算能力,属于中档题.【变式 6-1】如图所示;(1)分别写出终边落在 0A ,0B 位置上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.k【分析】(1)直接由终边相同角的表示法写出终边落在 0A ,0B 位置上的角的集合;(2)结合(1)中写出的终边落在 0A ,0B 位置上的角的集合,利用不等式表示出终边落在阴影部分(包括边界)的角的集合.【答案】解:(1)如图,终边落在 OA 上的角的集合为{α|α=150°+k •360°,k ∈Z }.终边落在 OB 上的角的集合为{α|α=﹣45°+k •360°,k ∈Z };(2)如图,终边落在阴影部分(包括边界)的角的集合为{β|﹣45°+k •360°≤β≤150°+k •360°, ∈Z }.【点睛】本题考查象限角和轴线角,考查了终边相同角的概念,是基础题.【变式 6-2】用集合表示顶点在原点,始边重合于 x 轴非负半轴,终边落在阴影部分内的角(不含边界).【分析】直接利用所给角,表示角的范围即可.【答案】解:图 1 所表示的角的集合:{α|k •360°﹣30°<α<k •360°+75°,k ∈Z }.图 2 终边落在阴影部分的角的集合.{α|k •360°﹣135°<α<k •360°+135°,k ∈Z }【点睛】本题考查角的表示方法,是基础题.【变式6-3】已知角x的终边落在图示阴影部分区域,写出角x组成的集合.【分析】直接利用所给角,表示角的范围即可.【答案】解:图(1)所表示的角的集合:{α|k•360°﹣135°≤α≤k•360°+135°,k∈Z}.图2终边落在阴影部分的角的集合{α|k•180°+30°≤α≤k•180°+60°,k∈Z【点睛】本题考查角的表示方法,是基础题.。
2018年秋高中数学课时分层作业4三角函数线及其应用新人教A版必修4
课时分层作业(四) 三角函数线及其应用(建议用时:40分钟)[学业达标练]一、选择题1.有三个命题:①π6和5π6的正弦线长度相等;②π3和4π3的正切线相同;③π4和5π4的余弦线长度相等.其中正确说法的个数为( ) A .1 B .2 C .3D .0C [π6和5π6的正弦线关于y 轴对称,长度相等;π3和4π3两角的正切线相同;π4和5π4的余弦线长度相等.故①②③都正确,故选C.]2.设a =sin(-1),b =cos(-1),c =tan(-1),则有( ) A .a <b <c B .b <a <c C .c <a <bD .a <c <bC [如图,作α=-1的正弦线,余弦线,正切线可知:b =OM >0,a =MP <0,c =AT <0,且MP >AT .∴b >a >c ,即c <a <b .]3.sin 3的取值所在的范围是( )【导学号:84352035】A.⎝⎛⎭⎪⎫22,1 B.⎝ ⎛⎭⎪⎫0,22 C.⎝⎛⎭⎪⎫-22,0 D.⎝⎛⎭⎪⎫-1,-22 B [因为3π4<3<π;作出图形(如图)观察可知sin π<sin 3<sin 3π4,即0<sin 3<22,故选B.]4.角α(0<α<2π)的正弦线、余弦线的长度相等,且正弦、余弦符号相异,那么α的值为( )A.π4B.3π4C.7π4D.3π4或7π4D [由已知得角α的终边应落在直线y =-x 上, 又0<α<2π,所以α=3π4或7π4.]5.cos 1,cos 2,cos 3的大小关系是( ) A .cos 1>cos 2>cos 3 B .cos 1>cos 3>cos 2 C .cos 3>cos 2>cos 1D .cos 2>cos 1>cos 3A [作出已知三个角的余弦线(如图),观察图形可知cos 1>0>cos 2>cos 3.] 二、填空题6.已知θ∈⎝ ⎛⎭⎪⎫π4,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为________. 【导学号:84352036】AT >MP >OM [如图:因为θ∈⎝ ⎛⎭⎪⎫π4,π2,所以θ>π4,根据三角函数线的定义可知AT >MP >OM .] 7.下列四个命题中:①α一定时,单位圆中的正弦线一定; ②单位圆中,有相同正弦线的角相等; ③α和α+π有相同的正切线;④具有相同正切线的两个角终边在同一条直线上. 其中正确命题的序号为________.①④ [①正确.②错误.例如π7和6π7有相同的正弦线,但是它们不相等,③错误.当α=π2时,α+π=3π2,这两个角都不存在正切线.④正确.]8.函数y =2cos x -1的定义域为________.【导学号:84352037】⎣⎢⎡⎦⎥⎤-π3+2k π,π3+2k π(k ∈Z ) [因为2cos x -1≥0, 所以cos x ≥12.如图:作出余弦值等于12的角:-π3和π3,在图中所示的阴影区域内的每一个角x ,其余弦值均大于或等于12,因而满足cos x ≥12的角的集合为⎣⎢⎡⎦⎥⎤-π3+2k π,π3+2k π(k ∈Z ).所以函数定义域为⎣⎢⎡⎦⎥⎤-π3+2k π,π3+2k π(k ∈Z ).]三、解答题9.求函数y =log sin x (2cos x +1)的定义域. [解] 由题意得,要使函数有意义,则须⎩⎪⎨⎪⎧sin x >0且sin x ≠1,2cos x +1>0,如图所示,阴影部分(不含边界与y 轴)即为所求.所以所求函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x <2k π+π2,或2k π+π2<x <2k π+23π,k ∈Z .10.利用三角函数线证明|sin α|+|cos α|≥1.【导学号:84352038】[证明] 在△OMP 中,OP =1,OM =|cos α|,MP =|sin α|, 因为三角形两边之和大于第三边,所以|sin α|+|cos α|≥1.[冲A 挑战练]1.在(0,2π)内,使得|sin x |>|cos x |成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π,5π4B.⎝ ⎛⎭⎪⎫π4,π C.⎝ ⎛⎭⎪⎫π4,3π4∪⎝ ⎛⎭⎪⎫5π4,7π4D.⎝⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫5π4,3π2 C [|sin x |>|cos x |可转化为x 的正弦线的长度大于余弦线的长度,观察图形可知在(0,2π)内,使得|sin x |>|cos x |成立的x 的取值范围是⎝ ⎛⎭⎪⎫π4,3π4∪⎝ ⎛⎭⎪⎫5π4,7π4.]2.点P (sin 3-cos 3,sin 3+cos 3)所在的象限为( ) A .第一象限 B .第二象限 C .第三象限D .第四象限D [∵56π<3<π,作出单位圆如图所示.设MP ,OM 分别为a ,b . sin 3=a >0,cos 3=b <0, 所以sin 3-cos 3>0. 因为|MP |<|OM |,即|a |<|b |, 所以sin 3+cos 3=a +b <0.故点P (sin 3-cos 3,sin 3+cos 3)在第四象限.] 3.若θ∈⎝ ⎛⎭⎪⎫3π4,3π2,则sin θ的取值范围是________. ⎝⎛⎭⎪⎫-1,22 [作出角θ终边所在的区域(如图)观察正弦线的变化范围可知sin θ∈⎝ ⎛⎭⎪⎫-1,22.] 4.已知集合E ={θ|cos θ<sin θ,0≤θ<2π},F ={θ|tan θ<sin θ},则E ∩F =________.【导学号:84352039】⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪π2<θ<π [结合正弦线、余弦线可知 E =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪π4<θ<54π, 而π4<θ<π2时,tan θ>sin θ;θ=π2时,tan θ不存在;π≤θ<5π4时,tan θ≥sin θ,所以F =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪π2≤θ<π, 所以E ∩F =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪π2<θ<π.] 5.利用三角函数线证明:若0<α<β<π2,则有β-α>sin β-sin α.【导学号:84352040】[证明] 如图,单位圆O 与x 轴正半轴交于点A ,与角α,β的终边分别交于点Q ,P ,过P ,Q 分别作OA 的垂线,设垂足分别为点M ,N ,则由三角函数线定义可知:sin α=NQ ,sin β=MP ,过点Q 作QH ⊥MP 于点H ,于是MH =NQ ,则HP =MP -MH =sin β-sin α.由图可知HP <=β-α,即β-α>sin β-sin α.。
2018版高中数学人教A版 必修4部分 第1章 1-1 1-1-1 任
1.1任意角和弧度制1.1.1任意角1.理解任意角的概念.2.掌握终边相同角的含义及其表示.(重点、难点)3.掌握轴线角、象限角及区间角的表示方法.(易错点)[基础·初探]教材整理1任意角的概念阅读教材P2~P3“第5行”以上内容,完成下列问题.1.角的概念:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.2.角的表示:如图1-1-1,图1-1-1(1)始边:射线的开始位置OA,(2)终边:射线的终止位置OB,(3)顶点:射线的端点O.这时,图中的角α可记为“角α”或“∠α”或简记为“α”.3.角的分类:按旋转方向,角可以分为三类:时钟经过1小时,时针转动的角的大小是________.【解析】时钟是顺时针转,故形成的角是负角,又经过12个小时时针转动一个周角,故经过1个小时时针转动周角的112,所以转动的角的大小是-112×360°=-30°.【答案】-30°教材整理2象限角与轴线角阅读教材P3“图1.1-3至探究”以上内容,完成下列问题.1.象限角:以角的顶点为坐标原点,角的始边为x轴正半轴,建立平面直角坐标系,角的终边(除端点外)在第几象限,就说这个角是第几象限角.2.如果角的终边在坐标轴上,称这个角为轴线角.下列说法:①第一象限角一定不是负角;②第二象限角大于第一象限角;③第二象限角是钝角;④小于180°的角是钝角、直角或锐角.其中错误的序号为________(把错误的序号都写上).【解析】由象限角定义可知①②③④都不正确.【答案】①②③④教材整理3终边相同的角阅读教材P3“探究”以下至P4“例1”以上内容,完成下列问题.1.前提:α表示任意角.2.表示:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.判断(正确的打“√”,错误的打“×”)(1)终边相同的角不一定相等,但相等的角终边一定相同.()(2)终边相同的角有无数个,它们相差360°的整数倍.()(3)终边相同的角的表示不唯一.()【解析】由终边相同角的定义可知(1)(2)(3)正确.【答案】(1)√(2)√(3)√[小组合作型]任意角的概念与终边相同的角(1)已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是()A.A=B=CB.A⊆CC.A∩C=BD.B∪C⊆C(2)下面与-850°12′终边相同的角是()【导学号:00680000】A.230°12′B.229°48′C.129°48′D.130°12′【精彩点拨】正确理解第一象限角、锐角、小于90°的角的概念.【自主解答】(1)第一象限角可表示为k·360°<α<k·360°+90°,k∈Z;锐角可表示为0°<β<90°,小于90°的角可表示为γ<90°.由三者之间的关系可知,选 D.(2)与-850°12′终边相同的角可表示为α=-850°12′+k·360°(k∈Z),当k=3时,α=-850°12′+1 080°=229°48′.【答案】(1)D(2)B1.判断角的概念问题的关键与技巧:(1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念.(2)技巧:判断命题为真需要证明,而判断命题为假只要举出反例即可.2.在0°到360°范围内找与给定角终边相同的角的方法:(1)一般地,可以将所给的角α化成k·360°+β的形式(其中0°≤β<360°,k∈Z),其中的β就是所求的角.(2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所给角是负角时,采用连续加360°的方式;当所给角是正角时,采用连续减360°的方式,直到所得结果达到要求为止.[再练一题]1.有下列说法:①相差360°整数倍的两个角,其终边不一定相同;②终边相同的角一定相等;③终边关于x 轴对称的两个角α,β之和为k ·360°(k ∈Z ). 其中正确说法的序号是________.【解析】 ①不正确.终边相同的两个角一定相差360°的整数倍,反之也成立; ②不正确.由①可知终边相同的两个角一定相差k ·360°(k ∈Z ).③正确.因为终边关于x 轴对称的两个角,当α∈(-180°,180°),且β∈(-180°,180°)时α+β=0°,当α,β为任意角时,α+β=k ·360°(k ∈Z ).【答案】 ③象限角与区间角的表示(1)-1 154°是( ) A.第一象限角 B.第二象限角 C.第三象限角D.第四象限角(2)已知角β的终边在如图1-1-2所示的阴影部分内,试指出角β的取值范围.图1-1-2【精彩点拨】找出0°~360°内阴影部分的角的集合――→+k ·360°k ∈Z 适合题意的角的集合【自主解答】 (1)∵-1 154°=-4×360°+286°,∴在0°~360°之间,与-1 154°终边相同的角α=286°,286°是第四象限角.故-1 154°角为第四象限角.【答案】 D(2)阴影在x 轴上方部分的角的集合为: A ={β|k ·360°+60°≤β<k ·360°+105°,k <Z }. 阴影在x 轴下方部分的角的集合为: B ={β|k ·360°+240°≤β<k ·360°+285°,k ∈Z }.所以阴影部分内角β的取值范围是A ∪B ,即{β|k ·360°+60°≤β<k ·360°+105°,k ∈Z }∪{β|k ·360°+240°≤β<k ·360+285°,k ∈Z },其中B 可以化为:{β|k ·360°+180°+60°≤β<k ·360°+180°+105°,k ∈Z }.即{β|(2m +1)×180°+60°≤β<(2m +1)×180°+105°,m ∈Z }. 集合A 可以化为{β|2m ×180°+60°≤β<2m +180°+105°,m ∈Z }. 故A ∪B 可化为{β|n ·180°+60°≤β<n ·180°+105°,n ∈Z }.1.象限角的判定方法:(1)在坐标系中画出相应的角,观察终边的位置,确定象限. (2)第一步,将α写成α=k ·360°+β(k ∈Z,0°≤β<360°)的形式; 第二步,判断β的终边所在的象限;第三步,根据β的终边所在的象限,即可确定α的终边所在的象限. 2.表示区间角的三个步骤:第一步:先按逆时针的方向找到区域的起始和终止边界;第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x |α<x <β},其中β-α<360°;第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.[再练一题]2.写出图1-1-3中阴影部分(不含边界)表示的角的集合. 【导学号:70512000】图1-1-3【解】 在-180°~180°内落在阴影部分的角的集合为大于-45°小于45°,所以终边落在阴影部分(不含边界)的角的集合为{α|-45°+k ·360°<α<45°+k ·360°,k ∈Z }.[探究共研型]αk所在象限的判定方法及角的终边对称问题 探究1 若α是第二象限角,则α3是第几象限角?【提示】 (1)代数推导法:由题意知90°+k ·360°<α<180°+k ·360°(k ∈Z ), 30°+k ·120°<α3<60°+k ·120°(k ∈Z ).故α3是第一或第二或第四象限角. (2)画图法:如图①将各个象限2等分,从x 轴正半轴开始逆时针方向依次标注1,2,3,4,循环下去,直到填满为止,α2就在标注2的区域,即第一或第三象限的后半区(如图①阴影区域).同理,可得α3在第一、二、四象限(如图②阴影区域).探究2 若角α与β的终边关于x 轴、y 轴、原点、直线y =x 对称,则角α与β分别具有怎样的关系?【提示】 (1)关于x 轴对称:若角α与β的终边关于x 轴对称,则角α与β的关系是β=-α+k ·360°,k ∈Z .(2)关于y 轴对称:若角α与β的终边关于y 轴对称,则角α与β的关系是β=180°-α+k ·360°,k ∈Z .(3)关于原点对称:若角α与β的终边关于原点对称,则角α与β的关系是β=180°+α+k ·360°,k ∈Z .(4)关于直线y =x 对称:若角α与β的终边关于直线y =x 对称,则角α与β的关系是β=-α+90°+k ·360°,k ∈Z .已知α为第二象限角,则2α,α2分别是第几象限角? 【导学号:70512001】【精彩点拨】 可由α范围写出2α,α2的范围后,直接求得2α的范围,然后分k 为奇数或偶数两种情况确定α2的位置.【自主解答】 ∵α是第二象限角, ∴90°+k ·360°<α<180°+k ·360°,∴180°+2k ·360°<2α<360°+2k ·360°,k ∈Z ,∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角. 同理45°+k 2·360°<α2<90°+k 2·360°.当k 为偶数时,不妨令k =2n ,n ∈Z , 则45°+n ·360°<α2<90°+n ·360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z , 则225°+n ·360°<α2<270°+n ·360°,此时,α2为第三象限角.∴α2为第一或第三象限角.1.解决此类问题,要先确定α的范围,进一步确定出nα或αn 的范围,再根据k 与n 的关系进行讨论.2.一般地,要确定αn 所在的象限,可以作出各个象限的从原点出发的n 等分射线,它们与坐标轴把圆周等分成4n 个区域,从x 轴的非负半轴起,按逆时针方向把这4n 个区域依次循环标上号码1,2,3,4,则标号为n 的区域就是根据α所在第几象限时αn的终边所落在的区域.[再练一题]3.若α是第四象限角,则180°-α是( ) A.第一象限角 B.第二象限角 C.第三象限角D.第四象限角【解析】 ∵α是第四象限角,则角α应满足:k ·360°-90°<α<k ·360°,k ∈Z , ∴-k ·360°<-α<-k ·360°+90°,则-k ·360°+180°<180°-α<-k ·360°+90°+180°,k ∈Z , 当k =0时,180°<180°-α<270°, 故180°-α为第三象限角. 【答案】 C1.若α是第一象限角,则-α2是( )A.第一象限角B.第一、四象限角C.第二象限角D.第二、四象限角【解析】 因为α是第一象限角,所以α2为第一、三象限角,所以-α2是第二、四象限角.【答案】 D2.与-457°角终边相同的角的集合是()A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}【解析】当选项C的集合中k=-2时,α=-457°.【答案】 C3.下列各角中,与角330°的终边相同的角是()A.510°B.150°C.-150°D.-390°【解析】与330°终边相同的角的集合为S={β|β=330°+k·360°,k∈Z},当k=-2时,β=330°-720°=-390°,故选 D.【答案】 D4.若角α与角β终边相同,则α-β=________.【解析】根据终边相同角的定义可知:α-β=k·360°(k∈Z).【答案】k·360°(k∈Z)5.在0°到360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角:(1)-120°;(2)640°. 【导学号:00680001】【解】(1)与-120°终边相同的角的集合为M={β|β=-120°+k·360°,k∈Z}.当k=1时,β=-120°+1×360°=240°,∴在0°到360°范围内,与-120°终边相同的角是240°,它是第三象限的角.(2)与640°终边相同的角的集合为M={β|β=640°+k·360°,k∈Z}.当k=-1时,β=640°-360°=280°,∴在0°到360°范围内,与640°终边相同的角为280°,它是第四象限的角.。
最新2018-2019学年人教A版高中数学必修四1-1-1《任意角》含答案
1.已知中学生一节课的上课时间一般是45分钟,那么,经过一节课,分针旋转形成的角是( )A .120°B .-120°C .270°D .-270°解析:分针旋转形成的角是负角,每60分钟转动一周,所以一节课45分钟分针旋转形成的角是-360°×4560=-270°.答案:D2.下列叙述正确的是( )A .第一或第二象限的角都可作为三角形的内角B .始边相同而终边不同的角一定不相等C .第四象限角一定是负角D .钝角比第三象限角小解析:-330°角是第一象限角,但不能作为三角形的内角,故A 错;280°角是第四象限角,它是正角,故C错;-100°角是第三象限角,它比钝角小,故D错.答案:B3.若α是第四象限角,则180°-α是第________象限角.解析:∵角α与角-α的终边关于x轴对称,又∵角α的终边在第四象限,∴角-α终边在第一象限,又角-α与180°-α的终边关于原点对称,∴角180°-α的终边在第三象限.答案:三4.在0°~360°范围内:与-1 000°角终边相同的最小正角是________,是第________象限角.解析:-1 000°=-3×360°+80°,∴与-1 000°角终边相同的最小正角是80°,为第一象限角. 答案:80° 一5.在角的集合{α|α=k ·90°+45°,k ∈Z}中,(1)有几种终边不相同的角?(2)若-360°<α<360°,则集合中的α共有多少个?解:(1)在给定的角的集合中终边不相同的角共有四种,分别是与45°、135°、-135°、-45°终边相同的角.(2)令-360°<k ·90°+45°<360°,得-92<k<72. 又∵k ∈Z ,∴k =-4,-3,-2,-1,0,1,2,3,∴满足条件的角共有8个.。
人教A版高中数学必修四课时提升作业(一) 1.1.1 任意角2 Word版含解析
温馨提示:此套题为版,请按住,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭文档返回原板块。
课时提升作业(一)任意角一、选择题(每小题分,共分).(·太原高一检测)与°角的终边相同的角的集合是( ).{αα°·°,∈}.{αα°·°,∈}.{αα°·°,∈}.{αα°·°,∈}【解析】选.由于°×°°×°°,故与°角终边相同的角的集合是{αα°·°,∈}{αα°·°,∈}{αα°·°,∈}..角α的终边经过点(,),则角α是( ).第二象限角 .第三象限角.第二或第三象限角 .不是象限角【解析】选.因为点(,)在轴的非正半轴上,所以角α的终边与轴的非正半轴重合,故角α不是象限角..(·东莞高一检测)给出下列四个命题:①°是第四象限角;②°是第三象限角;③°是第二象限角;④°是第一象限角.其中正确的命题有( )个个个个【解析】选°<°<°,°<°<°.°°<°<°°,°<°<°.所以这四个命题都是正确的..集合{αα·°,∈}中,各角的终边都在( )轴正半轴上轴正半轴上轴或轴上轴正半轴或轴正半轴上【解析】选,,,,终边分别落在轴正半轴上,轴负半轴上,轴负半轴上,轴正半轴上,又∈,取其他整数时,终边与以上四个之一相同. .若角α与β的终边相同,则角αβ的终边( ).在轴的正半轴上.在轴的负半轴上.在轴的负半轴上.在轴的正半轴上【解析】选.由角α与β的终边相同,得αβ·°,∈.所以αβ·°,∈.故αβ的终边在轴的正半轴上..若α·°°,∈,则α所在象限是( ).第一或第三象限.第一或第二象限.第二或第四象限.第三或第四象限【解析】选.当时,α°为第一象限角,当时,α°为第三象限角.二、填空题(每小题分,共分).将°化为·°α(°≤α<°,∈)的形式是.【解析】°°°()×°°.。
2018年秋高中数学课时分层作业1任意角新人教A版必修420180913378
课时分层作业(一) 任意角(建议用时:40分钟)[学业达标练]一、选择题1.角-870°的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限C [-870°=-3×360°+210°,∴-870°是第三象限,故选C.]2.在-360°~0°范围内与角1 250°终边相同的角是( )【导学号:84352006】A .170°B .190°C .-190°D .-170°C [与1 250°角的终边相同的角α=1 250°+k ·360°,k ∈Z ,因为-360°<α<0°,所以-16136<k <-12536,因为k ∈Z ,所以k =-4,所以α=-190°.] 3.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90°-αB .90°+αC .360°-αD .180°+αC [因为α是第一象限角,所以-α为第四象限角,所以360°-α为第四象限角.]4.若α=k ·180°+45°,k ∈Z ,则α所在象限是( )A .第一或第三象限B .第一或第二象限C .第二或第四象限D .第三或第四象限A [当k =0时,α=45°为第一象限角,当k =1时,α=225°为第三象限角.]5.已知角2α的终边在x 轴的上方,那么α是( )A .第一象限角B .第一、二象限角C .第一、三象限角D .第一、四象限角C [由题意知k ·360°<2α<180°+k ·360°(k ∈Z ),故k ·180°<α<90°+k ·180°(k ∈Z ),按照k 的奇偶性进行讨论.当k =2n (n ∈Z )时,n ·360°<α<90°+n ·360°(n ∈Z ),所以α在第一象限;当k =2n +1(n ∈Z )时,180°+n ·360°<α<270°+n ·360°(n ∈Z ),所以α在第三象限.故α是第一或第三象限角.]二、填空题6.已知角α的终边在图116中阴影所表示的范围内(不包括边界),那么α∈________. 【导学号:84352007】图116{α|n·180°+30°<α<n·180°+150°,n∈Z} [法一:(并集法)在0°~360°范围内,终边落在阴影内的角为30°<α<150°和210°<α<330°.所以α∈{α|k·360°+30°<α<k·360°+150°,k∈Z}∪{α|k·360°+210°<α<k·360°+330°,k∈Z}={α|2k·180°+30°<α<2k·180°+150°,k∈Z}∪{α|(2k+1)·180°+30°<α<(2k+1)·180°+150°,k∈Z}={α|n·180°+30°<α<n·180°+150°,n∈Z}.法二:(旋转法)观察图形可知,图中阴影成“对角型”区域,其中一个区域逆(或顺)时针旋转180°,恰好与另一个区域重合,由此可知α∈{α|n·180°+30°<α<n·180°+150°,n∈Z}.]7.与2 013°角的终边相同的最小正角是________,绝对值最小的角是________.213°-147°[与2 013°角的终边相同的角为2 013°+k·360°(k∈Z).当k=-5时,213°为最小正角;当k=-6时,-147°为绝对值最小的角.] 8.若α,β两角的终边互为反向延长线,且α=-120°,则β=________.【导学号:84352008】k·360°+60°(k∈Z) [在0°~360°范围内与α=-120°的终边互为反向延长线的角是60°,所以β=k·360°+60°(k∈Z).]三、解答题9.在与530°终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)-720°到-360°的角. 【导学号:84352009】[解]与530°终边相同的角为k·360°+530°,k∈Z.(1)由-360°<k·360°+530°<0°且k∈Z,可得k=-2,故所求的最大负角为-190°.(2)由0°<k·360°+530°<360°且k∈Z,可得k=-1,故所求的最小正角为170°.(3)由-720°≤k·360°+530°≤-360°且k∈Z,可得k=-3,故所求的角为-550°.10.已知集合A ={α|k ·180°+45°<α<k ·180°+60°,k ∈Z },集合B ={β|k ·360°-55°<β<k ·360°+55°,k ∈Z }.(1)在平面直角坐标系中,表示出角α终边所在区域.(2)在平面直角坐标系中,表示出角β终边所在区域.(3)求A ∩B .[解] (1)角α终边所在区域如图(1)所示.(2)角β终边所在区域如图(2)所示.图(1) 图(2)(3)由(1)(2)知A ∩B ={γ|k ·360°+45°<γ<k ·360°+55°,k ∈Z } .[冲A 挑战练]1.已知θ为第二象限角,那么θ3是( ) A .第一或第二象限角B .第一或第四象限角C .第二或第四象限角D .第一、二或第四象限角D [∵θ为第二象限角,∴90°+k ·360°<θ<180°+k ·360°,k ∈Z ,∴30°+k ·120°<θ3<60°+k ·120°,k ∈Z , 当k =0时,30°<θ3<60°,属于第一象限, 当k =1时,150°<θ3<180°,属于第二象限, 当k =-1时,-90°<θ3<-60°,属于第四象限, ∴θ3是第一、二或第四象限角.] 2.角α与角β的终边关于y 轴对称,则α与β的关系为( )【导学号:84352010】A .α+β=k ·360°,k ∈ZB .α+β=k ·360°+180°,k ∈ZC.α-β=k·360°+180°,k∈ZD.α-β=k·360°,k∈ZB[法一:(特殊值法)令α=30°,β=150°,则α+β=180°.故α与β的关系为α+β=k·360°+180°,k∈Z.法二:(直接法)因为角α与角β的终边关于y轴对称,所以β=180°-α+k·360°,k∈Z,即α+β=k·360°+180°,k∈Z.]3.终边落在直线y=3x上的角的集合为________.{α|α=60°+n·180°,n∈Z} [如图所示终边落在射线y=3x(x≥0)上的角的集合是S1={α|α=60°+k·360°,k∈Z},终边落在射线y=3x(x≤0)上的角的集合是S2={α|α=240°+k·360°,k∈Z}.于是终边落在直线y=3x上的角的集合是S={α|α=60°+k·360°,k∈Z}∪{α|α=240°+k·360°,k∈Z}={α|α=60°+2k·180°,k∈Z}∪{α|α=60°+(2k+1)·180°,k∈Z}={α|α=60°+n·180°,n ∈Z}.]4.若角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,那么角α=________.270°[由于5α与α的始边和终边相同,所以这两角的差应是360°的整数倍,即5α-α=4α=k·360°.又180°<α<360°,令k=3,得α=270°.]5.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.【导学号:84352011】[解]由题意可知:α+β=-280°+k·360°,k∈Z.∵α,β为锐角,∴0°<α+β<180°.取k=1,得α+β=80°,①α-β=670°+k·360°,k∈Z.∵α,β为锐角,∴-90°<α-β<90°.取k=-2,得α-β=-50°,②由①②得:α=15°,β=65°.。
2018版高中数学 第一章 三角函数 1.1.1 任意角学业分层测评 新人教A版必修4
1.1.1 任意角(建议用时:45分钟)[学业达标]一、选择题1.已知A ={第二象限角},B ={钝角},C ={大于90°的角},那么A ,B ,C 的关系是( )A .B =A ∩CB .B ∪C =C C .A CD .A =B =C【解析】 钝角大于90°,小于180°,故B ⊆C ,选项B 正确.【答案】 B2.下列是第三象限角的是( )A .-110°B .-210°C .80°D .-13°【解析】 -110°是第三象限角,-210°是第二象限角,80°是第一象限角,-13°是第四象限角.故选A.【答案】 A3.终边与坐标轴重合的角α的集合是( )A .{α|α=k ·360°,k ∈Z }B .{α|α=k ·180°+90°,k ∈Z }C .{α|α=k ·180°,k ∈Z }D .{α|α=k ·90°,k ∈Z }【解析】 终边在坐标轴上的角为90°或90°的倍数角,所以终边与坐标轴重合的角的集合为{α|α=k ·90°,k ∈Z }.故选D.【答案】 D4.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90°-αB .90°+αC .360°-αD .180°+α 【解析】 因为α是第一象限角,所以-α为第四象限角,所以360°-α为第四象限角.【答案】 C5.若φ是第二象限角,那么φ2和90°-φ都不是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【解析】 ∵φ是第二象限角,∴k ·360°+90°<φ<k ·360°+180°,k ∈Z ,∴k ·180°+45°<φ2<k ·180°+90°,k ∈Z , ∴φ2是第一或第三象限角,而-φ是第三象限角, ∴90°-φ是第四象限角,故选B.【答案】 B二、填空题6.在0°~360°范围内,与角-60°的终边在同一条直线上的角为________.【解析】 根据终边相同角定义知,与-60°终边相同角可表示为β=-60°+k ·360°(k ∈Z ),当k =1时β=300°与-60°终边相同,终边在其反向延长线上且在0°~360°范围内角为120°.故填120°,300°.【答案】 120°,300°7.自行车大链轮有48齿,小链轮有20齿,当大链轮转过一周时,小链轮转过的角度应该是________(齿轮大小相等).【解析】 当大链轮转过一周48齿时,小链轮也必须转过48齿,即转过4820=2.4周,所以小链轮转过的角度应该为360°×2.4=864°.【答案】 864°三、解答题8.在与530°终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)-720°到-360°的角. 【导学号:70512002】【解】 与530°终边相同的角为k ·360°+530°,k ∈Z .(1)由-360°<k ·360°+530°<0°且k ∈Z ,可得k =-2,故所求的最大负角为-190°.(2)由0°<k ·360°+530°<360°且k ∈Z ,可得k =-1,故所求的最小正角为170°.(3)由-720°≤k ·360°+530°≤-360°且k ∈Z ,可得k =-3,故所求的角为-550°.9.若角β的终边落在直线y =-33x 上,写出角β的集合;当-360°<β<360°时,求角β.【解】∵角β的终边落在直线y=-33x上,∴在0°到360°范围内的角为150°和330°,∴角β的集合为{x|x=k·180°+150°,k∈Z},当-360°<β<360°时,角β为-210°,-30°,150°,330°.[能力提升]1.如图114,终边落在直线y=±x上的角α的集合是( )图114A.{α|α=k·360°+45°,k∈Z}B.{α|α=k·180°+45°,k∈Z}C.{α|α=k·180°-45°,k∈Z}D.{α|α=k·90°+45°,k∈Z}【解析】终边落在直线y=±x上,在[0°,360°)内的角有45°,135°,225°和315°共四个角,相邻2角之间均相差90°,故终边落在直线y=±x上的角的集合为{α|α=k·90°+45°,k∈Z}.【答案】 D2.已知,如图115所示.(1)分别写出终边落在OA,OB位置上的角的集合;图115(2)写出终边落在阴影部分(包括边界)的角的集合.【解】(1)终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z},终边落在OB位置上的角的集合为{β|β=-30°+k·360°,k∈Z}.(2)由题图可知,阴影部分角的集合是由所有介于[-30°,135°]之间的所有与之终边相同的角组成的集合,故该区域可表示为{α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.。
2018年秋高中数学 课时分层作业2 弧度制 新人教A版必修4
课时分层作业(二) 弧度制(建议用时:40分钟)[学业达标练]一、选择题1.1 920°转化为弧度数为( ) A.163 B.323 C.16π3D.32π3D [1 920°=5×360°+120°=5×2π+2π3=32π3.]2.在0到2π范围内,与角-4π3终边相同的角是( )【导学号:84352016】A.π6B.π3C.2π3C [与角-4π3终边相同的角是2∈Z ,令k =1,可得与角-4π3终边相=k π,k ∈Z }⎭⎬⎫=π2+k π,k ∈Z⎪⎪⎪⎭⎬⎫α=k ·π2,k ∈Z⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π4+2k π,k ∈ZD [对于A ,终边在x 轴上角的集合是{ α|}α=k π,k ∈Z ,故A 正确;对于B ,终边在y 轴上的角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z ,故B 正确;对于C ,终边在x 轴上的角的集合为{ α|}α=k π,k ∈Z ,终边在y 轴上的角的集合为⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z ,故合在一起即为{ α|}α=k π,k ∈Z ∪⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z =⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=k π2,k ∈Z ,故C 正确;对于D ,终边在直线y =x 上的角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π4+k π,k ∈Z ,故D 不正确.]4.若θ=-5,则角θ的终边在第( ) A .四象限 B .三象限 C .二象限D .一象限D [因为-2π<-5<-3π2,所以α是第一象限角.]5.已知扇形的弧长是4 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) 【导学号:84352017】A .1B .2C .4D .1或4C [因为扇形的弧长为4,面积为2, 所以扇形的面积为12×4×r =2,解得r =1,则扇形的圆心角的弧度数为4=4.故选C.]7,则角A ,B ,C 的弧度数分别为______________.+C =π, =π3,C =7π15.]________.⎩⎪⎨⎭⎪⎬⎪⎫θ⎪⎪-2+2k π<θ<2+2k π,k ∈Z [y 轴对应的角可用-π2,π2表示,所以y轴右侧角的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪-π2+2k π<θ<π2+2k π,k ∈Z .] 8.已知扇形OAB 的圆心角为57π,周长为5π+14,则扇形OAB 的面积为________.【导学号:84352018】35π2 [设扇形的半径为r ,圆心角为57π, ∴弧长l =57πr ,∵扇形的周长为5π+14,∴57πr +2r =5π+14,解得r =7,由扇形的面积公式得=12×57π×r 2=12×57π×49=35π2.]三、解答题9.已知角α=2 010°.(1)将α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限的角; (2)在区间[-5π,0)上找出与α终边相同的角. [解] (1)2 010°=2 010×π180=67π6=5×2π+7π6,又π<7π6<3π2,∴α与7π6终边相同,是第三象限的角.(2)与α终边相同的角可以写成γ=7π6+2k π(k ∈Z ),又-5π≤γ<0,∴当k =-3时,γ=-296π;当k =-2时,γ=-176π;当k =-1时,γ=-56π.10.已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .【导学号:84352019】[解] (1)由⊙O 的半径r =10=AB , 知△AOB 是等边三角形, ∴α=∠AOB =60°=π3.(2)由(1)可知α=π3,r =10,∴弧长l =α·r =π3×10=10π3,∴S 扇形=12lr =12×10π3×10=50π3,而S △AOB =12·AB ·53=12×10×53=253,∴S =S 扇形-S △AOB =25⎝⎛⎭⎪⎫2π3-3.[冲A 挑战练]1.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A .2B .sin 2C .2sin 1D [设圆的半径为R ,则sin 1=1R ,∴R ·R =2·1sin 1=2sin 1.] 2.时钟的分针在1点到3点20( ) A .14πD .-718π顺时针转过了两周又一周的13,用弧度制表示+π,k ∈Z },集合B ={x |-4≤x ≤4},则A ∩B =∴A ∩B =[-4,-π]∪[0,π].]4.若角α与角8π5终边相同,则在[0,2π]内终边与α4终边相同的角是________.【导学号:84352020】2π5,9π10,7π5,19π10 [由题意得α=8π5+2k π(k ∈Z ),α4=2π5+k π2(k ∈Z ),又α4∈[0,2π],所以k =0,1,2,3, 此时α4=2π5,9π10,7π5,19π10.]5.如图1110所示,已知一长为 3 dm ,宽为1 dm 的长方体木块在桌面上做无滑动的翻滚,翻滚到第四次时被一小木板挡住,使木块底面与桌面成30°的角.求点A 走过的路径长及走过的弧所在扇形的总面积. 【导学号:84352021】图1110[解]所在的圆半径是2 dm ,圆心角为π2;所在的圆半径是1 dm ,圆心角为π2;A 2A 3所在的圆半径是 3 dm ,圆心角为π3,所以点A 走过的路径长是三段圆弧之和,即2×π2+1×π2+3×π3=+23π6(dm).三段圆弧所在扇形的总面积是12×π×2+12×π2×1+12×3π3× 3=7π4(dm 2).。
2018年秋高中数学 课时分层作业3 任意角的三角函数的定义 新人教A版必修4
课时分层作业(三)任意角的三角函数的定义(建议用时:40分钟)[学业达标练]一、选择题1.sin(-1 380°)的值为( ) A .-12B .12C .-32D .32D [sin(-1 380°)=sin(-4×360°+60°)=sin 60°=32.] 2.已知角α终边上异于原点的一点P 且|PO |=r ,则点P 的坐标为( )【导学号:84352025】A .P (sin α,cos α)B .P (cos α,sin α)C .P (r sin α,r cos α)D .P (r cos α,r sin α)D [设P (x ,y ),则sin α=yr ,∴y =r sin α,又cos α=x r,∴x =r cos α,∴P (r cos α,r sin α),故选D.]3.若cos α与tan α同号,那么α在( ) A .第一、三象限 B .第一、二象限 C .第三、四象限D .第二、四象限B [因为cos α与tan α同号,所以α在第一、二象限.] 4.有下列说法:①终边相同的角的同名三角函数的值相等; ②终边不同的角的同名三角函数的值不等; ③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-x x 2+y 2,其中正确的个数为( ) 【导学号:84352026】 A .0 B .1 C .2D .3B [①正确;②错误,如sin π6=sin 5π6;③错误,如sin π2=1>0;④错误,cos α=x x 2+y 2.所以B 选项是正确的.]5.设△ABC 的三个内角为A ,B ,C ,则下列各组数中有意义且均为正值的是( ) A .tan A 与cos B B .cos B 与sin C C .sin C 与tan AD .tan A2与sin CD [∵0<A <π,∴0<A 2<π2,∴tan A2>0;又∵0<C <π,∴sin C >0.]二、填空题6.在平面直角坐标系中,以x 轴的非负半轴为角的始边,如果角α,β的终边分别与单位圆交于点⎝ ⎛⎭⎪⎫513,1213和⎝ ⎛⎭⎪⎫-35,45,那么sin α·tan β=________. -1613 [由任意角的正弦、正切函数的定义知 sin α=1213,tan β=45-35=-43,________象限. 0, 6)且cos α=-45,则x =________.【导学号:84352027】-8 [因为|OP |=x 2+-2=x 2+36,所以cos α=xx 2+36,又cos α=-45,所以xx 2+36=-45,整理得x =-8.]三、解答题 9.化简下列各式:(1)sin 72π+cos 52π+cos(-5π)+tan π4;(2)a 2sin 810°-b 2cos 900°+2ab tan 1 125°. [解] (1)原式=sin 32π+cos π2+cos π+1=-1+0-1+1=-1.(2)原式=a 2sin 90°-b 2cos 180°+2ab tan 45°=a 2+b 2+2ab =(a +b )2. 10.已知1|sin α|=-1sin α,且lg cos α有意义.(1)试判断角α的终边所在的象限;(2)若角α的终边上一点M ⎝ ⎛⎭⎪⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.【导学号:84352028】[解] (1)由1|sin α|=-1sin α,可知sin α<0.由lg cos α有意义,可知cos α>0, ∴角α的终边在第四象限.(2)∵|OM |=1,∴⎝ ⎛⎭⎪⎫352+m 2=1,解得m =±45.又α是第四象限角,故m <0,从而m =-45.由正弦函数的定义可知 sin α=y r =m |OM |=-451=-45.[冲A 挑战练]1.点P 从(1,0)出发,沿单位圆按逆时针方向运动26π3弧长到达Q 点,则Q 的坐标为( )A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,-12 C.⎝ ⎛⎭⎪⎫-12,-32D.⎝⎛⎭⎪⎫-32,12 A [点P 从(1,0)出发,沿单位圆逆时针方向运动26π3弧长到达Q 点,所以点Q 是角26π3与单位圆的交点,所以Q ⎝ ⎛⎭⎪⎫cos 26π3,sin 26π3,又cos 26π3=cos ⎝ ⎛⎭⎪⎫8π+2π3=cos 2π3=-12,sin 26π3=sin ⎝ ⎛⎭⎪⎫8π+2π3=sin 2π3=32,所以Q ⎝ ⎛⎭⎪⎫-12,32.] 2.已知角α的终边过点P (5,a ),且tan α=-125,则sin α+cos α的值为________.【导学号:84352029】-713 [根据三角函数的定义,tan α=a 5=-125, ∴a =-12,∴P (5,-12).这时r =13,∴sin α=-1213,cos α=513,从而sin α+cos α=-713.]3.已知角α的终边过点(-3cos θ,4cos θ⎭⎪⎫π,则cos α=________.35 r -2+θ2=5cos θ,cos α3cos θ5cos θ=35.]x |________.【导学号:84352030】⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪x ≠k π2,k ∈Z, tan x >0,y =cos x cos x +tan xtan x =1+1=2;当x 是第二象限角时,cos x <0,tan x <0,y =-cos x cos x +-tan xtan x =-1-1=-2;当x 是第三象限角时,cos x <0,tan x >0,y =-cos x cos x +tan xtan x =-1+1=0;当x 是第四象限角时,cos x >0,tan x <0,y =cos x cos x +-tan xtan x =1-1=0.综上知原函数的值域是{-2,0,2}.] 5.已知sin θ<0,tan θ>0. (1)求角θ的集合;(2)求θ2的终边所在的象限;(3)试判断sin θ2cos θ2tan θ2的符号.[解] (1)因为sin θ<0,所以θ为第三、四象限角或在y 轴的负半轴上, 因为tan θ>0,所以θ为第一、三象限角,所以θ为第三象限角,θ角的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪2k π+π<θ<2k π+3π2,k ∈Z . (2)由(1)可得,k π+π2<θ2<k π+3π4,k ∈Z .当k 是偶数时,θ2终边在第二象限;当k 是奇数时,θ2终边在第四象限.(3)由(2)可得当k 是偶数时,sin θ2>0,cos θ2<0,tan θ2<0,所以sin θ2cos θ2tan θ2>0;当k 是奇数时sin θ2<0,cos θ2>0,tan θ2<0,所以sin θ2cos θ2tan θ2>0.综上知,sin θ2cos θ2tan θ2>0.。
高中数学 1.2.1任意角的三角函数(一)课时作业 新人教A版必修4
1.2.1 任意角的三角函数(一)课时目标 1.借助单位圆理解任意角的三角函数(正弦、余弦、正切)定义.2.熟记正弦、余弦、正切函数值在各象限的符号.3.掌握诱导公式(一)及其应用.1.任意角三角函数的定义设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=________,cos α=________,tan α=________.2.正弦、余弦、正切函数值在各象限的符号3.诱导公式一终边相同的角的同一三角函数的值________,即:sin(α+k ·2π)=______,cos(α+k ·2π)=________, tan(α+k ·2π)=________,其中k ∈Z .一、选择题1.sin 780°等于( )A.32 B .-32 C.12 D .-122.点A (x ,y )是300°角终边上异于原点的一点,则y x的值为( )A. 3 B .- 3 C.33 D .-333.若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角4.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( )A .3B .-3C .±3 D.55.已知x 为终边不在坐标轴上的角,则函数f (x )=|sin x |sin x +cos x |cos x |+|tan x |tan x的值域是( )A .{-3,-1,1,3}B .{-3,-1}C .{1,3}D .{-1,3}6.已知点P ⎝ ⎛⎭⎪⎫sin 34π,cos 34π落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.π4B.3π4C.5π4D.7π4二、填空题7.若角α的终边过点P (5,-12),则sin α+cos α=______. 8.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为________. 9.代数式:sin 2cos 3tan 4的符号是________.10.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n =________.三、解答题11.求下列各式的值.(1)cos ⎝ ⎛⎭⎪⎫-233π+tan 174π; (2)sin 630°+tan 1 125°+tan 765°+cos 540°.12.已知角α终边上一点P (-3,y ),且sin α=34y ,求cos α和tan α的值.能力提升13.若θ为第一象限角,则能确定为正值的是( )A .sin θ2B .cos θ2C .tan θ2D .cos 2θ14.已知角α的终边上一点P (-15a,8a ) (a ∈R 且a ≠0),求α的各三角函数值.1.三角函数值是比值,是一个实数,这个实数的大小和点P (x ,y )在终边上的位置无关,只由角α的终边位置确定.即三角函数值的大小只与角有关.2.符号sin α、cos α、tan α是一个整体,离开“α”,“sin”、“cos”、“tan”不表示任何意义,更不能把“sin α”当成“sin”与“α”的乘积. 3.诱导公式一的实质是说终边相同的角的三角函数值相等.作用是把求任意角的三角函数值转化为求0~2π(或0°~360°)角的三角函数值.§1.2 任意角的三角函数 1.2.1 任意角的三角函数(一)答案知识梳理 1.y r x ryx3.相等 sin α cos α tan α作业设计 1.A 2.B3.C [∵sin α<0,∴α是第三、四象限角.又tan α>0, ∴α是第一、三象限角,故α是第三象限角.]4.A [r =b 2+16,cos α=-b r =-b b 2+16=-35.∴b =3.]5.D [若x 为第一象限角,则f (x )=3;若x 为第二、三、四象限,则f (x )=-1.∴函数f (x )的值域为{-1,3}.]6.D [由任意角三角函数的定义,tan θ=y x =cos 34πsin 34π=-2222=-1.∵sin 34π>0,cos 34π<0,∴点P 在第四象限.∴θ=74π.故选D.]7.-7138.-2<a ≤3 解析 ∵sin α>0,cos α≤0,∴α位于第二象限或y 轴正半轴上,∴3a -9≤0,a +2>0, ∴-2<a ≤3. 9.负号解析 ∵π2<2<π,∴sin 2>0,∵π2<3<π,∴cos 3<0,∵π<4<32π,∴tan 4>0. ∴sin 2cos 3tan 4<0. 10.2解析 ∵y =3x ,sin α<0,∴点P (m ,n )位于y =3x 在第三象限的图象上,且m <0,n <0, n =3m .∴|OP |=m 2+n 2=10|m |=-10m =10. ∴m =-1,n =-3,∴m -n =2.11.解 (1)原式=cos ⎣⎢⎡⎦⎥⎤π3+-4×2π+tan ⎝ ⎛⎭⎪⎫π4+2×2π=cos π3+tan π4=12+1=32. (2)原式=sin(360°+270°)+tan(3×360°+45°)+tan(2×360°+45°)+cos(360°+180°)=sin 270°+tan 45°+tan 45°+cos 180° =-1+1+1-1=0.12.解 sin α=y 3+y2=34y .当y =0时,sin α=0,cos α=-1,tan α=0.当y ≠0时,由y 3+y 2=3y 4,解得y =±213. 当y =213时,P ⎝⎛⎭⎪⎫-3,213,r =433. ∴cos α=-34,tan α=-73.当y =-213时,P (-3,-213),r =433, ∴cos α=-34,tan α=73.13.C [∵θ为第一象限角,∴2k π<θ<2k π+π2,k ∈Z .∴k π<θ2<k π+π4,k ∈Z .当k =2n (n ∈Z )时,2n π<θ2<2n π+π4 (n ∈Z ).∴θ2为第一象限角,∴sin θ2>0,cos θ2>0,tan θ2>0.当k =2n +1 (n ∈Z )时,2n π+π<θ2<2n π+54π (n ∈Z ).∴θ2为第三象限角,∴sin θ2<0,cos θ2<0,tan θ2>0,从而tan θ2>0,而4k π<2θ<4k π+π,k ∈Z , cos 2θ有可能取负值.]14.解 ∵x =-15a ,y =8a ,∴r =-15a 2+8a 2=17|a | (a ≠0). (1)若a >0,则r =17a ,于是sin α=817,cos α=-1517,tan α=-815.(2)若a <0,则r =-17a ,于是sin α=-817,cos α=1517,tan α=-815.。
2018年秋高中数学课时分层作业3任意角的三角函数的定义新人教A版必修
课时分层作业(三)任意角的三角函数的定义(建议用时:40分钟)[学业达标练]一、选择题1.sin(-1 380°)的值为( ) A .-12B .12C .-32D .32D [sin(-1 380°)=sin(-4×360°+60°)=sin 60°=32.] 2.已知角α终边上异于原点的一点P 且|PO |=r ,则点P 的坐标为( )【导学号:84352025】A .P (sin α,cos α)B .P (cos α,sin α)C .P (r sin α,r cos α)D .P (r cos α,r sin α)D [设P (x ,y ),则sin α=yr ,∴y =r sin α,又cos α=x r,∴x =r cos α,∴P (r cos α,r sin α),故选D.]3.若cos α与tan α同号,那么α在( ) A .第一、三象限 B .第一、二象限 C .第三、四象限D .第二、四象限B [因为cos α与tan α同号,所以α在第一、二象限.] 4.有下列说法:①终边相同的角的同名三角函数的值相等; ②终边不同的角的同名三角函数的值不等; ③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-x x 2+y 2,其中正确的个数为( ) 【导学号:84352026】 A .0 B .1 C .2D .3B [①正确;②错误,如sin π6=sin 5π6;③错误,如sin π2=1>0;④错误,cos α=x x 2+y 2.所以B 选项是正确的.]5.设△ABC 的三个内角为A ,B ,C ,则下列各组数中有意义且均为正值的是( ) A .tan A 与cos B B .cos B 与sin C C .sin C 与tan AD .tan A2与sin CD [∵0<A <π,∴0<A 2<π2,∴tan A2>0;又∵0<C <π,∴sin C >0.]二、填空题6.在平面直角坐标系中,以x 轴的非负半轴为角的始边,如果角α,β的终边分别与单位圆交于点⎝ ⎛⎭⎪⎫513,1213和⎝ ⎛⎭⎪⎫-35,45,那么sin α·tan β=________. -1613 [由任意角的正弦、正切函数的定义知 sin α=1213,tan β=45-35=-43,所以sin α·tan β=1213×⎝ ⎛⎭⎪⎫-43=-1613.]7.点P (tan 2 018°,cos 2 018°)位于第________象限. 四 [因为2 018°=5×360°+218°, 所以2 018°与218°终边相同,是第三象限角, 所以tan 2 018°>0,cos 2 018°<0, 所以点P 位于第四象限.]8.已知角α的终边经过点P (x ,-6)且cos α=-45,则x =________.【导学号:84352027】-8 [因为|OP |=x 2+-2=x 2+36,所以cos α=xx 2+36,又cos α=-45,所以xx 2+36=-45,整理得x =-8.]三、解答题 9.化简下列各式:(1)sin 72π+cos 52π+cos(-5π)+tan π4;(2)a 2sin 810°-b 2cos 900°+2ab tan 1 125°. [解] (1)原式=sin 32π+cos π2+cos π+1=-1+0-1+1=-1.(2)原式=a 2sin 90°-b 2cos 180°+2ab tan 45°=a 2+b 2+2ab =(a +b )2. 10.已知1|sin α|=-1sin α,且lg cos α有意义.(1)试判断角α的终边所在的象限;(2)若角α的终边上一点M ⎝ ⎛⎭⎪⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.【导学号:84352028】[解] (1)由1|sin α|=-1sin α,可知sin α<0.由lg cos α有意义,可知cos α>0, ∴角α的终边在第四象限.(2)∵|OM |=1,∴⎝ ⎛⎭⎪⎫352+m 2=1,解得m =±45.又α是第四象限角,故m <0,从而m =-45.由正弦函数的定义可知 sin α=y r =m |OM |=-451=-45.[冲A 挑战练]1.点P 从(1,0)出发,沿单位圆按逆时针方向运动26π3弧长到达Q 点,则Q 的坐标为( )A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,-12 C.⎝ ⎛⎭⎪⎫-12,-32D.⎝⎛⎭⎪⎫-32,12 A [点P 从(1,0)出发,沿单位圆逆时针方向运动26π3弧长到达Q 点,所以点Q 是角26π3与单位圆的交点,所以Q ⎝ ⎛⎭⎪⎫cos 26π3,sin 26π3,又cos 26π3=cos ⎝ ⎛⎭⎪⎫8π+2π3=cos 2π3=-12,sin 26π3=sin ⎝ ⎛⎭⎪⎫8π+2π3=sin 2π3=32,所以Q ⎝ ⎛⎭⎪⎫-12,32.] 2.已知角α的终边过点P (5,a ),且tan α=-125,则sin α+cos α的值为________.【导学号:84352029】-713 [根据三角函数的定义,tan α=a 5=-125, ∴a =-12,∴P (5,-12).这时r =13,∴sin α=-1213,cos α=513,从而sin α+cos α=-713.]3.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则cos α=________.35 [因为θ∈⎝ ⎛⎭⎪⎫π2,π,所以cos θ<0,r =-3cos θ2+θ2=5|cos θ|=-5cos θ,所以cos α=-3cos θ-5cos θ=35.]4.函数y =|cos x |cos x +tan x|tan x |的值域为________.【导学号:84352030】{-2,0,2} [已知函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪x ≠k π2,k ∈Z, 角x 的终边不能落在坐标轴上,当x 是第一象限角时,cos x >0,tan x >0,y =cos x cos x +tan xtan x =1+1=2;当x 是第二象限角时,cos x <0,tan x <0,y =-cos x cos x +-tan xtan x =-1-1=-2;当x 是第三象限角时,cos x <0,tan x >0,y =-cos x cos x +tan xtan x =-1+1=0;当x 是第四象限角时,cos x >0,tan x <0,y =cos x cos x +-tan xtan x =1-1=0.综上知原函数的值域是{-2,0,2}.] 5.已知sin θ<0,tan θ>0. (1)求角θ的集合;(2)求θ2的终边所在的象限;(3)试判断sin θ2cos θ2tan θ2的符号.[解] (1)因为sin θ<0,所以θ为第三、四象限角或在y 轴的负半轴上, 因为tan θ>0,所以θ为第一、三象限角,所以θ为第三象限角,θ角的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪2k π+π<θ<2k π+3π2,k ∈Z . (2)由(1)可得,k π+π2<θ2<k π+3π4,k ∈Z .当k 是偶数时,θ2终边在第二象限;当k 是奇数时,θ2终边在第四象限.(3)由(2)可得当k 是偶数时,sin θ2>0,cos θ2<0,tan θ2<0,所以sin θ2cos θ2tan θ2>0;当k 是奇数时sin θ2<0,cos θ2>0,tan θ2<0,所以sin θ2cos θ2tan θ2>0.综上知,sin θ2cos θ2tan θ2>0.。
高中数学 1.1.1任意角课时作业 新人教A版必修4
§1.1任意角和弧度制1.1.1 任意角课时目标1.了解任意角的概念,能正确区分正角、负角与零角.2.理解象限角与终边相同的角的定义.掌握终边相同的角的表示方法,并会判断角所在的象限.1.角(1)角的概念:角可以看成平面内______________绕着____________从一个位置________到另一个位置所成的图形.2.角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是______________.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=________________},即任一与角α终边相同的角,都可以表示成角α与______________的和.一、选择题1.与405°角终边相同的角是( )A .k ·360°-45°,k ∈ZB .k ·180°-45°,k ∈ZC .k ·360°+45°,k ∈ZD .k ·180°+45°,k ∈Z 2.若α=45°+k ·180° (k ∈Z ),则α的终边在( ) A .第一或第三象限 B .第二或第三象限 C .第二或第四象限 D .第三或第四象限3.设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( ) A .A =B B .B =C C .A =C D .A =D4.若α是第四象限角,则180°-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角5.集合M =⎩⎨⎧⎭⎬⎫x |x =k ·180°2±45°,k ∈Z , P =⎩⎨⎧⎭⎬⎫x |x =k ·180°4±90°,k ∈Z ,则M 、P 之间的关系为( ) A .M =P B .M PC .M PD .M ∩P =∅6.已知α为第三象限角,则α2所在的象限是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限二、填空题7.若角α与β的终边相同,则α-β的终边落在________. 8.经过10分钟,分针转了________度. 9.如图所示,终边落在阴影部分(含边界)的角的集合是______________________________.10.若α=1 690°,角θ与α终边相同,且-360°<θ<360°,则θ=________.三、解答题11.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.12.如图所示,写出终边落在阴影部分的角的集合.能力提升13.如图所示,写出终边落在直线y=3x上的角的集合(用0°到360°间的角表示).14.设α是第二象限角,问α3是第几象限角?1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”.2.关于终边相同角的认识一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 注意:(1)α为任意角.(2)k ·360°与α之间是“+”号,k ·360°-α可理解为k ·360°+(-α).(3)相等的角,终边一定相同;终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍.(4)k ∈Z 这一条件不能少.第一章 三角函数 §1.1 任意角和弧度制1.1.1 任意角答案知识梳理1.(1)一条射线 端点 旋转 (2)逆时针方向旋转 顺时针方向旋转 没有作任何旋转 2.第几象限角 3.α+k ·360°,k ∈Z 整数个周角 作业设计 1.C 2.A3.D [锐角θ满足0°<θ<90°;而B 中θ<90°,可以为负角;C 中θ满足k ·360°<θ<k ·360°+90°,k ∈Z ;D 中满足0°<θ<90°,故A =D .] 4.C [特殊值法,给α赋一特殊值-60°, 则180°-α=240°,故180°-α在第三象限.] 5.B [对集合M 来说,x =(2k ±1)45°,即45°的奇数倍;对集合P 来说,x =(k ±2)45°,即45°的倍数.]6.D [由k ·360°+180°<α<k ·360°+270°,k ∈Z , 得k 2·360°+90°<α2<k2·360°+135°,k ∈Z . 当k 为偶数时,α2为第二象限角;当k 为奇数时,α2为第四象限角.]7.x 轴的正半轴 8.-609.{α|k ·360°-45°≤α≤k ·360°+120°,k ∈Z } 10.-110°或250°解析 ∵α=1 690°=4×360°+250°,∴θ=k ·360°+250°,k ∈Z .∵-360°<θ<360°, ∴k =-1或0.∴θ=-110°或250°.11.解 (1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角. (2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.12.解 设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k ·360°+30°≤α<k ·360°+105°,k ∈Z }. ②{α|k ·360°+210°≤α<k ·360°+285°,k ∈Z }. ∴角α的集合应当是集合①与②的并集:{α|k ·360°+30°≤α<k ·360°+105°,k ∈Z }∪{α|k ·360°+210°≤α<k ·360°+285°,k ∈Z }={α|2k ·180°+30°≤α<2k ·180°+105°,k ∈Z }∪{α|(2k +1)180°+30°≤α<(2k +1)180°+105°,k ∈Z }={α|2k ·180°+30°≤α<2k ·180°+105°或(2k +1)·180°+30°≤α<(2k +1)180°+105°,k ∈Z }={α|k ·180°+30°≤α<k ·180°+105°,k ∈Z }.13.解 终边落在y =3x (x ≥0)上的角的集合是S 1={α|α=60°+k ·360°,k ∈Z },终边落在 y =3x (x ≤0) 上的角的集合是S 2={α|α=240°+k ·360°,k ∈Z },于是终边在y =3x 上角的集合是S ={α|α=60°+k ·360°,k ∈Z }∪{α|α=240°+k ·360°,k ∈Z }={α|α=60°+2k ·180°,k ∈Z }∪{α|α=60°+(2k +1)·180°,k ∈Z }={α|α=60°+n ·180°,n ∈Z }. 14.解 当α为第二象限角时,90°+k ·360°<α<180°+k ·360°,k ∈Z , ∴30°+k 3·360°<α3<60°+k3·360°,k ∈Z .当k =3n 时,30°+n ·360°<α3<60°+n ·360°,此时α3为第一象限角;当k =3n +1时,150°+n ·360°<α3<180°+n ·360°,此时α3为第二象限角;当k =3n +2时,270°+n ·360°<α3<300°+n ·360°,此时α3为第四象限角.综上可知α3是第一、二、四象限角.。
高中数学 课时作业1 任意角 新人教A版必修4-新人教A版高一必修4数学试题
课时作业1 任意角|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.若角α的终边经过点M(0,-3),则角α( )A.是第三象限角B.是第四象限角C.既是第三象限角又是第四象限角D.不属于任何一个象限解析:∵点M(0,-3)在y轴负半轴上,∴角α不属于任何一个象限.答案:D2.把一条射线绕着端点按顺时针方向旋转240°所形成的角是( )A.120°B.-120°C.240° D.-240°解析:一条射线绕着端点按顺时针方向旋转240°所形成的角是-240°,故选D.答案:D3.若角的顶点在原点,角的始边与x轴的非负半轴重合,给出下列四个命题:①0°角是第一象限角;②相等的角的终边一定相同;③终边相同的角有无限多个;④与-30°角终边相同的角都是第四象限角.其中正确的有( )A.1个 B.2个C.3个 D.4个解析:0°角是轴线角而不是象限角,①不正确;②显然正确;终边相同的角有无限多个,并且相差360°的整数倍,所以③正确;-30°角是第四象限角,故④正确.答案:C4.若α为锐角,则下列各角中一定为第四象限角的是( )A.90°-αB.90°+αC.360°-α D.180°+α解析:∵0°<α<90°,∴270°<360°-α<360°,故选C.答案:C5.若角α与角β的终边关于y轴对称,则必有( )A.α+β=90°B.α+β=k·360°+90°(k∈Z)C.α+β=k·360°(k∈Z)D.α+β=(2k+1)180°(k∈Z)解析:α与β的终边关于y轴对称,则α与180°-β终边相同,故α=180°-β+360°·k,即α+β=(2k+1)·180°,k∈Z.答案:D二、填空题(每小题5分,共15分)6.若角α的终边与75°角的终边关于直线y=0对称,且0°<α<360°,则角α的值为________.解析:如图,设75°角的终边为射线OA,射线OA关于直线y=0对称的射线为OB,则以射线OB为终边的一个角为-75°,所以以射线OB为终边的角的集合为{α|α=k·360°-75°,k∈Z}.又0°<α<360°,令k=1,得α=285°.答案:285°7.已知角α与2α的终边相同,且α∈[0°,360°),则角α=________.解析:由条件知,2α=α+k·360°,所以α=k·360°(k∈Z),因为α∈[0°,360°),所以α=0°.答案:08.如图,终边在阴影部分内的角的集合为________.解析:先写出边界角,再按逆时针顺序写出区域角,则得{α|30°+k·360°≤α≤150°+k·360°,k∈Z}.答案:{α|30°+k·360°≤α≤150°+k·360°,k∈Z}三、解答题(每小题10分,共20分)9.在0°~360°X围内,找出与下列各角终边相同的角,并指出它们是第几象限角:(1)549°;(2)-60°;(3)-503°36′.解析:(1)549°=189°+360°,而180°<189°<270°,因此,549°角为第三象限角,且在0°~360°X围内,与189°角有相同的终边.(2)-60°=300°-360°,而270°<300°<360°,因此,-60°角为第四象限角,且在0°~360°X围内,与300°角有相同的终边.(3)-503°36′=216°24′-2×360°,而180°<216°24′<270°.因此,-503°36′角是第三象限角,且在0°~360°X围内,与216°24′角有相同的终边.10.如图所示,分别写出适合下列条件的角的集合:(1)终边落在射线OM上;(2)终边落在直线OM上;(3)终边落在阴影区域内(含边界).解析:(1)终边落在射线OM上的角的集合为A={α|α=45°+k·360°,k∈Z}.(2)由(1)得终边落在射线OM上的角的集合为A={α|α=45°+k·360°,k∈Z},终边落在射线OM反向延长线上的角的集合为B={α|α=225°+k·360°,k∈Z},则终边落在直线OM上的角的集合为A∪B={α|α=45°+k·360°,k∈Z}∪{α|α=225°+k·360°,k∈Z}={α|α=45°+2k·180°,k∈Z}∪{α|α=45°+(2k+1)·180°,k∈Z}={α|α=45°+n·180°,n∈Z}.(3)终边落在直线ON上的角的集合为C={β|β=60°+n·180°,n∈Z},则终边落在阴影区域内(含边界)的角的集合为S={α|45°+n·180°≤α≤60°+n·180°,n∈Z}.|能力提升|(20分钟,40分)11.若角α与65°角的终边相同,角β与-115°角的终边相同,那么α与β之间的关系是( )A.α+β=-50°B.α-β=180°C.α+β=k·360°+180°(k∈Z)D.α-β=k·360°+180°(k∈Z)解析:由题意可知,α=k1·360°+65°(k1∈Z),β=k2·360°-115°(k2∈Z),所以α-β=(k1-k2)·360°+180°,记k=k1-k2∈Z,故α-β=k·360°+180°(k∈Z).答案:D12.如图所示,终边落在直线y=3x上的角的集合为________.解析:终边落在射线y=3x(x>0)上的角的集合是S1={α|α=60°+k·360°,k∈Z},终边落在射线y=3x(x≤0)上的角的集合是S2={α|α=240°+k·360°,k∈Z},于是终边落在直线y=3x上的角的集合是S={α|α=60°+k·360°,k∈Z}∪{α|α=240°+k·360°,k∈Z}={α|α=60°+2k·180°,k∈Z}∪{α|α=60°+(2k+1)·180°,k∈Z}={α|α=60°+n·180°,n∈Z}.答案:{α|α=60°+n·180°,n∈Z}13.已知α=-1 910°.(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.解析:(1)因为-1 910°÷360°=-6余250°,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时分层作业(一) 任意角
(建议用时:40分钟)
[学业达标练]
一、选择题
1.角-870°的终边所在的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
C [-870°=-3×360°+210°,∴-870°是第三象限,故选C.]
2.在-360°~0°范围内与角1 250°终边相同的角是( )
【导学号:84352006】
A .170°
B .190°
C .-190°
D .-170°
C [与1 250°角的终边相同的角α=1 250°+k ·360°,k ∈Z ,因为-360°<α<0°,所以-16136
<k <-12536
,因为k ∈Z ,所以k =-4,所以α=-190°.] 3.若α是第一象限角,则下列各角中属于第四象限角的是( )
A .90°-α
B .90°+α
C .360°-α
D .180°+α
C [因为α是第一象限角,所以-α为第四象限角,所以360°-α为第四象限角.]
4.若α=k ·180°+45°,k ∈Z ,则α所在象限是( )
A .第一或第三象限
B .第一或第二象限
C .第二或第四象限
D .第三或第四象限
A [当k =0时,α=45°为第一象限角,当k =1时,α=225°为第三象限角.]
5.已知角2α的终边在x 轴的上方,那么α是( )
A .第一象限角
B .第一、二象限角
C .第一、三象限角
D .第一、四象限角
C [由题意知k ·360°<2α<180°+k ·360°(k ∈Z ),故k ·180°<α<90°+k ·180°(k ∈Z ),按照k 的奇偶性进行讨论.当k =2n (n ∈Z )时,n ·360°<α<90°+n ·360°(n ∈Z ),所以α在第一象限;当k =2n +1(n ∈Z )时,180°+n ·360°<α<270°+n ·360°(n ∈Z ),所以α在第三象限.故α是第一或第三象限角.]
二、填空题
6.已知角α
的终边在图116中阴影所表示的范围内(不包括边界),那么α∈________. 【导学号:84352007】
图116
{α|n·180°+30°<α<n·180°+150°,n∈Z} [法一:(并集法)
在0°~360°范围内,终边落在阴影内的角为30°<α<150°和210°<α<330°.
所以α∈{α|k·360°+30°<α<k·360°+150°,k∈Z}∪{α|k·360°+210°<α<k·360°+330°,k∈Z}={α|2k·180°+30°<α<2k·180°+150°,k∈Z}∪{α|(2k+1)·180°+30°<α<(2k+1)·180°+150°,k∈Z}={α|n·180°+30°<α<n·180°+150°,n∈Z}.法二:(旋转法)
观察图形可知,图中阴影成“对角型”区域,其中一个区域逆(或顺)时针旋转180°,恰好与另一个区域重合,由此可知α∈{α|n·180°+30°<α<n·180°+150°,n∈Z}.]
7.与2 013°角的终边相同的最小正角是________,绝对值最小的角是
________.
213°-147°[与2 013°角的终边相同的角为2 013°+k·360°(k∈Z).当k=-5时,213°为最小正角;当k=-6时,-147°为绝对值最小的角.]
8.若α,β两角的终边互为反向延长线,且α=-120°,则β=________.
【导学号:84352008】k·360°+60°(k∈Z) [在0°~360°范围内与α=-120°的终边互为反向延长线的角是60°,所以β=k·360°+60°(k∈Z).]
三、解答题
9.在与530°终边相同的角中,求满足下列条件的角.
(1)最大的负角;
(2)最小的正角;
(3)-720°到-360°的角. 【导学号:84352009】
[解]与530°终边相同的角为k·360°+530°,k∈Z.
(1)由-360°<k·360°+530°<0°且k∈Z,可得k=-2,故所求的最大负角为-190°.
(2)由0°<k·360°+530°<360°且k∈Z,可得k=-1,
故所求的最小正角为170°.
(3)由-720°≤k·360°+530°≤-360°且k∈Z,可得k=-3,故所求的角为-550°.
10.已知集合A={α|k·180°+45°<α<k·180°+60°,k∈Z},集合B={β|k·360°-55°<β<k·360°+55°,k∈Z}.
(1)在平面直角坐标系中,表示出角α终边所在区域.
(2)在平面直角坐标系中,表示出角β终边所在区域.
(3)求A ∩B .
[解] (1)角α终边所在区域如图(1)所示.
(2)角β终边所在区域如图(2)所示.
图(1) 图(2)
(3)由(1)(2)知A ∩B ={γ|k ·360°+45°<γ<k ·360°+55°,k ∈Z } .
[冲A 挑战练]
1.已知θ为第二象限角,那么θ3
是( ) A .第一或第二象限角
B .第一或第四象限角
C .第二或第四象限角
D .第一、二或第四象限角
D [∵θ为第二象限角,∴90°+k ·360°<θ<180°+k ·360°,k ∈Z ,
∴30°+k ·120°<θ3
<60°+k ·120°,k ∈Z , 当k =0时,30°<θ3
<60°,属于第一象限, 当k =1时,150°<θ3
<180°,属于第二象限, 当k =-1时,-90°<θ3
<-60°,属于第四象限, ∴θ3
是第一、二或第四象限角.] 2.角α与角β的终边关于y 轴对称,则α与β的关系为( )
【导学号:84352010】
A .α+β=k ·360°,k ∈Z
B .α+β=k ·360°+180°,k ∈Z
C .α-β=k ·360°+180°,k ∈Z
D .α-β=k ·360°,k ∈Z
B [法一:(特殊值法)令α=30°,β=150°,则α+β=180°.故α与β的关系为α+β=k ·360°+180°,k ∈Z .
法二:(直接法)因为角α与角β的终边关于y 轴对称,所以β=180°-α+k ·360°,k ∈Z ,即α+β=k ·360°+180°,k ∈Z .]。