2014-2015学年北师大版九年级数学上期末模拟试题及答案
2014-2015新北师大版数学九年级上试卷
2014-2015新北师大版数学九年级上试卷 姓名 成绩一、选择题:(40分)1.如图,P 是Rt ΔABC 的斜边BC 上异于B 、C 的一点,过点P 做直线与AC 相交,使截得的三角形与ΔAB C 相似,满足这样条件的直线共有( )A 、 1条B 、 2条C 、 3条D 、 4条 2.已知粉笔盒里有4支红色粉笔和n 支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是52,则n 的值是( ). A .4 B .6 C .8 D .103. 用配方法解方程x 2-4x+2=0,下列配方法正确的是(A.(x-2)2=2 B .(x+2)2=2 C. (x-2)2= -2 D .(x-2)2=64. 如图,菱形ABCD 的两条对角线相交于O ,若AC=6,BD=4,则菱形ABCD 的周长是( )A . 24B . 16C . 4D . 25.如图,有一矩形纸片ABCD ,A B =10,A D =6,将纸片折叠,使A D 边落在AB 边上,折痕为A E ,再将△A E D 以DE 为折痕向右折叠,A E 与BC 交于点F ,则△C E F 的面积为( )。
A 、4B 、6C 、8D 、106. 如图,在▱ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 延长线于点F ,则△EDF 与△BCF 的周长之比是( )A . 1:2B . 1:3C . 1:4D . 1:57、(2012山东省聊城,11,3分)如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,下列结论不正确的是( )A.BC=2DEB. △ADE ∽△ABCC. ACAB AE AD = D. AD E ABC S S ∆∆=3 8. 如图,在大小为4×4的正方形网格中,是相似三角形的是( )A.①和②B.②和③C.①和③D.②和④9.2011年某市政府投资2亿元人民币建设了廉租房8万平方米,预计到2013年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x ,根据题意,列出方程为( ).A .2(1+x)2=9.5 B.2(1+x)+2(1+x)2=9.5C.2+2(1+x)+2(1+x)2=9.5D.8+8(1+x)+8(1+x)2=9.510.(2012四川省资阳市)如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =23,则四边形MABN 的面积是A .63B .123C .183D .243二.填空题(4*6=24分)11. 关于x 的一元二次方程(x+3)(x-1)=0的根是________.12.如图,在矩形ABCD 中AB=6,BC=8,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ED.则AE 的长为________.13. 某数学兴趣小组测得小强的影长是1.2m ,同一时刻旗杆的影长是15m .已知小强的身高为1.8m ,则旗杆的高度为_________m .14.(2012湖北随州)如图,点D,E 分别在AB 、AC 上,且∠ABC=∠AED 。
新北师大版2014-2015年九年级上学期期末考试数学试题
C (第7题)新北师大版2014-2015年九年级上学期期末考试数学试题时间120分钟 满分120分 2015、1、16一、填空题(本大题共有9小题,每小题3分,共27分)1.方程x x 22=的解为 . 2.把抛物线223x y -=向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为 .3.如图,已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 等于 °.4.如图,PA 是O ⊙的切线,切点为A ,PA∠APO =30°,则O ⊙的半径为 .5.已知二次函数2(0)y ax bx c a =++≠,其中a b c ,,满足0a b c ++=和930a b c -+=,则该二次函数图象的对称轴是直线 .6.如图,在平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(3-,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为 .7.如图,以BC 为直径的⊙O 与△ABC 的另两边分别相交于点D 、E .若∠A =60°, BC =2,则图中阴影部分面积为 .8.如图,矩形ABCD 中,AB=4,AD=6,以为A 圆心,R 长为半径作圆,⊙A 仅与直线BC 、CD 中一条相离,R 的取值范围是 .9.已知a 是关于x 的一元二次方程02=-+m x x 的一个根,a+1是关于x 的一元二次方程022=-+m x x 的一个根,(其中m ≠0) 则a= .二、选择题(本大题共有5小题,每小题3分,共15分)第3题图第4题图第6题图BCDA(第8题)A .100)1(1442=-xB .144)1(1002=-xC .100)1(1442=+xD .144)1(1002=+x11.在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,则△ABC 的内切圆半径为 ( )A .1B .2C .512D .6 12.下列说法正确的是( )A.三点确定一个圆。
2014-2015学年北师大版九年级数学上期末模拟试题及答案
(3).求 (x 1)2 25 中 x 的值。 (4).(x+3)2﹣x(x+3)=0.
13. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是
_________;甲队以 2∶0 战胜乙队的概率是________.
14.六·一儿童节前,苗苗来到大润发超市发现某种玩具原价为 100 元,经过两次降价,
9.如 图是由若 干个大小相同的正方体搭成的几何体的三视图, 则该几
何体所用的正方形的个数是
俯视
A. a b c 1 B. b c 0 C. a b c 0 D. a b c 1
8.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬
币, 那么硬币正面朝上的概率为( )
A. B. C. 1 D.
18.(满分 6 分)给出三个多项式:① 2x2 4x 4 ; ② 2x2 12x 4 ; ③ 2x2 4x
.请你把其中任意两个多项式进行加法运算(写出所有可能的结果),并把每个结果因式分
解.
19(满分 6 分).一个不透明的布袋里装有 3 个大小、质地均相同的乒乓球,分别标有数字
现售价为 81 元,假设两次降价的百分率相同,则每次降价的百分率为 .
15.关于 x 的一元二次方程(a-1)x2-x+a2-1=0 的一个根是 0,那么 a 的值为______.
16.在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”、“2”、“3”、
( )
A B C D
. . . .
新北师大版九年级数学期末试卷
2014—2015学年度第一学期期末考试九年级数学试卷1、若x=-2是关于x 的一元二次方程的一个根,则a 的值为 ( )A.1或4B. -1或-4C. -1或4D. 1或-42、下面是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是( )3、 下列命题中,假命题是A .对顶角相等B .三角形两边的和小于第三边C .菱形的四条边都相等D .多边形的外角和等于360︒4、若反比例函数的图象位于第二、四象限,则k 的取值可以是( ) 某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价6. 如图,上下底面为全等的正六边形礼盒,其主视图与侧视图均由矩形构成,主视图中大矩形边长如图所示,侧视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为( )A .320cmB .395.24 cmC .480 cmD .431.76 cm0222=+-a ax x 学校_______________________ 班别___________________ 姓名________________ 考号____________________◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇装◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇订◇◇◇◇◇◇◇◇◇线◇◇◇◇◇◇◇◇实物图主视图侧视图7、已知,相似比为3,且的周长为18,则的周长为( )A .2B .3C .6D .58. 如图,在菱形ABCD 中,AB=5,对角线AC=6,若过点A 作AE ⊥BC ,垂足为E ,则AE 的长为( )A .4 B.C. D.5 9. 如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为A .45︒B .55︒C .60︒D .75︒10、如图,已知直线2+-=x y 分别与x 轴,y 轴交于A ,B 两点,与双曲线xky =交于E ,F 两点,若AB =2EF ,则k 的值是 A .-1 B .1 C .12 D .34二、细心填一填(本大题共5小题,每小题3分,共15分) 11.如果关于x 的方程x 2﹣2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 .12、某灯具厂从1万件同批次产品中随机抽取 了100件进行质检,发现其中有5件不合格,估计该厂这一万件产品中不.合格品约为 件 13、如果两个相似三角形的相似比是,那么它们的面积比是_________________ 14.如图,在正方形ABCD 中,AD=1,将△ABD 绕点B 顺时针旋转45°得到△A ′BD ′,此时A ′D ′与CD 交于点E ,则DE 的长度为_______.ABC DEF △∽△ABC △DEF△5125241:215..已知,是同一个反比例函数图像上的两点.若,且,则这个反比例函数的表达式为_________. 三、用心做一做16、计算:(﹣2)3+()﹣1﹣|﹣5|+(﹣2)017、小英与她的父亲、母亲计划外出旅游,初步选择了延安、西安、汉中、安康四个城市.由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三人意见不统一.在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定.规则如下: ①在一个不透明的袋子中装一个红球(延安)、一个白球(西安)、一个黄球(汉中)和一个黑球(安康),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出球的颜色相同为止. 按照上面的规则,请你解答下列问题:(1)已知小英的理想旅游城市是西安,小英和母亲随机各摸球一次,均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是汉中,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?),(111y x P ),(222y x P 212+=x x 211112+=y y18.如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2)(1)求反比例函数的表达式;(2)根据图象直接写出当mx>时,x的取值范围;(3)计算线段AB的长.19、如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF.20. 某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D 处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?21、给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.22. .关于的一元二次方程x 2+2x +k +1=0的实数解是x 1和x 2.(1)求k 的取值范围;(2)如果x 1+x 2-x 1x 2<-1且k 为整数,求k 的值。
2014-2015大竹县九年级数学上册期末模拟测试题4北师大版有答案
2014-2015大竹县九年级数学上册期末模拟测试题4(北师大版有答案)一、选择题:本大题共有10个小题,每小题3分,共30分.请将唯一正确选项前的字母代号填在题后的括号内1.有12只外观完全相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任取1只,是二等品的概率等于( )A. 112 …B. 16C. 14D. 7122.顺次连结任意四边形各边中点所得四边形是( )A.平行四边形B.矩形C.菱形D.正方形3. )A.B. C. D.4.如图,斜坡AB 长20米,其水平宽度AC 为斜坡AB 的坡度为( )A. 030B. 060C.D. 1:25.若34x y =,则下列各式中不正确的是( ) A.74x y y += B. 4y y x =- C. 2113x y x += D. 14x y y -= 6.如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向上取点C ,测得AC a =,ACB α∠=,那么AB 等于( )A. sin a α⋅B. cos a α⋅C. tan a α⋅D. cot a α⋅7.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k的取值范围是( )A. 1k >-B. 1k ≥-C. 1k ≥-且0k ≠D. 1k >-且0k ≠8.如图△ABC 中,点G 是重心,连结BG 并延长BG 交AC 于D ,若点G 到AB 的距离为2,则点D 到AB 的距离是( )A. 2.5B. 3C.3.6D.49.某商品经两次降价,由每件100元调到每件81元,则平均每次降价的百分率为( )A.8.5%B.9%C.9.5%D.10%10.设a 、b 、c 、d 都是整数,且a<2b,b<3c,c<4d,d<20,则a 的最大值是( )A.480B.479C.448D.447二、填空题:本大题共有6小题,每小题3分,共18分.请把答案直接填在题中的横线上.11.请写出一个以0,-2为根的一元二次方程______________________.12.已知线段10a cm =,2b m =,则a b=_________________.13.如图在△ABC 中,090ACB ∠=,CD ⊥AB 于D,AC=4,BC=3,则cos DCB ∠=______.14.已知m 是方程220x x --=的一个根,则代数式2m m -的值是__________。
2014-2015新北师大版九年级数学上册期末试卷
北师大第一学期期末考试九年级数学试题(卷)题 号 一 二 三 总 分得 分本试卷分第Ⅰ卷和第Ⅱ卷两部分。
考试时间120分钟,满分120分Ⅰ(客观卷)24分一、单项选择题(每小题2分,共24分)题 号 1 2 3 4 5 6 7 8 9 10 11 12 选 项1.一元二次方程2560--=x x 的根是 A 、x 1=1,x 2=6B 、x 1=2,x 2=3C 、x 1=1,x 2=6-D 、x 1=1-,x 2=62.在Rt △ABC 中,︒=∠90C ,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,则下列式子一定成立的是A 、B c a sin ⋅= B 、B c a cos ⋅=C 、A c b sin ⋅=D 、Bab tan =3.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数关系式: 6)1(52+--=t h ,则小球距离地面的最大高度是A 、1米B 、5米C 、6米D 、7米4.如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致A B C D5.在下列四个函数中,当x >0时,y 随x 的增大而减小的函数是 A 、y =2xB 、xy 3=C 、23-=x yD 、2x y =6.如图,△ABC 中,∠A =30°,∠C =90°,AB 的垂直平分线交AC 于D 点, 交AB 于E 点,则下列结论错误的是 A 、AD =DB B 、DE =DC C 、BC =AED 、AD =BCy xO y xoy xooy xABCD E7.顺次连结等腰梯形各边中点得到的四边形是A 、矩形B 、菱形C 、正方形D 、平行四边形8.已知α为等腰直角三角形的一个锐角,则cos α等于A 、21B 、22C 、23D 、339.点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数xy 3-=的图象上,若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是A 、y 3<y 1<y 2B 、y 1<y 2<y 3C 、y 3<y 2<y 1D 、y 2<y 1<y 310.把抛物线221x y =向左平移3个单位,再向下平移2个单位后,所得的抛物线的表达式是A 、2)3(212++=x y B 、2)3(212+-=x y C 、2)3(212-+=x yD 、3)2(212+-=x y 11、将分别标有数字2,3,4的三张卡片洗匀后,背面朝上放在桌上。
2014~2015学年度第一学期期末考试九年级数学试卷答案
2014——2015学年度第一学期期末测试九 年 级 数 学参考答案一、选择题:本大题共 小题,每小题 分,共 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内.. . .C . . . . . . . 二、填空题:本大题共 小题,每小题 分,共 分.请把最后结果填在题中横线上.. . . .52 .277.( , ) .- < < .②④三、解答题:本大题共 小题,共 分.解答时应写出文字说明、证明过程或演算步骤..(本小题满分 分)每图 分 .(本小题满分 分)解:由表可以看出,随机地摸取一个小球然后放回,再随机地摸出一个小球,可能出现的结果有 个,它们出现的可.能性相等.………… 分( )满足两次取的小球的标号相同的结果有 个,所以 ( ) 164 41.…… 分( )满足两次取的小球的标号的和等于 的结果有 个,所以 ( ) 163.… 分.(本小题满分 分)( ) π ( 分) ( )( 分)( )③( 分) .(本小题满分 分)证明:连接 .……………………………………………… 分 , .……………………… 分 切 于点 , .…………………… 分,,即 + , ∥ ,…………………………………………… 分 ,…………………………… 分 平分∠ .…………………………………… 分.(本小题满分 分)解:设所围成圆锥的底面半径和高分别为 和 .∵扇形半径为 ㎝,圆心角为 °, 12032180r ππ⋅⋅=,…………………………………………………………………… 分BCDO.(第,…………………………………………………………………………………… 分h ==.………………………………………………………………… 分.(本小题满分 分)解:( )令 ,得2230x x --=,……………………………………………………… 分解得 , - ,……………………………………………………………… 分 ∴抛物线与 轴交点坐标为( , )和(- , ).…………………………… 分 ( )令 ,得 - ,∴抛物线与 轴交点坐标为( ,- ),………………………………………… 分 ∴将此抛物线向上平移 个单位后可以经过原点.…………………………… 分 平移后抛物线解析式为22y x x =-.……………………………………… 分.(本小题满分 分)( )证明: , , , ,…………… 分 .……………………………………………………………… 分( )解: ,AD DEEF FC=.………………………… 分 , , , 52.…………………………………… 分, , 四边形 是平行四边形, ,…… 分 52 152.……………………………………………………… 分.(本小题满分 分)( )证明: 四边形 是正方形, , .…分, , ,…………………………… 分 ,…………………………………………………………………… 分 .…………………………………………………………………… 分 ( )解: 正方形的边长为 , x , -x . , DA AEEB BF=,…………………………………………… 分 44x x y =-, 2(4)144x x y x x -==-+,………………………………… 分.(本小题满分 分) 解:( )由题意得1060xy -=.………………………………………………………… 分( )由题意得1200040101)200)(1060()200(2++-=+-=+=x x x x x y z . 分 ( )由题意得)1060(201200040101202xx x y z w --++-=-=10800421012++-=x x .………………………………………… 分当每个房间的定价2102=-=abx (元)时, 有最大值,最大值是 .………分.(本小题满分 分)解:( )∵点 坐标为( , ),∴ .∵矩形 面积为 ,∴ ,…… 分∴抛物线的对称轴为直线 .………………………………………………… 分 ( ) , , ,MOMD MD AM =, MO AM MD ⋅=2.设 ,则 - . )3(4-=x x , 41=x ,12-=x , , 点坐标为( , ).… 分设抛物线的解析式为4)2(2+-=x a y . 将点 ( , )代入得443+=a , 41-=a , 抛物线的解析式为4)2(412+--=x y .…………………………… 分 ( )∵⊙ 在 轴上截得线段长为 , , 点纵坐标为 或 .…… 分在4)2(412+--=x y 中,令 或 得 4)2(4122+--=x 或4)2(4142+--=x ,……………………………… 分解得2221+=x ,2222-=x ,23=x ,点坐标为(222+, )、(222-, )或( , ).……………… 分。
新北师大版2014-2015年九年级上学期期末考试数学试题
新北师大版2014-2015年九年级上学期期末考试数学试题( 时间:120分钟 分值:120分)测试范围:九年级上下册全部2015、1、1 一、选择题(24分)1、已知6,4,3,2====d c b a ,则下列各式中正确的是 ( ) A .d c b a = B .d c a b = C .b c d a = D .da b c = 2、已知线段a =9cm ,c =4cm ,b 是a , c 的比例中项,则b 等于 ( ) A . 6cm B . -6cm C .±6cm D .814cm 3、在半径为1的⊙O 中,120°的圆心角所对的弧长是 ( )A .3π B .23π C .πD .32π4则这组数据的中位数与众数分别是 ( ) A .26.5,27 B .27.5,28 C .28,27 D . 27,285、已知函数12)3(2++-=x x k y 的图象与x 轴有交点,则k 的取值范围是 ( ) A .4<k B .k ≤4 C .4<k 且3≠k D .4≤k 且3≠k6、在同一坐标系中,一次函数1+=ax y 与二次函数a x y +=2的图像可能是 ( )7、下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆;⑤两个等边三角形相似.其中正确命题的个数为 ( ) A .2B .3C .4D .5 8、如右图,点C、D 是以线段AB 为公共弦的两条圆弧的中点, AB =2,点E 、F 分别是线段CD ,AB 上的动点,设AF =x , AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( )二、填空题(20分)9、已知2x -5y =0,则x :y = ;10、当k = 时,函数()112+-=+kkx k y 为二次函数;11、小刚的身高是1.6m ,他在阳光下的影长是1.2m ,在同一时刻测得某棵树的影长为3.6m ,则这棵树的高度约为 m ; 12、计算:tan 245°-1= ;13、已知某样本的方差是4,则这个样本的标准差是 ;14、已知弦AB 的长等于⊙O 的半径,弦AB 所对的圆周角是____ ___ 度;15、如图,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A (3,0),则由图象可知,不等式ax 2+bx+c >0的解集是 ;16、已知圆锥底面半径是2,母线长是4,则圆锥的侧面展开的扇形圆心角是 ; 17、如图,已知⊙P 的半径为1,圆心P 在抛物线2112y x =-上运动,当⊙P 与x 轴相切 时,圆心P 的坐标为 ;18、如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)根据这个规律,第2014个点的坐标为 。
北师大2014-2015学年九年级(上)期末数学试卷 三套
北师大2014-2015学年九年级(上)期末数学试卷姓名:______一、选择题(3*7=21)2,y=y=y=<0;④abc>0,其中正确的个数是()1.抛物线y=(x﹣1)2+2的顶点坐标是_________ .2.已知函数y=(m+1)是反比例函数,则m的值为_________ .3.已知直角三角形两直角边的长分别为6cm和8cm,则斜边上的中线长为_________ cm.4.已知菱形的周长为40cm,一条对角线长为16cm,则这个菱形的面积为_________ cm2.5.如图所示的抛物线是二次函数y=ax2﹣3x+a2﹣1的图象,那么a的值是_________ .6.在Rt△ABC中,∠C=90°,BC=5,AB=12,sinA= _________ .7.把一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次均是红色的概率是:_________ .三、解答题:19.(6分)解一元二次方程:x2+2x﹣3=0.20.(6分)|﹣|+﹣sin30°+(π+3)0+tan45°.21. (12分)已知:如图,矩形ABCD中AB=4,AD=12,点P是线段AD上的一动点(点P不与点A,D重合),点Q是直线CD上的一点,且PQ⊥BP,连接BQ,设AP=x,DQ=y(1)求证:△ABP∽△DPQ.(2)求y与x的函数关系式,并写出自变量x的取值范围.(3)并求出当y取何值,△ABP∽△PBQ.(4)若点Q在DC的延长线上,则x的取值范围.(不必写出过程).25.(7分)如图,天空中有一个静止的广告气球C,从地面A点测得C点的仰角为45°,从地面B点测得C点的仰角为60°.已知AB=20m,点C和直线AB在同一铅垂平面上,求气球离地面的高度(结果保留根号).26.(12分)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台),销售单价x(元)满足w=﹣2x+80,设销售这种台灯每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时.毎天的利润最大?最大利润多少?(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润,应将销售单价定位为多少元?27.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)、C(0,4)三点.(1)求此抛物线的解析式;(2)此抛物线有最大值还是最小值?请求出其最大或最小值;(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.北师大2014-2015学年九年级(上)期末数学试卷 姓名:_________..B9.如图,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且0<x≤10,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( ).1.若,则= _________ .2.如图,市政府准备修建一座高AB=6m 的过街天桥,已知天桥的坡面AC 与地面BC 的夹角∠ACB 的正弦值为,则坡面AC 的长度为 _________ m . 3.若△ABC∽△DEF,△ABC 与△DEF 的相似比为1:2, 则△ABC 与△DEF 的周长比为 _________ . 4.两个反比例函数和在第一象限内的图象如图所示,点P 在的图象上,PC⊥x 轴于点C ,交的图象于点A ,PD⊥y 轴于点D ,交的图象于点B ,当点P 在的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是_________ (把你认为正确结论的序号都填上) 三、解答题 15.(5分)计算:sin60°﹣cos45°+.16.(6分)已知在△ABC 中,∠C=90°,,,解这个直角三角形.18.(6分)随着人民生活水平的提高,小轿车也逐渐进入千家万户.为了解决停车难问题,我县交警大队在城区划定了许多机动车停车位.如图,矩形ABCD 的供一辆机动车停放的车尾示意图,已知BC=2.2m ,∠DCF=40°,请计算车位所占街道的宽度EF .(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果精确到0.1m )19.(6分)如图,四边形OABC是面积为4的正方形,函数(x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数(x>0)的图象交于点E、F,求线段EF所在直线的解析式.20.(6分)如图,在平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,3)、B(2,2)、C (2,1),D(3,3).(1)以原点O为位似中心,相似比为2,将图形放大,画出符合要求的位似四边形;(2)在(1)的前提下,写出点A的对应点坐标A′,并说明点A与点A′坐标的关系.五、解答题(9分)21.王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=﹣x2+x,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.(1)请写出抛物线的开口方向,顶点坐标,对称轴.(2)请求出球飞行的最大水平距离.(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.22.(12分)已知:如图,在正方形ABCD中,AB=8,点E在边AB上点,CE的垂直平分线FP 分别交AD、CE、CB于点F、H、G,交AB的延长线于点P.(1)求证:△EBC∽△EHP;(2)设BE=x,BP=y,求y与x之间的函数解析式.七、解答题(9分)23.一家计算机专买店A型计算器每只进价12元,售价20元,多买优惠:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20﹣10)=1(元),因此,所买的全部20只计算器都按每只19元的价格购买.但是最低价为每只16元.(1)求一次至少买多少只,才能以最低价购买?(2)写出专买店当一次销售x(x>10)只时,所获利润y元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲买了46只,乙买了50只,店主却发现卖46只赚的钱反而比卖50只赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每只16元至少提高到多少?北师大2014-2015学年九年级(上)期末数学试卷 姓名:______一、选择题1.的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定6.二次函数y=ax 2+bx+c 的图象如图所示,则反比例函数与一次函数y=bx+c 在同一坐标系中的大致图象是( )二、填空题7.写出一个经过点(2,3)的反比例函数 _________ .8.已知关于x 的方程x 2+mx+n=0的两个根分别是1和﹣3, 则m= _________ .9.在四边形ABCD 中,AB=DC ,AD=BC ,请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是 ______. (写出一种即可) 10.在Rt△ABC 中,∠C=90°,,则tanB= ___ .11.如图,是二次函数y=ax 2+bx+c (a≠0)的图象的一部分,则方程ax 2+bx+c=0的两根分别为 ____..12.如图,AB是伸缩式的遮阳棚,CD是窗户,要想在夏至的正午时刻阳光刚好不能射入窗户,则AB的长度是_ 米.(假设夏至正午时的阳光与地平面的夹角是60°)13.如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线.(请保留画图痕迹).14.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是_________ .三、解答题15.用适当方法解方程:2(x﹣3)2=x2﹣9.217.如图,已知双曲线y=(k<0)经过Rt△OAB斜边OA的中点D,且与直角边AB相交于点C.已知点A的坐标为(﹣3,2).(1)直接写出点D的坐标;(2)求△AOC的面积.18. (6分)在重阳节敬老爱老活动中,某校计划组织志愿者服务小组到“夕阳红”敬老院为老人服务,准备从初三(1)班中的3名男生小亮、小明、小伟和2名女生小丽、小敏中选取一名男生和一名女生参加学校志愿者服务小组.(1)若随机选取一名男生和一名女生参加志愿者服务小组,请用树状图或列表法写出所有可能出现的结果;(2)求出恰好选中男生小明与女生小丽的概率.20.如图,要建一个面积为130m2的养鸡场,养鸡场一边靠墙(墙长16m),并在与墙平行的一边开一道1m宽的门,其余部分为栅栏,总长32m.(1)若设仓库的垂直于墙的一边(AD)为xm,则这个养鸡场的长(AB)为_________ m.(用含x的代数式表示)(2)求这个养鸡场的长和宽.21.据媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧及释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题:(1)写出从药物释放开始,y与x之间的函数关系式及自变量的取值范围;(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?22.已知:如图,等边△ABC中,AB=1.若D、E分别是BC、AC上的点(点D与B、C不重合),且∠ADE=60°.设BD=x,AE=y.(1)找出与∠BAD相等的角,并给出证明;(2)求y关于x的函数关系式,并求出y的最小值;(3)△ADE可能为等边三角形吗?如若可能,求出此时x值,若不可能,说明理由.。
2014-2015学年新北师大版九年级上册期末考试试卷
2014-2015学年新北师大版九年级数学期末考试试卷考试时间:120分钟 考试范围:九年级上册全部 分值:120分一、选择题(第小题3分共18分)1.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值 ( )A .1B .2C .1或2D .02.已知一矩形的两边长分别为7cm 和12 cm ,其中一个内角的平分线分长边为两部分,这两部分的长分别为( )。
A .6cm 和6cmB .7cm 和5cmC .4cm 和8cmD .3cm 和9cm 3A (6,3),B (6,0)两点,以坐标原点O 为位似中心,AB 缩小到线段''A B ,则''A B 的长度等于( )A.1B.2C.3D.64.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是( )A5.若mn >0,则一次函数n mx y +=与反比例函数是( )6.如图,在平面直角坐标系中,点C 的坐标为(0,4),动点A 以每秒1个单位长的速度,从点O 出发沿x 轴的正方向运动,M 是线段AC 的中点.将线段AM 以点A 为中心,沿顺时针方向旋转90°,得到线段AB .过点B 作x E ,过点C 作y轴的垂线,交直线BE 于点D ,运动时间为t 秒.当S △BCD 时,tA .2或2+.2或2+.3或3+.3或3+二、填空题(第小题3分共24分)7.方程2)2(+=+x x x 的解是 .8.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为 . 9________. 10.如图,已知梯形ABCD 中,AB ∥CD ,△COD 与△AOB 的周长比为1:2,则CD :AB= ,S △COB :S △COD = .11.现定义运算“※”,对于任意实数a 、b ,都有a ※b=a 2-3a+b ,如:3※5=32-3×3+5,若x ※2=6,则实数x 的值是 ___________.12.已知线段AB=2,点C 为线段AB 的黄金分割点(AC >BC ),则AC= 。
2014-2015北师大版九年级数学上册期末试卷及答案
岔河二中16年九年级数学(上)模拟考试班级:姓名:得分:一.选择题(共15小题,每小题3分,共45分)1、实数8的相反数是()A.4 .B.2.已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B.3 C.0 D.0或33.方程x2=4x的解是()A.x=4 B.x=2 C.x=4或x=0D.x=04、如图,直线a∥b,则∠A的度数是()A.45° B.40° C.35° D.30°5、“国际节能环保及新能源展览会”在重庆国际博览会中心隆重举行.小明开车从家出发去看展览会,预览一个小时能到达,行驶了半个小时,刚好行驶了一半路程,遇到堵车道路被“堵死”,堵了几分钟突然发现旁边刚好有一个轻轨站,于是小明将车停在轻轨站的车库,然后坐轻轨去观看展览,结果按预计时间到达.下面能反映小明距离会展中心的距离y(千米)与时间x(小时)的函数关系的大致图像是()6、用棋子按下列方式摆图形,第一个图形有1个棋子,第二个图形有5个棋子,第三个图形有12个棋子,依次规律,第六个有()枚棋子A.49 B.50 C.51 D.527.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC 的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是()A.B.C. D.8.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+或11﹣D.11+或1+9.有一等腰梯形纸片ABCD(如图),AD∥BC,AD=1,BC=3,沿梯形的高DE 剪下,由△DEC与四边形ABED不一定能拼成的图形是()A.直角三角形B.矩形C.平行四边形D.正方形10.如图是由5个大小相同的正方体组成的几何体,它的俯视图为()A.B.C.D.11.下列函数是反比例函数的是()A.y=x B.y=kx﹣1 C.y=D.y=12.矩形的面积一定,则它的长和宽的关系是()A.正比例函数B.一次函数C.反比例函数D.二次函数13.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.极差是5 B.中位数是9 C.众数是5 D.平均数是9 14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24 B.18 C.16 D.615.两个相似三角形面积比为1:9,他们对应高的比为()A.1:3B.1:9:1(D)3:1二.填空题(共6小题,每小题5分,共30分)16.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为_____.17.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_________度.18.有两张相同的矩形纸片,边长分别为2和8,若将两张纸片交叉重叠,则得到重叠部分面积最小是_________,最大的是_________.19.直线l1:y=k1x+b与双曲线l2:y=在同一平面直角坐标系中的图象如图所示,则关于x的不等式>k1x+b的解集为_________.20.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有_________个黄球.21.如图,在正方形ABCD中,过B作一直线与CD相交于点E,过A作AF垂直BE于点F,过C作CG垂直BE于点G,在FA上截取FH=FB,再过H作HP 垂直AF交AB于P.若CG=3.则△CGE与四边形BFHP的面积之和为_________.三.解答题(共75分)22.解方程:(15分)(1)x2﹣4x+1=0.(配方法)(2)解方程:x2+3x+1=0.(公式法)(3)解方程:(x﹣3)2+4x(x﹣3)=0.(分解因式法)23.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.24.如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.25.(10分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?26.如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子;(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.27.一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.28.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.29.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.。
14-15北师大九年级数学上册期末考试题
2014-2015学年上学期期末检测九 年 级 数 学 试 卷(全卷满分120分,考试时间100分钟)一、选择题(本大题共10个小题,每题只有一个正确的选项,每小题3分,满分30分)1.如图所示,圆柱体的主视图是( )2.方程022=-x x 的根是( )A .01=x 22=xB .2-=xC .2=x ,D .01=x ,22-=x3.若反比例函数1y x=-的图象经过点A (2,m ),则m 的值是( )A .-2B .2C . 12-D . 124.如图,在BE AD ABC ,中,∆是两条中线,则=∆∆ABC ED C S S :( )A .1∶2B .2∶3C .1∶3D .1∶4C D5.下列命题中,不正确的是( )A .顺次连结菱形各边中点所得的四边形是矩形B .有一个角是直角的菱形是正方形C .对角线相等且垂直的四边形是正方形D .有一个角是60°的等腰三角形是等边三角形6.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A 、B 、C 、D 、7.下列性质中正方形具有而矩形没有的是( ) A .对角线互相平分 B .对角线相等 C .对角线互相垂直 D .四个角都是直角8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A .154 B .31C .51D .1529.已知粉笔盒里有4支红色粉笔和n 支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是25,则n 的值是( )A .4B .6C .8D .1010. 2010年某市政府投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x ,根据题意,列出方程为( )A .221+)9.5x =(B .221+)2(1)9.5x x ++=( C .22+21)2(1)9.5x x +++=( D .2881+)8(1)9.5x x +++=(二、填空题(本大题共6个小题,每小题4分,满分24分)11.依次连接菱形各边中点所得到的四边形是 .12.已知函数22(1)m y m x -=-是反比例函数,则m 的值为 .13.若反比例函数xky =的图象经过点(3,-4),则此函数在每一个象限内 y 随x 的增大而 .14.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是 . 15.有两组扑克牌各三张,牌面数字分别为2,3,4,随意从每组中牌中抽取一张,数字和是6的概率是 .16.如图,在△ABC 中,BC = 8 cm ,AB 的垂直平分线交 AB 于点D,交边AC 于点E ,△BCE 的周长等于18 cm , 则AC 的长等于 cm . 三、解答题(一)(本大题共3个小题,每小题6分,满分共18分)17.解方程:3(3)x x x -=-18.如图,楼房和旗杆在路灯下的影子如图所示。
北师大九年级(上)期末数学模拟试卷(含答案解析)
九年级(上)期末数学模拟试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.菱形具有而平行四边形不一定具有的性质是()A. 对角相等B. 对边相等C. 邻边相等D. 对边平行2.既是轴对称,又是中心对称图形的是()A. 矩形B. 平行四边形C. 正三角形D. 等腰梯形3.已知正比例函数y=k1x(k1≠0)与反比例函数y=k2(k2≠0)的图象有一个交点的坐x标为(-2,-1 ),则它们的另一个交点的坐标是()A. (2,1)B. (−2,−1)C. (−2,1)D. (2,−1)4.在一个四边形ABCD中,依次连接各边的中点得到的四边形是菱形,则对角线AC与BD需要满足条件是()A. 垂直B. 相等C. 垂直且相等D. 不再需要条件5.已知点A(-2,y1)、B(-1,y2)、C(3,y3)都在反比例函数y=4的图象上,则x ()A. y1<y2<y3B. y3<y2<y1C. y3<y1<y2D. y2<y1<y36.下列说法中,错误的是()A. 一组对边平行且相等的四边形是平行四边形B. 两条对角线互相垂直且平分的四边形是菱形C. 四个角都相等的四边形是矩形D. 邻边都相等的四边形是正方形7.若二次函数y=x2+x+m(m-2)的图象经过原点,则m的值必为()A. 0或2B. 0C. 2D. 无法确定8.如图,已知二次函数y=ax2+bx+c的图象,下列结论:①a+b+c<0;②a-b+c>0;③abc<0;④b=2a;⑤△<0.正确的个数是()A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6小题,共18.0分)9.把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是______.10.菱形的两条对角线的长分别为6和8,则它的面积是______ .11.在Rt△ABC中,∠C=90°,sin A=12,则sin B= ______ .1312.如果反比例函数y=k−3的图象过点(2,-3),那么k= ______ .x13.为了估计不透明的袋子里装有多少白球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有______ 个白球.14.已知某工厂计划经过两年的时间,把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数是______%.按此年平均增长率,预计第4年该工厂的年产量应为______万台.三、计算题(本大题共2小题,共18.0分)15.点A是双曲线y=k与直线y=-x-(k+1)在第二象限的x;交点,AB垂直x轴于点B,且S△ABO=32(1)求两个函数的表达式;(2)求直线与双曲线的交点坐标和△AOC的面积.16.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?四、解答题(本大题共7小题,共60.0分)17.解方程:3x2-2x-3=-2(x-2)2.18.画出图中三棱柱的三视图.19.如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x,乙转盘中指针所指区域内的数字为y(当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,求出点(x,y)落在第二象限内的概率;图象上的概率.(2)直接写出点(x,y)落在函数y=−1x20.如图,菱形ABCD的对角线AC与BD相交于点O,点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形.21.星期天,小强去水库大坝游玩,他站在大坝上的A处看到一棵大树的影子刚好落在坝底的B处(点A与大树及其影子在同一平面内),此时太阳光与地面成60°角.在A处测得树顶D的俯角为15°.如图所示,已知AB与地面的夹角为60°,AB为8米.请你帮助小强计算一下这颗大树的高度?(结果精确到1米.参考数据√2≈1.4√3≈1.7)22.如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.23.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.答案和解析1.【答案】C【解析】解:菱形具有平行四边形的全部性质,(A)平行四边形对角相等,故本选项错误;(B)平行四边形对边相等,故本选项错误;(C)邻边平行的平行四边形为菱形,故本选项正确,(D)平行四边形对边平行,故本选项错误.故选C.菱形拥有平行四边形的全部性质,且菱形的各边长相等且对角线互相垂直,分析A、B、C、D选项的正确性,即可解题.本题考查了平行四边形对边平行且相等的性质,考查了菱形各边长相等的性质,本题中熟练掌握菱形的性质是解题的关键.2.【答案】A【解析】解:A、矩形是轴对称图形,也是中心对称图形,故本选项正确;B、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;C、正三角形是轴对称图形,不是中心对称图形,故本选项错误;D、等腰梯形是轴对称图形,不是中心对称图形,故本选项错误.故选A.根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】A【解析】解:∵两函数图象的一个交点坐标为(-2,-1),∴-1=-2k1,-1=,解得k1=,k2=2,∴正比例函数为y=x,反比例函数为y=,联立两函数解析式可得,解得或,∴两函数图象的另一交点坐标为(2,1),故选A.把已知点的坐标代入两函数解析式可求出函数解析式,再联立两函数解析式可求得另一个交点的坐标.本题主要考查函数图象的交点,利用待定系数法求得两函数解析式是解题的关键.4.【答案】B【解析】解:∵四边形EFGH是菱形,∴EH=FG=EF=HG=BD=AC,故AC=BD.故选:B.因为菱形的四边相等,再根据三角形的中位线定理可得,对角线AC与BD需要满足条件是相等.本题很简单,考查的是三角形中位线的性质及菱形的性质.解题的关键在于牢记有关的判定定理,难度不大.5.【答案】D【解析】解:∵k>0,函数图象在一,三象限,由题意可知,点A、B在第三象限,点C在第一象限,∵第三象限内点的纵坐标总小于第一象限内点的纵坐标,∴y3最大,∵在第三象限内,y随x的增大而减小,∴y2<y1.故选:D.根据反比例函数图象上点的坐标特点解答即可.在反比函数中,已知各点的横坐标,比较纵坐标的大小,首先应区分各点是否在同一象限内.在同一象限内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.6.【答案】D【解析】解:A、一组对边平行且相等的四边形是平行四边形,正确;B、两条对角线互相垂直且平分的四边形是菱形,正确;C、四个角都相等的四边形是矩形,正确;D、邻边都相等的四边形是正方形,也可能是菱形,故错误,故选:D.根据矩形、菱形、平行四边形以及正方形的判定定理逐一进行判断,可得选项.此题主要考查了平行四边形、菱形、正方形及矩形的判定.7.【答案】A【解析】解:∵y=x2+x+m(m-2)的图象经过原点,把点(0,0)代入得:m(m-2)=0,解得m=0或m=2.故选:A.由二次函数y=x2+x+m(m-2)的图象经过原点,把点(0,0)代入即可求解.本题考查了二次函数图象上点的坐标特征,属于基础题,关键是把原点代入函数求解.8.【答案】B【解析】解:①正确,由图象可知,当x=1时,y=a+b+c<0;②正确,由图象可知,当x=-1时,y=a-b+c>0③错误,由函数图象开口向下可知,a<0,由图象与y轴的交点在y轴正半轴可知,c>0,由对称轴x=-<0,a<0,可知b<0,所以abc>0;④正确,由图,因为-=-1,所以b=2a;⑤错误,因为函数图象与x轴有两个交点,所以△>0.正确的个数有3个,故选B.由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.9.【答案】y=3(x-3)2+2【解析】解:y=3x2先向上平移2个单位,得到y=3x2+2,再向右平移3个单位y=3(x-3)2+2.故得到抛物线的解析式为y=3(x-3)2+2.故答案为:y=3(x-3)2+2.按照“左加右减,上加下减”的规律得出即可.此题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.10.【答案】24【解析】解:∵菱形的面积等于对角线乘积的一半,∴面积S=×6×8=24.故答案为24.菱形的面积等于对角线乘积的一半.此题考查菱形的面积计算方法,属基础题.菱形的面积=底×高=对角线乘积的一半.11.【答案】513【解析】解:Rt△ABC中,∠C=90°,sinA=,即=,设CB=12x,则AB=13x,∴根据勾股定理可得:AC=5x.∴sinB===.故答案为:.根据勾股定理及三角函数的定义解答.本题考查锐角三角函数的定义:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.12.【答案】-3【解析】解:∵反比例函数y=的图象过点(2,-3),∴-3=,解得k=-3.故答案为:-3.直接把点(2,-3)代入反比例函数y=即可.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.【答案】100【解析】解:∵摸出10个球,发现其中有一个球有标记,∴带有标记的球的频率为,设袋中大约有x个白球,由题意得=,∴x=100.故答案为100.根据概率公式,设袋中大约有x 个白球,由题意得=,求解即可.本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据带有标记的球的频率得到相应的等量关系.14.【答案】10;146.41【解析】解:设年平均增长率为x ,依题意列得100(1+x )2=121解方程得x 1=0.1=10%,x 2=-2.1(舍去)所以第4年该工厂的年产量应为121(1+10%)2=146.41万台.故答案为:10,146.41根据提高后的产量=提高前的产量(1+增长率),设年平均增长率为x ,则第一年的常量是100(1+x ),第二年的产量是100(1+x )2,即可列方程求得增长率,然后再求第4年该工厂的年产量.本题运用增长率(下降率)的模型解题.读懂题意,找到等量关系准确的列出方程是解题的关键.15.【答案】解:(1)设A 点坐标为(x ,y ),且x <0,y >0,则S △ABO =12•|BO |•|BA |=12•(-x )•y =32,∴xy =-3,又∵y =k x ,即xy =k ,∴k =-3,∴所求的两个函数的解析式分别为y =-3x ,y =-x +2;(2)由y =-x +2,令x =0,得y =2.∴直线y =-x +2与y 轴的交点D 的坐标为(0,2),A 、C 两点坐标满足 {y =−3x y =−x +2, 解得x 1=-1,y 1=3,x 2=3,y 2=-1,∴交点A 为(-1,3),C 为(3,-1),∴S △AOC =S △ODA +S △ODC =12•|OD |•(|y 1|+|y 2|)=12×2×(3+1)=4.【解析】(1)欲求这两个函数的解析式,关键求k 值.根据反比例函数性质,k 的绝对值为3且为负数,由此即可求出k ;(2)交点A 、C 的坐标是方程组的解,解之即得;从图形上可看出△AOC 的面积为两小三角形面积之和,根据三角形的面积公式即可求出. 本题主要考查反比例函数与一次函数的交点问题的知识点,此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.16.【答案】解:(1)设每千克应涨价x 元,则(10+x )(500-20x )=6 000(4分) 解得x =5或x =10,为了使顾客得到实惠,所以x =5.(6分)(2)设涨价z 元时总利润为y ,则y =(10+z )(500-20z )=-20z 2+300z +5 000=-20(z 2-15z )+5000=-20(z 2-15z +2254-2254)+5000=-20(z -7.5)2+6125当z =7.5时,y 取得最大值,最大值为6 125.(8分)答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元; (2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.(10分)【解析】本题的关键是根据题意列出一元二次方程,再求其最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a 的绝对值是较小的整数时,用配方法较好,如y=-x 2-2x+5,y=3x 2-6x+1等用配方法求解比较简单.17.【答案】解:由原方程,得x 2-2x +1=0,配方,得(x-1)2=0,解得x1=x2=1.【解析】将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解本题考查了解一元二次方程--配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.18.【答案】解:【解析】主视图应为一个长方形里有一条竖直的虚线;左视图为一个长方形,俯视图为一个三角形.考查三视图的画法;用到的知识点为:三视图为主视图,左视图,俯视图,分别是从物体的正面,左面,上面看得到的图形.注意实际存在,没有被其他棱挡住,从某个方向看又看不到的棱应用虚线表示.19.【答案】解:(1)根据题意,画树状图:由上图可知,点(x ,y )的坐标共有12种等可能的结果:(1,-1),(1,-13),(1,12)(1,2),(-2,-1),(-2,-13)(-2,12),(-2,2),(3,-1),(3,-13),(3,12),(3,2);其中点(x ,y )落在第二象限的共有2种:(-2,12),(-2,2),所以,P (x ,y )落在第二象限=212=16;1 -23 -1(1,-1) (-2,-1) (3,-1) -13(1,−13) (-2,−13) (3,−13) 12(1,12) (-2,12) (3,12) 2 (1,2) (-2,2) (3,2)由表格知共有12种结果,其中点(x ,y )落在第二象限的共有2种:(-2,12),(-2,2),所以,P (点(x ,y )落在第二象限)=212=16;(2)P (点(x ,y )落在y =-1x 上的概率为312=14.【解析】通过树状图或列表,列举出所有情况,再计算概率即可.此题为一次函数与概率的综合,考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.反比例函数上的点的横纵坐标的积为反比例函数的比例系数.第二象限点的符号为(-,+).20.【答案】证明:∵点E ,F 分别为AB ,AD 的中点∴AE =12AB ,AF =12AD ,又∵四边形ABCD 是菱形,∴AB =AD ,∴AE =AF ,又∵菱形ABCD 的对角线AC 与BD 相交于点O∴O 为BD 的中点,∴OE ,OF 是△ABD 的中位线.∴OE ∥AD ,OF ∥AB ,∴四边形AEOF 是平行四边形,∵AE =AF ,∴四边形AEOF 是菱形.【解析】要证明四边形AEOF 是菱形,可根据“四条边相等的四边形是菱形”或“一组邻边相等的平行四边形是菱形”进行证明.菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法: ①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.21.【答案】解:∵AF ∥CE ,∠ABC =60°, ∴∠FAB =60°.∵∠FAD =15°,∴∠DAB =45°.∵∠DBE =60°,∠ABC =60°,∴∠ABD =60°.过点D 作DM ⊥AB 于点M ,则有AM =DM .∵tan ∠ABD =DMBM ,∴tan60°=DM BM, ∴DM =√3BM .设BM =x ,则AM =DM =√3x .∵AB =AM +BM =8,∴√3x +x =8,∴x =8√3+1≈3.0,∴DM =√3x ≈5.∵∠ABD =∠DBE =60°,DE ⊥BE ,DM ⊥AB ,∴DE =DM ≈5(米).答:这棵树约有5米高. 【解析】 利用题中所给的角的度数可得到△ABD 中各角的度数,进而把已知线段AB 整理到直角三角形中,利用相应的三角函数即可求得所求线段的长度.通常把已知长度的线段整理到直角三角形中,利用公共边及相应的三角函数求解;所求的线段的长度也要进行代换,整理到相应的直角三角形中.22.【答案】解:(1)∵抛物线与y 轴交于点(0,3),∴设抛物线解析式为y =ax 2+bx +3(a ≠0)根据题意,得{9a +3b +3=0a−b+3=0,解得{b =2a=−1.∴抛物线的解析式为y =-x 2+2x +3;(2)如图,设该抛物线对称轴是DF ,连接DE 、BD .过点B 作BG ⊥DF 于点G . 由顶点坐标公式得顶点坐标为D (1,4)设对称轴与x 轴的交点为F∴四边形ABDE 的面积=S △ABO +S 梯形BOFD +S △DFE=12AO •BO +12(BO +DF )•OF +12EF •DF=12×1×3+12×(3+4)×1+12×2×4 =9;(3)相似,如图,BD =√BG 2+DG 2=√12+12=√2;∴BE =√BO 2+OE 2=√32+32=3√2DE =√DF 2+EF 2=√22+42=2√5∴BD 2+BE 2=20,DE 2=20即:BD 2+BE 2=DE 2,所以△BDE 是直角三角形∴∠AOB =∠DBE =90°,且AO BD =BO BE =√22, ∴△AOB ∽△DBE .【解析】(1)易得c=3,故设抛物线解析式为y=ax 2+bx+3,根据抛物线所过的三点的坐标,可得方程组,解可得a 、b 的值,即可得解析式;(2)易由顶点坐标公式得顶点坐标,根据图形间的关系可得四边形ABDE 的面积=S△ABO+S梯形BOFD+S△DFE,代入数值可得答案;(3)根据题意,易得∠AOB=∠DBE=90°,且,即可判断出两三角形相似.本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力.23.【答案】(1)证明:①如图2:∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMA=∠CNM=90°,∴BM∥CN,∴∠MBP=∠ECP,又∵P为BC边中点,∴BP=CP,又∵∠BPM=∠CPE,∴△BPM≌△CPE,②∵△BPM≌△CPE,∴PM=PE∴PM=12ME,∴在Rt△MNE中,PN=12ME,∴PM=PN.(2)解:成立,如图3.证明:延长MP与NC的延长线相交于点E,∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,∴BM∥CN∴∠MBP=∠ECP,又∵P为BC中点,∴BP=CP,又∵∠BPM=∠CPE,在△BPM和△CPE中,{∠MBP=∠ECP BP=CP∠BPM=∠CPE,∴△BPM≌△CPE,∴PM=PE,∴PM=12ME,则Rt△MNE中,PN=12ME∴PM=PN.(3)解:如图4,四边形BMNC是矩形,理由:∵MN∥BC,BM⊥AM,CN⊥MN,∴∠AMB=∠ANC=90°,∠AMB+∠CBM=180°,∴∠CBM=∠AMB=∠CNA=90°,∴四边形BMNC是矩形.【解析】(1)①根据平行线的性质证得∠MBP=∠ECP再根据BP=CP,∠BPM=∠CPE即可得到;②由△BPM≌△CPE,得到PM=PE则PM=ME,而在Rt△MNE中,PN=ME,即可得到PM=PN;(2)证明方法与②相同;(3)四边形MBCN是矩形,只要证明三个角是直角即可;本题考查旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.。
(新北师大版)2014-2015学年度九年级数学期末模拟试题三
2014-2015学年度(新北师大版)九年级数学期末模拟试题三姓名:一、选择题(每题3分,共30分)1、一元二次方程2230x x--=的二次项系数、一次项系数、常数项分别是( ) A、1,2,3-- B、1,-2,3 C、1,2,3 D、1,2,3-2、下列命题中正确的是()上形成的投影不可能...是()4、若关于x的一元二次方程的两根分别为21=x,12=x,则p、q的值分别是()A、3、2B、3、2C、2、3D、2、35、如图,晚上小亮在路灯下散步,他从A处向着路灯灯柱方向径直走到B处,这一过程中他在该路灯灯光下的影子(A.逐渐变短 B.逐渐变长C.先变短后变长 D.先变长后变短6、P是反比例函数图象在第二象限上的一点,且矩形PEOF的面积为3.则反比例函数的表达式是()A、1.5B、-3C、-1.5D、37、如果两个相似三角形的相似比是1:2,那么它们的面积比是()A、1:2B、1:4C、1:D、 2︰18、平面直角坐标系中有六个点(15)A,,533B⎛⎫--⎪⎝⎭,,(51)C--,,522D⎛⎫-⎪⎝⎭,,533E⎛⎫⎪⎝⎭,,522F⎛⎫⎪⎝⎭,,其中有五个点在同一反比例函数图象上,不在这个反比例函数图象上的点是()A、点CB、点DC、点ED、点F9、一个不透明的盒子里有n个除颜色外其它完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是()A、6B、10、C、18D、2010、已知k1>0>k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致是()A、、、11、已知点A(m,2)在双曲线xy2-=上,则_____=m;12、已知x1,x2是关于x的一元二次方程x2-2x-4=0的两个实数根,则2111xx+= .13、如图,已知面积为1的正方形ABCD的对角线相交于点O,过点O任意作一条直线分别交AD、BC于E、F,则阴影部分的面积是.14、如图,将矩形纸片ABCD折叠,使边AB、CD均落在对角线BD上,得折痕BE、BF,则∠EBF=°.15、如图,正方形ABCD和正方形EFGH的边长分别为22和2,对角线BD、FH都在第5题图A、D、直线l 上,O 1、O 2分别为正方形的中心,线段O 1O 2的长叫做两个正方形的中心距,当中心O 2在直线l 上平移时,正方形EFGH 也随之平移,在平移时正方形EFGH 的形状、大小没有变化.当中心O 2在直线l 上平移到两个正方形的边有两个公共点时,中心距O 1O 2的取值范围是 .三、解答题16、解方程(每小题4分,共8分)①、2250x x +-= ②、(x 2)x 20x -+-=17、如图是一个几何体的三视图,①、这个几何体是什么?②求这个几何体的侧面积和体积(结果保留π).18、(本题满分10分)已知:如图,▱ABCD 中,O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E . (1)求证:△AOD ≌△EOC ;(2)连接AC ,DE ,当∠B =∠AEB = °时,四边形ACED 是正方形?请说明理由.19、(本题满分10分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加;(1)请用列表或画树状图的方法求两数和为5的概率;(2)若甲与乙按上述方式作游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,这个游戏对双方公平吗?(第15题图)CD 第13题图第14题图O FEBDC A图 920、(本题满分10分)已知关于x 的方程x 2+ax +a ﹣2=0 (1)若该方程的一个根为1,求a 的值及该方程的另一根; (2)求证:不论a 取何实数,该方程都有两个不相等的实数根.21、(本题满分10分)如图9,在平行四边形ABCD 中,对角线AC\BD 相交于点O ,AF ⊥BD ,CE ⊥BD ,垂足分别为E 、F ;(1)、连结AE 、CF ,得四边形AFCE ,试判断四边形AFCE 是下列图形中的哪一种? ①平行四边形;②菱形;③矩形; (2)、请证明你的结论;22、(本题满分12分)已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度). (1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是 ; (2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是 ; (3)△A 2B 2C 2的面积是 平方单位.23、(本题满分12分)已知一次函数y=x+2的图象分别与坐标轴相交于A 、B 两点(如图所示),与反比例函数y=(x >0)的图象相交于C 点.(1)写出A 、B 两点的坐标;(2)作CD⊥x 轴,垂足为D ,如果OB 是△ACD 的中位线, 求反比例函数y=(x >0)的关系式. (3)连结OC,并求三角形OAC 的面积。
2014-2015学年北师大版九年级上期末数学试卷
2014-----2015九年级数学上期末测试卷姓名一选择题:1. 下列方程中,不是一元二次方程的是( ) A .01232=++y yB .x x 31212-= C .032611012=+-a a D .223x x x =-+2.下列四个点,在反比例函数xy 6=图象上的是( ) A .(1,-6) B .(2,4) C .(3,-2) D .(―6,―1) 3.如图所示的物体有两个紧靠在一起的圆柱体组成,它的主视图是( )4. 某火车站的显示屏每间隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏正好显示火车班次信息的概率是( ) A .61 B .51 C .41 D .315. 如图:在等腰梯形ABCD 中,AD ∥BC ,过D 作DF ⊥BC 于F , 若AD =2,BC =4,DF =2,则DC 的长为( )A .1B .5C .2D . 3 6.某年爆发世界金融危机,某商品原价为200元,连续两次降价a%后,售价为148元,则下面所列方程正确的是( ) A .148%)1(2002=+a B . 148%)1(2002=-a C .148%)21(200=-a D .148%)1(200=-a 7. 如图,AC 、BD 是矩形ABCD 的对角线,过点D 作DF ∥AC 交BC 的延长线于F ,则图中与△ABC 全等的三角形共有( ) A .1个 B .2个 C .3个 D . 4个 8. 关于x 的函数)1(+=x k y 和)0(≠-=k xky 在同一坐标系中的图像大致是( )9.人离窗子越远,向外眺望时此人的盲区是( )A .变小B .变大C .不变D .以上都有可能 10.函数xky =的图象经过(1,-1),则函数2-=kx y 的图象是( )11.下列性质中正方形具有而矩形没有的是( ) A .对角线互相平分 B .对角线相等 C .对角线互相垂直 D .四个角都是直角12、计算:221sin 60tan 45()3-︒︒-- 结果是 .A .94B .114C . 94-D .114-13、若sin cos 2A A +=,则锐角∠A = .A .30°B .45°C .60°D .90°14、在△ABC 中,∠A 、∠B 、∠C 对边分别为a 、b 、c ,且a = 5,b = 12,c = 13,正确的是 .A .12sin 5A =B .5cos 13A = C .5tan 12A = D .12cos 13B =二,填空题15. 如图所示是小红在某天四个时刻看到一个棒及其影子的情况,那么她看到的先后顺序是 .16.用配方法解方程0622=--x x ,原方程可化为 .17.如图:在Rt △ABC 中 ,∠B=90°,∠A=40°,AC 的垂直平分 线MN 与AB 交于D ,则∠BCD = . 18.某地区为估计该地区的绵羊只数,先捕捉20只绵羊给它们 分别做上记号,然后放还,待有标记的绵羊完全混合于羊群后 第二次捕捉40只绵羊,发现其中有2只有记号,从而估计这个 地区有绵羊 只. 19.如图:双曲线xky =上有一点A ,过点A 作AB ⊥x 轴于点B , △AOB 的面积为2,则该双曲线的关系式为 . 20.如图,已知矩形OABC 的面积是3100,它的对角线OB 与双 曲线)0(>x xky =交于点D ,且OB:OD =5:3,则=k . 21.如图,△ABC 中,DE 垂直平分AC 交AB 于E ,∠A=30°,∠ACB=80°,则∠BCE=_________度. 22.直线l 1:y=k 1x+b 与双曲线l 2:y=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式>k 1x+b 的解集为 _________ .23.有两组扑克牌各三张,牌面数字分别为2,3,4,随意从每组中牌中抽取一张,数字和是6的概率是 . 24.(本小题6分)如图,楼房和旗杆在路灯下的影子如图所示。
2014-2015大竹县初三数学上册期末模拟测试题5北师大版有答案
2014-2015大竹县初三数学上册期末模拟测试题5(北师大版有答案)1.如图1,Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若CD =3cm ,则点D 到AB 的距离DE 是A .5cmB .4cmC .3cmD .2cm2.一元二次方程)0(02≠=++a c bx ax 有两个不相等...的实数根,则ac b 42-满足的条件是A.ac b 42-=0 B.ac b 42->0C.ac b 42-<0 D.ac b 42-≥03.如图2,在□ABCD 中,E 是BC 的中点,且∠AEC=∠DCE ,则下列结论不正确...的是 A .S △ADF=2S △EBF B .BF=21DF C .四边形AECD 是等腰梯形 D . ∠AEC=∠ADC 4.已知:如图3,在正方形ABCD 外取一点E ,连接 AE ,BE ,DE .过点AE 的垂线交ED 于点P . 若1AE AP ==, PB①△APD ≌△AEB ;②点B 到直线AE ; ③EB ED ⊥;④1APB S ∆+=; ⑤4ABCD S =正方形其中正确结论的序号是A .①③④B .①②⑤C .③④⑤D .①③⑤5.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图4所示。
如果记6的对面的数字为a ,2的对面的数字为b ,那么b a +的值为xxxA.3 B.7 C.8 D.116.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c (a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是A.第8秒 B.第10秒 C.第12秒 D.第15秒7.如图5,在等腰Rt△ABC中,∠C=90o,AC=6,D是AC上一点,若tan∠DBA=51,则AD的长为A. 2B.3C.2D.1xcbay+-=8.二次函数2y ax bx c=++的图象如图6所示,则一次函数acbxy-=与反比例函9.已知粉笔盒里只有2支黄色粉笔和3支红色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,则取出黄色粉笔的概率是A.15B.25C.35D.2310.如图所示,四边形OABC为正方形,边长为6,点A、C分别在x轴,y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上的一个动点,试求PD+PA和的最小值是A.102B.10C.4D.6二、填空题(每小题3分,满分24分)将正确答案最简形式填写在横线上。
北师大版九年级上册数学 0014——2015北京市房山区期末(word)
2014—2015学年度第一学期终结性检测试题九年级数学一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中有且只有一个..是符合题意的.请将正确选项前的字母填在下表中相应1. 抛物线()225=--+y x 的顶点坐标是 A .()2,5-B .()2,5C .()25,--D .()52,- 2.如图,⊙O 是△ABC 的外接圆,若AB=OA=OB ,则∠C 等于A .30°B .40°C .60°D .80° 3.在 Rt △ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值等于A . 34B .43C .35D .454. 已知点P (-3,2)是反比例函数图象上的一 点,则该反比例函数的表达式为A.xy 3=B.5y x=- C. 6y x =D.6y x =-5.已知△ABC ∽△A′B′C′,相似比为1:2,则△ABC 与△A′B′C′ 的面积的比为 A .1:2 B . 2:1 C . 1:4 D . 4:16. 如图,弦AB ⊥ OC ,垂足为点C ,连接OA ,若OC =2,AB =4,则OA 等于A ....7. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为,那么这根旗杆的高度为A . 10mB . 12mC . 15mD .40m8. 如图,⊙O 的半径为2,点P 是半径OA 上的一个动点,过点P 作直线MN 且∠APN =60°,过点A 的切线AB 交MN 于点B . 设OP =x ,△P AB 的面积为 y ,则下列图象中, 能表示y 与x 的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9.如图,在△ABC 中,D 、E 分别是AB 、AC 边上的点,且 DE ∥BC , 若AD =5,DB =3,DE =4,则BC 等于 .10.如图,⊙O 的半径为2,4=OA ,AB 切⊙O 于B ,弦BC OA ∥连结AC , 则图中阴影部分的面积为 .11. 如图,⊙O 的直径CD 过弦AB 的中点E ,∠BCD =15°,⊙O 的半径为10,则AB = .12. 抛物线()()2211-11n y x x n n n n +=+++(其中n 是正整数)与x 轴交于A n 、B n 两点,若以An B n 表示这两点间的距离,则AB _________=11; A B A B __________+=1122; n n A B A B A B A B ____________.+++⋅⋅⋅+=112233(用含n 的代数式表示) 二、解答题(本题共30分,每小题5分) 13.计算: 0111)2cos30()8--︒-+解:14.如图,C 为线段BD 上一点,AC CE ⊥,AB BD ⊥,ED BD ⊥.求证:AB BC CDDE=.A E D BxDC B ADC解:15.已知二次函数12)3(2++-=x x k y 的图象与x 轴有交点,求k 的取值范围. 解:16. 如图,在ABC ∆中,90C ︒∠=,52sin =A ,D 为AC 上一点,45BDC ︒∠=,6=DC ,求AD 的长. 解:17. 小红想要测量校园内一座教学楼CD 的高度. 她先在A 处测得楼顶C 的仰角=α30°,再向楼的方向直行10米到达B 处,又测得楼顶C 的仰角=β60°,若小红的目高(眼睛到地面的高度)AE 为1.60米,请你帮助她计算出这座教学楼CD 的高度(结果精确到0.1米)参考数据:41.12≈,73.13≈,24.25≈解:18. 如图,直线y =3x 与双曲线ky x=的两个交点分别为A (1 , m )和B . (1)直接写出点B 坐标,并求出双曲线ky x=的表达式; D CBAβαG F E CBA(2)若点P 为双曲线ky x=上的点(点P 不与A 、B 重合),且满足PO=OB ,直接写出点P 坐标. 解:四、解答题(本题共20分,每小题5分)19. 抛物线2y x bx c =++与x 轴分别交于点A (-1,0)和点B ,与y 轴的交点C 坐标为(0,-3). (1)求抛物线的表达式;(2)点D 为抛物线对称轴上的一个动点,若DA +DC 的值最小,求点D 的坐标. 解:20. 如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A 、B ,并使AB 与车轮内圆相切于点D ,做CD ⊥AB 交外圆于点C .测得CD =10cm ,AB =60cm ,求这个车轮的外圆半径长.解:21.如图,AB 是⊙O 的直径, 点C 在⊙O 上,CE ⊥ AB 于E , CD 平分∠ECB , 交过 点B 的射线于D , 交AB 于F , 且BC=BD .AB(1)求证:BD 是⊙O 的切线; (2)若AE =9, CE =12, 求BF 的长. 解:22. 阅读下面的材料:小明在数学课外小组活动中遇到这样一个“新定义”问题:()()()0210.ab ba ab bb ⎧⎪⎪⎨⎪-⎪⎩=->;定义运算“: ※”求为※※<的值.小明是这样解决问题的:由新定义可知a =1,b =-2,又b <0,所以1※(-2)= 12 .请你参考小明的解题思路,回答下列问题: (1) 计算:2※3= ;(2) 若5※m =56,则m = .(3) 函数y =2※x (x ≠0)的图象大致是( )五、解答题(本题共22分,其中23题7分,24题7分,25题8分)23. 直线y =﹣3x +3与x 轴交于点A , 与y 轴交于点B ,抛物线y =a (x ﹣2)2+k 经过点A 、B ,与x 轴的另一交点为C . (1)求a ,k 的值;(2)若点M 、N 分别为抛物线及其对称轴上的点, 且以A ,C ,M ,N 为顶点的四边形为平行四边形,请直接写出点M 的坐标.24. 如图,⊙O 是△ABC 的外接圆,AC 是直径,过点O 作OD ⊥AB 于点D ,延长DO 交⊙O 于点P ,过点P 作PE ⊥AC 于点E ,作射线DE 交BC 的延长线于F 点,连接PF .y x O y xO A B C D F(1)若∠POC =60°,AC =12,求劣弧PC 的长;(结果保留π) (2)求证:OD =OE ;(3)求证:PF 是⊙O 的切线. 解:25. 已知抛物线2154(3)22my x m x -=--+. (1) 求证:无论m 为任何实数,抛物线与x 轴总有两个交点;(2) 若A 2(3,2)n n -+、B 2(1,2)n n -++是抛物线上的两个不同点,求抛物线的表达式和n 的值; (3) 若反比例函数(0,0)ky k x x=>>的图象与(2)中的抛物线在第一象限内的交点的横坐标为0x ,且满足2<0x <3,求k 的取值范围.解:房山区2014—2015学年度第一学期终结性检测试题九年级数学参考答案和评分参考二、填空题(每题4分)9. 325 10. 23π 11. 10 12. 12231n ;;n +(前两空每1分,最后一空2分) 三、解答题 13. 解:原式=1-2×32-8+2 3 …………………………4分 = 3 -7 ………………………………………5分 14. 证明:∵90B ∠=,∴90A ACB ∠+∠=.∵C 为线段BD 上一点,且AC CE ⊥,∴90ACB ECD ∠+∠=. ∴A ECD ∠=∠ . …………………………………………………………………2分∵B D ∠=∠=90, …………………………………………………………………3分 ∴△ABC ∽△CDE .………………………………………………………………4分∴AB BC CDDE=.………………………………………………………………………5分15. 由题意可知:30k -≠⎧⎨∆⎩≥ ……………………2分即()232430k k ≠⎧⎪⎨--⎪⎩≥…………………………3分解得34k k ≠⎧⎨⎩≤……………………………………4分∴ k 的取值范围是:k ≤4且k≠3……………5分16. 解:在BDC ∆中,090=∠C , 045=∠BDC ,6=DC∴tan 451BCDC︒== ∴6BC = …………………………………1分EDB A在ABC ∆中,52sin =A ,∴25BC AB =,……2分 ∴15AB =……………………………………3分∴AC ==…………………4分∴6AD =……………………………5分17. ∵=α30°,=β60°,∴∠ECF =αβ-=30°. ∴10==EF CF .在Rt △CFG 中,.35cos =⋅=βCF CG ……………………………………………3分 ∴3.106.135≈+=+=GD CG CD . ………………………………………………5分 答:这座教学楼的高度约为10.3米.18.(1)点B 坐标为(-1,-3)……………………………………1分∵直线y=3x 过点A(1,m ) ∴m=3×1=3∴A(1,3) ……………………………………………………2分 将A(1,3)代入y=kx中,得 k =xy =1×3=3∴y=3x …………………………………………………………3分(2) P 1(-3,-1), P 2(3,1)………………………………………………5分四、解答题19. 解:(1) 将A(-1,0)和C(0,-3)代入抛物线2y x bx c =++ 中得: 103b c c -+=⎧⎨=-⎩ , 解得:23b c =-⎧⎨=-⎩ (1)∴抛物线的解析式为223y x x =-- (2)由223y x x =--=()()()21413x x x --=+-知抛物线的对称轴为直线x =1,点B (3,0) 连接BC ,交对称轴x =1于点D 可求得直线BC :y =x -3 当x =1时,y =-2∴点D (1,-2)……………………………………………5分 20. 如图,设点O 为外圆的圆心,连接OA 和OC ,……1分∵CD=10cm ,AB=60cm ,∴设半径为r ,则OD=r ﹣10,…………………………2分根据题意得:r 2=(r ﹣10)2+302,…………………3分 解得:r=50,…………………………………………5分 ∴这个车轮的外圆半径长为50.21. (1)证明:∵CE AB ⊥,∴ 90CEB ∠=.∵ CD 平分ECB ∠, BC =BD , ∴ 12∠=∠, 2D ∠=∠.∴ 1D ∠=∠. …………………………1分 ∴ CE ∥BD .∴ 90DBA CEB ∠=∠=.∵ AB 是⊙O 的直径,∴ BD 是⊙O 的切线. ………………………………………………………2分 (2)连接AC ,∵ AB 是⊙O 直径,∴ 90ACB ∠=. ∵CE AB ⊥, 可得 2CE AE EB =⋅.∴ .162==AECE EB ………………………………………………………3分在Rt △CEB 中,∠CEB =90︒, 由勾股定理得20.BC == ……………4分 ∴ 20BD BC ==.∵ 1D ∠=∠, ∠EFC =∠BFD ,∴ △EFC ∽△B FD. ………………………………………………………5分 ∴ BFEFBD EC =. ∴121620BFBF-=. ∴ BF =10. ………………………………………………………………………6分22. 解:(1)23…………………1分 (2) ±6 ……………………3分 (3)D ………………………5分五、解答题(本题共22分,其中23题7分,24题7分,25题8分)23. (1)∵直线33y x =-+与x 轴、y 轴分别交于点A 、B ,∴(1,0)A ,(0,3)B . ……………………………………2分 又抛物线2(2)y a x k =-+经过点(1,0)A ,(0,3)B ∴0,43;a k a k +=⎧⎨+=⎩解得1,1.a k =⎧⎨=-⎩即a ,k 的值分别为1,1-. ……………………………4分(2)()()()1230,3,4,3,2,1M M M - …………………………………7分 24. (1)解:∵AC =12,∴CO =6, ∴==2π;(2)证明:∵PE ⊥AC ,OD ⊥AB ,∠PEA =90°,∠ADO =90° 在△ADO 和△PEO 中,,∴△POE ≌△AOD (AAS ), ∴OD =EO ;(3)证明:如图,连接AP ,PC ,∵OA =OP , ∴∠OAP =∠OP A , 由(1)得OD =EO , ∴∠ODE =∠OED , 又∵∠AOP =∠EOD , ∴∠OP A =∠ODE , ∴AP ∥DF , ∵AC 是直径, ∴∠APC =90°, ∴∠PQE =90° ∴PC ⊥EF , 又∵DP ∥BF , ∴∠ODE =∠EFC , ∵∠OED =∠CEF , ∴∠CEF =∠EFC , ∴CE =CF ,∴PC 为EF 的中垂线,∴∠EPQ =∠QPF ,∵△CEP ∽△CAP∴∠EPQ =∠E AP ,∴∠QPF =∠EAP ,∴∠QPF =∠OP A ,∵∠OP A +∠OPC =90°,∴∠QPF +∠OPC =90°, ∴OP ⊥PF ,∴PF 是⊙O 的切线.25.(1)证明:令2154(3)022m x m x ---+=. 得[]2154(3)422m m -∆=---⨯⨯224m m =-+2(1)3m =-+. 不论m 为任何实数,都有(m -1)2+3>0,即△>0. ……………1分∴不论m 为任何实数,抛物线与x 轴总有两个交点. ……………… 2分(2)解:抛物线2154(3)22m y x m x -=--+的对称轴为 ∵抛物线上两个不同点A 2(3,2)n n -+、B 2(1,2)n n -++的纵坐标相同,∴点A和点B 关于抛物线的对称轴对称,则(3)(1)312n n m -+-+-==-. ∴2m =. ……………………………………………………… 3分 ∴抛物线的解析式为21322y x x =+-. ………………… 4分 ∵A 2(3,2)n n -+在抛物线21322y x x =+-上, ∴2213(3)(3)222n n n -+--=+. 化简,得2440n n ++=.∴ 2n =-. ……………………………………………… 5分(3) 当2<x <3时, 对于21322y x x =+-,y 随着x 的增大而增大, 对于(0,0)k y k x x=>>,y 随着x 的增大而减小. 所以当02x =时,由反比例函数图象在二次函数图象上方,(3) 3.122m x m --=-=-⨯得2k >2132222⨯+-, 解得k >5. …………………………………6分 当03x =时,由二次函数图象在反比例函数图象上方, 得2133322⨯+->3k , 解得k <18. ……………………………………7分 所以k 的取值范围为5<k <18. ……………………………8分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级(上)期末模拟试卷时间:120分钟,总分100分姓名:___________班级:___________得分:___________一、选择题(每题3分,共30分)1.下列成语所描述的事件是必然发生的是 【 】A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖2.已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )A. 0B. 1C. -1D. 23.如图是由六个完全相同的正方体堆成的物体,则这一物体的正视图是A .B .C .D .4.若x=2是关于x 的一元二次方程2x mx 80-+= 的一个解,则m 的值是( ) A .6B .5C .2D .-65.已知直线y=kx (k >0)与双曲线y=交于点A (x 1,y 1),B (x 2,y 2)两点,则x 1y 2+x 2y 1的值为( )A .﹣6B .﹣9C .0D .96.如图(1)放置的一个机器零件,其主(正)视图如图(2)所示,则其俯视图是( ) 7.若一元二次方程20ax bx c ++=有一个根为,则下列等式成立的是( )A .1a b c ++=B .0a b c -+=C .0a b c ++=D .1a b c -+=8.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为( )C .1-D . A . B . 9.如图是由若干个大小相同的正方体搭成的几何体的三视图,则该几何体所用的正方形的个数是A .2B .3C .4D .5主视左视俯视A. B. C. D.10.计算:(2)(2)a a +-的结果是( )A. 24a +B. 24a - C. 24a - D. 2a二、填空题(每题3分,共18分)11.一元二次方程x 2= x 的根是 .12.把265x x ++=0化成2()x m k +=的形式,则m = .13. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________.14.六·一儿童节前,苗苗来到大润发超市发现某种玩具原价为100元,经过两次降价,现售价为81元,假设两次降价的百分率相同,则每次降价的百分率为 .15.关于x 的一元二次方程(a -1)x 2-x+a 2-1=0的一个根是0,那么a 的值为______. 16.在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是___________.三、解答题(共52分)17.解下列方程【18分,(1)、(2)题各4分、(3)(4)题各5分】 (1)01x 3x 22=-+ (2))1x (x )1x (32-=-(3).求2(1)25x +=中x 的值。
(4).(x+3)2﹣x (x+3)=0.18.(满分6分)给出三个多项式:①2244x x +-; ②22124x x ++; ③224x x -.请你把其中任意两个多项式进行加法运算(写出所有可能的结果),并把每个结果因式分解.19(满分6分).一个不透明的布袋里装有3个大小、质地均相同的乒乓球,分别标有数字1,2,3,小华先从布袋中随即取出一个乒乓球,记下数字后放回,再从袋中随机取出一个乒乓球,记下数字.求两次取出的乒乓球上数字相同的概率.20.(满分6分)某校生物兴趣小组有一块正方形种植基地,现要对它进行扩建,若把边长增加2米,则所得的新正方形种植基地面积比原来增加了32平方米,求:原来正方形种植基地的边长是多少?21.(满分8分)已知:如图,△ABC 中,∠BAC=90°,分别以AB 、BC 为边作正方形ABDE 和正方形BCFG ,延长DC 、GA 交于点P. 求证:PD ⊥PG.22.(本题满分8分)在一个不透明的盒子里,装有三个分别标有数字1,2,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ;放同盒子摇匀 后,再由小华随机取山一个小球,记下数字为y . (1)写出(x ,y )的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x ,y )落在反比例函数的图象上的概率.参考答案1.D【解析】解:A 、水中捞月是不可能事件,故本选项错误;B 、拔苗助长是一定不会发生的事件,是不可能事件,故本选项错误;C 、守株待兔是可能发生也可能不发生的事件,是随机事件,故本选项错误;D 、瓮中捉鳖是一定能发生的事件,属必然事件,故本选项正确; 故选D 2.B【解析】分析:将c=-a-b 代入原方程左边,再将方程左边因式分解即可. 解答:解:依题意,得c=-a-b ,原方程化为ax 2+bx-a-b=0,即a (x+1)(x-1)+b (x-1)=0,∴(x-1)(ax+a+b )=0, ∴x=1为原方程的一个根, 故选B .点评:本题考查了一元二次方程解的定义.方程的解是使方程左右两边成立的未知数的值. 3.A 【解析】试题分析:找到从正面看所得到的图形即可,从正面看易得共有2列,左边一列有2个正方形,右边一列有一个正方形。
故选A 。
4.A 【解析】将x=2代入2x mx 80-+=解得m=6 故选A 5.A 【解析】试题分析:先根据点A (x 1,y 1),B (x 2,y 2)是双曲线y=上的点可得出x 1•y 1=x 2•y 2=3,再根据直线y=kx (k >0)与双曲线y=交于点A (x 1,y 1),B (x 2,y 2)两点可得出x 1=﹣x 2,y 1=﹣y 2,再把此关系代入所求代数式进行计算即可.解:∵点A (x 1,y 1),B (x 2,y 2)是双曲线y=上的点 ∴x 1•y 1=x 2•y 2=3①, ∵直线y=kx (k >0)与双曲线y=交于点A (x 1,y 1),B (x 2,y 2)两点,∴x 1=﹣x 2,y 1=﹣y 2②,∴原式=﹣x 1y 1﹣x 2y 2=﹣3﹣3=﹣6. 故选A . 考点:反比例函数图象的对称性.点评:本题考查的是反比例函数的对称性,根据反比例函数的图象关于原点对称得出x 1=﹣x 2,y 1=﹣y 2是解答此题的关键. 6.D【解析】考点:简单组合体的三视图. 分析:找到从上面看所得到的图形即可. 解答:解:从上面看可得到左右相邻的3个矩形.故选D .点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图 7.B 【解析】 试题分析:把x=-1代入20ax bx c ++=得a-b+c=0.选B 。
考点:一元二次方程点评:本题难度较低,考查学生对一元二次方程知识点的掌握,把已知解代入原方程即可。
8.A 试题分析:概率问题,由题意已知前面三次抛硬币的均是正面朝上故选A 考点:概率的基本知识点评:概率的基本知识,在前面均确定的情况下,所以第四次只考虑一种情况就可以。
9.C 【解析】 试题分析:先根据俯视图判断出最下面一层有3个正方体,再结合主视图及左视图进行分析即可.由图可得该几何体所用的正方形的个数是3+1=4,故选C. 考点:根据三视图判断几何体的形状点评:本题属于基础应用题,只需学生熟练掌握几何体的三视图,即可完成. 10.B 【解析】(2)(2)a a +-=24a -,故选B 11.x 1 =0,x 2 =1 【解析】2120,(1)0,0,1x x x x x x -=-===。
12.m=3【解析】列举出所有情况,看甲队战胜乙队和甲队以2:0战胜乙队的情况数占总情况数的多少即可.解答:解:列出树状图如下所示:共8中情况,甲队战胜乙队的情况有4种,故其概率为4÷8=12; 甲队以2:0战胜乙队的情况有2中,故其概率为:2÷8=14. 故答案为:12,14. 14.10%【解析】设每次降价的百分率为x ,第二次降价后价格变为100(x-1)2元, 根据题意得:100(x-1)2=81,解之得x 1=1.9,x 2=0.1.因x=1.9不合题意,故舍去,所以x=0.1. 即每次降价的百分率为0.1,即10%. 15.-1 【解析】试题分析:由题意把x=0代入方程(a -1)x 2-x+a 2-1=0,即可得到关于a 的方程,再结合一元二次方程的二次项系数不为0求解即可.由题意得21010a a ⎧-=⎨-≠⎩,解得11a a =±⎧⎨≠⎩,则 1.a =-考点:方程的根的定义点评:解题的关键是熟练掌握方程的根的定义:方程的根就是使方程左右相等的未知数的值.1617.(1)X (2).X 1=1 X 2 【解析】此题考查解一元二次方程思路:解一元二次方程的两种基本方法:(1)分解因式(十字相乘法)(2)求根公式122b x a-±= (3)配方法解:(1)01x 3x22=-+12x ==(2))1x (x )1x (32-=- 23(1)(1)0x x x ---=(1)(33)0x x x ---= (1)(23)0x x --= 1231,2x x ==点评:点评:解方程后一定要检验结果是否正确 (3).124,6x x ==- 【解析】试题分析:2、2(1)25x += 15x +=± 124,6x x ==-考点:二元一次方程点评:本题难度中等,主要考查学生对一元二次方程知识点的掌握,为中考常考题型,要求学生多做训练牢固掌握解题技巧。
(4).x=﹣3 【解析】试题分析:方程左边提取公因式变形后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解:(x+3)2﹣x (x+3)=0, 分解因式得:(x+3)(x+3﹣x )=0, 可得:x+3=0, 解得:x=﹣3.点评:此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.18.①+②:24164(4)x x x +=+;①+③:2444(1)(1)x x x x -=+-; ②+③:224844(1)x x x ++=+ 【解析】试题分析:①+②:24164(4)x x x +=+; ①+③:2444(1)(1)x x x x -=+-; ②+③:224844(1)x x x ++=+考点:因式分解 点评:本题主要考查学生对整式运算知识点的掌握。
运用完全平方根及平方差公式辅助即可。
19.1/3∵有9种可能结果,两个数字相同的只有3种,∴P (两个数字相同)=3/ 9 =1/3 . 首先根据题意列出表格,然后由表格求得所有等可能的结果与两次取出的乒乓球上数字相同的情况,再利用概率公式求解即可求得答案. 20.7米 【解析】22(2)32x x +-= 224432x x x ++-= 7x =所以原来正方形种植基地的边长是7米 考点:方程的简单应用点评:设所求的数据为未知数,根据题目中各个数据的关系,可以列出相关的方程式,再进行计算 21、见解析 【解析】试题分析:先根据正方形的性质可得△ABG ≌△DBC ,即可得到∠BGA=∠BCD ,从而可以证得结论.∵正方形ABDE 和正方形BCFG∴BG=BC ,BA=BD ,∠GBC=∠ABD=90°∴∠GBA=∠CBD ∴△ABG ≌△DBC ∴∠BGA=∠BCD ∵∠BAC=90°∴∠PAC+∠PCA=90°∴∠P=90° 考点:正方形的性质,全等三角形的判定与性质 点评:全等三角形的判定与性质的应用贯穿于整个初中学习,是平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注. 22.【解析】略。