高三基础知识天天练. 数学 数学1-2人教版
基础知识天天练 数学选修4-1-2
选修4-1 第2节[知能演练]一、填空题1.一平面截球面产生的截面形状是________;它截圆柱面所产生的截面形状是________.答案:圆 圆或椭圆2.如下图所示,圆O 的直径AB =6,C 为圆周上一点,BC =3,过C 作圆的切线l ,过A 作l 的垂线AD ,垂足为D ,则∠DAC =________.解析:由弦切角定理,可知∠DCA =∠B =60°,又AD ⊥l ,故∠DAC =30°. 答案:30°3.一个圆的两弦相交,一条弦被分为12 cm 和18 cm 两段,另一弦被分为3∶8,则另一弦的长为________.解析:设另一弦被分的两段长分别为3k,8k (k >0), 由相交弦定理,得3k ·8k =12×18,解得k =3, 故所求弦长为3k +8k =11k =33 cm. 答案:33 cm4.已知P A 是圆O 的切线,切点为A ,P A =2,AC 是圆O 的直径,PC 与圆O 交于点B ,PB =1,则圆O 的半径R 的长为________.解析:如右图,连接AB ,∵P A 是⊙O 的切线, ∴∠P AB =∠C , 又∵∠APB =∠CP A , ∴△P AB ∽△PCA , ∴P A AC =PB AB ,即P A 2R =PBAB, ∴R =P A ·AB 2PB =2×22-122×1= 3.答案: 35.已知如下图,⊙O 和⊙O ′相交于A 、B 两点,过A 作两圆的切线分别交两圆于C 、D .若BC =2,BD =4,则AB 的长为________.解析:∵AC 、AD 分别是两圆的切线,∴∠C =∠2,,1=∠D , ∴△ACB ∽△DAB . ∴BC AB =ABBD, ∴AB 2=BC ·BD =2×4=8. ∴AB =8=22(舍去负值). 答案:2 26.如右图,已知EB 是半圆O 的直径,A 是BE 延长线上一点,AC 切半圆O 于点D ,BC ⊥AC 于点C ,DF ⊥EB 于点F ,若BC =6,AC =8,则DF =________.解析:设圆的半径为r ,AD =x , 连接OD ,得OD ⊥AC ,故AD AC =OD BC ,即x 8=r 6,故x =43r . 又由切割线定理得AD 2=AE ·AB , 即169r 2=(10-2r )×10,故r =154. 由射影定理知DF =3. 答案:3 二、解答题7.如下图,已知AP 是⊙O 的切线,P 为切点,AC 是⊙O 的割线,与⊙O 交于B ,C 两点,圆心O 在∠P AC 的内部,点M 是BC 的中点.(1)证明:A ,P ,O ,M 四点共圆;(2)求∠OAM +∠APM 的大小.(1)证明:连结OP ,OM , 因为AP 与⊙O 相切于点P , 所以OP ⊥AP .因为M 是⊙O 中弦BC 的中点,所以OM ⊥BC .于是∠OP A +∠OMA =180°,由圆心O 在∠P AC 的内部,可知四边形APOM 的对角互补,所以A ,P ,O ,M 四点共圆.(2)解:由(1),得A ,P ,O ,M 四点共圆, 所以∠OAM =∠OPM .由(1),得OP ⊥AP .由圆心O 在∠P AC 的内部,可知∠OPM +∠APM =90°,所以∠OAM +∠APM =90°. 8.如右图,梯形ABCD 内接于⊙O ,AD ∥BC ,过B 引⊙O 的切线分别交DA 、CA 的延长线于E 、F .(1)求证:AB 2=AE ·BC .(2)已知BC =8,CD =5,AF =6,求EF 的长. (1)证明:因为BE 切⊙O 于B , 所以∠ABE =∠ACB .由于AD ∥BC ,所以∠BAE =∠ABC . 所以△EAB ∽△ABC . 所以AE AB =ABBC .故AB 2=AE ·BC .(2)解:由(1),知△EAB ∽△ABC , 所以BE AC =AB BC .又AE ∥BC ,所以EF AF =BE AC .所以AB BC =EFAF .又AD ∥BC ,所以AB =CD .所以AB =CD .所以58=EF6.所以EF =308=154.[高考·模拟·预测]1.如右图,已知P A 、PB 是圆O 的切线,A 、B 分别为切点,C 为圆O 上不与A 、B 重合的另一点,若∠ACB =120°,则∠APB =________.解析:连结OA 、OB ,∠P AO =∠PBO =90°, ∵∠ACB =120°,∴∠AOB =120°. 又P 、A 、O 、B 四点共圆,故∠APB =60°.答案:60°2.如右图,点P 在圆O 直径AB 的延长线上,且PB =OB =2,PC切圆O 于C 点,CD ⊥AB 于D 点,则CD =________.解析:由切割线定理知,PC 2=P A ·PB ,解得PC =2 3.又OC ⊥PC ,故CD =PC ·OC PO =23×24= 3.答案: 33.如下图,圆O 和圆O ′相交于A 、B 两点,AC 是圆O ′的切线,AD 是圆O 的切线,若BC =2,AB =4,则BD =________.解析:易证△CBA ∽△ABD , 所以BC AB =ABBD ,BD =8.答案:84.如右图,点A ,B ,C 是圆O 上的点,且AB =4,∠ACB =45°,则圆O 的面积等于________.解析:根据同弧所对的圆心角是圆周角的2倍.知∠AOB =2∠ACB =90°,在Rt △OAB 中,得OA =22,即r =22,∴S =πr 2=8π.答案:8π5.如右图,已知△ABC 中,AB =AC ,D 是△ABC 外接圆劣弧AC上的点(不与点A ,C 重合),延长BD 到E .(1)求证:AD 的延长线平分∠CDE ;(2)若∠BAC =30°,△ABC 中BC 边上的高为2+3,求△ABC 外接圆的面积.解:(1)如右图,设F 为AD 延长线上一点. ∵A 、B 、C 、D 四点共圆, ∴∠CDF =∠ABC .又AB =AC ,∴∠ABC =∠ACB , 且∠ADB =∠ACB ,∴∠ADB =∠CDF . 对顶角∠EDF =∠ADB , 故∠EDF =∠CDF ,即AD的延长线平分∠CDE.(2)设O为外接圆圆心,连结AO交BC于H,则AH⊥BC. 连结OC,由题意∠OAC=∠OCA=15°,∠ACB=75°,∴∠OCH=60°.设圆半径为r,则r+32r=2+3,得r=2,外接圆面积为4π.。
高中数学基础强化天天练必修1第1练
第39练任意角(1)目标:理解任意角的概念;能判定任一已知角为第几象限角;能写出与任一已知角终边相同的角的集合.一、填空题1.200°是第_____象限角【答案】三2.锐角α的取值范围是__________。
【答案】] 2 0[π,3. 下列说法中,正确的是________(填序号).①终边落在第一象限的角为锐角;②锐角是第一象限的角;③第二象限的角为钝角;④小于90°的角一定为锐角;⑤角α与-α的终边关于x轴对称.【答案】②⑤【解析】终边落在第一象限的角不一定是锐角,如400°的角是第一象限的角,但不是锐角,故①的说法是错误的;同理第二象限的角也不一定是钝角,故③的说法也是错误的;小于90°的角不一定为锐角,比如负角,故④的说法是错误的.4.在-390°,-885°,1 351°,2 012°这四个角中,其中第四象限角的个数为________.【答案】2【解析】∵-390°=-360°+(-30°),-30°是第四象限角,∴-390°是第四象限角;∵-885°=-3×360°+195°,195°是第三象限角,∴-885°是第三象限角;∵1 351°=3×360°+271°,271°是第四象限角,∴1 351°是第四象限角;∵2 012°=5×360°+212°,212°是第三象限角,∴2 012°是第三象限角.5.写出-720°到360°之间与-1068°终边相同的角的集合:__________________________.【答案】{-708°,-348°,12°}【解析】因为-720°到360°之间与-1068°终边相同的角有-708°,-348°,12°,所以-720°到360°之间与-1068°终边相同的角的集合为{-708°,-348°,12°}.6.终边落在坐标轴上的角的集合为___________________________.【答案】{α|α= k·90°,k∈Z}.7.若α与β的终边互为反向延长线,且α=-120°,则β=________.【答案】k·360°+60°,k∈Z【解析】β与-120°角的终边互为反向延长线,则β与60°角的终边相同.∴β=k·360°+60°,k ∈Z .8.以下四个命题中,正确的命题的个数是_____.(1)终边相同的角一定相等;(2)相等的角终边一定相同;(3)始边与终边重合的角为0°;(4)第二象限角总比第一象限角大.【答案】1【解析】(2)正确,故正确的命题的个数是1个.9.与-1210°终边相同的最小正角和最大负角之和是_______.【答案】100°【解析】与-1210°终边相同的最小正角是230°,最大负角是-130°,故最小正角和最大负角之和是100°.10.若集合A={α|α=30°+k ·360°,k ∈Z },B={β|β=30°+k ·720°,k ∈Z },C={γ|γ=30°+k ·180°,k ∈Z },则集合A 、B 、C 的关系是__________________.【答案】B ≠⊂A ≠⊂C【解析】A={α|α=30°+2k ·180°,k ∈Z },B={β|β=30°+4k ·180°,k ∈Z },C={γ|γ=30°+k ·180°,k ∈Z })所以B ≠⊂A ≠⊂C二、解答题11.在与角-2 013°终边相同的角中,求满足下列条件的角.(1)最小的正角;(2)最大的负角;(3)-720°~720°内的角.解 (1)∵-2 013°=-6×360°+147°,∴与角-2 013°终边相同的最小正角是147°.(2)∵-2 013°=-5×360°+(-213°),∴与角-2 013°终边相同的最大负角是-213°.(3)∵-2 013°=-6×360°+147°,∴与角-2 013°终边相同也就是与角147°终边相同.由-720°<k ·360°+147°<720°,k ∈Z ,解得:k =-2,-1,0,1.代入k ·360°+147°依次得:-573°,-213°,147°,507°.12.已知α与-240°角的终边相同,判断α2是第几象限角. 解:由α=k ·360°-240°(k ∈Z )得α2=k ·180°-120°(k ∈Z ).若k =2n ,n ∈Z ,则α2=n ·360°-120°,n ∈Z ,所以α2是第三象限角;若k =2n +1,n ∈Z ,则α2=n ·360°+60°,k ∈Z ,所以α2是第一象限角.综上所述,α2是第一或第三象限角.。
2022高三数学二轮复习天天练 数学天天练习31 新人教版
高三数学天天练311、设全集{}4,3,2,1,0=U ,{}4,3,0=A ,{}3,1=B ,则)(B A C U ⋃= 。
2的模是 。
3、若命题2:,210p x x ∀∈+>R ,则该命题的否定是 。
4、函数⎪⎩⎪⎨⎧≥<<-⋅=-0,01),cos()(1x e x x x f x π,若1)()1(=+a f f ,则的值为 。
5、已知等差数列满足:6,821-=-=a a 。
若将541,,a a a 都加上同一个数,所得的三个数依次成等比数列,则所加的这个数为 。
6、设曲线2ax y =在点(1,)处的切线与直线062=--y x 平行,则 。
7、有一道解三角形的题目,因纸张破损有一个条件模糊不清,具体如下:“在△ABC中,已知4a B π==, ,求角A”经推断,破损处的条件为三角形一边的长度,且答案提示6A π=试在横线上将条件补充完整。
8、若函数2()min{2,log }f x x x =-+,其中min{,}p q 表示两者中的较小者,则不等式2)(-<x f 的解集为 。
9、黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:第1个图中共有7块地面砖,则第个图案中共有地面砖块。
10、已知函数1)(2+++=bx xa x x f 在]1,1[-上为奇函数,则)21(f 的值为 。
学生姓名______ 得分:_____11数列25),2(122}{31=≥-+=-a n a a a n n n n 其中满足若存在一个实数使得}2{n n a λ+为等差数列,求第1个 第2个 第3个填空题答案纸:1、______________2、_____________3、______________4、______________5、_____________6、______________7、______________ 8、_____________ 9、______________10、_____________三十一参考答案1、;2、;3、012,2≤+∈∃x R x ;4、21-5、-16、 17、6=b (或写成2623+=c ) 8、),4()41,0(+∞⋃ 9、25+n 10、5211、–1。
高三基础知识天天练2-11.数学数学doc人教版
⾼三基础知识天天练2-11.数学数学doc⼈教版第2模块第11节[知能演练]⼀、选择题1.设f ′(x )是函数f (x )的导数,y =f ′(x )的图象如右图所⽰,则y =f (x )的图象最有可能是( )解析:由y =f ′(x )的图象可知,当x <0时,f ′(x )>0,∴f (x )在(-∞,0)上单调递增;当0答案:C2.函数f (x )=1+x -sin x 在(0,2π)上是( )A .增函数B .减函数C .在(0,π)上增,在(π,2π)上减D .在(0,π)上减,在(π,2π)上增解析:f ′(x )=1-cos x >0,∴f (x )在(0,2π)上递增.故选A. 答案:A 3.若a >3,则⽅程x 3-ax 2+1=0在(0,2)上恰有( )A .0个根B .1个根C .2个根D .3个根解析:令f (x )=x 3-ax 2+1,则f ′(x )=3x 2-2ax =3x (x -23a ).由f ′(x )=0,得x =0或x =23a (∵a >3,∴23a >2).∴当04.设a ∈R ,若函数y =e ax +3x ,x ∈R 有⼤于零的极值点,则( )A .a >-3B .a <-3C .a >-13D .a <-13解析:y ′=a ·e ax +3=0,当a =0时,显然不合题意,∴a ≠0. ∴e ax =-3a .∴x =1a ln(-3a ).由题意,得1a ln(-3a )>0,∴a <0,0<-3a <1.∴a <-3. 故应选B. 答案:B ⼆、填空题5.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最⼤值与最⼩值分别为M ,m ,则M -m =________.解析:f ′(x )=3x 2-12=3(x +2)(x -2),令f ′(x )=0,得x =±2.∵f (-3)=17,f (3)=-1,f (-2)=24,f (2)=-8,∴M -m =f (-2)-f (2)=32. 答案:32 6.若函数f (x )=4x x 2+1在区间(m,2m +1)上是单调递增函数,则实数m 的取值范围是________.解析:f ′(x )=4(x 2+1)-8x 2(x 2+1)2=4(1-x 2)(x 2+1)2,令f ′(x )>0,∴-1m ≥-1,2m +1≤1,2m +1>m ,∴-1答案:(-1,0] 三、解答题7.设函数f (x )=ln(2x +3)+x 2. (1)讨论f (x )的单调性;(2)求f (x )在区间[-34,14]上的最⼤值和最⼩值.解:(1)函数f (x )的定义域为(-32,+∞),f ′(x )=22x +3+2x =2(2x +1)(x +1)2x +3,令f ′(x )>0,∴x >-12或-32令f ′(x )<0,∴-12.∴f (x )在区间(-32,-1)和(-12,+∞)上为增函数,在区间(-1,-12)上为减函数.(2)当x 在区间[-34,14]上变化时,f ′(x )与f (x )变化情况如下表:f (-34)=916+ln 32,f (-12)=14+ln2,f (14)=116+ln 72,由表知函数f (x )在x =-12处取最⼩值14+ln2.f (-34)-f (14)=12+ln 37=12(1-ln 499)<0.故函数f (x )在x =14处取最⼤值116+ln 72.8.已知f (x )=12x 2-a ln x (a ∈R ),(1)求函数f (x )的单调区间; (2)求证:当x >1时,12x 2+ln x <23x 3.(1)解:f ′(x )=x -a x =x 2-ax(x >0),若a ≤0时,f ′(x )≥0恒成⽴,∴函数f (x )的单调增区间为(0,+∞).若a >0时,令f ′(x )>0,得x >a ,∴函数f (x )的单调增区间为(a ,+∞),减区间为(0,a ). (2)证明:设F (x )=23x 3-(12x 2+ln x ),x .∴F ′(x )=(x -1)(2x 2+x +1)x .∵x >1,∴F ′(x )>0.∴F (x )在(1,+∞)上为增函数.⼜F (x )在[1,+∞)上连续,F (1)=16>0,∴F (x )>16在(1,+∞)上恒成⽴.∴F (x )>0.∴当x >1时,12x 2+ln x <23x 3.[⾼考·模拟·预测]1.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)e x ]′=1·e x +(x -3)·e x =(x -2)·e x ,由函数导数与函数单调性关系得:当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=(x -2)·e x >0解得:x >2.答案:D2.若函数f (x )=x 3-6bx +3b 在(0,1)内有极⼩值,则实数b 的取值范围是( )A .(0,1)B .(-∞,1)C .(0,+∞)D .(0,12)解析:∵f ′(x )=3x 2-6b ,由题意,函数f ′(x )图象如右图.∴ f ′(0)<0,f ′(1)>0,即-6b <0,3-6b >0,得0答案:D3.函数f (x )=x 3-15x 2-33x +6的单调减区间为________.解析:由f (x )=x 3-15x 2-33x +6得,f ′(x )=3x 2-30x -33,令f ′(x )<0,即3(x -11)(x +1)<0,求得-1x +1在x =1处取极值,则a =________.解析:由于f ′(x )=(x 2+a )′·(x +1)-(x 2+a )·(x +1)′(x +1)2=2x ·(x +1)-(x 2+a )·1(x +1)2=x 2+2x -a (x +1)2,⽽函数f (x )在x =1处取极值,则f ′(1)=12+2×1-a (1+1)2=0,解得a =3,故填3.答案:35.已知函数f (x )=(x 2+ax -2a 2+3a )e x (x ∈R ),其中a ∈R . (Ⅰ)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线的斜率;(Ⅱ)当a ≠23时,求函数f (x )的单调区间与极值.解:(Ⅰ)当a =0时,f (x )=x 2e x ,f ′(x )=(x 2+2x )e x ,故f ′(1)=3e.所以曲线y =f (x )在点(1,f (1))处的切线的斜率为3e.(Ⅱ)f ′(x )=[x 2+(a +2)x -2a 2+4a ]e x . 令f ′(x )=0,解得x =-2a 或x =a -2. 由a ≠23知,-2a ≠a -2.以下分两种情况讨论.(1)若a >23,则-2a内是增函数,在函数f (x )在x =-2a 处取得极⼤值f (-2a ),且f (-2a )=3a e -2a.函数f (x )在x =a -2处取得极⼩值f (a -2),且f (a -2)=(4-3a )e a -2.(2)若a <23,则-2a >a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:函数f (x )在x =a -2处取得极⼤值f (a -2),且f (a -2)=(4-3a )e a -2.函数f (x )在x =-2a 处取得极⼩值f (-2a ),且f (-2a )=3a e-2a.[备选精题]6.若存在实常数k 和b ,使得函数f (x )和g (x )对其定义域上的任意实数x 分别满⾜:f (x )≥kx +b 和g (x )≤kx +b ,则称直线l :y =kx +b 为函数f (x )和g (x )的“隔离直线”.已知h (x )=x 2,φ(x )=2eln x (其中e 为⾃然对数的底数).(1)求F (x )=h (x )-φ(x )的极值;(2)函数h (x )和φ(x )是否存在隔离直线?若存在,求出此隔离直线的⽅程;若不存在,请说明理由.解:(1)∵F (x )=h (x )-φ(x )=x 2-2eln x (x >0),∴F ′(x )=2x -2e x =2(x -e)(x +e)x .当x =e 时,F ′(x )=0.∵当0e 时,F ′(x )>0,此时函数F (x )递增,∴当x =e 时,F (x )取极⼩值,其极⼩值为0.(2)由(1)可知函数h (x )和φ(x )的图象在x =e 处有公共点,因此若存在h (x )和φ(x )的隔离直线,则该直线过这个公共点,设隔离直线的斜率为k ,则直线⽅程为y -e =k (x -e),即y =kx +e -k e.由h (x )≥kx +e -k e(x ∈R ),可得x 2-kx -e +k e ≥0,当x ∈R 时恒成⽴.∴Δ=(k -2e)2,∴由Δ≤0,得k =2 e.下⾯证明φ(x )≤2e x -e ,当x >0时恒成⽴.令G (x )=φ(x )-2e x +e =2eln x -2e x +e ,则G ′(x )=2ex -2e =2e(e -x )x ,当x =e 时,G ′(x )=0. ∵当00,此时函数G (x )递增;当x >e 时,G ′(x )<0,此时函数G (x )递减,∴当x =e 时,G (x )取极⼤值,其极⼤值为0. 从⽽G (x )=2eln x -2e x +e ≤0,即φ(x )≤2e x -e(x >0)恒成⽴,∴函数h (x )和φ(x )存在唯⼀的隔离直线y =2e x -e.。
高三基础知识天天练2-3. 数学 数学doc人教版
第2模块第3节[知能演练]一、选择题1.函数y=-x2(x∈R)是() A.左减右增的偶函数B.左增右减的偶函数C.减函数、奇函数D.增函数、奇函数解析:∵y=-x2是开口向下的一条抛物线,∴y=-x2在(-∞,0)上为增函数,(0,+∞)上为减函数,不妨设y=f(x)=-x2,则f(-x)=-(-x)2=-x2=f(x),∴f(x)为偶函数.答案:B2.已知函数f(x)在R上是奇函数,且当x>0时,f(x)=x2-2x,则f(x)在R上的解析式是() A.f(x)=x·(x-2)B.f(x)=|x|(x-2)C.f(x)=|x|(|x|-2)D.f(x)=x(|x|-2)答案:D3.f(x)、g(x)都是定义在R上的奇函数,且F(x)=3f(x)+5g(x)+2,若F(a)=b,则F(-a)等于() A.-b+4 B.-b+2C.b-2 D.b+2解析:依题设F(-x)=3f(-x)+5g(-x)+2=-3f(x)-5g(x)+2,∴F(x)+F(-x)=4,则F(a)+F(-a)=4,F(-a)=4-F(a)=4-b.答案:A4.定义在R上的函数f(x)既是奇函数又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-T,T]上的根的个数记为n,则n可能为() A.0 B.1C.3 D.5解析:定义在R上的函数f(x)是奇函数,则f(0)=0,又f(x)是周期函数,T是它的一个正周期,∴f (T )=f (-T )=0,f (-T 2)=-f (T 2)=f (-T 2+T )=f (T2).∴f (-T 2)=f (T2)=0,则n 可能为5,选D.答案:D 二、填空题5.设函数f (x )=(x +1)(x +a )x 为奇函数,则a =________.解析:∵f (1)+f (-1)=0⇒2(1+a )+0=0, ∴a =-1. 答案:-16.已知函数f (x )=x 2-cos x ,对于[-π2,π2]上的任意x 1,x 2,有如下条件:①x 1>x 2;②x 21>x 22;③|x 1|>x 2.其中能使f (x 1)>f (x 2)恒成立的条件序号是________.解析:函数f (x )=x 2-cos x 显然是偶函数,其导数y ′=2x +sin x 在0<x <π2时,显然也大于0,是增函数,想象其图象,不难发现,x 的取值离对称轴越远,函数值就越大,②满足这一点.当x 1=π2,x 2=-π2时,①③均不成立.答案:② 三、解答题7.已知f (x )=px 2+23x +q 是奇函数,且f (2)=53.(1)求实数p ,q 的值;(2)判断函数f (x )在(-∞,-1)上的单调性,并加以证明. 解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ),即px 2+2-3x +q =-px 2+23x +q .从而q =0,因此f (x )=px 2+23x .又∵f (2)=53,∴4p +26=53.∴p =2.(2)f (x )=2x 2+23x,任取x 1<x 2<-1,则f (x 1)-f (x 2)=2x 21+23x 1-2x 22+23x 2=2(x 2-x 1)(1-x 1x 2)3x 1x 2.∵x 1<x 2<-1,∴x 2-x 1>0,1-x 1x 2<0,x 1x 2>0. ∴f (x 1)-f (x 2)<0.∴f (x )在(-∞,-1)上是单调增函数.8.已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (x )在[-1,1]上的解析式; (2)证明f (x )在(0,1)上是减函数.(1)解:只需求出f (x )在x ∈(-1,0)和x =±1,x =0时的解析式即可,因此,要注意应用奇偶性和周期性,当x ∈(-1,0)时,-x ∈(0,1).∵f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,由f (0)=f (-0)=-f (0),且f (1)=f (-2+1)=f (-1)=-f (1), 得f (0)=f (1)=f (-1)=0. ∴在区间[-1,1]上有f (x )=⎩⎨⎧2x4x +1x ∈(0,1),-2x 4x+1x ∈(-1,0),0 x ∈{-1,0,1}.(2)证明:当x ∈(0,1)时,f (x )=2x4x +1.设0<x 1<x 2<1, f (x 1)-f (x 2)=2x 14x 1+1-2x 24x 2+1=(2x 2-2x 1)(2x 1+x 2-1)(4x 1+1)(4x 2+1).∵0<x 1<x 2<1.∴2x 2-2x 1>0,2x 1+x 2-1>0. ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),故f (x )在(0,1)上单调递减.[高考·模拟·预测]1.已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2008)+f (2009)的值为( )A .-2B .-1C .1D .2解析:f (-2008)+f (2009)=f (0)+f (1)=log 21+log 22=1.答案:C2.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )·f (x ),则f (52)的值是( )A .0 B.12 C .1D.52解析:令g (x )=f (x )x ,则g (-x )=f (-x )-x =-f (x )x =-g (x ),∴g (x )为奇函数.又g (x +1)=f (x +1)x +1=f (x )x =g (x ).∴g (52)=f (52)52=g (12)=g (-12)=-g (12),∴g (12)=0,∴f (52)=0.故选A. 答案:A3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:∵f (x -4)=-f (x ),∴f (x +4)=-f (x ),∴f (x +8)=f (x ).∴f (-25)=f (-1)=-f (1),f (11)=f (3)=-f (-1)=f (1),f (80)=f (0)=0.而f (x )在[0,2]上是增函数,∴f (1)≥f (0)=0.∴f (-25)<f (80)<f (11).故选D.答案:D4.函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则( ) A .f (x )是偶函数 B .f (x )是奇函数 C .f (x )=f (x +2) D .f (x +3)是奇函数解析:由题意f (-x +1)=-f (x +1),f (-x -1)=-f (x -1),即f (x )=-f (2-x )且f (x )=-f (-2-x ).∴f (x )=-f (2-x )=f [-2-(2-x )]=f (x -4),∴f (-x +3)=f (-x -1)=-f [2-(-x -1)]=-f (x +3),故选D. 答案:D5.定义在R 上的增函数y =f (x )对任意x ,y ∈R 都有f (x +y )=f (x )+f (y ). (1)求f (0);(2)求证:f (x )为奇函数;(3)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围. 解:(1)令x =y =0,得f (0+0)=f (0)+f (0),即f (0)=0. (2)令y =-x ,得f (x -x )=f (x )+f (-x ),又f (0)=0,则有 0=f (x )+f (-x ).即f (-x )=-f (x )对任意x ∈R 成立, 所以f (x )是奇函数.(3)证法一:因为f (x )在R 上是增函数,又由(2)知f (x )是奇函数.f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2), 所以k ·3x <-3x +9x +2,32x -(1+k )·3x +2>0对任意x ∈R 成立.令t =3x >0,问题等价于t 2-(1+k )t +2>0对任意t >0恒成立. 令f (t )=t 2-(1+k )t +2,其对称轴为x =1+k 2,当1+k2<0即k <-1时,f (0)=2>0,符合题意; 当1+k2≥0即k ≥-1时,对任意t >0,f (t )>0恒成立⇔⎩⎪⎨⎪⎧1+k 2≥0,Δ=(1+k )2-4×2<0,解得-1≤k <-1+2 2. 综上所述,当k <-1+22时,f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立. 解法二:由k ·3x <-3x +9x +2, 得k <3x +23x -1.u =3x +23x -1≥22-1,即u 的最小值为22-1,要使对x ∈R 不等式k <3x +23x -1恒成立,只要使k <22-1.所以满足题意的k 的取值范围是(-∞,22-1)[备选精题]6.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ).(1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在x ∈[2,+∞)上为增函数,求a 的取值范围. 解:(1)当a =0时,f (x )=x 2,对任意x ∈(-∞,0)∪(0,+∞), f (-x )=(-x )2=x 2=f (x ),∴f (x )为偶函数. 当a ≠0时,f (x )=x 2+ax (a ≠0,x ≠0),取x =±1,得f (-1)+f (1)=2≠0,f (-1)-f (1)= -2a ≠0.∴f (-1)≠-f (1),f (-1)≠f (1).∴函数f (x )既不是奇函数,也不是偶函数.(2)解法一:要使函数f (x )在x ∈[2,+∞)上为增函数, 等价于f ′(x )≥0在x ∈[2,+∞)上恒成立,即f ′(x )=2x -ax 2≥0在x ∈[2,+∞)上恒成立,故a ≤2x 3在x ∈[2,+∞)上恒成立.∴a ≤(2x 3)min =16.∴a 的取值范围是(-∞,16]. 解法二:设2≤x 1<x 2,f(x1)-f(x2)=x21+ax1-x22-ax2=(x1-x2)x1x2[x1x2(x1+x2)-a],要使函数f(x)在x∈[2,+∞)上为增函数,必须f(x1)-f(x2)<0恒成立,∵x1-x2<0,即a<x1x2(x1+x2)恒成立,又∵x1+x2>4,x1x2>4,∴x1x2(x1+x2)>16.∴a的取值范围是(-∞,16].。
高三基础知识天天练3-3. 数学 数学doc人教版
第3模块 第3节[知能演练]一、选择题1.函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的()解析:∵y =xsin x 是偶函数,排除A ,当x =2时,y =2sin2>2,排除D. 当x =π6时,y =π6sin π6=π3>1,排除B.答案:C2.函数f (x )=tan ωx (ω>0)图象的相邻的两支截直线y =π4所得线段长为π4,则f (π4)的值是( )A .0B .1C .-1D.π4解析:由题意知T =π4,由πω=π4得ω=4,∴f (x )=tan4x ,∴f (π4)=tan π=0.答案:A3.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A .[-π,-5π6]B .[-5π6,-π6]C .[-π3,0]D .[-π6,0]解析:f (x )=sin x -3cos x =2sin(x -π3)∵-π≤x ≤0,∴-4π3≤x -π3≤-π3当-π2≤x -π3≤-π3时,即-π6≤x ≤0时,f (x )递增.答案:D4.对于函数f (x )=sin x +1sin x(0<x <π),下列结论中正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值解析:f (x )=sin x +1sin x =1+1sin x ,∵0<x <π,∴0<sin x ≤1,∴1sin x ≥1,∴1+1sin x≥2.∴f (x )有最小值而无最大值. 答案:B 二、填空题 5.函数y =lgsin x + cos x -12的定义域为____________,函数y =12sin(π4-23x )的单调递增区间为________.解析:(1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0cos x ≥12,解得⎩⎪⎨⎪⎧2kπ<x <π+2kπ-π3+2kπ≤x ≤π3+2kπ(k ∈Z ), ∴2kπ<x ≤π3+2kπ,k ∈Z ,∴函数的定义域为{x |2kπ<x ≤π3+2kπ,k ∈Z }.(2)由y =12sin(π4-23x )得y =-12sin(23x -π4),由π2+2kπ≤23x -π4≤32π+2kπ,得 98π+3kπ≤x ≤21π8+3kπ,k ∈Z ,故函数的单调递增区间为 [98π+3kπ,21π8+3kπ](k ∈Z ). 答案:{x |2kπ<x ≤π3+2kπ,k ∈Z }[98π+3kπ,21π8+3kπ](k ∈Z ) 6.对于函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+kπ(k ∈Z )时,该函数取得最小值-1; ③该函数的图象关于x =5π4+2kπ(k ∈Z )对称;④当且仅当2kπ<x <π2+2kπ(k ∈Z )时,0<f (x )≤22.其中正确命题的序号是________.(请将所有正确命题的序号都填上) 解析:画出f (x )在一个周期[0,2π]上的图象.由图象知,函数f (x )的最小正周期为2π,在x =π+2kπ(k ∈Z )和x =32π+2kπ(x ∈Z )时,该函数都取得最小值-1,故①②错误,由图象知,函数图象关于直线x =54π+2kπ(k ∈Z )对称,在2kπ<x <π2+2kπ(k ∈Z )时,0<f (x )≤22.故③④正确.答案:③④ 三、解答题7.已知函数y =f (x )=2sin x1+cos 2x -sin 2x.(1)求函数定义域;(2)用定义判断f (x )的奇偶性; (3)在[-π,π]上作出f (x )的图象; (4)写出f (x )的最小正周期及单调区间. 解:(1)∵f (x )=2sin x 2cos 2x=sin x|cos x |, ∴函数的定义域是{x |x ≠kπ+π2,k ∈Z }.(2)由(1)知f (-x )=sin(-x )|cos(-x )|=-sin x|cos x |=-f (x ),∴f (x )是奇函数. (3)f (x )=⎩⎨⎧tan x (-π2<x <π2)-tan x (-π≤x <-π2或π2<x ≤π),y =f (x )(x ∈[-π,π])的图象如图所示.(4)f (x )的最小正周期为2π,单调递增区间是(-π2+2kπ,π2+2kπ)(k ∈Z ),单调递减区间是(π2+2kπ,3π2+2kπ)(k ∈Z ).8.已知a >0,函数f (x )=-2a sin(2x +π6)+2a +b ,当x ∈[0,π2]时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f (x +π2)且lg[g (x )]>0,求g (x )的单调区间.解:(1)∵x ∈[0,π2],∴2x +π6∈[π6,7π6],∴sin(2x +π6)∈[-12,1],∴-2a sin(2x +π6)∈[-2a ,a ],∴f (x )∈[b,3a +b ],又-5≤f (x )≤1.∴⎩⎪⎨⎪⎧ b =-53a +b =1,解得⎩⎪⎨⎪⎧a =2b =-5. (2)f (x )=-4sin(2x +π6)-1,g (x )=f (x +π2)=-4sin(2x +7π6)-1=4sin(2x +π6)-1,又由lg[g (x )]>0,得g (x )>1, ∴4sin(2x +π6)-1>1,∴sin(2x +π6)>12,∴π6+2kπ<2x +π6<56π+2kπ,k ∈Z ,由π6+2kπ<2x +π6≤2kπ+π2,得 kπ<x ≤kπ+π6,k ∈Z .由π2+2kπ≤2x +π6<56π+2kπ得 π6+kπ≤x <π3+kπ,k ∈Z . ∴函数g (x )的单调递增区间为(kπ,π6+kπ](k ∈Z ),单调递减区间为[π6+kπ,π3+kπ)(k ∈Z ).[高考·模拟·预测]1.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为( )A .1B .2 C.3+1D.3+2解析:因为f (x )=(1+3tan x )cos x =cos x +3sin x =2cos(x -π3),当x =π3时,函数取得最大值为2.故选B.答案:B2.若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为( )A.16 B.14 C.13D.12解析:将函数y =tan(ωx +π4)的图象向右平移π6个单位后,得到的函数为y =tan[ω(x -π6)+π4]=tan(ωx -πω6+π4),这个函数的图象与函数y =tan(ωx +π6)的图象重合,根据正切函数的周期是kπ,故其充要条件是-πω6+π4=kπ+π6(k ∈Z ),即ω=-6k +12(k ∈Z ),当k =0时,ω的最小值为12,故选D.答案:D3.已知函数f (x )=sin(x -π2)(x ∈R ),下面结论中错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间[0,π2]上是增函数C .函数f (x )在图象关于直线x =0对称D .函数f (x )是奇函数解析:∵f (x )=-cos x ,∴f (x )为偶函数,故选D. 答案:D4.已知α∈(0,π4),a =(sin α)cos α,b =(sin α)sin α,c =(cos α)sin α,则a 、b 、c 的大小关系是________.解析:α∈(0,π4),1>cos α>sin α>0,y =(sin α)x 为减函数,∴a <b .而y =x sin α在(0,+∞)上为增函数,∴c >b .故c >b >a .答案:a <b <c5.已知函数f (x )=3(sin 2x -cos 2x )-2sin x cos x . (1)求f (x )的最小正周期;(2)设x ∈[-π3,π3],求f (x )的值域和单调递增区间.解:(1)∵f (x )=-3(cos 2x -sin 2x )-2sin x cos x =-3cos2x -sin2x =-2sin(2x +π3)∴f (x )的最小正周期为π.(2)∵x ∈[-π3,π3],∴-π3≤2x +π3≤π,∴-32≤sin(2x +π3)≤1. ∴f (x )的值域为[-2,3].∵当y =sin(2x +π3)递减时,f (x )递增,令2kπ+π2≤2x +π3≤2kπ+3π2,则kπ+π12≤x ≤kπ+7π12,k ∈Z ,又x ∈[-π3,π3],∴π12≤x ≤π3.故f (x )的递增区间为[π12,π3].[备选精题]6.设函数f (x )=sin(π4x -π6)-2cos 2π8x +1.(1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈[0,43]时y =g (x )的最大值.解:(1)f (x )=sin π4x cos π6-cos π4x sin π6-cos π4x =32sin π4x -32cos π4x =3sin(π4x -π3),故f (x )的最小正周期为T =2ππ4=8.(2)解法一:在y =g (x )的图象上任取一点(x ,g (x )),它关于x =1的对称点为(2-x ,g (x )).由题设条件,点(2-x ,g (x ))在y =f (x )的图象上,可知g (x )=f (2-x )=3sin[π4(2-x )-π3]=3sin(π2-π4x -π3)=3cos(π4x +π3).当0≤x ≤43时,π3≤π4x +π3≤2π3,因此y =g (x )在区间[0,43]上的最大值为g (x )max =3cos π3=32.解法二:因区间[0,43]关于x =1的对称区间为[23,2],且y =g (x )与y =f (x )的图象关于x=1对称,故y =g (x )在[0,43]上的最大值即为y =f (x )在[23,2]上的最大值.由(1)知f (x )=3sin(π4x -π3),当23≤x ≤2时,-π6≤π4x -π3≤π6. 因此y =g (x )在[0,43]上的最大值为g (x )max =3sin π6=32.。
高三基础知识天天练 数学选修4-1-2人教版
选修4-1 第2节[知能演练]一、填空题1.一平面截球面产生的截面形状是________;它截圆柱面所产生的截面形状是________.答案:圆 圆或椭圆2.如下图所示,圆O 的直径AB =6,C 为圆周上一点,BC =3,过C 作圆的切线l ,过A 作l 的垂线AD ,垂足为D ,则∠DAC =________.解析:由弦切角定理,可知∠DCA =∠B =60°,又AD ⊥l ,故∠DAC =30°. 答案:30°3.一个圆的两弦相交,一条弦被分为12 cm 和18 cm 两段,另一弦被分为3∶8,则另一弦的长为________.解析:设另一弦被分的两段长分别为3k,8k (k >0), 由相交弦定理,得3k ·8k =12×18,解得k =3, 故所求弦长为3k +8k =11k =33 cm. 答案:33 cm4.已知P A 是圆O 的切线,切点为A ,P A =2,AC 是圆O 的直径,PC 与圆O 交于点B ,PB =1,则圆O 的半径R 的长为________.解析:如右图,连接AB ,∵P A 是⊙O 的切线, ∴∠P AB =∠C , 又∵∠APB =∠CP A , ∴△P AB ∽△PCA , ∴P A AC =PB AB ,即P A 2R =PBAB, ∴R =P A ·AB 2PB =2×22-122×1= 3.答案: 35.已知如下图,⊙O 和⊙O ′相交于A 、B 两点,过A 作两圆的切线分别交两圆于C 、D .若BC =2,BD =4,则AB 的长为________.解析:∵AC 、AD 分别是两圆的切线,∴∠C =∠2,,1=∠D , ∴△ACB ∽△DAB . ∴BC AB =ABBD, ∴AB 2=BC ·BD =2×4=8. ∴AB =8=22(舍去负值). 答案:2 26.如右图,已知EB 是半圆O 的直径,A 是BE 延长线上一点,AC 切半圆O 于点D ,BC ⊥AC 于点C ,DF ⊥EB 于点F ,若BC =6,AC =8,则DF =________.解析:设圆的半径为r ,AD =x , 连接OD ,得OD ⊥AC ,故AD AC =OD BC ,即x 8=r 6,故x =43r . 又由切割线定理得AD 2=AE ·AB , 即169r 2=(10-2r )×10,故r =154. 由射影定理知DF =3. 答案:3 二、解答题7.如下图,已知AP 是⊙O 的切线,P 为切点,AC 是⊙O 的割线,与⊙O 交于B ,C 两点,圆心O 在∠P AC 的内部,点M 是BC 的中点.(1)证明:A ,P ,O ,M 四点共圆;(2)求∠OAM +∠APM 的大小.(1)证明:连结OP ,OM , 因为AP 与⊙O 相切于点P , 所以OP ⊥AP .因为M 是⊙O 中弦BC 的中点,所以OM ⊥BC .于是∠OP A +∠OMA =180°,由圆心O 在∠P AC 的内部,可知四边形APOM 的对角互补,所以A ,P ,O ,M 四点共圆.(2)解:由(1),得A ,P ,O ,M 四点共圆, 所以∠OAM =∠OPM .由(1),得OP ⊥AP .由圆心O 在∠P AC 的内部,可知∠OPM +∠APM =90°,所以∠OAM +∠APM =90°. 8.如右图,梯形ABCD 内接于⊙O ,AD ∥BC ,过B 引⊙O 的切线分别交DA 、CA 的延长线于E 、F .(1)求证:AB 2=AE ·BC .(2)已知BC =8,CD =5,AF =6,求EF 的长. (1)证明:因为BE 切⊙O 于B , 所以∠ABE =∠ACB .由于AD ∥BC ,所以∠BAE =∠ABC . 所以△EAB ∽△ABC . 所以AE AB =ABBC .故AB 2=AE ·BC .(2)解:由(1),知△EAB ∽△ABC , 所以BE AC =AB BC .又AE ∥BC ,所以EF AF =BE AC .所以AB BC =EFAF .又AD ∥BC ,所以AB =CD .所以AB =CD .所以58=EF6.所以EF =308=154.[高考·模拟·预测]1.如右图,已知P A 、PB 是圆O 的切线,A 、B 分别为切点,C 为圆O 上不与A 、B 重合的另一点,若∠ACB =120°,则∠APB =________.解析:连结OA 、OB ,∠P AO =∠PBO =90°, ∵∠ACB =120°,∴∠AOB =120°. 又P 、A 、O 、B 四点共圆,故∠APB =60°.答案:60°2.如右图,点P 在圆O 直径AB 的延长线上,且PB =OB =2,PC切圆O 于C 点,CD ⊥AB 于D 点,则CD =________.解析:由切割线定理知,PC 2=P A ·PB ,解得PC =2 3.又OC ⊥PC ,故CD =PC ·OC PO =23×24= 3.答案: 33.如下图,圆O 和圆O ′相交于A 、B 两点,AC 是圆O ′的切线,AD 是圆O 的切线,若BC =2,AB =4,则BD =________.解析:易证△CBA ∽△ABD , 所以BC AB =ABBD ,BD =8.答案:84.如右图,点A ,B ,C 是圆O 上的点,且AB =4,∠ACB =45°,则圆O 的面积等于________.解析:根据同弧所对的圆心角是圆周角的2倍.知∠AOB =2∠ACB =90°,在Rt △OAB 中,得OA =22,即r =22,∴S =πr 2=8π.答案:8π5.如右图,已知△ABC 中,AB =AC ,D 是△ABC 外接圆劣弧AC上的点(不与点A ,C 重合),延长BD 到E .(1)求证:AD 的延长线平分∠CDE ;(2)若∠BAC =30°,△ABC 中BC 边上的高为2+3,求△ABC 外接圆的面积.解:(1)如右图,设F 为AD 延长线上一点. ∵A 、B 、C 、D 四点共圆, ∴∠CDF =∠ABC .又AB =AC ,∴∠ABC =∠ACB , 且∠ADB =∠ACB ,∴∠ADB =∠CDF . 对顶角∠EDF =∠ADB , 故∠EDF =∠CDF ,即AD的延长线平分∠CDE.(2)设O为外接圆圆心,连结AO交BC于H,则AH⊥BC. 连结OC,由题意∠OAC=∠OCA=15°,∠ACB=75°,∴∠OCH=60°.设圆半径为r,则r+32r=2+3,得r=2,外接圆面积为4π.。
高三基础知识天天练4-2. 数学 数学doc人教版
第4模块 第2节[知能演练]一、选择题1.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn等于( )A .-12B .2 C.12D .-2解析:m a +n b =(2m,3m )+(-n,2n ) =(2m -n,3m +2n ),a -2b =(2,3)-(-2,4)=(4,-1). 由m a +n b 与a -2b 共线, 则有2m -n 4=3m +2n-1∴n -2m =12m +8n ,∴m n =-12.答案:A2.已知向量OM →=(3,-2),ON →=(-5,-1),则12MN →等于( )A .(8,1)B .(-8,1)C .(4,-12D .(-4,12)解析:∵OM →=(3,-2),ON →=(-5,-1), ∴12MN →=12(ON →-OM →) =12[(-5,-1)-(3,-2)] =12×(-8,1)=(-4,12). 答案:D3.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a ,b 不共线,则四边形ABCD 是( )A .梯形B .矩形C .菱形D .正方形解析:∵AB →+BC →+CD →=a +2b -4a -b -5a -3b =-8a -2b ,∴AD →=2(-4a -b )=2BC →,∴AD →∥BC →且|AD →|=2|BC →|,故四边形是梯形. 答案:A4.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C (x ,y )满足OC →=αOA →+βOB →,其中α、β∈R ,且α+β=1,则x ,y 满足的关系式为( )A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=0解析:由OC →=αOA →+βOB →, ∴(x ,y )=(3α-β,α+3β).∴⎩⎪⎨⎪⎧x =3α-β,y =α+3β.∴⎩⎨⎧α=3x +y10,β=-x +3y10.∵α+β=1,∴x +2y -5=0. 答案:D 二、填空题5.设向量a =(1,2),b =(2,3),若向量λa +b 与向量c = (-4,-7)共线,则λ=________. 解析:由题意得λa +b =(2+λ,2λ+3), 又λa +b 与c 共线,因此有(λ+2)×(-7)-(2λ+3)×(-4)=0, ∴λ=2. 答案:26.已知点A (1,-2),若向量AB →与a =(2,3)同向,|AB →|=213,则点B 的坐标为________. 解析:∵向量AB →与a 同向, ∴设AB →=(2t,3t )(t >0).由|AB →|=213,∴4t 2+9t 2=4×13.∴t 2=4. ∵t >0,∴t =2.∴AB →=(4,6). 设B 为(x ,y ), ∴⎩⎪⎨⎪⎧x -1=4,y +2=6.∴⎩⎪⎨⎪⎧x =5,y =4. 答案:(5,4) 三、解答题7.已知A (-2,4),B (3,-1),C (-3,-4). 设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b , (1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n . 解:由已知得a =(5,-5), b =(-6,-3),c =(1,8). (1)3a +b -3c=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧ -6m +n =5-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1n =-1. 8.在▱ABCD 中,A (1,1),AB →=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1)若AD →=(3,5),求点C 的坐标; (2)当|AB →|=|AD →|时,求点P 的轨迹. 解:(1)设点C 坐标为(x 0,y 0), 又AC →=AD →+AB →=(3,5)+(6,0)=(9,5), 即(x 0-1,y 0-1)=(9,5), ∴x 0=10,y 0=6,即点C (10,6). (2)由三角形相似,不难得出PC →=2MP →设P (x ,y ),则BP →=AP →-AB →=(x -1,y -1)-(6,0)=(x -7,y -1),AC →=AM →+MC →=12AB →+3MP →=12AB →+3(AP →-12AB →) =3AP →-AB →=(3(x -1),3(y -1))-(6,0) =(3x -9,3y -3),∵|AB →|=|AD →|,∴▱ABCD 为菱形,∴AC ⊥BD . ∴AC →⊥BP →,即(x -7,y -1)·(3x -9,3y -3)=0. (x -7)(3x -9)+(y -1)(3y -3)=0, ∴x 2+y 2-10x -2y +22=0(y ≠1). ∴(x -5)2+(y -1)2=4(y ≠1).故点P 的轨迹是以(5,1)为圆心,2为半径的圆去掉与直线y =1的两个交点.[高考·模拟·预测]1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第一、四象限的角平分线解析:a +b =(0,1+x 2),由1+x 2≠0及向量的性质可知,C 正确.故选C. 答案:C2.在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →等于( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)解析:在平行四边形ABCD 中,AC →=AB →+AD →,BD →=AD →-AB →, ∴BD →=(AC →-AB →)-AB →=(1,3)-2(2,4)=(1,3)-(4,8)=(-3,-5). 答案:B3.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( )A.14a +12bB.23a +13C.12a +14bD.13a +23b 解析:由已知得DE =13EB ,则DF =13DC ,∴CF =23CD ,∴CF →=23CD →=23(OD →-OC →)=23(12b -12a )=13b -13a , ∴AF →=AC →+CF →=a +13b -13a=23a +13b . 答案:B4.已知向量a =(3,1),b =(1,3),c =(k,7),若(a -c )∥b ,则k =________. 解析:3-k 1=-63⇒k =5.故填5.答案:55.已知向量a =(1,2),b =(-2,1),k ,t 为正实数,x =a +(t 2+1)b ,y =-1k a +1t b ,问是否存在k 、t ,使x ∥y ,若存在,求出k 的取值范围;若不存在,请说明理由.解:x =a +(t 2+1)b=(1+2)+(t 2+1)(-2,1)=(-2t 2-1,t 2+3) y =-1k a +1t b =-1k (1,2)+1t (-2,1)=(-1k -2t ,-2k +1t,假设存在正实数k ,t ,使x ∥y ,则 (-2t 2-1)(-2k +1t )-(t 2+3)(-1k -2t )=0,化简得t 2+1k +1t=0,即t 3+t +k =0,∵k ,t 是正实数,故满足上式的k ,t 不存在. ∴不存在这样的正实数k ,t ,使x ∥y .[备选精题]6.已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值; (2)若|a |=|b |,0<θ<π,求θ的值.解:(1)因为a ∥b ,所以2sin θ=cos θ-2sin θ,于是4sin θ=cos θ,故tan θ=14.(2)由|a |=|b |知,sin 2θ+(cos θ-2sin θ)2=5,所以1-2sin2θ+4sin 2θ=5.从而-2sin2θ+2(1-cos2θ)=4,即sin2θ+cos2θ=-1,于是sin(2θ+π4)=-22.又由0<θ<π知,π4<2θ+π4<9π4,所以2θ+π4=5π4,或2θ+π4=7π4.因此θ=π2,或θ=3π4.。
基础知识天天练3-2. 数学 数学doc
第3模块 第2节[知能演练]一、选择题1.α是第四象限角,tan α=-512,则sin α等于 ( )A.15B .-15 C.513D .-513 解析:⎩⎪⎨⎪⎧sin αcos α=-512,sin 2α+cos 2α=1,∴⎩⎨⎧ sin α=513,cos α=-1213或⎩⎨⎧ sin α=-513,cos α=1213.∵α是第四象限角,∴sin α<0,cos α>0.∴sin α=-513.选D. 答案:D2.已知cos(π2+φ)=32,且|φ|<π2,则tan φ等于 ( )A .-33B.33 C .- 3 D. 3解析:由cos(π2+φ)=32,得sin φ=-32. 又|φ|<π2,∴cos φ=12.∴tan φ=- 3. 答案:C3.若α是第三象限角,且cos(75°+α)=13,则tan(15°-α)的值为 ( )A .-223B .-24C.223D.24解析:cos(75°+α)=sin(90°-75°-α)=sin(15°-α)=13>0,又∵α为第三象限角, ∴-α为第二象限角.∴-α+15°为第二象限角.∴cos(15°-α)=-1-19=-223. ∴tan(15°-α)=-24. 答案:B4.若△ABC 的内角A 满足sin2A =23,则sin A +cos A 等于 ( )A.153B .-153 C.53 D .-53解析:在△ABC 中,2sin A cos A =23>0, ∴sin A >0,cos A >0. ∴sin A +cos A =(sin A +cos A )2=sin 2A +cos 2A +2sin A cos A =1+23=53=153. 答案:A二、填空题5.如果cos α=15,且α是第四象限角,那么cos(α+π2)=________. 解析:由已知⇒cos(α+π2)=-sin α=-(-1-cos 2α)=265. 答案:2656.化简:sin 2(α+π)·cos(π+α)·cos(-α-2π)tan(π+α)·sin 3(π2+α)·sin(-α-2π)=________.解析:sin 2(α+π)·cos(π+α)·cos(-α-2π)tan(π+α)·sin 3(π2+α)·sin(-α-2π) =(-sin α)2·(-cos α)·cos(-α)tan α·cos 3α·sin(-α)=-sin 2α·cos α·cos αsin αcos α·cos 3α·(-sin α)=sin 2αcos 2αsin 2αcos 2α=1. 答案:1三、解答题7.已知cos(π+α)=-12,且α是第四象限角,计算: (1)sin(2π-α);(2)sin[α+(2n +1)π]+sin[α-(2n +1)π]sin(α+2nπ)·cos(α-2nπ)(n ∈Z). 解:∵cos(π+α)=-12,∴-cos α=-12,cos α=12, 又∵α是第四象限角,∴sin α=-1-cos 2α=-32. (1)sin(2π-α)=sin[2π+(-α)]=sin(-α)=-sin α=32. (2)sin[α+(2n +1)π]+sin[α-(2n +1)π]sin(α+2nπ)·cos(α-2nπ)=sin(2nπ+π+α)+sin(-2nπ-π+α)sin(2nπ+α)·cos(-2nπ+α)=sin(π+α)+sin(-π+α)sin α·cos α=-sin α-sin(π-α)sin α·cos α=-2sin αsin αcos α=-2cos α=-4. 8.已知sin(π-α)-cos(π+α)=23(π2<α<π).求下列各式的值: (1)sin α-cos α;(2)sin 3(π2-α)+cos 3(π2+α). 解:由sin(π-α)-cos(π+α)=23, 得sin α+cos α=23.① 将①式两边平方,得1+2sin α·cos α=29, 故2sin α·cos α=-79, 又π2<α<π,∴sin α>0,cos α<0. ∴sin α-cos α>0.(1)(sin α-cos α)2=1-2sin α·cos α=1-(-79)=169,∴sin α-cos α=43. (2)sin 3(π2-α)+cos 3(π2+α)=cos 3α-sin 3α =(cos α-sin α)(cos 2α+cos α·sin α+sin 2α)=(-43)×(1-718)=-2227.[高考·模拟·预测]1.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=( )A .-43B.54 C .-34 D.45解析:由于tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2tan 2θ+1=22+2-222+1=45,故选D. 答案:D2.已知△ABC 中,1tan A =-125,则cos A = ( )A.1213B.513 C .-513 D .-1213解析:∵1tan A =-125,∴tan A =-512,∴π2<A <π,∴cos A =-11+tan 2A=-1213,选D. 答案:D3.下列关系式中正确的是( )A .sin11°<cos10°<sin168°B .sin168°<sin11°<cos10°C .sin11°<sin168°<cos10°D .sin168°<cos10°<sin11°解析:注意到sin168°=sin(180°-12°)=sin12°,cos10°=sin80°,且0°<11°<12°<80°<90°,因此sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°,选C. 答案:C4.若sin θ=-45,tan θ>0,则cos θ=________. 解析:∵sin θ<0,tan θ>0,θ在第三象限内,cos θ=-1-sin 2θ=-35.答案:-355.已知cos θ=-23,θ∈(π2,π),求2sin2θ-cos θsin θ的值. 解:原式=22sin θcos θ-cos θsin θ=1-cos 2θsin θcos θ=sin θcos θ. 又cos θ=-23,θ∈(π2,π), ∴sin θ=1-29=73,2sin2θ-cos θsin θ=-142. [备选精题] 6.已知函数f (x )=1-2sin(2x -π4)cos x. (1)求f (x )的定义域;(2)设α是第四象限的角,且tan α=-43,求f (α)的值. 解:(1)由cos x ≠0得x ≠kπ+π2(k ∈Z), 故f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠kπ+π2,k ∈Z . (2)因为tan α=-43,且α是第四象限的角, 所以sin α=-45,cos α=35, 故f (α)=1-2sin(2α-π4)cos α =1-2(22sin2α-22cos2α)cos α=1-sin2α+cos2αcos α=2cos 2α-2sin αcos αcos α=2(cos α-sin α)=145.。
高三基础知识天天练 数学检测4.人教版
单元质量检测(四)一、选择题1.若复数(a 2-4a +3)+(a -1)i 是纯虚数,则实数a 的值是( )A .1B .3C .1或3D .-1解析:由题意知⎩⎪⎨⎪⎧a 2-4a +3=0a -1≠0,解得a =3.答案:B2.复数1-2+i +11-2i的虚部是( )A.15i B.15 C .-15iD .-15解析:∵1-2+i +11-2i=-2-i (-2+i )(-2-i )+1+2i(1-2i )(1+2i )=-2-i 5+1+2i 5=-15+15i , ∴虚部为15.答案:B3.平面向量a ,b 共线的充要条件是( )A .a ,b 方向相同B .a ,b 两向量中至少有一个为零向量C .∃λ∈R ,b =λaD .存在不全为零的实数λ1,λ2,λ1a +λ2b =0解析:A 中,a ,b 同向则a ,b 共线;但a ,b 共线则a ,b 不一定同向,因此A 不是充要条件.若a ,b 两向量中至少有一个为零向量,则a ,b 共线;但a ,b 共线时,a ,b 不一定是零向量,如a =(1,2),b =(2,4),从而B 不是充要条件.当b =λa 时,a ,b 一定共线;但a ,b 共线时,若b ≠0,a =0,则b =λa 就不成立,从而C 也不是充要条件.对于D ,假设λ1≠0,则a =-λ2λ1b ,因此a ,b 共线;反之,若a ,b 共线,则a =nm b ,即m a -n b =0.令λ1=m ,λ2=-n ,则λ1a +λ2b =0. 答案:D4.如下图所示,已知梯形ABCD 中,AB ∥CD ,且AB =3CD ,M ,N 分别是AB ,CD 的中点,设AB →=e 1,AD →=e 2,MN →可表示为( )A .e 2+16e 1B .e 2-12e 1C .e 2-13e 1D .e 2+131解析:MN →=12(MD →+MC →)=12(MD →+MD →+DC →)=12[2(MA →+AD →)+DC →]=12[2(-12e 1+e 2)+131]=-12e 1+e 2+16e 1=e 2-13e 1. 答案:C5.向量a ,b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为( )A .45°B .60°C .90°D .120°解析:由(a +b )⊥(2a -b )得(a +b )·(2a -b )=0, 即2|a |2+|a |·|b |cos α-|b |2=0,把|a |=1,|b |=2代入得cos α=0,∴α=90°(其中α为两向量的夹角). 答案:C6.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且DC →=2BD →,CE →=2EA →,AF →=2FB →,则AD →+BE →+CF →与BC →( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:∵DC →=2BD →,∴BC →-BD →=2BD →,∴BD →=13→.∵CE →=2EA →,∴BE →-BC →=2BA →-2BE →, ∴BE →=23BA →+13BC →.∵AF →=2FB →,∴BF →-BA →=-2BF →,∴BF →=13BA →.∴AD →+BE →+CF →=BD →-BA →+BE →+BF →-BC → =13BC →-BA →+23BA →+13BC →+13BA →-BC → =-13BC →.∴AD →+BE →+CF →与BC →反向平行. 答案:A7.已知非零向量a ,b ,若a ·b =0,则|a -2b ||a +2b |等于( )A.14 B .2 C.12D .1解析:|a -2b ||a +2b |=(a -2b )2(a +2b )2=a 2+4b 2a 2+4b 2=1.答案:D8.在△ABC 中,若BC →2=AB →·BC →+CB →·CA →+BC →·BA →,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形解析:因为AB →·BC →+CB →·CA →+BC →·BA → =BC →·(AB →-CA →+BA →)=BC →·AC →,故BC →2-BC →·AC →=BC →·(BC →-AC →)=BC →·BA →=0, 即∠B =π2.答案:B9.一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态.已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,则F 3的大小为( )A .6B .2C .2 5D .27解析:如图,F 3的大小等于F 1、F 2的合力的大小.由平面向量加法的三角形法则知,在△OAB 中OB 的长就是F 1、F 2的合力的大小,且在△OAB 中,∠OAB =120°,OB =F 21+F 22-2F 1·F 2cos120°=28=27,即F 3为27.答案:D10.函数y =tan(π4-π2)的部分图象如下图所示,则(OA →+OB →)·AB →=( )A .-6B .-4C .4D .6解析:函数y =tan(π4x -π2)的图象是由y =tan x 的图象向右平移π2坐标扩大为原来的4π倍得到,所以点A 的坐标为(2,0),令tan(π4x -π2)=1得π4x -π2=π4,故可得B 点坐标为(3,1),所以(OA →+OB →)·AB →=(5,1)·(1,1)=6.答案:D11.设点P 为△ABC 的外心(三条边垂直平分线的交点),若AB =2,AC =4,则AP →·BC →=( )A .8B .6C .4D .2解析:我们可以采用特殊方法解答,设A (-1,0),B (1,0),C (-1,4),则外心P 为(0,2),故AP →=(1,2),BC →=(-2,4),故AP →·BC →=6.答案:B12.已知P 是△ABC 所在平面内的一点,若CB →=λPA →+PB →(其中λ∈R ),则点P 一定在( )A .△ABC 的内部B .AC 边所在的直线上 C .AB 边所在的直线上D .BC 边所在的直线上解析:CB →=PB →-PC →=λPA →+PB →化简即得-PC →=λPA →,由共线向量的充要条件可知,点P ,A ,C 三点共线,所以答案选B.答案:B 二、填空题13.若复数a +3i1+2i (a ∈R ,i 是虚数单位)是纯虚数,则实数a =________.解析:∵a +3i 1+2i =(a +3i )(1-2i )(1+2i )(1-2i )=a +65+3-2a5i , ∴⎩⎨⎧a +6503-2a 5≠0,∴a =-6.答案:-614.向量a =(cos10°,sin10°),b =(cos70°,sin70°),|a -2b |=________. 解析:|a -2b |=a 2+4b 2-4a ·b =1+4-4(cos10°cos70°+sin10°sin70°) =5-4cos60°= 3. 答案: 315.已知AD 是△ABC 的中线,AD →=λAB →+μAC →(λ,μ∈R ),那么λ+μ=________;若∠A =120°,AB →·AC →=-2,则|AD →|的最小值是________.解析:若AD 为△ABC 的中线,则有AD →=12(AB →+AC →),∴λ+μ=1.|AD →|2=14(AB →+AC →)2=14(|AB →|2+|AC →|2+2AB →·AC →)=14(|AB →|2+|AC →|2-4),∵|AB →|2+|AC →|2≥2|AB →|·|AC →|=2AB →·AC →cos120°8,所以|AD →|≥1.答案:1 116.给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧AB 上变动.若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是________.解析:以O 为坐标原点,OA 为x 轴建立平面直角坐标系,则可知A (1,0),B (-12,32),设C (cos α,sin α)(α∈[0,2π3]),则有x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6),所以当α=π3时,x +y 取得最大值为2.答案:2 三、解答题17.如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →,AD →.解法一:设AB →=a ,AD →=b , 则a =AN →+NB →=d +(-12)①b =AM →+MD →=c +(-12a )②将②代入①得a =d +(-12)[c +(-12a )]⇒a =43d -23,代入②得b =c +(-12)(43d -23c )=43c -23d .解法二:设AB →=a ,AD →=b . 因M ,N 分别为CD ,BC 中点, 所以BN →=12b ,DM →=12a .因而⎩⎨⎧c =b +12a d =a +12b ⇒⎩⎨⎧a =23(2d -c )b =23(2c -d ),即AB →=23(2d -c ),AD →=23(2c -d ).18.设a =(-1,1),b =(4,3),c =(5,-2),(1)求证a 与b 不共线,并求a 与b 的夹角的余弦值; (2)求c 在a 方向上的投影; (3)求λ1和λ2,使c =λ1a +λ2b .解:(1)∵a =(-1,1),b =(4,3),且-1×3≠1×4,∴a 与b 不共线. 又a ·b =-1×4+1×3=-1,|a |=2,|b |=5, ∴cos 〈a ,b 〉=a ·b |a ||b |=-152=-210. (2)∵a ·c =-1×5+1×(-2)=-7, ∴c 在a 方向上的投影为a ·c |a |=-72=-72 2.(3)∵c =λ1a +λ2b ,∴(5,-2)=λ1(-1,1)+λ2(4,3)=(4λ2-λ1,λ1+3λ2),∴⎩⎪⎨⎪⎧4λ2-λ1=5λ1+3λ2=-2,解得⎩⎨⎧λ1=-237λ2=37.19.设△ABC 的外心为O ,则圆O 为△ABC 的外接圆,垂心为H .求证:OH →=OA →+OB →+OC →.证明:延长BO 交圆O 于D 点,连AD 、DC , 则BD 为圆O 的直径,故∠BCD =∠BAD =90°. 又∵AE ⊥BC ,DC ⊥BC , 得AH ∥DC ,同理DA ∥CH . ∴四边形AHCD 为平行四边形, ∴AH →=DC →.又∵DC →=OC →-OD →=OC →+OB →, ∴AH →=OB →+OC →. 又∵OH →=OA →+AH →, ∴OH →=OA →+OB →+OC →.20.(1)如图,设点P ,Q 是线段AB 的三等分点,若OA →=a ,OB →=b ,试用a ,b 表示OP →,OQ →,并判断OP →+OQ →与OA →+OB →的关系;(2)受(1)的启示,如果点A 1,A 2,A 3,…,A n -1是AB 的n (n ≥3)等分点,你能得到什么结论?请证明你的结论.解:(1)OP →=OA →+AP →=OA →+13AB →=OA →+13OB →-OA →)=13OB →+23OA →=23a +13.同理OQ →=13a +23b ,∴OP →+OQ →=a +b =OA →+OB →.(2)OA 1→+OA n -1 =OA 2→+OA n -2 =…=OA →+OB →. 证明如下:由(1)可推出OA 1→=OA →+AA 1→=OA →+1n AB →=OA →+1n OB →-OA →)=n -1n OA →+1n OB →,∴OA 1→=n -1n a +1n b ,同理OA n -1=1n a +n -1nb ,OA 2→=n -2n a +2n b ,OA n -2=2n a +n -2n b ,…因此有OA 1→+OA n -1=OA 2→+OA n -2=…=OA →+OB →.21.已知△ABC 的面积S 满足3≤S ≤3,且AB →·BC →=6,AB →与BC →的夹角为θ. (1)求θ的取值范围;(2)求函数f (θ)=sin 2θ+2sin θ·cos θ+3cos 2θ的最小值. 解:(1)由题意知: AB →·BC →=|AB →|·|BC →|·cos θ=6① S =12|AB →|·|BC →|·sin(π-θ)=12|AB →|·|BC →|·sin θ② ②÷①得S 6=12tan θ,即3tan θ=S .由3≤S ≤3,得3≤3tan θ≤3,即33≤tan θ≤1. ∵θ为AB →与BC →的夹角,∴θ∈(0,π),∴θ∈[π6,π4].(2)f (θ)=sin 2θ+2sin θ·cos θ+3cos 2θ =1+sin2θ+2cos 2θ=2+sin2θ+cos2θ =2+2sin(2θ+π4).∵θ∈[π6,π4],∴2θ+π4∈[7π12,3π4].∴当2θ+π4=3π4,即θ=π4时,f (θ)有最小值为3.22.设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β). (1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b . 解:(1)因为a 与b -2c 垂直,所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β=4sin(α+β)-8cos(α+β)=0, 因此tan(α+β)=2.(2)由b +c =(sin β+cos β,4cos β-4sin β),得 |b +c |=(sin β+cos β)2+(4cos β-4sin β)2 =17-15sin2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2.(3)由tan αtan β=16得4cos αsin β=sin α4cos β,所以a ∥b .。
高三总复习步步高数学文科1.2简易逻辑
证明 ∵a+b=1,∴a+b-1=0, ∴a3+b3+ab-a2-b2 =(a+b)(a2-ab+b2)-(a2-ab+b2) =(a+b-1)(a2-ab+b2)=0.
∵a3+b3+ab-a2-b2=0 即(a+b-1)(a2-ab+b2)=0, 又ab≠0,∴a≠0且b≠0, ∴∴aa2+-ba-b1+=b0,2=即(aa-+b2b)=21+,43 b2>0, 综上可知,当ab≠0时,a+b=1 a3+b3+ab-a2-b2=0.
c a
<0,∴ac<0.
综上所述,一元二次方程ax2+bx+c=0有一正根和一负根
的充要条件是ac<0.
4.已知a>0,设命题p:函数y=ax在R上单调递减,q:不等式
x+|x-2a|>1的解集为R,若p和q中有且只有一个命题为真
命题,求a的取值范围.
解 由函数y=ax在R上单调递减知0<a<1,所以命题p为
词语 上
有
某些 一定 … 不
另外:p或q的否定为:非p且非q;p且q的否定为:非p或非 q.
1.写出下列命题的否命题,并判断原命题及否命题的真假: (1)如果一个三角形的三条边都相等,那么这个三角形的
(2) (3)相似三角形一定是全等三角形. 解 (1)否命题是:“如果一个三角形的三条边不都相 等,那么这个三角形的三个角也不都相等”. 原命题为真命题,否命题也为真命题. (2)否命题是:“如果四边形不是矩形,那么对角线不互 相平分或不相等”. 原命题是真命题,否命题是假命题. (3)否命题是:“不相似的三角形一定不是全等三角形”. 原命题是假命题,否命题是真命题.
高三基础知识天天练2-9. 数学 数学doc人教版
第2模块 第9节[知能演练]一、选择题1.某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,按九折出售,每件还获利( )A .25元B .20.5元C .15元D .12.5元解析:每件获利100(1+25%)×0.9-100=100(1.25×0.9-1)=12.5元. 答案:D2.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1040元;B 种债券面值为1000元,买入价为960元,一年到期本息之和为1000元;C 种面值为1000元,半年到期本息和为1020元.设三种债券的年收益分别为a ,b ,c ,则a ,b ,c 的大小关系是( )A .a =c <bB .a <b <cC .a <c <bD .c <a <b解析:设年初为1000元,则A 种债券收益40元,B 种债券收益1000960×40≈41.67元.C 种债券收益为20+10201000×20=40.4元.∴b >c >a . 答案:C3.在一次数学试验中,运用图形计算器采集到如下一组数据:则x ,y ( )A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +bx解析:由表格数据逐个验证,知模拟函数为y =a +b x . 答案:B4.国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元,这个人应得稿费(扣税前)为( )A .2800元B .3000元C .3800元D .3818元解析:设扣税前应得稿费为x 元,则应纳税额为分段函数,由题意,得y =⎩⎪⎨⎪⎧0 (x ≤800)(x -800)×14% (800<x ≤4000)11%·x (x >4000). 如果稿费为4000元应纳税为448元,现知某人共纳税420元,所以稿费应在800~4000元之间,∴(x -800)×14%=420,∴x =3800.答案:C 二、填空题5.计算机的价格大约每3年下降23,那么今年花8100元买的一台计算机,9年后的价格大约是________元.解析:设计算机价格平均每年下降p %,由题意可得13=(1-p %)3,∴p %=1-(13)13,∴9年后的价格y =8100[1+(13)13-1]9=8100×(13)3=300(元).答案:3006.如图是一份统计图表,根据此图表得到的以下说法中,正确的是________.①这几年人民生活水平逐年得到提高;②人民生活费收入增长最快的一年是2000年; ③生活价格指数上涨速度最快的一年是2001年;④虽然2002年生活费收入增长缓慢,但由于生活价格指数也略有降低,因而人民生活有较大的改善.解析:由题意,“生活费收入指数”减去“生活价格指数”的差是逐年增大的,故①正确;“生活费收入指数”在2000年~2001年最陡,故②正确;“生活价格指数”在2001年~2002年上涨速度不是最快的,故③不正确;由于“生活价格指数”略呈下降,而“生活费收入指数”曲线呈上升趋势,故④正确.答案:①②④ 三、解答题7.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如下图).(1)分别写出两种产品的收益与投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?解:(1)设投资债券收益与投资额的函数关系为f (x )=k 1x ,投资股票的收益与投资额的函数关系为g (x )=k 2x ,由图象得f (1)=18=k 1,g (1)=k 2=12,f (x )=18x (x ≥0),g (x )=12x (x ≥0).(2)设投资债券类产品x 万元, 则股票类投资为20-x 万元.y =f (x )+g (20-x )=x 8+1220-x (0≤x ≤20).令t =20-x ,则y =20-t 28+12t =-18(t 2-4t -20)=-18(t -2)2+3.所以当t =2,即x =16时,投资债券16万元,股票4万元时,收益最大,y max =3万元. 8.某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).(1)求函数y =f (x )的解析式及其定义域;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多? 解:(1)当x ≤6时,y =50x -115,令50x -115>0, 解得x >2.3.∵x ∈N *,∴x ≥3,∴3≤x ≤6,x ∈N *, 当x >6时,y =[50-3(x -6)]x -115.令[50-3(x -6)]x -115>0,有3x 2-68x +115<0, 上述不等式的整数解为2≤x ≤20(x ∈N *), ∴6<x ≤20(x ∈N *). 故y =⎩⎪⎨⎪⎧50x -115 (3≤x ≤6,x ∈N *)-3x 2+68x -115 (6<x ≤20,x ∈N *), 定义域为{x |3≤x ≤20,x ∈N *}.(2)对于y =50x -115(3≤x ≤6,x ∈N *). 显然当x =6时,y max =185(元), 对于y =-3x 2+68x -115=-3(x -343)2+8113(6<x ≤20,x ∈N *).当x =11时,y max =270(元).∵270>185,∴当每辆自行车的日租金定在11元时,才能使一日的净收入最多.[高考·模拟·预测]1.某种细胞在培养过程中正常情况下,时刻t (单位:分)与细胞数n (单位:个)的部分数据如下:( )A .200B .220C .240D .260解析:由表格中所给数据可以得出n 与t 的函数关系为n =2t 20,令n =1000,得2t20=1000,又210=1024,所以时刻t 最接近200分,故选A.答案:A2.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=12n (n +1)(2n +1)吨,但如果年产量超过150吨,将会给环境造成危害.为保证环境,环保部门应给该厂这条生产线拟定最长的生产期限是( )A .5年B .6年C .7年D .8年解析:由题知第一年产量为a 1=12×1×2×3=3;以后各年产量分别为a n =f (n )-f (n -1)=12n (n +1)(2n +1)-12n (n -1)(2n -1)=3n 2(n ∈N *),令3n 2≤150,得1≤n ≤52⇒1≤n ≤7,故生产期限最长为7年.答案:C3.某市出租车收费标准如下: 起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.解析:设乘客每次乘坐出租车需付费用为f (x )元,由题意可得: f (x )=4.一位设计师在边长为3的正方形ABCD 中设计图案,他分别以A ,B ,C ,D 为圆心,以b (0<b ≤32)为半径画圆,由正方形内的圆弧与正方形边上线段(圆弧端点在正方形边上的连线)构成了丰富多彩的图形,则这些图形中实线部分总长度的最小值为________.解析:由题意实线部分的总长度为l =4(3-2b )+2πb =(2π-8)b +12,l 关于b 的一次函数的一次项系数2π-8<0,故l 关于b 为单调减函数,因此,当b 取最大值时,l 取得最小值,结合图形知,b 的最大值为32,代入上式得l 最小=(2π-8)×32+12=3π.答案:3π5.如右图,一个铝合金窗分为上、下两栏,圆周框架和中间隔档的材料为铝合金,宽均为6 cm ,上栏与下栏的框内高度(不含铝合金部分)的比为1∶2,此铝合金窗占用的墙面面积为28800 cm 2,设该铝合金窗的宽和高分别为a (cm),b (cm),铝合金窗的透光部分的面积为S (cm 2).(1)试用a ,b 表示S ;(2)若要使S 最大,则铝合金窗的宽和高分别为多少? 解:(1)∵铝合金窗宽为a (cm),高为b (cm),a >0,b >0, ∴ab =28800. ①又设上栏框内高度为h (cm),下栏框内高度为2h (cm),则3h +18=b ,∴h =b -183,∴透光部分的面积S =(a -18)×2(b -18)3+(a -12)×b -183=(a -16)(b -18)=ab -2(9a +8b )+288 =28800-2(9a +8b )+288 =29088-2(9a +8b ). (2)∵9a +8b ≥29a ·8b=29×8×28800=2880,当且仅当9a =8b 时等号成立,此时b =98a ,代入①得a =160,从而b =180,即当a =160,b =180时,S 取得最大值.答:铝合金窗的宽为160 cm ,高为180 cm 时,可使透光部分的面积最大.[备选精题] 6.两县城A 和B 相距20 km ,现计划在两县城外以AB 为直径的半圆弧上选择一点C 建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A 和城B 的总影响度为对城A 与对城B 的影响度之和,记C 点到城A 的距离为x km ,建在C 处的垃圾处理厂对城A 和城B 的总影响度为y .统计调查表明:垃圾处理厂对城A 的影响度与所选地点到城A 的距离的平方成反比,比例系数为4;对城B 的影响度与所选地点到城B 的距离的平方成反比,比例系数为k ,当垃圾处理厂建在弧的中点时,对城A 和城B 的总影响度为0.065.(Ⅰ)将y 表示成x 的函数;(Ⅱ)讨论(Ⅰ)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A 和城B 的总影响度最小?若存在,求出该点到城A 的距离;若不存在,说明理由.解:(Ⅰ)根据题意∠ACB =90°,AC =x km ,BC =400-x 2 km ,且建在C 处的垃圾处理厂对城A 的影响度为4x 2,对城B 的影响度为k400-x 2,因此,总影响度y =4x 2+k400-x 2(0<x <20).又因为垃圾处理厂建在弧的中点时,对城A 和城B 的总影响度为0.065,所以4(102+102)2+k400-(102+102)2=0.065, 解得k =9,所以y =4x 2+9400-x 2(0<x <20).(Ⅱ)因为y ′=-8x 3+18x(400-x 2)2=18x 4-8×(400-x 2)2x 3(400-x 2)2=(x 2+800)(10x 2-1600)x 3(400-x 2)2.由y ′=0解得x =410或x =-410(舍去), 易知410∈(0,20).y ,y ′随xy最小值=y|x=410=116,此时x=410,故在弧AB上存在一点,使得建在此处的垃圾处理厂对城A和城B的总影响度最小,该点与城A的距离x=410 km.。
山东省节高三数学寒假作业天天练(第1天) 新人教版
第一节 集合与简易逻辑一. 选择题1命题“对任意的01,23≤+-∈x x R x ”的否定是( )A.不存在01,23≤+-∈x x R xB.存在01,23≥+-∈x x R xC.存在01,23>+-∈x x R xD. 对任意的01,23>+-∈x x R x2.已知==+∈==∈=N M y x R x N x y R y M 则}.2|{},|{222( )A .)}1,1(),1,1{(-B .{1}C .[0,1]D .]2,0[3.设集合{}23S x x =->,{}8T x a x a =<<+,ST =R ,则a 的取值范围是( ) A .31a -<<-B .31a --≤≤C .3a -≤或1a -≥D .3a <-或1a >-4. 满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( ) A .1B .2C .3D .4 5. 0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件6. 给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A .3B .2C .1D .07.若集合M ={0,l ,2},N ={(x ,y)|x -2y +1≥0且x -2y -1≤0,x ,y ∈M},则N 中元素的个数为A .9B .6C .4D .28.下列各小题中,p 是q 的充分必要条件的是①3:62:2+++=>-<m mx x y q m m p ;,或有两个不同的零点②()()()x f y q x f x f p ==-:1:;是偶函数 ③βαβαtan tan :cos cos :==q p ;④A C B C q A B A p U U ⊆=::;A.①②B.②③C.③④D. ①④二.填空题9.设集合U ={1,2,3,4,5},A ={2,4},B={3,4,5},C={3,4},则)()(C C B A U = .10.已知条件p:1≤x ≤4,条件q :|x -2|>1,则p 是⌝q 的___________________条件11.定义集合运算:A ⊙B ={z ︳z = xy (x+y ),x ∈A ,y ∈B },设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为_____________12.非空集合G 关于运算○+满足,①对任意a 、b G ∈,都有a+b G ∈;②存在G e ∈,使对一切G e ∈都有a ○+e=e ○+a=a ,则称G 关于运算○+的融洽集,现有下列集合和运算:(1)G={非负整数},○+整数的加法(2)G={偶数},○+整数的中法(3)G={平面向量},○+平面向量的加法(4)G={二次三项式},○+多项式加法其中为融洽集的为 (写出所有符合题意的序号)三.解答题13.(本小题满分12分)已知函数21)(-+=x x x f 的定义域是集合A ,函数])12(lg[)(22a a x a x x g +++-=的定义域是集合B.(1)求集合A 、B ;(2)若.,的取值范围求实数a B B A =14.(本小题满分12分)设p :不等式1|2|>-+m x x 的解集为R ;q :函数6)34()(23++++=x m mx x x f 在R上有极值.求使命题“p 且q ”为真的实数m 的取值范围.答案:1-8 CDABBCCD9.{}5,2 10.必要不充分 11.18 12.(1),(3)13.解:(1)1|{-≤=x x A 或}2>x ……………………2分a x x B <=|{或}1+>a x ……………………6分(2)由B B A = 得,B A ⊆……………………………………8分因此⎩⎨⎧≤+->211a a …………………………10分 11≤<-∴a∴实数a 的取值范围是(]1,1-……………………12分14.解:由m m x x m x m m x m x m x x 2|2|,)2(2)2(22|2|≥-+⎩⎨⎧<≥-=-+知, 由题意,.21,12,1|2|>>∴>-+m m m x x 即恒成立…………………………4分 又由函数6)34()(23++++=x m mx x x f 在R 上有极值,知03423)(2=+++='m mx x x f 有解,即△≥0. 由△= 0,得m =-1或m = 4.此时函数没有极值.由△>0,得m <-1或m >4.要使“p 且q ”为真命题,则 ……………………8分4,4121>⎪⎩⎪⎨⎧>-<>m m m m 解得或,m ∴的取值范围为).,4(+∞…………………………12分。
高三数学天天练1 集合的概念与运算
天天练1 集合的概念与运算一、选择题1.(·银川质检)设全集U ={x ∈N *|x ≤5},A ={1,4},B ={4,5},则∁U (A ∩B )=( )A .{1,2,3,5}B .{1,2,4,5}C .{1,3,4,5}D .{2,3,4,5}2.(·贵阳监测)如图,全集I =R ,集合A ={x |0<x <2},B ={x |1<x <3},则图中阴影部分所表示的集合为( )A .{x |1<x <2}B .{x |0<x <3}C .{x |x <3}D .{x |x >0}3.(·太原五中检测)已知集合A ={x ∈Z |x 2-2x -3≤0},B ={y |y=2x },则A ∩B 子集的个数为( )A .10B .16C .8D .74.(·赣州摸底)已知集合A ={x |x 2-x -2≤0,x ∈R },B ={x |lg(x+1)<1,x ∈Z },则A ∩B =( )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}5.(·长沙一模)记集合A ={x |x -a >0},B ={y |y =sin x ,x ∈R },若0∈A ∩B ,则a 的取值范围是( )A .(-∞,0)B .(-∞,0]C .[0,+∞)D .(0,+∞)6.(·河南适应性测试)已知集合A ={0,1,2},B ={y |y =2x ,x ∈A },则A ∪B 中的元素个数为( )A .6B .5C .4D .37.(·衡水中学一调)已知全集U =R ,集合A ={x |x 2-x -6≤0},B ={x |x +1x -4>0},那么集合A ∩(∁U B )=( ) A .{x |-2≤x <4} B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}8.(·太原二模)已知集合A ={x |log 2(x -1)<2},B ={x |a <x <6},且A ∩B ={x |2<x <b },则a +b =( )天天练1集合的概念与运算1.A由于全集U={x∈N*|x≤5}={1,2,3,4,5},A={1,4},B={4,5},A∩B={4},则∁U(A∩B)={1,2,3,5},故选A.2.B由Venn图可知,阴影部分表示的是集合A∪B={x|0<x<3},故选B.3.C因为A={-1,0,1,2,3},B=(0,+∞),所以A∩B={1,2,3},其子集的个数为23=8,故选C.4.D由x2-x-2≤0得-1≤x≤2,所以A={x|-1≤x≤2}.由lg(x+1)<1,得0<x+1<10,解得-1<x<9,所以B={0,1,2,3,4,5,6,7,8},所以A∩B={0,1,2},故选D.5.A依题意得,0∈A,0-a>0,a<0,因此实数a的取值范围是(-∞,0),选A.6.C因为B={0,2,4},所以A∪B={0,1,2,4},元素个数为4,故选C.7.D依题意A={x|-2≤x≤3},B={x|x<-1或x>4},故∁U B ={x|-1≤x≤4},故A∩(∁U B)={x|-1≤x≤3},故选D.。
高三基础知识天天练2-8. 数学 数学doc人教版
第2模块 第8节[知能演练]一、选择题1.函数f (x )=(x -1)ln xx -3的零点有( )A .0个B .1个C .2个D .3个解析:由f (x )=(x -1)ln xx -3=0得:x =1,∴f (x )=(x -1)ln xx -3只有一个零点,故选B.答案:B 2.若函数f (x )在(1,2)内有一个零点,要使零点的近似值满足精确度为0.01,则对区间(1,2)至少二等分( )A .5次B .6次C .7次D .8次解析:设对区间(1,2)至少二等分n 次,此时区间长为1,第1次二等分后区间长为12,第2次二等分后区间长为122,第3次二等分后区间长为123,…,第n 次二等分后区间长为12n ,依题意得12n <0.01,∴n >log 2100由于6<log 2100<7,∴n ≥7,即n =7为所求.答案:C3.f (x )是定义在R 上的以3为周期的偶函数,且f (2)=0.则方程f (x )=0在区间(0,6)内解的个数的最小值是( )A .5B .4C .3D .2解析:∵f (x )是定义在R 上的偶函数,且周期是3,f (2)=0,∴f (2)=f (5)=f (-2)=f (1)=f (4)=0.答案:B4.设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:令g (x )=x 3-22-x ,可求得:g (0)<0,g (1)<0,g (2)>0,g (3)>0,g (4)>0,易知函数g (x )的零点所在区间为(1,2).答案:B二、填空题5.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式a ·f (-2x )>0的解集是________.解析:由于f (x )=x 2+ax +b 的两个零点是-2和3, 即方程x 2+ax +b =0的两个根是-2和3,因此⎩⎪⎨⎪⎧ -2+3=-a -2·3=b ⇒⎩⎪⎨⎪⎧a =-1b =-6,因此f (x )=x 2-x -6, 所以不等式a ·f (-2x )>0,即-(4x 2+2x -6)>0,即2x 2+x -3<0,解集为{x |-32<x <1}.答案:{x |-32<x <1}6.若一元二次方程ax 2+bx +c =0(a >0)的两根x 1、x 2满足m <x 1<n <x 2<p ,则f (m )·f (n )·f (p )________0(填“>”、“=”或“<”).解析:∵a >0,∴f (x )=ax 2+bx +c 的图象开口向上.∴f (m )>0,f (n )<0,f (p )>0. 答案:< 三、解答题7.已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈(0,12),使f (x 0)=x 0.解:令g (x )=f (x )-x .∵g (0)=14,g (12)=f (12)-12=-18,∴g (0)·g (12)<0.又函数g (x )在[0,12]上连续,所以存在x 0∈(0,12),使g (x 0)=0.即f (x 0)=x 0.8.函数f (x )=x 3-12x 2-2x +5-λ在区间[-1,2]上有三个零点,求λ的值.解:设g (x )=x 3-12x 2-2x +5,则g ′(x )=3x 2-x -2=(3x +2)(x -1), ∴g (x )在(-1,-23)和(1,2)上单调递增,在(-23,1)上单调递减.又g (-1)=112,g (-23)=15727,g (1)=72,g (2)=7,由题意知g (x )=λ有三个根,∴λ∈[112,15727). [高考·模拟·预测]1.为了求函数f (x )=2x -x 2的一个零点,某同学利用计算器,得到自变量x 和函数值f (x )( )A .(0.6,1.0)B .(1.4,1.8)C .(1.8,2.2)D .(2.6,3.0) 解析:∵f (1.8)·f (2.2)=0.24×(-0.24)<0, ∴零点在(1.8,2.2)上.故选C. 答案:C2.已知函数f (x )=(13)x -log 2x ,若实数x 0是方程f (x )=0的解,且0<x 1<x 0.则f (x 1)的值为( )A .恒为正值B .等于0C .恒为负值D .不大于0解析:∵f (x )在定义域(0,+∞)上单调递减,当x →0时,f (x )→+∞, ∵f (x 0)=0,∴f (x )=0只有一个实根. ∴当0<x 1<x 0时,f (x 1)>0恒成立,故选A. 答案:A3.若函数f (x )的零点与g (x )=4x +2x -2的零点之差的绝对值不超过0.25,则f (x )可以是( )A .f (x )=4x -1B .f (x )=(x -1)2C .f (x )=e x -1D .f (x )=ln(x -12)解析:∵g ′(x )=4x ln4+2>0,∴g (x )在(-∞,+∞)上是增函数.又g (0)=1-2=-1<0,g (12)=2+1-2=1>0,∴g (x )只有一个零点x 0,且x 0∈(0,12).对于选项A :f (x )=4x -1,其零点为x =14,∴|14-x 0|<14,故选项A 符合.答案:A4.已知方程|x |-ax -1=0仅有一个实根且小于0,则a 的取值范围为________.解析:利用数形结合判断显然有a ≥1. 答案:a ≥15.已知函数f (x )=e x -k -x ,其中x ∈R . (1)k =0时,求函数f (x )的值域;(2)当k >1时,函数f (x )在[k,2k ]内是否存在零点,并说明理由. 解:(1)k =0时,f (x )=e x -x ,f ′(x )=e x -1, 令f ′(x )=0,得x =0.又x ∈(-∞,0)时,f ′(x )<0, ∴f (x )在(-∞,0)内单调递减. x ∈(0,+∞)时,f ′(x )>0, ∴f (x )在(0,+∞)内单调递增. ∴x =0时,f (x )取到极小值.又∵这个极小值是R 上的唯一的极小值, ∴x =0时,f (x )min =f (0)=1. 即函数f (x )的值域为[1,+∞).(2)f (k )·f (2k )=(e k -k -k )·(e 2k -k -2k ) =(1-k )·(e k -2k ). ∵k >1,∴1-k <0.令g (k )=e k -2k ,g (1)=e 1-2>0, 又g ′(k )=e k -2,当k >1时,g ′(k )>e 1-2>0, ∴k ∈(1,+∞),g (k )为增函数. ∴g (k )>g (1)>0.∴k >1时,e k -2k >0. ∴f (k )·f (2k )<0.∴即函数f (x )当k >1时在[k,2k ]内存在零点.[备选精题]6.已知二次函数y =g (x )的导函数的图象与直线y =2x 平行,且y =g (x )在x =-1处取得极小值m -1(m ≠0).设f (x )=g (x )x. (1)若曲线y =f (x )上的点P 到点Q (0,2)的距离的最小值为2,求m 的值. (2)k (k ∈R )如何取值时,函数y =f (x )-kx 存在零点,并求出零点. 解:设二次函数为g (x )=ax 2+bx +c ,∵y =g ′(x )=2ax +b 的图象与直线y =2x 平行, ∴a =1.又∵y =g (x )在x =-1处取得极小值m -1, ∴-b2a=-1,g (-1)=a (-1)2+b (-1)+c =m -1,∴b =2,c =m , 从而f (x )=g (x )x =mx+x +2.(1)已知m ≠0,设曲线y =f (x )上点P 的坐标为P (x ,y ),则点P 到点Q (0,2)的距离为 |PQ |=(x -0)2+(y -2)2=x 2+(mx+x )2=2x 2+m 2x2+2m≥22x 2·m 2x2+2m =22|m |+2m ,当且仅当2x 2=m 2x 2⇒x =±|m |2时等号成立. ∵|PQ |的最小值为2,∴22|m |+2m =2⇒2|m |+m =1. ①当m >0时,解得m =12+1=2-1. ②当m <0时,解得m =11-2=-2-1. 故m =2-1或m =-2-1.(2)y =f (x )-kx 的零点即方程mx +(1-k )x +2=0的解,∵m ≠0,∴mx +(1-k )x +2=0与(k -1)x 2-2x -m =0有相同的解. ①若k =1,(k -1)x 2-2x -m =0⇒x =-m2≠0,∴函数y =f (x )-kx 有零点x =-m2.②若k ≠1,(k -1)x 2-2x -m =0的判别式Δ=4[1+m (k -1)]. 若Δ=0⇒k =1-1m ,此时函数y =f (x )-kx 有一个零点x =-m .若Δ>0⇒1+m (k -1)>0,∴当m >0,k >1-1m ,或m <0,k <1-1m 时,方程(k -1)x 2-2x -m =0有两个解 x 1=1+1+m (k -1)k -1和x 2=1-1+m (k -1)k -1.此时函数y =f (x )-kx 有两个零点x 1和x 2. ③若Δ<0⇒1+m (k -1)<0,∴当m >0,k <1-1m ,或m <0,k >1-1m时,方程(k-1)x2-2x-m=0无实数解.此时函数y=f(x)-kx没有零点.。
高三基础知识天天练1-1. 数学 数学doc人教版
第1模块 第1节[知能演练]一、选择题1.满足条件M ∪{1}={1,2,3}的集合M 的个数是( )A .1B .2C .3D .4解析:满足条件M ∪{1}={1,2,3}的集合M 为{2,3},{1,2,3},共两个. 答案:B2.已知集合P ={(x ,y )||x |+|y |=1},Q ={(x ,y )|x 2+y 2≤1},则( )A .P ⊆QB .P =QC .P ⊇QD .P ∩Q =Ø 答案:A3.若集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则能使A ⊆B 成立的所有a 的集合是( )A .{a |1≤a ≤9}B .{a |6≤a ≤9}C .{a |a ≤9}D .Ø解析:若2a +1>3a -5,即a <6时,A =Ø⊆B ; 若2a +1=3a -5,即a =6时,A ={x |x =13}⊆B ; 若2a +1<3a -5,即a >6时,由A ⊆B 得⎩⎪⎨⎪⎧2a +1≥33a -5≤22,解得6<a ≤9.综上可得a ≤9. 答案:C4.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪ (∁R B )=R ,则实数a 的取值范围是( )A .a ≤1B .a <1C .a ≥2D .a >2解析:∁R B =(-∞,1]∪[2,+∞),又A ∪(∁R B )=R ,数轴上画图可得a ≥2,故选C. 答案:C 二、填空题5.若集合{(x ,y )|x +y -2=0且x -2y +4=0} {(x ,y )|y =3x +b },则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧x =0,y =2.点(0,2)在y =3x +b 上,∴b =2.答案:26.对于集合M 、N 定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ),设A ={t |t =x 2-3x ,x ∈R },B ={x |y =lg(-x )},则A ⊕B =________.解析:∵t =x 2-3x =(x -32)2-94≥-94,∴A ={t |t ≥-94}.又由B 可知y =lg(-x ),则-x >0,得x <0, ∴B ={x |x <0},∴A -B ={x |x ≥0},B -A ={x |x <-94},∴A ⊕B =(-∞,-94)∪[0,+∞).答案:(-∞,-94)∪[0,+∞)三、解答题7.已知集合A ={x |x 2-5x +6=0},B ={x |mx +1=0},且B ⊆A ,求实数m 的值组成的集合.解:A ={x |(x -2)(x -3)=0}={2,3}, 若m =0,B =Ø⊆A ;若m ≠0,B ={x |x =-1m},由B ⊆A 得-1m =2,或-1m =3,解得m =-12,m =-13, 因此实数m 的值组成的集合是{0,-12,-13}.8.已知集合E ={x ||x -1|≥m },F ={x |10x +6>1}.(1)若m =3,求E ∩F ;(2)若E ∪F =R ,求实数m 的取值范围; (3)若E ∩F =Ø,求实数m 的取值范围. 解:(1)当m =3时,E ={x ||x -1|≥3}={x |x ≤-2或x ≥4},F ={x |10x +6>1}={x |x -4x +6<0}={x |-6<x <4}.∴E ∩F ={x |x ≤-2或x ≥4}∩{x |-6<x <4} ={x |-6<x ≤-2}. (2)∵E ={x ||x -1|≥m },①m ≤0时,E =R ,E ∪F =R ,满足条件. ②m >0时,E ={x |x ≤1-m 或x ≥1+m }, 由E ∪F =R ,F ={x |-6<x <4},∴⎩⎪⎨⎪⎧ 1-m ≥-6,1+m ≤4,m >0,解得0<m ≤3.∴综上,实数m 的取值范围为(-∞,3]. (3)∵E ={x ||x -1|≥m },①m ≤0时,E =R ,E ∩F =F ≠Ø,不满足条件.②m >0时,E ={x |x ≤1-m 或x ≥1+m },由E ∩F =Ø,F ={x |-6<x <4}, ∴⎩⎪⎨⎪⎧1-m ≤-6,1+m ≥4,m >0,解得m ≥7.∴综上,实数m 的取值范围为[7,+∞).[高考·模拟·预测]1.已知全集U =R ,集合M ={x |-2≤x -1≤2}和N ={x |x =2k -1,k =1,2,…}的关系的韦恩(Venn)图如下图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个解析:∵阴影部分M ∩N ={x |-2≤x -1≤2}∩{x |x =2k -1,k =1,2,…}={x |-1≤x ≤3}∩{x |x =2k -1,k =1,2,…}={1,3},∴阴影部分所示的集合的元素共有2个,故选B.答案:B 2.已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是( )解析:N ={x |x 2+x =0}={-1,0},而M ={-1,0,1},故N M ,所以选B. 答案:B3.设全集U =A ∪B ={x ∈N *|lg x <1}.若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =______________.解析:由题意得U =A ∪B ={1,2,3,4,5,6,7,8,9},A ∩(∁U B )={1,3,5,7,9},所以B ={2,4,6,8}. 答案:{2,4,6,8}4.设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集F ={a +b 2|a ,b ∈Q }也是数域,有下列命题:①整数集是数域;②若有理数集Q ⊆M ,则数集M 必为数域; ③数域必为无限集; ④存在无穷多个数域.其中正确命题的序号是________.(把你认为正确的命题的序号都填上)解析:对于整数集Z ,a =1,b =2时,a b =12∉Z ,故整数集不是数域,①错;对于满足Q ⊆M 的集合M =Q ∪{2},1+2∉M ,M 不是数域,②错;若P 是数域,则存在a ∈P 且a ≠0,依定义,2a,3a,4a …均是P 中的元素,故P 中有无数个无素,③正确;类似数集F ,{a +b 3|a ,b ∈Q },{a +b 5|a ,b ∈Q }等均是数域,④正确.答案:③④5.已知集合A ={x |(x -2)[x -(3a +1)]<0},B ={x |x -2ax -(a 2+1)<0}.(1)当a =2时,求A ∩B ;(2)求使B ⊆A 的实数a 的取值范围. 解:(1)当a =2时,A ={x |2<x <7},B ={x |4<x <5}. ∴A ∩B ={x |4<x <5}, (2)B ={x |2a <x <a 2+1},①当B =Ø时,2a ≥a 2+1,∴a =1, 此时A ={x |2<x <4},B ⊆A 符合题意.②若B ≠Ø,方程(x -2)[x -(3a +1)]=0的两根为x 1=2,x 2=3a +1. ∵B ≠Ø.∴A ≠Ø∴3a +1≠2,即a ≠13.当3a +1>2,即a >13时,⎩⎪⎨⎪⎧2a ≥2a 2+1≤3a +12a <a 2+1⇒⎩⎪⎨⎪⎧a ≥10≤a ≤3⇒1<a ≤3a ≠1.当3a +1<2,即a <13时,⎩⎪⎨⎪⎧ 2a ≥3a +1a 2+1≤2⇒⎩⎪⎨⎪⎧a ≤-1-1≤a ≤1⇒a =-1. ∴a 的取值范围为[1,3]∪{-1}.[备选精题]6.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}. (1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集的个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围. 解:(1)当m +1>2m -1,即m <2时,B =Ø满足B ⊆A . 当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立, 需⎩⎪⎨⎪⎧m +1≥-22m -1≤5,可得2≤m ≤3, 综上,m 的取值范围是m ≤3.(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}, 所以A 的非空真子集个数为28-2=254.(3)因为x ∈R ,且A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},又没有元素x 使x ∈A 与x ∈B 同时成立.则①若B =Ø,即m +1>2m -1,得m <2时满足条件. ②若B ≠Ø,则要满足的条件是 ⎩⎪⎨⎪⎧ m +1≤2m -1m +1>5或⎩⎪⎨⎪⎧m +1≤2m -12m -1<-2,解得m >4. 综上,m 的取值范围是m <2或m >4.。
高三基础知识天天练 数学检测3.人教版
答案:等边三角形
15.函数f(x)=sinx+2|sinx|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,则k的取值范围是________.
如下图所示,则k的取值范围是1<k<3.
答案:1<k<3
16.下面有五个命题:
①函数y=sin4x-cos4x的最小正周期是π;
()
解析:根据题意,可得f(x)=|π-x-x|=|π-2x|,图象即为选项A.
答案:A
9.如下图所示,函数y=2sin(ωx+θ)(|θ|<)的图象,那么
()
A.ω=,θ=B.ω=,θ=-
C.ω=2,θ=D.ω=2,θ=-
解析:由图知周期T=π-(-)=π,
∴ω==2,∴y=2sin(2x+θ),
解析:把y=3sin(x+)的图象向左平移个单位,得到的图象解析式为y=3sin(x++)=3sin(x+),然后再把得到的图象横坐标缩短到原来的倍,纵坐标不变,得到的图象解析式为y=3sin(2x+π).
答案:B
11.已知函数f(x)=2sinωx在区间[-,]上的最小值为-2,则ω的取值范围是
()
②终边在y轴上的角的集合是{α|α=,k∈Z};
③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;
④把函数y=3sin(2x+)的图象向右平移个单位得到y=3sin2x的图象;
⑤函数y=sin(x-)在[0,π]上是减函数.
其中真命题的序号是________.
解析:①y=sin2x-cos2x=-cos2x,故最小正周期为π,①正确.
C.D.
解析:设函数f(x)的最小正周期为T,
高三基础知识天天练3-1. 数学 数学doc人教版
第3模块 第1节[知能演练]一、选择题1.已知角α的终边过点(-1,2),则cos α的值为( )A .-55 B.255 C .-255 D .-12答案:A2.点P (tan2007°,cos2007°)位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限 解析:∵2007°=360°×6-153°, ∴2007°与-153°的终边相同, ∴2007°是第三象限角, ∴tan2007°>0,cos2007°<0. ∴P 点在第四象限,故选D. 答案:D3.已知角α的余弦线是单位长度的有向线段,那么角α的终边在( )A .x 轴上B .y 轴上C .直线y =x 上D .直线y =-x 上解析:由角α的余弦线长度为1分析可知,角α的终边与x 轴重合,故选A. 答案:A4.设a =sin(-1),b =cos(-1),c =tan(-1),则有( )A .a <b <cB .b <a <cC .c <a <bD .a <c <b解析:∵a =-sin1,b =cos1,c =-tan1,∴a <0,b >0,c <0.又∵sin1<tan1,∴-sin1>-tan1,∴c <a <b .故选C.答案:C 二、填空题5.点P 从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.解析:由弧长公式l =|α|r ,l =2π3,r =1得,P 点按逆时针方向转过的角度为α=2π3,所以Q 点的坐标为(cos 2π3,sin 2π3),即(-12,32).答案:(-12,32)6.若角β的终边与60°角的终边相同,在[0°,360°)内,终边与角β3的终边相同的角为________________________.解析:∵β=k ·360°+60°,k ∈Z ,∴β3=k ·120°+20°,k ∈Z .又β3∈[0°,360°),∴0°≤k ·120°+20°<360°,k ∈Z ,∴-16≤k <176,∴k =0,1,2.此时得β3分别为20°,140°,260°.故在[0°,360°)内,与角β3终边相同的角为20°,140°,260°.答案:20°,140°,260° 三、解答题7.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈(π2,π),求sin α,cos α,tan α的值.解:∵θ∈(π2,π),∴-1<cos θ<0,∴r =9cos 2θ+16cos 2θ=-5cos θ,故sin α=-45,cos α=35,tan α=-43.8.(1)确定tan(-3)cos8·tan5的符号;(2)确定lg(cos6-sin6)的符号.解:(1)∵-3,5,8分别是第三、第四、第二象限角, ∴tan(-3)>0,tan5<0,cos8<0,∴原式>0.(2)∵6为第四象限角,∴cos6>0,sin6<0,故cos6-sin6>0.∵(cos6-sin6)2=1-2sin6cos6=1-sin12>1(12是第四象限的角),∴cos6-sin6>1,∴lg(cos6-sin6)>0.[高考·模拟·预测]1.已知点P (sin 3π4,cos 3π4)落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.π4B.3π4C.5π4D.7π4解析:由sin 3π4>0,cos 3π4<0知角θ在第四象限,∵tan θ=cos3π4sin 3π4=-1,θ∈[0,2π),∴θ=7π4.答案:D2.已知sin α=45,cos α=35,则角2α所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限解法一:由sin α=45,cos α=35知2kπ+π4<α<2kπ+π2,∴4kπ+π2<2α<4kπ+π(k ∈Z ),角2α所在的象限是第二象限,选择B.解法二:由sin α=45,cos α=35易得sin2α=2425,cos2α=-725,∴角2α所在的象限是第二象限,选择B.答案:B3.若点A (x ,y )是300°角终边上异于原点的一点,则yx的值为________.解析:yx=tan300°=-tan60°=- 3.答案:- 34.若角α的终边落在射线y =-x (x ≥0)上,则sin α1-sin 2α+1-cos 2αcos α=________.解析:由定义知,sin α=-22,cos α=22,则原式=0.答案:05.借助单位圆解不等式组⎩⎪⎨⎪⎧sin x ≥02cos x -1>0.解:由⎩⎪⎨⎪⎧sin x ≥0,2cos x -1>0,即⎩⎪⎨⎪⎧sin x ≥0,cos x >12,分析正弦函数线和余弦函数线,如右图所示,由三角函数线可得x 满足的条件为 ⎩⎪⎨⎪⎧2kπ≤x ≤2kπ+π,2kπ-π3<x <2kπ+π3(k ∈Z ).此交集恰好为图形中的阴影交错部分,由数形结合可得2kπ≤x <2kπ+π3(k ∈Z ).[备选精题]6.在直角坐标系xOy 中,若角α的始边为x 轴的非负半轴,终边为射线l :y =22x (x ≥0).(1)求sin(α+π6)的值;(2)若点P 、Q 分别是角α始边、终边上的动点,且PQ =4,求△POQ 面积最大时,点P 、Q 的坐标.解:(1)由射线l 的方程为y =22x ,可得sin α=223,cos α=13,故sin(α+π6)=223×32+13×12=1+266. (2)设P (a,0),Q (b,22b )(a >0,b >0).在△POQ 中,因为PQ 2=(a -b )2+8b 2=16, 即16=a 2+9b 2-2ab ≥6ab -2ab =4ab , 所以ab ≤4.所以S △POQ =2ab ≤4 2.(当且仅当a =3b ,即a =23,b =233时取得等号).所以△POQ 面积最大时,点P ,Q 的坐标分别为P (23,0),Q (233,463).。
高三数学基础练习一 新课标 人教版
高三数学基础练习一 新课标 人教版一.填空选择部分1.若条件p :14x +≤,条件q :23x <<,则q ⌝是p ⌝的( )BA .充分不必要条件B .必要不充分条件C .充要条件D .既非充分条件也非必要条件 2.若函数()12-=x x f 的定义域是()[)5,21, ∞-,则其值域为( )D A.()0,∞- B.(]2,∞- C.⎥⎦⎤ ⎝⎛21,0 D.()1,0,22⎛⎤-∞ ⎥⎝⎦3.设函数y =f (x )的图象关于直线x =1对称,在x ≤1时,f (x )=(x +1)2-1,则x >1时f (x)等于( )BA f (x )=(x +3)2-1B f (x )=(x -3)2-1C f (x )=(x -3)2+1D f (x )=(x -1)2-14.已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0,则a 的取值范围是( )AA (22,3)B (3,10)C (22,4)D (-2,3)5. 垂直于直线2610x y -+=,且与曲线3231y x x =+-相切的直线方程是( )A A .320x y ++= B .320x y -+= C .320x y +-= D .320x y --=6. 设点P 是曲线y =x 3-3x +2上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是______.),32[)2,0[πππ _____7. 把函数)3sin 3(cos 22x x y -=的图象适当变动,就可得到y =-sin3x 的图象,这种变动可以是( )DA 沿x 轴向右平移4π B 沿x 轴向左平移4π C 沿x 轴向右平移12π D 沿x 轴向左平移12π8.如图,函数)(x f y =的图象是中心在原点,焦点在x 轴上的椭圆的两段弧,则不等式x x f x f +-<)()(的解集为 ( )AA.{}22,02|≤<<<-x x x 或B.{}22,22|≤<-<≤-x x x 或C.⎭⎬⎫≤<⎩⎨⎧-<≤-222,222|x x x 或 D.{}0,22|≠<<-x x x 且9.在坐标平面上,不等式组⎩⎨⎧+≤-≥11||2x y x y 所表示的平面区域的面积为 3810.在等差数列{}n a 中,若4681012120a a a a a ++++=,则91113a a -的值为 ( ) C A .14 B .15 C .16 D .1711.已知数列{}n a 的各项均为正数,其前n 项和为n S ,若2{log }n a 是公差为-1的等差数列,且638S =,那么1a 的值是( )AA .421B .631C .821D .123112.二面角βα--l 为︒120,A 、B 是棱上两点,AC 、BD 分别在α、β内,l BD l AC ⊥⊥,,且AB = AC =BD =1,则CD 的长为 2 ;13.在正三棱锥S ABC -中,M ,N 分别是棱SC 、BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是( )CA .12πB .32πC .36πD .48π14.已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( )DA .324+B .13-C .213+ D .13+ 15.将2n 个正整数2,3,2,1n 填入n n ⨯方格中,使其每行,每列,每条对角线上的数的和相等,这个正方形叫做n 阶幻方.记)(n f 为n 阶幻方对角线的和,如右图就是一个3阶幻方,可知,15)3(=f 则=)5(f ( )CA .63B .64C .65D .6616.已知直线01=-+by ax (b a ,不全为0)与圆5022=+y x 有公共点,且公共点的横、纵坐标均为整数,那么这样的直线有( )BA.66条B.72条C.74条D.78条17.从8名女生,4名男生中选出6名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法种数为( )A8 3 4 1 5 9 672A .4284C C ⋅B .3384C C ⋅C .612CD .4284A A ⋅ 18.已知8a x x ⎛⎫- ⎪⎝⎭展开式中的常数项为1 120,其中实数a 是常数,则展开式中各项系数的和为 1或83 19.定义运算a cad bc b d=-,复数z 满足11z i i i=+,则复数在的模为( )CA .1235 D .12-20.右图给出的是计算201614121+⋅⋅⋅+++的值的一个程序框图,其中判断框内应填入的条件是( )BA .i >10B .i <10C .i >20D .i <20。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1模块第2节
[知能演练]
一、选择题
1.设m,n是整数,则“m,n均为偶数”是“m+n是偶数”的
() A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:m,n均为偶数⇒m+n为偶数,但m+n为偶数m,n为偶数,如m=1,n=1.故选A.
答案:A
2.给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是
() A.3B.2
C.1 D.0
解析:原命题与逆否命题等价,而原命题为真,所以逆否命题为真命题.
原命题的逆命题为:若y=f(x)的图象不过第四象限,则函数y=f(x)是幂函数,显然此命题为假.又∵逆命题与否命题同真假,∴否命题为假.故选C.
答案:C
3.有下列四个命题,其中真命题有:
①“若x+y=0,则x、y互为相反数”的逆命题;
②“全等三角形的面积相等”的否命题;
③“若q≤1,则x2+2x+q=0有实根”的逆命题;
④“不等边三角形的三个内角相等”的逆否命题.
其中真命题的序号为
() A.①②B.②③
C.①③D.③④
解析:命题①的逆命题是“若x、y互为相反数,则x+y=0”真命题.命题②可考虑其逆命题“面积相等的三角形是全等三角形”是假命题,因此命题②是假命题.命题③的逆命题是“若x2+2x+q=0有实根,则q≤1”是真命题.命题④是假命题.故选C.
答案:C
4.设p:b2-4ac>0(a≠0),q:关于x的方程ax2+bx+c=0(a≠0)有实根,则p是q的
() A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分又不必要条件
解析:当Δ=b2-4ac>0(a≠0)时,方程ax2+bx+c=0(a≠0)有实根,而ax2+bx+c=0(a≠0)有实根,则Δ=b2-4ac≥0(a≠0).
∴p是q的充分不必要条件.
答案:A
二、填空题
5.e1、e2是不共线的两个向量,a=e1+k e2,b=k e1+e2,则a∥b的充要条件是实数k =________.
解析:a =λb ,⎩
⎪⎨⎪⎧
1=kλ
k =λ⇒k 2=1⇒k =±1.
答案:±1
6.下列结论中为真命题的是________(填序号).
①f (x )=ax 2+bx +c 在[0,+∞)上是增函数的一个充分条件是-b
2a
<0;
②已知甲:x +y ≠3,乙:x ≠1或y ≠2,则甲是乙的充分不必要条件;
③数列{a n }(n ∈N *)是等差数列的充要条件是P n ⎝⎛⎭
⎫n ,S n
n 是共线的. 解析:①f (x )=ax 2+bx +c 在[0,+∞)上是增函数,则必有a >0,-b
2a
≤0,故①不正确.
②x =1且y =2,则x +y =3.据原命题与逆否命题等价,可知甲是乙的充分不必要条件,故②正确.
③若{a n }是等差数列,则S n =An 2+Bn ,即S n
n
=An +B ,故③正确.
答案:②③ 三、解答题
7.写出下列命题的逆命题、否命题、逆否命题,并判断其真假. (1)实数的平方是非负数;
(2)等底等高的两个三角形是全等三角形;
(3)弦的垂直平分线经过圆心,并平分弦所对的弧; (4)若m ≤0或n ≤0,则m +n ≤0.
解:(1)逆命题:若一个数的平方是非负数,则这个数是实数.真命题. 否命题:若一个数不是实数,则它的平方不是非负数.真命题.
逆否命题:若一个数的平方不是非负数,则这个数不是实数.真命题. (2)逆命题:若两个三角形全等,则这两个三角形等底等高.真命题.
否命题:若两个三角形不等底或不等高,则这两个三角形不全等.真命题. 逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高.假命题. (3)逆命题:若一条直线经过圆心,且平分弦所对的弧,则这条直线是弦的垂直平分线.真命题.
否命题:若一条直线不是弦的垂直平分线,则这条直线不过圆心或不平分弦所对的弧.真命题.
逆否命题:若一条直线不经过圆心或不平分弦所对的弧,则这条直线不是弦的垂直平分线.真命题.
(4)逆命题:若m +n ≤0,则m ≤0或n ≤0.真命题. 否命题:若m >0且n >0,则m +n >0.真命题. 逆否命题:若m +n >0,则m >0且n >0.假命题.
8.命题p :-2<m <0,0<n <1;命题q :关于x 的方程x 2+mx +n =0有两个小于1的正根.试分析p 是q 的什么条件.
解:若关于x 的方程x 2+mx +n =0有两个小于1的正根,设为x 1,x 2,则0<x 1<1,0<x 2<1, 有0<x 1+x 2<2且0<x 1x 2<1.
根据根与系数的关系⎩⎪⎨⎪⎧
x 1+x 2=-m ,
x 1x 2=n ,
得⎩
⎪⎨⎪
⎧
0<-m <2,0<n <1. 即-2<m <0,0<n <1,故有q ⇒p .
反之,取m =-13,n =12,x 2-13x +12=0,Δ=19-4×1
2
<0,方程x 2+mx +n =0无实根,
所以pq .
综上所述,p 是q 的必要不充分条件.
[高考·模拟·预测]
1.下列命题是真命题的为
( )
A .若1x =1
y
,则x =y
B .若x 2=1,则x =1
C .若x =y ,则x =y
D .若x <y ,则x 2<y 2
解析:由1x =1
y
得x =y ,而由x 2=1得x =±1,由x =y ,x ,y 不一定有意义,而x <y
得不到x 2<y 2,故选A.
答案:A
2.命题“若一个数是负数,则它的平方是正数”的逆命题是( ) A .“若一个数是负数,则它的平方不是正数” B .“若一个数的平方是正数,则它是负数” C .“若一个数不是负数,则它的平方不是正数” D .“若一个数的平方不是正数,则它不是负数” 答案:B
3. “sin α=12”是“cos2α=1
2
”的
( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
解析:若sin α=12,则cos2α=1-2sin 2α=1-2×14=12,但当α=-π6时,cos2α=1
2
,而
sin α=-1
2.故选A.
答案:A
4.已知a ,b 是实数,则“a >0且b >0”是“a +b >0且ab >0”的
( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
解析:若a >b 且b >0,则必有a +b >0且ab >0,反过来,若ab >0,则a 与b 同号,而a +b >0,∴a 、b 同为正,即a >0且b >0.故选C.
答案:C
5下列结论: ①若命题p :∃x ∈R ,tan x =1;命题q :∀x ∈R ,x 2-x +1>0.则命题“p ∧綈q ”是假命题;
②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a
b
=-3;
③命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2
-3x +2≠0”.其中正确结论的序号为________.(把你认为正确结论的序号都填上)
解析:①中命题p 为真命题,命题q 为真命题,所以p ∧綈q 为假命题,故①正确; ②当b =a =0时,有l 1⊥l 2,故②不正确. ③正确,所以正确结论的序号为①③. 答案:①③
6.函数f (x )=lg ⎝⎛⎭
⎫2
x +1-1的定义域为集合A ,函数g (x )=1-|x +a |的定义域为集合B .
(1)判定函数f (x )的奇偶性,并说明理由;
(2)问:a ≥2是A ∩B =Ø的什么条件(充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件)?并证明你的结论.
解:(1)A =⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫x ⎪⎪
2x +1-1>0.
2
x +1-1>0⇔x -1x +1<0⇔(x +1)(x -1)<0, ∴-1<x <1,
∴A =(-1,1) ,定义域关于原点对称,
f (-x )=l
g 1+x -x +1=lg ⎝ ⎛⎭
⎪⎫1-x 1+x -1
=-lg 1-x x +1
=-f (x ),
∴f (x )是奇函数.
(2)B ={x |1-|x +a |≥0},|x +a |≤1⇔-1≤x +a ≤1⇔-1-a ≤x ≤1-a ,B =[-1-a,1-a ].
当a ≥2时,-1-a ≤-3,1-a ≤-1,由A =(-1,1),B =[-1-a,1-a ],有A ∩B =Ø. 反之,若A ∩B =Ø,可取-a -1=2,则a =-3,a 小于2.(注:反例不唯一) 所以,a ≥2是A ∩B =Ø的充分不必要条件.。