安徽省各地2015届高三上最新考试数学理试题分类汇编:排列组合与二项式定理

合集下载

安徽省2015年高考理科数学试题与答案(word版)

安徽省2015年高考理科数学试题与答案(word版)

安徽省2015年高考理科数学试题与答案(word 版)本试卷分第I 卷(选择题)和第II 卷(非选择题两部分),满分150分,考试时长120分钟。

第I 卷(选择题 共50分)参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+;标准差:s =其中121()n x x x x n=+++.一、选择题:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的。

(1)设i 是虚数单位,则复数21ii-在复平面内所对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (2)下列函数中,既是偶函数又存在零点的是(A )y cos x = (B )y sin x = (C )y ln x = (D )21y x =+ (3)设:12p x <<,:21x q > ,则p 是q 成立的(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (4)下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是(A )2214y x -= (B )2214x y -= (C )2214y x -= (D )2214x y -= (5)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是(A )若α,β垂直于同一平面,则α与β平行 (B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线 (D )若m ,n 不平行,则m 与n 不可能垂直于同一平面(6)若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为(A )8 (B )15 (C )16 (D )32 (7)一个四面体的三视图如图所示,则该四面体的表面积是(A)1 (B)2 (C)1+ (D)(8)C ∆AB 是边长为2的等边三角形,已知向量a ,b 满足2a AB =,C 2a b A =+,则下列结论正确的是(A )1b = (B )a b ⊥ (C )1a b ⋅= (D )()4C a b -⊥B (9) 函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是(A )0a >,0b >,0c <(B )0a <,0b >,0c >(C )0a <,0b >,0c < (D )0a <,0b <,0c <(10)已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是(A )()()()220f f f <-< (B )()()()022f f f <<- (C )()()()202f f f -<< (D )()()()202f f f <<-第II 卷(非选择题两部分 共100分)二、填空题:本大题共5小题。

安徽省示范高中2015届高三第一次联考理科数学试卷(解析版)

安徽省示范高中2015届高三第一次联考理科数学试卷(解析版)

安徽省示范高中2015届高三第一次联考理科数学试卷(解析版)第一卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】(1)设是虚数单位,z 表示复数z 的共轭复数, z +z =2, 2z z -=则z 的虚部是 A.1 .B i ± .1C ± .1D - 【知识点】复数代数形式的乘除运算. L4【答案解析】C 解析:设z a bi =+,则z a bi =-,2z z a +=,所以a=1;222z z a b ⋅=+=,则1b =±,所以1z i =±,虚部为1±,故选C.【思路点拨】利用复数的除法运算化简给出的复数,由共轭复数的概念求解. 【题文】(2)双曲线2x -23y =-1的渐近线的倾斜角为.6A π 5.6B π 2.33C ππ或 5.66D ππ或 【知识点】双曲线的简单性质.H6【答案解析】D 解析:双曲线2x -23y =-1的渐近线为3y x =±,所以倾斜角为566ππ或,故选D.【思路点拨】求出双曲线的渐近线方程,再利用斜率与倾斜角的关系,即可得出结论.【题文】(3)若x y 、满足202200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩则z y x =-的最大值为A.2B.-2C.1D.-1【知识点】简单线性规划.E5【答案解析】A 解析:线性可行域如图所示,三个顶点坐标分别为(0,2),(2,0),(-1,0),通过上顶点时Z 值最大。

故选A.【思路点拨】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【题文】 (4)已知,m n 为不同的直线,,αβ为不同的平面,则下列说法正确的是 A. ,////m n m n αα⊂⇒ B. ,m n m n αα⊂⊥⇒⊥ C. ,,////m n m n αβαβ⊂⊂⇒ D. ,n n βααβ⊂⊥⇒⊥【知识点】空间中直线与平面之间的位置关系.G4 G5【答案解析】D 解析:A 选项可能有n α⊂,B 选项也可能有n α⊂,C 选项两平面可能相交,故选D.【思路点拨】分别根据线面平行和线面垂直的性质和定义进行判断即可. 【题文】(5)执行如图所示的程序框图,输出的k 值为A.2B.3C.4D.5 【知识点】程序框图.L1【答案解析】C 解析:k=0时,cos sin 1A A <=;k=1时,cos sin A A =;k=2时,cos sin A A <;k=3时,cos sin A A <;k=4时,cos sin A A >;故选C.【思路点拨】本题考查了程序框图中的当型循环结构,当型循环结构是先判断再执行,满足条件进入循环体,不满足条件算法结束.【题文】 (6)“09k <<”是“曲线22=1259x y k --与曲线22=125-k 9x y -的焦距相同”的 A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【知识点】充分必要条件。

安徽省各地2015届高三上最新考试数学理试题分类汇编:集合与常用逻辑用语

安徽省各地2015届高三上最新考试数学理试题分类汇编:集合与常用逻辑用语

安徽省各地2015届高三上最新考试数学理试题分类汇编集合与常用逻辑用语一、集合1、(蚌埠市2015届高三第一次质量检测)已知集合{}2x x A =<,{}5x y y B ==,则A B=( )A .{}2x x <B .{}2x x >C .{}02x x ≤<D .{}02x x <<2、(合肥市2015届高三第一次教学质量检测)已知集合2{|12},{|10}A x x B x x =≤≤=-≤,则A B =A 、{|11}x x -<<B 、{|12}x x -<<C 、{1}D 、∅3、(淮南市2015届高三第一次模拟)集合},1)1(log {},13{2≤+∈=≥∈=x N x B xN x A 则集合B A ⋂的子集个数为A.8B. 4C. 3D. 24、(江淮名校2015届高三第二次联考)已知集合{}{}||2,,2,A x x x R B xx x z =≤∈=≤∈,则A B =( )A .(0,2)B .[0,2]C .{0,2}D .{0,l,2}.5、(江淮十校2015届高三11月联考)已知全集U R =,集合2{|2}A x y x x ==-,集合{|,}x B y y e x R ==∈,则(C )R A B =A.{|2}x x >B.{|01}x x <≤C.{|12}x x <≤D.{|0}x x <6、(皖江名校2015届高三1月联考)设集合A ={x |x 2-5x <0},B ={y |y =x 2},则A ()R C B =A 、RB 、{x ∈R |x ≠0}C 、{x ∈R |0<x ≤0}D 、∅参考答案1、D2、C3、A4、D5、A6、D二、常用逻辑用语1、(蚌埠市2015届高三第一次质量检测)函数()()sin f x x ωϕ=+的最小正周期大于π的充分不必要条件是( )A .1ω=B .2ω=C .1ω<D .2ω>2、(蚌埠市2015届高三第一次质量检测)命题:“R x ∀∈,都有31x ≥”的否定形式为3、(合肥市2015届高三第一次教学质量检测)“1a ≤-”是“函数1()ln f x x ax x=++在[1,)+∞上是单调函数”的A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件4、(淮北市、亳州市2015届高三第一次模拟)已知n X m log =,则1>mn 是1>X 的( )。

2015年高考理科数学安徽卷及答案

2015年高考理科数学安徽卷及答案

绝密★启用前2015年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1至第3页,第Ⅱ卷第4至第6页。

全卷满分150分,考试时间120分钟。

考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无............效,在答题卷、草稿纸上答题无效................ 4. 考试结束,务必将试题卷和答题卡一并上交. 参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+标准差s =121()n x x x x n=++第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设i 是虚数单位,则复数2i1i-在复平面内所对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 下列函数中,既是偶函数又存在零点的是( )A. cos y x =B. sin y x =C. ln y x =D. 21y x =+3. 设:12p x <<,:21x q >,则p 是q 成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4. 下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( )A. 2214yx -= B. 2214x y -=C. 2214y x -=D. 2214x y -=5. 已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是 ( )A. 若α,β垂直于同一平面,则α与β平行B. 若m ,n 平行于同一平面,则m 与n 平行C. 若α,β不平行,则在α内不存在与β平行的直线D. 若m ,n 不平行,则m 与n 不可能垂直于同一平面6. 若样本数据1x ,2x ,…,10x 的标准差为8,则数据121x -,221x -,…,1021x -的标准差为( )A. 8B. 15C. 16D. 327. 一个四面体的三视图如图所示,则该四面体的表面积是( )A. 1B. 2+C. 1+D. 8. ABC △是边长为2的等边三角形,已知向量a ,b 满足AB =2a ,AC =2a +b ,则下列结论正确的是( )A. |b |=1B. a ⊥bC. a b =1D. (4a +b )BC ⊥9. 函数2()()ax bf x x c +=+的图象如图所示,则下列结论成立的是( )A. 0a >,0b >,0c <B. 0a <,0b >,0c >C. 0a <,0b >,0c <D. 0a <,0b <,0c <10. 已知函数()sin()f x A x ωϕ=+(A ,ω,ϕ均为正的常数)的最小正周期为π,当2π3x =时,函数()f x 取得最小值,则下列结论正确的是( )A. (2)(2)(0)f f f <-<B. (0)(2)(2)f f f <<-C. (2)(0)(2)f f f -<<D. (2)(0)(2)f f f <<-第Ⅱ卷(非选择题 共100分)姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上.11. 371()x x+的展开式中5x 的系数是_________(用数字填写答案).12. 在极坐标系中,圆8sin ρθ=上的点到直线()3πθρ=∈R 距离的最大值是_________.13. 执行如图所示的程序框图(算法流程图),输出的n 为_________.14. 已知数列{}n a 是递增的等比数列,149a a +=,328a a =,则数列{}n a 的前n 项和等于_________.15. 设30x ax b ++=,其中a ,b 均为实数.下列条件中,使得该三次方程仅有一个实根的是_________(写出所有正确条件的编号). ①3a =-,3b =-; ②3a =-,2b =;③3a =-,2b >;④0a =,2b =;⑤1a =,2b =.三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)在ABC △中,3π4A =,=6AB,AC =,点D 在BC 边上,AD BD =,求AD 的长.17.(本小题满分12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).18.(本小题满分12分)设*n ∈N ,n x 是曲线221n y x +=+在点(1,2)处的切线与x 轴交点的横坐标. (Ⅰ)求数列{}n x 的通项公式;(Ⅱ)记2221321n n T x x x -=,证明14n T n≥.19.(本小题满分13分)如图,在多面体111A B D DCBA 中,四边形11AA B B ,11ADD A ,ABCD 均为正方形,E 为11B D 的中点,过1A ,D ,E 的平面交1CD 于点F .(Ⅰ)证明:1EF B C ∥;(Ⅱ)求二面角11E A D B --余弦值.20.(本小题满分13分)设椭圆E 的方程为222210x y a b a b +=>>(),点O 为坐标原点,点A 的坐标为(0)a ,,点B 的坐标为(0)b ,,点M 在线段AB 上,满足||2||BM MA =,直线OM. (Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为(0)b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.21.(本小题满分13分) 设函数2()f x x ax b =-+.(Ⅰ)讨论函数(sin )f x 在ππ22(-,)内的单调性并判断有无极值,有极值时求出极值; (Ⅱ)记2000()f x x a x b =-+,求函数0|(sin )(sin )|f x f x -在ππ22[-,]上的最大值D ;(Ⅲ)在(Ⅱ)中,取000a b ==,求24a zb =-满足条件1D ≤时的最小值.2015年普通高等学校招生全国统一考试(安徽卷)数学(理科)答案解析【解析】依题意,该几何体是地面为等腰直角的三棱锥,该四面体的直观图如下,1。

2015年安徽省高考数学试卷(理科)答案与解析

2015年安徽省高考数学试卷(理科)答案与解析

2015年安徽省高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=15.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8B.15 C.16 D.327.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.28.(5分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1D.(4+)⊥9.(5分)(2015•安徽)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<0 10.(5分)(2015•安徽)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f(2)D.f(2)<f(0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(2015•安徽)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)(2015•安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.15.(5分)(2015•安徽)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)(2015•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)(2015•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.19.(13分)(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.答案:1、解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.2、解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选A.3、解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选A.4、解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选C.5、解:对于A,若α,β垂直于同一平面,则α与β不一定平行,如果墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选D.6、解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.7、解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.8、解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选D.9、解:函数在P处无意义,即﹣c>0,则c<0,f(0)=,∴b>0,由f(x)=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0,∴a<0,综上a<0,b>0,c<0,故选:C10、解:依题意得,函数f(x)的周期为π,∵ω>0,∴ω==2.(3分)又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,(5分)∴f(x)=Asin(2x+2kπ+)=Asin(2x+).(6分)∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.f(2)=Asin(4+)<0f(0)=Asin=Asin>0又∵>﹣4+2π>>,而f(x)=Asin(2x+)在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0)故选:A.11、解:根据所给的二项式写出展开式的通项,T r+1==;要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.故答案为:35.12、解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C(0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.故答案为:6.13、解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故答案为:4.14、解:数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{a n}的前n项和为:=2n﹣1.故答案为:2n﹣1.15、解:设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=﹣5,f(﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤.16、解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分17、解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P(X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:X 200 300 400PEX=200×+300×+400×=350.18、解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y﹣2=(2n+2)(x﹣1)令y=0,解得切线与x轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知:T n=x12x32…x2n﹣12=,当n=1时,,当n≥2时,因为x2n﹣12==>==,所以T n综上所述,可得对任意的n∈N+,均有19、(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面B1CD1=EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵AD1⊥平面A1B1CD,∴=(0,2,2)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos<,>==,∴二面角E﹣A1D﹣B1的余弦值为.20、解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴a=3.∴椭圆E的方程为:.21、解:(Ⅰ)设t=sinx,在x∈(﹣,)递增,即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.即有a≥2或a≤﹣2时,不存在极值.②当﹣2<a<2时,﹣1<t<,f′(t)<0,f(sinx)递减;<t<1,f′(t)>0,f(sinx)递增.f(sinx)有极小值f()=b﹣;(Ⅱ)﹣≤x≤时,|f(sinx)﹣f0(sinx)|=|(a﹣a0)sinx+b﹣b0|≤|a﹣a0|+|b﹣b0| 当(a﹣a0)(b﹣b0)≥0时,取x=,等号成立;当(a﹣a0)(b﹣b0)≤0时,取x=﹣,等号成立.由此可知,|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值为D=|a﹣a0|+|b﹣b0|.(Ⅲ)D≤1即为|a|+|b|≤1,此时0≤a2≤1,﹣1≤b≤1,从而z=b﹣≤1取a=0,b=1,则|a|+|b|≤1,并且z=b﹣=1.由此可知,z=b﹣满足条件D≤1的最大值为1.。

安徽省各地2015届高三上最新考试数学理试题分类汇编:统计与概率

安徽省各地2015届高三上最新考试数学理试题分类汇编:统计与概率

安徽省各地2015届高三上最新考试数学理试题分类汇编统计与概率一、选择题 1、(江南十校2015届高三上学期期末大联考)将甲、乙两名篮球运动员在5场篮球比赛中的得分制成茎叶图如图所示,若x x 甲乙,分别表示甲、乙两名运动员5场比赛的平均得分,则下列结论正确的是A .x x >甲乙,且甲队员比乙队员成绩稳定B .x x >甲乙,且乙队员比甲队员成绩稳定C .x x <甲乙,且甲队员比乙队员成绩稳定D .x x <甲乙且乙队员比甲队员成绩稳定2、(宿州市2015届高三第一次教学质量检测)某种商品的广告费支出x 与销售额y (单位:万元)之间有如下对应数据,根据表中提供的全部数据,用最小二乘法得出y 与x 的线性回归方程为ˆ 6.517.5yx =+,则表中的m 的值为 x 2 4 5 6 8 y3040m5070(A )45 (B )50 (C )55 (D )60 3、(滁州市高级中学联谊会2015届高三上学期期末联考)七位裁判各自对一名跳水运动员打分后,去掉一个最高分,再去掉一个最低分,关于剩余分数的说法一定正确的是( ) A .众数不变 B .方差不变 C .平均值不变 D .中位数不变二、填空题 1、(合肥市2015届高三第一次教学质量检测)某校高一、高二、高三年级的学生人数之比为10:8:7,按分层抽样从中抽取200名学生作为样本,若每人被抽到的概率是0.2,则该校高三年级的总人数为_________三、解答题1、(蚌埠市2015届高三第一次质量检测)蚌埠市海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.()I求这6件样本中来自A,B,C各地区商品的数量;()II若在这6件样本中随机抽取2件送往甲机构进行进一步检测,求这2件商品中来自C地区的样品数X的分布列及数学期望.2、(合肥市2015届高三第一次教学质量检测)一家医药研究所,从中草药中提取并合成了甲、乙两种抗“H病毒”的药物,经试验,服用甲、乙两种药物痊愈的概率分别为11,23,现已进入药物临床试用阶段,每个试用组由4位该病毒的感染者组成,其中2人试用甲种抗病毒药物,2人试用乙种抗病毒药物,如果试用组中,甲种抗病毒药物治愈人数人数超过乙种抗病毒药物的治愈人数,则称该组为“甲类组”,(1)求一个试用组为“甲类组”的概率;(2)观察3个试用组,用η表示这3个试用组中“甲类组”的个数,求η的分布列和数学期望。

2015年普通高等学校招生全国统一考试理科数学(安徽卷)

2015年普通高等学校招生全国统一考试理科数学(安徽卷)

2015年普通高等学校招生全国统一考试安徽理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡...上书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............。

.............,在试题卷、草稿纸上答题无效4.考试结束,务必将试题卷和答题卡一并上交。

参考公式:如果事件A与B互斥,那么P(A+B)=P(A)+P(B).标准差s=,其中(x1+x2+…+x n).第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015安徽,理1)设i是虚数单位,则复数在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案:B解析:由复数除法的运算法则可得,=-1+i,对应点为(-1,1)在第二象限.故选B.2.(2015安徽,理2)下列函数中,既是偶函数又存在零点的是()A.y=cos xB.y=sin xC.y=ln xD.y=x2+1答案:A解析:y=cos x是偶函数,其图象与x轴有无数个交点,因此选项A满足要求;y=sin x为奇函数;y=ln x既不是奇函数也不是偶函数;y=x2+1无零点,均不满足要求.故选A.3.(2015安徽,理3)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:由2x>1,得x>0,所以由p:1<x<2可以得到q:x>0成立,而由q:x>0不能得到p:1<x<2成立,因此p是q成立的充分不必要条件.故选A.4.(2015安徽,理4)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2-=1B.-y2=1C.-x2=1D.y2-=1答案:C解析:A,B选项中双曲线的焦点在x轴上,不符合要求.C,D选项中双曲线的焦点在y轴上,且双曲线-x2=1的渐近线方程为y=±2x;双曲线y2-=1的渐近线方程为y=±x,故选C.5.(2015安徽,理5)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行...与β平行的直线...,则在α内不存在D.若m,n不平行...垂直于同一平面...,则m与n不可能答案:D解析:A选项α,β可能相交;B选项m,n可能相交,也可能异面;C选项若α与β相交,则在α内平行于它们交线的直线一定平行于β;由垂直于同一个平面的两条直线一定平行,可知D选项正确.6.(2015安徽,理6)若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为()A.8B.15C.16D.32答案:C解析:设数据x1,x2,…,x10的平均数为,标准差为s,则2x1-1,2x2-1,…,2x10-1的平均数为2-1,方差为=4s2,因此标准差为2s=2×8=16.故选C.7.(2015安徽,理7)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.2答案:B解析:该四面体的直观图如图所示,平面ABD⊥平面BCD,△ABD与△BCD为全等的等腰直角三角形,AB=AD=BC=CD=.取BD的中点O,连接AO,CO,则AO⊥CO,AO=CO=1,由勾股定理得AC=,因此△ABC 与△ACD为全等的正三角形,由三角形面积公式得,S△ABC=S△ACD=,S△ABD=S△BCD=1,所以四面体的表面积为2+.8.(2015安徽,理8)△ABC是边长为2的等边三角形,已知向量a,b满足=2a,=2a+b,则下列结论正确的是() A.|b|=1 B.a⊥b C.a·b=1 D.(4a+b)⊥答案:D解析:在△ABC中,=(2a+b)-2a=b,所以|b|=2,故A不正确;因为=2a,所以a=,而与的夹角为120°,从而a·b=×2×2×cos 120°=-1,因此B,C不正确;因为(4a+b)·=(4a+b)·b=4a·b+b2=-4+4=0,所以(4a+b)⊥,故选D.9.(2015安徽,理9)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<0答案:C解析:由图象知f(0)=>0,因此b>0.函数f(x)的定义域为(-∞,-c)∪(-c,+∞),因此-c>0,c<0.而当x→+∞时,f(x)<0,可得a<0,故选C.10.(2015安徽,理10)已知函数f(x)=A sin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(-2)<f(0)B.f(0)<f(2)<f(-2)C.f(-2)<f(0)<f(2)D.f(2)<f(0)<f(-2)答案:A解析:由周期T==π,得ω=2.当x=时,f(x)取得最小值,所以+φ=+2kπ,k∈Z,即φ=+2kπ,k∈Z,所以f(x)=A sin.所以f(0)=A sin>0,f(2)=A sin A sin 4+cos 4<0,f(-2)=A sin=-A sin 4+cos 4.因为f(2)-f(-2)=A sin 4<0,所以f(2)<f(-2).又f(-2)-f(0)=-A sin=-A,因为π<4-<π+π,所以sin>sin=-,即sin>0,所以f(-2)<f(0).综上,f(2)<f(-2)<f(0),故选A.第Ⅱ卷(非选择题共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上...............作答,在试题卷上答题无效二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.(2015安徽,理11)的展开式中x5的系数是.(用数字填写答案)答案:35解析:通项公式T r+1=x3(7-r)x-r=x21-4r,由21-4r=5,得r=4,所以x5的系数为=35.12.(2015安徽,理12)在极坐标系中,圆ρ=8sin θ上的点到直线θ=(ρ∈R)距离的最大值是.答案:6解析:圆ρ=8sin θ化为直角坐标方程为x2+y2=8y,即x2+(y-4)2=16.故其圆心为(0,4),半径r=4.直线θ=(ρ∈R)化为直角坐标方程为y=x tan x.故圆心到直线y=x的距离d==2.所以圆上的点到直线y=x距离的最大值为d+r=6.13.(2015安徽,理13)执行如图所示的程序框图(算法流程图),输出的n为.答案:4解析:当a=1,n=1时,进入循环,a=1+,n=2;此时|a-1.414|>0.005,继续循环,a=1+=1+,n=3;此时|a-1.414|>0.005,继续循环,a=1+=1+,n=4;此时|a-1.414|≈0.003<0.005,退出循环,因此n的值为4.14.(2015安徽,理14)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于. 答案:2n-1解析:设数列{a n}的公比为q,由已知条件可得解得或因为{a n}是递增的等比数列,所以所以{a n}是以1为首项,2为公比的等比数列,故S n=2n-1.15.(2015安徽,理15)设x3+ax+b=0,其中a,b均为实数.下列条件中,使得该三次方程仅有一个实根的是.(写出所有正确条件的编号)①a=-3,b=-3;②a=-3,b=2;③a=-3,b>2;④a=0,b=2;⑤a=1,b=2.答案:①③④⑤解析:方程仅有一个实根,则函数f(x)=x3+ax+b的图象与x轴只有一个公共点.当a=-3时,f(x)=x3-3x+b,f'(x)=3x2-3,由f'(x)=0,得x=±1,易知f(x)在x=-1处取极大值,在x=1处取极小值.当b=-3时,f(-1)=-1<0,f(1)=-5<0,满足题意,故①正确;当b=2时,f(-1)=4>0,f(1)=0,图象与x轴有2个公共点,不满足题意,故②不正确;当b>2时,f(-1)=2+b>4,f(1)=-2+b>0,满足题意,故③正确;当a=0和a=1时,f'(x)=3x2+a≥0,f(x)在R上为增函数,所以函数f(x)=x3+ax+b的图象与x轴只有一个交点,故④⑤也满足题意.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(本小题满分12分)(2015安徽,理16)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.解:设△ABC的内角A,B,C所对边的长分别是a,b,c.由余弦定理得a2=b2+c2-2bc cos∠BAC=(3)2+62-2×3×6×cos=18+36-(-36)=90,所以a=3.又由正弦定理得sin B=,由题设知0<B<,所以cos B=.在△ABD中,由正弦定理得AD=.17.(本小题满分12分)(2015安徽,理17)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).解:(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,P(A)=.(2)X的可能取值为200,300,400.P(X=200)=,P(X=300)=,P(X=400)=1-P(X=200)-P(X=300)=1-.故X的分布列为EX=200×+300×+400×=350.18.(本小题满分12分)(2015安徽,理18)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(1)求数列{x n}的通项公式;(2)记T n=,证明:T n≥.(1)解:y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y-2=(2n+2)(x-1).令y=0,解得切线与x轴交点的横坐标x n=1-.(2)证明:由题设和(1)中的计算结果知T n=.当n=1时,T1=.当n≥2时,因为,所以T n>×…×.综上可得对任意的n∈N*,均有T n≥.19.(本小题满分13分)(2015安徽,理19)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C;(2)求二面角E-A1D-B1的余弦值.(1)证明:由正方形的性质可知A1B1∥AB∥DC,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形.从而B1C∥A1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解:因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD,以A为原点,分别以为x轴、y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为(0.5,0.5,1).设面A1DE的法向量n1=(r1,s1,t1),而该面上向量=(0.5,0.5,0),=(0,1,-1),由n1⊥,n1⊥得r1,s1,t1应满足的方程组(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设面A1B1CD的法向量n2=(r2,s2,t2),而该面上向量=(1,0,0),=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角E-A1D-B1的余弦值为.20.(本小题满分13分)(2015安徽,理20)设椭圆E的方程为=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,-b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.解:(1)由题设条件知,点M的坐标为,又k OM=,从而,进而得a=b,c==2b,故e=.(2)由题设条件和(1)的计算结果可得,直线AB的方程为=1,点N的坐标为.设点N关于直线AB的对称点S的坐标为,则线段NS的中点T的坐标为.又点T在直线AB上,且k NS·k AB=-1,从而有解得b=3.所以a=3,故椭圆E的方程为=1.21.(本小题满分13分)(2015安徽,理21)设函数f(x)=x2-ax+b.(1)讨论函数f(sin x)在内的单调性并判断有无极值,有极值时求出极值;(2)记f0(x)=x2-a0x+b0,求函数|f(sin x)-f0(sin x)|在上的最大值D;(3)在(2)中,取a0=b0=0,求z=b-满足条件D≤1时的最大值.解:(1)f(sin x)=sin2x-a sin x+b=sin x(sin x-a)+b,-<x<.[f(sin x)]'=(2sin x-a)cos x,-<x<.因为-<x<,所以cos x>0,-2<2sin x<2.①a≤-2,b∈R时,函数f(sin x)单调递增,无极值.②a≥2,b∈R时,函数f(sin x)单调递减,无极值.③对于-2<a<2,在内存在唯一的x0,使得2sin x0=a.-<x≤x0时,函数f(sin x)单调递减;x0≤x<时,函数f(sin x)单调递增.因此,-2<a<2,b∈R时,函数f(sin x)在x0处有极小值f(sin x0)=f=b-.(2)-≤x≤时,|f(sin x)-f0(sin x)|=|(a0-a)sin x+b-b0|≤|a-a0|+|b-b0|,当(a0-a)(b-b0)≥0时,取x=,等号成立.当(a0-a)(b-b0)<0时,取x=-,等号成立.由此可知,|f(sin x)-f0(sin x)|在上的最大值为D=|a-a0|+|b-b0|. (3)D≤1,即为|a|+|b|≤1,此时0≤a2≤1,-1≤b≤1,从而z=b-≤1.取a=0,b=1,则|a|+|b|≤1,并且z=b-=1.由此可知,z=b-满足条件D≤1的最大值为1.。

安徽省各地2015届高三数学上学期最新考试试题分类汇编 立体几何 理(含解析)汇总

安徽省各地2015届高三数学上学期最新考试试题分类汇编 立体几何 理(含解析)汇总

安徽省各地2015届高三上最新考试数学理试题分类汇编立体几何一、选择题 1、(蚌埠市2015届高三第一次质量检测)某几何体的三视图如图所示,则该几何体的体积为( )A .12π+B .6π+C .12π-D .6π-2、(合肥市2015届高三第一次教学质量检测)已知一个底面为正六边形,侧棱长都相等的六棱锥的正视图与俯视图如图所示,若该几何体的底面边长为2,侧棱长为7,则该几何体的侧视图可能是3、(淮北市、亳州市2015届高三第一次模拟)已知棱长为1的正方体的俯视图是边长为1正方形,则其主视图的面积不可能是( )A. 2B.212- C. 1 D. 433 4、(淮南市2015届高三第一次模拟)已知一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在一个球面上,则球的表面积是A.283π B.73π C. 499π D.289π5、(黄山市2015届高三上学期第一次质量检测)如图,已知点E 、F 、G 分别是棱长为a 的正方体 4A34B2C23 323D2正视图俯视图ABCD -A 1 B 1C l D 1的棱AA 1、CC 1、DD 1的中点,点M 、N 、Q 、P 分别在线段DF 、 AG 、BE 、C 1B 1上运动,当以M 、N 、Q 、P 为顶点的三棱锥P -MNQ 的俯视图是如右图所示的等腰三角形时,点P 到平面MNQ 的距离为( )A .a 21B .a 32C .a 54D .a6、(江南十校2015届高三上学期期末大联考)设l ,m 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是A 、若l ⊥m ,m =αβ,则l ⊥α;B 、若l ∥m ,m =αβ,则l ∥α;C |若α∥β,l 与α所成的角与m 与β所成的角相等,则l ∥m ;D |若l ∥m ,α∥β,l ⊥α,则m ⊥β 7、(江南十校2015届高三上学期期末大联考)一个几何体的三视图如图所示,则该几何体的表面积为A 、44+πB 、40+4πC 、44+4πD 、44+2π8、(宿州市2015届高三第一次教学质量检测)某几何体的三视图如图所示,那么该几何体的表面积为(A )2 (B )14 (C )246+ (D )264+9、(滁州市高级中学联谊会2015届高三上学期期末联考)一个几何体的三视图如图所示,则该几何体的表面积为( )A .6πB .7πC .8πD .9π10、(合肥八中2015届高三第四次段考)已知一个几何体的三视图如图所示,则该几何体的体积为A.28π+B.88π+C.48π+D.68π+二、填空题1、((淮北市、亳州市2015届高三第一次模拟)已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M 、N 分别为AD 、CC 1的中点,O 为上底面A 1B 1C 1D 1的中心,则三棱锥O-MNB 的体积是2、(淮南市2015届高三第一次模拟)设异面直线a,b 所成角为θ,点P 为空间一点(P 不在直线a,b 上),有以下命题①过点P 存在唯一平面与异面直线a,b 都平行②若,2πθ=则过点P 且与a,b 都垂直的直线有且仅有1条. ③若,3πθ=则过点P 且与a,b 都成3π直线有且仅有3条.④若过点P 且与a,b 都成3π直线有且仅有4条,则)2,3(ππθ∈.⑤若过点P 且与a,b 都成3π直线有且仅有2条,则(,)63ππθ∈学科网.其中正确命题的序号是_________(请填上所有正确命题的序号)3、(宣城市2015届高三上学期期末考试)如图是一个空间几何体的三视图,则该几何体的外接球的表面积为____4、(宣城市2015届高三上学期期末考试)关于几何体有以下命题: ①有两个面平行,其余各面都是平行四边形的几何体叫棱柱; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③棱台是由平行于底面的平面截棱锥所得的平面与底面之间的部分④两个底面平行且相似,其余各面都是梯形的多面体是棱台; ⑤一个直角三角形绕其一边旋转一周所形成的封闭图形叫圆锥。

安徽省“江淮十校”2015届高三4月联考数学(理)试题 含解析

安徽省“江淮十校”2015届高三4月联考数学(理)试题 含解析

一、选择题:(共50分)1.在复平面内,复数21i i+-(i 是虚数单位)对应的点位于( )A.第一象限 B 。

第二象限 C 。

第三象限 D 。

第四象限 【答案】A 【解析】试题分析:2(2)(1)221131(1)(1)1122i i i i i i ii i +++++-===+--++,对应的点13(,)22,在第一象限,选A 。

考点:复数的运算,复数的几何意义。

2.集合A={0,2,a },B={a 2},若A ∪B=A ,则a 的值有 ( ) A 。

1个 B. 2个 C. 3个 D 。

4个 【答案】C考点:集合的概念,集合的运算与子集的概念。

3。

8(3)x y -的展开式中x 6y 2项的系数是 ( )A 。

28 B. 84 C 。

—28 D 。

—84 【答案】B考点:二项式定理。

4。

已知α、β表示两个不同的平面,m 为平面内的一条直线,则“α//β”是“m//β”的 ( )A 。

充分不必要条件B 。

必要不充分条件 C. 充要条件 D. 既不充分也不充要条件【答案】A 【解析】试题分析:由面面平行的性质定理知////m αββ⇒,但当//m β时,α与β也可能相交,故应选A 。

考点:面面平行与线面平行,充分必要条件. 5.圆x 2+y 2=40y +-=截得的弦长为( )A。

B。

C 。

3 D 。

2【答案】D 【解析】试题分析:圆心为(0,0)O ,半径为2r =0y +-=的距离为d ==2l ===.考点:直线和圆相交弦长问题。

.6。

一个几何体的三视图如图所示,则该几何体的体积为 ( )A.43πB.23π C。

23π+D.23π+【答案】B 【解析】试题分析:该几何体是一个组合体,下面是半球,上面是正四棱锥,且正四棱锥的底面是半球大圆的内接正方形,2212223(2)313333V ππ=⨯⨯+⨯=+. 考点:三视图与几何体的体积。

7。

在等差数列{a n }中a 1=—2015,其前n 项和为S n ,若2S 6—3S 4=24,则S 2015= ( )A 。

2015年高考理科数学安徽卷-答案

2015年高考理科数学安徽卷-答案

令 ,得 ,则 的系数是 .
【提示】根据所给的二项式,利用二项展开式的通项公式写出第 项,整理成最简形式,令 的指数为5求得 ,再代入系数求出结果.
【考点】二项式定理的应用
12.【答案】6
【解析】由题意 ,转化为直角坐标方程为 ,即 ;直线 转化为直角坐标方程为 ,则圆上到直线的距离最大值是通过圆心的直线,设圆心到直线的距离为 ,圆心的半径为 ,则圆到直线距离的最大值 .
2015年普通高等学校招生全国统一考试(安徽卷)
数学(理科)答案解析
第Ⅰ卷
一、选择题
1.【答案】B
【解析】由题意 ,其对应的点坐标为 ,位于第二象限,故选B.
【提示】先化简复数,再得出点的坐标,即可得出结论.
【考点】复数的代数表示及复数的几何意义
2.【答案】A
【解析】由选项可知,B、C项均不是偶函数,故排除B、C;
而该面上向量 , ,由此同理可得
所以结合图形知二面角 的余弦值为 .
【提示】(Ⅰ)通过四边形 为平行四边形,可得 ,利用线面平行的判定定理即得结论.
(Ⅱ)以 为坐标原点,分别以 为 轴, 轴和 轴单位正向量建立如图所示的空间直角坐标系,设边长为2,则所求值即为平面 的一个法向量与平面 的一个法向量的夹角的余弦值的绝对值,计算即可.
A、D项是偶函数,但D项与 轴没有交点,即D项不存在零点,故选A.
【提示】利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.
【考点】函数的奇偶性和零点的判断
3.【答案】A
【解析】由 ,解得 ,易知, 能推出 ,但 不能推出 ,故 是 成立的充分不必要条件,故选A.
【提示】运用指数函数的单调性,结合充分必要条件的定义,即可判断.

2015届安徽省各地高考模拟试题分类汇编数列(解答题)

2015届安徽省各地高考模拟试题分类汇编数列(解答题)

2015届高三各地模拟试题汇编(数列解答题)1. ((合肥市第四次三校联考)17题12分)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S .(Ⅰ) 求n a 及n S ; (Ⅱ) 求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T .解:(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有112721026a d a d +=⎧⎨+=⎩,解得13a =,2d =,所以32(1)21n a n n =+-=+;2(1)3222n n n S n n n -=+⨯=+. (Ⅱ)由(Ⅰ)可知,22n S n n =+,所以2111111()2(2)22n S n n n n n n ===-+++, 所以123111111n n nT S S S S S -=+++++L 1111111111(1)232435112n n n n =-+-+-++-+--++ 111112212n n ⎛⎫=+-- ⎪++⎝⎭31114212n n ⎛⎫=-+ ⎪++⎝⎭.2.((合肥市第四次三校联考)21题14分)已知函数()21f x x =-,设曲线()y f x =在点(),n n x y 处的切线与x 轴的交点为()1,0n x +,其中1x 为正实数 (Ⅰ) 用n x 表示1n x +; (Ⅱ) 12x =,若1lg1n n n x a x +=-,试证明数列{}n a 为等比数列,并求数列{}n a 的通项公式; (Ⅲ) 若数列{}n b 的前n 项和()12n n n S +=,记数列{}n n b a ⋅的前n 项和为n T ,求n T . 解:(Ⅰ)由题可得()2f x x '=,所以在曲线上点()(),n n x f x 处的切线方程为()()()n n n y f x f x x x '-=-,即()()212nn n y x x x x --=- 令0y =,得()()2112n n n n x x x x +--=-,即2112n n n x x x ++=由题意得0n x ≠,所以2112n n nx x x ++=(Ⅱ)因为2112n n nx x x ++=,所以2211221111221lg lg lg 112112n n n n n n n n n n nx x x x x a x x x x x ++++++++===+--+- ()()2211lg 2lg211nn n n n x x a x x ++===-- 即12n n a a +=,所以数列{}n a 为等比数列故11111112lg22lg31n n n n x a a x ---+==⋅=- (Ⅲ)当1n =时,111b S ==当2n ≥时,()()11122n n n n n n n b S S n -+-=-=-= 所以数列{}n b 的通项公式为n b n =,故数列{}n n b a ⋅的通项公式为3lg 21-⋅=⋅n n n n b a()21122322lg 3n n T n -∴=+⨯+⨯++⋅ ①①2⨯得:()2212322lg 3n n T n =⨯+⨯++⋅ ② ①-②得:()2112222lg 3n n n T n --=++++-⋅故 ()221lg 3n nn T n =⋅-+3.(江南十校2015届高三上学期期末大联考)19.(本小题满分13分)设12,...........n O O O 是坐标平面上圆心在x 轴非负半轴上的一列圆(其中1O 为坐标原点),且圆n O 和圆1n O +相外切,并均与直线x+323y -=0相切,记圆n O 的半径为n R (1)求圆1O 的方程。

历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编考点01 排列组合综合1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .232.(2023∙全国甲卷∙高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A .120B .60C .30D .203.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .234.(2023∙全国乙卷∙高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A .30种B .60种C .120种D .240种5.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种 B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种6.(2022∙全国新Ⅱ卷∙高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种B .24种C .36种D .48种7.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .238.(2021∙全国乙卷∙高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种B .120种C .240种D .480种9.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .0.3B .0.5C .0.6D .0.810.(2021∙全国甲卷∙高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A .13B .25C .23D .4511.(2020∙海南∙高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( )A .2种B .3种C .6种D .8种12.(2020∙山东∙高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种13.(2019∙全国∙高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116考点02 二项式定理综合1.(2024∙北京∙高考真题)在(4x 的展开式中,3x 的系数为( ) A .6B .6-C .12D .12-2.(2022∙北京∙高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-3.(2020∙北京∙高考真题)在52)-的展开式中,2x 的系数为( ). A .5-B .5C .10-D .104.(2020∙全国∙高考真题)25()()x x y x y ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .205.(2019∙全国∙高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24参考答案考点01 排列组合综合1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .23【答案】B【详细分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解. 【答案详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法, 其中丙不在排头,且甲或乙在排尾的排法共有8种, 故所求概率81=243P =. 解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B2.(2023∙全国甲卷∙高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A .120B .60C .30D .20【详细分析】利用分类加法原理,分类讨论五名志愿者连续参加两天公益活动的情况,即可得解. 【答案详解】不妨记五名志愿者为,,,,a b c d e ,假设a 连续参加了两天公益活动,再从剩余的4人抽取2人各参加星期六与星期天的公益活动,共有24A 12=种方法,同理:,,,b c d e 连续参加了两天公益活动,也各有12种方法, 所以恰有1人连续参加了两天公益活动的选择种数有51260⨯=种. 故选:B.3.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .23【答案】D【详细分析】利用古典概率的概率公式,结合组合的知识即可得解.【答案详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件, 其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=. 故选:D.4.(2023∙全国乙卷∙高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A .30种 B .60种 C .120种 D .240种【答案】C【详细分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【答案详解】首先确定相同得读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分步乘法公式则共有1265C A 120⋅=种,故选:C.5.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种 B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种【详细分析】利用分层抽样的原理和组合公式即可得到答案. 【答案详解】根据分层抽样的定义知初中部共抽取4006040600⨯=人,高中部共抽取2006020600⨯=, 根据组合公式和分步计数原理则不同的抽样结果共有4020400200C C ⋅种. 故选:D.6.(2022∙全国新Ⅱ卷∙高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种 B .24种C .36种D .48种【答案】B【详细分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【答案详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式, 故选:B7.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .23【答案】D【详细分析】由古典概型概率公式结合组合、列举法即可得解.【答案详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==. 故选:D.8.(2021∙全国乙卷∙高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种 B .120种 C .240种 D .480种【答案】C【详细分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【答案详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C 种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有2 54!240C⨯=种不同的分配方案,故选:C.【名师点评】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.9.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为() A.0.3 B.0.5 C.0.6 D.0.8【答案】C【详细分析】利用古典概型的概率公式可求概率.【答案详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.6 10,故选:C.10.(2021∙全国甲卷∙高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.13B.25C.23D.45【答案】C【答案详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C=种排法,若2个0不相邻,则有2510C=种排法,所以2个0不相邻的概率为102 5103=+.故选:C.11.(2020∙海南∙高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种 B.3种 C.6种 D.8种【答案】C【详细分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【答案详解】第一步,将3名学生分成两个组,有12323C C=种分法第二步,将2组学生安排到2个村,有222A=种安排方法所以,不同的安排方法共有326⨯=种 故选:C【名师点评】解答本类问题时一般采取先组后排的策略.12.(2020∙山东∙高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种【答案】C【详细分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解. 【答案详解】首先从6名同学中选1名去甲场馆,方法数有16C ; 然后从其余5名同学中选2名去乙场馆,方法数有25C ; 最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C【名师点评】本小题主要考查分步计数原理和组合数的计算,属于基础题.13.(2019∙全国∙高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【答案】A【详细分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【答案详解】由题知,每一爻有2种情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【名师点评】对利用排列组合计算古典概型问题,首先要详细分析元素是否可重复,其次要详细分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.考点02 二项式定理综合1.(2024∙北京∙高考真题)在(4x 的展开式中,3x 的系数为( ) A .6 B .6- C .12 D .12-【答案】A【详细分析】写出二项展开式,令432r-=,解出r 然后回代入二项展开式系数即可得解.【答案详解】(4x 的二项展开式为(()()442144C C 1,0,1,2,3,4r rrr rr r T x xr --+==-=,令432r-=,解得2r =, 故所求即为()224C 16-=. 故选:A.2.(2022∙北京∙高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-【答案】B【详细分析】利用赋值法可求024a a a ++的值. 【答案详解】令1x =,则432101a a a a a ++++=, 令=1x -,则()443210381a a a a a -+-+=-=, 故420181412a a a +++==, 故选:B.3.(2020∙北京∙高考真题)在52)-的展开式中,2x 的系数为( ). A .5- B .5C .10-D .10【答案】C【详细分析】首先写出展开式的通项公式,然后结合通项公式确定2x 的系数即可.【答案详解】)52展开式的通项公式为:()()55215522r rrrr r r T CC x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-. 故选:C.【名师点评】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.4.(2020∙全国∙高考真题)25()()x x y xy ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .20【答案】C【详细分析】求得5()x y +展开式的通项公式为515rrrr T C xy -+=(r N ∈且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积为65r rr C xy -或425r r r C x y -+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.【答案详解】5()x y +展开式的通项公式为515r rr r T C xy -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为:56155r rrr rrr xT xC xy C xy --+==和22542155r r rr r r r T C x y xC y y y x x --++==在615rrr r xT C xy -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x x y =,该项中33x y 的系数为5所以33x y 的系数为10515+= 故选:C【名师点评】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及详细分析能力,属于中档题.5.(2019∙全国∙高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24【答案】A【详细分析】本题利用二项展开式通项公式求展开式指定项的系数.【答案详解】由题意得x 3的系数为314424812C C +=+=,故选A .【名师点评】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.。

2015年三年高考数学(理)真题精编——专题11排列组合、二项式定理

2015年三年高考数学(理)真题精编——专题11排列组合、二项式定理

一、选择题3. 【2014天津,理6】如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论: ①BD 平分CBF Ð;②2FB FD FA =?;③AE CEBE DE ??;④AF BD AB BF ??.则所有正确结论的序号是 ( )(A )①② (B )③④ (C )①②③(D )①②④【答案】D . 【解析】考点:1.弦切角定理;2.切线长定理;3.相交弦定理.4. 【2015高考天津,理5】如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN === ,则线段NE 的长为( ) (A )83 (B )3 (C )103 (D )52【答案】A【解析】由相交弦定理可知,,AM MB CM MD CN NE AN NB ⋅=⋅⋅=⋅,又因为,M N 是弦AB 的三等分点,所以AM MB AN NB CN NE CM MD ⋅=⋅∴⋅=⋅,所以24833CM MD NE CN ⋅⨯===,故选A.【考点定位】相交弦定理.6. 【2014高考广东卷.理.8】设集合(){}{}12345,,,,1,0,1,1,2,3,4,5iA x x x x x x i =∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )A .60B .90C .120D .130 【答案】D【考点定位】本题考查分类计数原理,属于拔高题7. 【 2014湖南4】5122x y ⎛⎫- ⎪⎝⎭的展开式中32y x 的系数是( ) A.20- B.5- C.5 D.20 【答案】A【解析】根据二项式定理可得第1n +项展开式为()55122nn n C x y -⎛⎫- ⎪⎝⎭,则2n =时,()()2532351121022022n n n C x y x y x y -⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,所以23x y 的系数为20-,故选A.【考点定位】二项式定理8. 【2013山东,理10】用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为().A .243B .252C .261D .279 【答案】:B【解析】:构成所有的三位数的个数为11191010C C C =900,而无重复数字的三位数的个数为111998C C C =648,故所求个数为900-648=252,应选B.11. 【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C r r r n x +T =,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n=,即2300n n --=,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C . 【考点定位】二项式定理.13. 【2013课标全国Ⅱ,理5】已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =().A .-4B .-3C .-2D .-1 【答案】:D17. 【2014四川,理2】在6(1)x x +的展开式中,含3x 项的系数为( )A .30B .20C .15D .10 【答案】C 【解析】试题分析:623456(1)(161520156)x x x x x x x x x +=++++++,所以含3x 项的系数为15.选C 【考点定位】二项式定理.18. 【2014四川,理6】六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种 【答案】B【考点定位】排列组合.19. 【2015高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个 【答案】B 【解析】据题意,万位上只能排4、5.若万位上排4,则有342A ⨯个;若万位上排5,则有343A ⨯个.所以共有342A ⨯343524120A +⨯=⨯=个.选B.【考点定位】排列组合.24. 【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y的系数为212532C C C =30,故选 C.【考点定位】本题主要考查利用排列组合知识计算二项式展开式某一项的系数.25. 【2013课标全国Ⅰ,理9】设m 为正整数,(x +y )2m展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .8 【答案】:B【解析】:由题意可知,a =2C m m ,b =21C m m +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+), 即132171m m +=+.解得m =6.故选B. 26. 【2014年.浙江卷.理5】在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 210 答案:C解析:由题意可得()()()()3211236646443,02,11,20,32060364120f f f f C C C C C C ++=+++=+++=,故选C考点:二项式系数.30. 【2014高考重庆理第9题】某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.168 【答案】B 【解析】试题分析:将所有的安排方法分成两类,第一类:歌舞类节目中间不穿插相声节目,有32132262224A A A =⨯⨯=(种);第二类:歌舞类节目中间穿插相声节目,有31113224622496A A A A =⨯⨯⨯=(种);根据分类加法计数原理,共有96+24=120种不同的排法.故选B.考点:1、分类加法计数原理;2、排列.34. 【2014年普通高等学校招生全国统一考试湖北卷2】若二项式7)2(xa x +的展开式中31x 的系数是84,则实数=a ( )A.2B. 54C. 1D. 42 【答案】C 【解析】试题分析:因为r r r r r r r x a C xa x C 2777772)()2(+---⋅⋅⋅=⋅⋅,令327-=+-r ,得2=r , 所以84227227=⋅⋅-a C ,解得1=a ,故选C.考点:二项式定理的通项公式,容易题.35. 【2015高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.122 B .112 C .102 D .92【答案】D【考点定位】二项式系数,二项式系数和.二、填空题5. 【2013天津,理10】6x⎛ ⎝的二项展开式中的常数项为__________.【答案】156. 【2013天津,理11】已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为π4,3⎛⎫⎪⎝⎭,则|CP |=__________.【答案】【解析】由圆的极坐标方程为ρ=4cos θ,得圆心C 的直角坐标为(2,0),点P 的直角坐标为(2,),所以|CP|=7. 【2013天津,理13】如图,△ABC 为圆的内接三角形,BD 为圆的弦,且BD ∥AC .过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F .若AB =AC ,AE =6,BD =5,则线段CF 的长为__________.【答案】83【解析】∵AE 为圆的切线, ∴由切割线定理,得AE2=EB·ED. 又AE =6,BD =5,可解得EB =4. ∵∠EAB 为弦切角,且AB =AC , ∴∠EAB =∠ACB =∠ABC.∴EA ∥BC.又BD ∥AC , ∴四边形EBCA 为平行四边形. ∴BC =AE =6,AC =EB =4. 由BD ∥AC ,得△ACF ∽△DBF , ∴45CF AC BF BD ==. 又CF +BF =BC =6,∴CF =83.8. 【2014天津,理13】在以O 为极点的极坐标系中,圆4sin r q =和直线sin a r q =相交于,A B 两点.若AOB D 是等边三角形,则a 的值为___________.【答案】3.考点:直线和圆的极坐标方程.9. 【2015高考天津,理12】在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .【答案】1516【解析】614x x ⎛⎫- ⎪⎝⎭展开式的通项为6621661144rrr r r r r T C x C x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由622r -=得2r =,所以 222236115416T C x x ⎛⎫=-= ⎪⎝⎭,所以该项系数为1516.【考点定位】二项式定理及二项展开式的通项.11. 【2013高考北京理第12题】将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是__________. 【答案】96 【解析】试题分析:连号有4种情况,从4人中挑一人得到连号参观券,其余可以全排列,则不同的分法有4×1343C A =96(种).考点:排列组合.12. 【2014高考北京理第13题】把5件不同产品摆成一排,若产品A 与产品B 相邻, 且产品A 与产品C不相邻,则不同的摆法有 种. 【答案】36考点:排列组合,容易题.13. 【2015高考北京,理9】在()52x +的展开式中,3x 的系数为.(用数字作答)【答案】40【解析】利用通项公式,5152r r r r T C x -+=⋅,令3r =,得出3x 的系数为325240C ⋅=【考点定位】本题考点为二项式定理,利用通项公式,求指定项的系数.16. 【2014高考广东卷.理.11】从0.1.2.3.4.5.6.7.8.9中任取七个不同的数,则这七个数的中位数是6的概率为 .【答案】16.【考点定位】本题考查排列组合与古典概型的概率计算,属于能力题.17. 【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 .【答案】6.【解析】由题可知()()44214411r rrrr r r T CC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【考点定位】二项式定理.18. 【2015高考广东,理12】某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答) 【答案】1560.【解析】依题两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了24040391560A =⨯=条毕业留言,故应填入1560.【考点定位】排列问题.20. 【2014山东.理14】 若26()b ax x+的展开式中3x 项的系数为20,则22b a +的最小值 .【答案】2【解析】26()bax x +展开式的通项为266123166()()r r r r r r r r b T C ax a b C x x---+==,令1233,r -=得3r =,所 以,由6333620a b C -=得1ab =,从而2222a b ab +≥=,当且仅当a b =时,22a b +的最小值为2.22. 【2014新课标,理13】 ()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案)【答案】12【解析】因为10110r r r r T C x a -+=,所以令107r -=,解得3r =,所以373410T C x a ==157x ,解得12a =. 24. 【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.【考点定位】二项式定理.25. 【2013四川,理11】二项式5()x y +的展开式中,含23x y 的项的系数是____________.(用数字作答)【答案】10【解析】由二项展开式的通项公式知,含23x y 的项是32345T C x y =,所以系数为3510C =,故填10.【考点定位】本题考查求二项展开式的指定项系数,属于基础题.26. 【2015高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答).【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.【考点定位】二项式定理.27. 【2014课标Ⅰ,理14】甲、乙、丙三位同学被问到是否去过C B A ,,三个城市时,甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市. 丙说:我们三个去过同一城市. 由此可判断乙去过的城市为__________ 【答案】A28. 【2014课标Ⅰ,理13】()()8x y x y -+的展开式中27x y 的系数为________.(用数字填写答案)【答案】20-【解析】由题意,8()x y +展开式通项为8k k18C y k k T x -+=,08k ≤≤.当7k =时,777888T C xy xy ==;当6k =时,626267828T C x y x y ==,故()()8x y x y -+的展开式中27x y 项为726278(y)2820x xy x y x y ⋅+-⋅=-,系数为20-.29. 【2014年.浙江卷.理14】在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答). 答案:60解析:不同的获奖分两种,一是有一人获两张将卷,一人获一张,共有223436C A =,二是有三人各获得一张,共有3424A =,因此不同的获奖情况有60种考点:排列组合.30.【2013年.浙江卷.理11】设二项式5的展开式中常数项为A ,则A =__________.【答案】:-1031. 【2013年.浙江卷.理14】将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有__________种(用数字作答). 【答案】:480 【解析】:如图六个位置.若C 放在第一个位置,则满足条件的排法共有55A 种情况;若C 放在第2个位置,则从3,4,5,6共4个位置中选2个位置排A ,B ,再在余下的3个位置排D ,E ,F ,共24A ·33A 种排法;若C 放在第3个位置,则可在1,2两个位置排A ,B ,其余位置排D ,E ,F ,则共有22A ·33A 种排法或在4,5,6共3个位置中选2个位置排A ,B ,再在其余3个位置排D ,E ,F ,共有23A ·33A 种排法;若C在第4个位置,则有22A 33A +23A 33A 种排法;若C 在第5个位置,则有24A 33A 种排法;若C 在第6个位置,则有55A 种排法.综上,共有2(55A +24A 33A +23A 33A +22A 33A )=480(种)排法.34. 【2013高考重庆理第13题】从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是__________(用数字作答). 【答案】59035. 【2015高考重庆,理12】53x ⎛ ⎝的展开式中8x 的系数是________(用数字作答).【答案】52【解析】二项展开式通项为7153521551()()2k k kkk k k T C x C x --+==,令71582k-=,解得2k =,因此8x 的系数为22515()22C =. 【考点定位】二项式定理36. 【2014,安徽理13】设n a ,0≠是大于1的自然数,na x ⎪⎭⎫ ⎝⎛+1的展开式为nn x a x a x a a ++++ 2210.若点)2,1,0)(,(=i a i A i i 的位置如图所示,则______=a .【答案】3考点:1.二项展开式的应用.37. 【2013,安徽理11】若8x ⎛⎝的展开式中4x 的系数为7,则实数a =______.【答案】21. 【解析】二项式8x ⎛ ⎝展开式的第1r +项:88333188841843,732rrr rrr r r T C xC a x r r C a a-=-+==?=?=?.【命题立意】考查二项式定理.【易错警示】注意二项展开式的第1r +项的二项式系数为rn C ,上标是r ,不是r +1.39. 【2015高考安徽,理11】371()x x+的展开式中5x 的系数是 .(用数字填写答案)【答案】35【解析】由题意,二项式371()x x +展开的通项372141771()()r r r r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =.【考点定位】1.二项式定理的展开式应用.42. 【2013上海,理5】设常数a ∈R .若25()a x x+的二项展开式中x 7项的系数为-10,则a =______.【答案】-2【解析】T r +1=255C ()()rr r ax x-,2(5-r )-r =7⇒r =1,故15C a =-10⇒a =-2.45. 【2015高考福建,理11】()52x + 的展开式中,2x 的系数等于 .(用数字作答)【答案】80【解析】()52x + 的展开式中2x 项为2325280C x =,所以2x 的系数等于80.【考点定位】二项式定理.。

2015年高考数学(理)真题分类汇编:专题11-排列组合、二项式定理

2015年高考数学(理)真题分类汇编:专题11-排列组合、二项式定理

专题十一 排列组合、二项式定理1.【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( ) A .4 B .5 C .6 D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C r r r n x +T =,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n =,即2300n n --=,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C .【考点定位】二项式定理.【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k k k n ab -+T =. 2.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.【考点定位】本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解.3.【2015高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个 【答案】B 【解析】据题意,万位上只能排4、5.若万位上排4,则有342A ⨯个;若万位上排5,则有343A ⨯342A ⨯343524120A +⨯=⨯=个.选B.【考点定位】排列组合.【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类.4.【2015高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为( )A.122 B .112 C .102 D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n , 所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 【考点定位】二项式系数,二项式系数和.【名师点睛】二项式定理中应注意区别二项式系数与展开式系数,各二项式系数和:n n n n n n C C C C 2210=+⋅⋅⋅+++,奇数项的二项式系数和与偶数项的二项式系数和相等=⋅⋅⋅++++420n n n C C C 15312-=⋅⋅⋅++++n n n n C C C .5、【2015高考广东,理12】某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答) 【答案】1560.【考点定位】排列问题.【名师点睛】本题主要考查排列问题,属于中档题,解答此题关键在于认清40人两两彼此给对方仅写一条毕业留言是个排列问题.6.【2015高考重庆,理12】532x x ⎛+ ⎝的展开式中8x 的系数是________(用数字作答).【答案】52【解析】二项展开式通项为7153521551()(()22k k kkk k k T C x C x x --+==,令71582k-=,解得2k =,因此8x 的系数为22515()22C =. 【考点定位】二项式定理【名师点晴】()na b +的展开式的二项式系数与该项的系数是两个不同的概念,前者只是指kn C ,它仅是与二项式的幂的指数n 及项数有关的组合数,而与a ,b 的值无关;而后者是指该项除字母外的部分,即各项的系数不仅与各项的二项式系数有关,而且也与a ,b 的系数有关.在求二项展开式特定项的系数时要充分注意这个区别.7.【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【解析】由题可知()()44214411r rrrr r r T CC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【考点定位】二项式定理.【名师点睛】本题主要考查二项式定理和运算求解能力,属于容易题,解答此题关键在于熟记二项展开式的通项即展开式的第1r +项为:()*12,r n r r r n T C a b n N n r N -+=∈≥∈且.8.【2015高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.【考点定位】二项式定理.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.9.【2015高考天津,理12】在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .【答案】1516【解析】614x x ⎛⎫- ⎪⎝⎭展开式的通项为6621661144rrr r r r r T C x C x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由622r -=得2r =,所以222236115416T C x x ⎛⎫=-= ⎪⎝⎭,所以该项系数为1516. 【考点定位】二项式定理及二项展开式的通项.【名师点睛】本题主要考查二项式定理及二项展开式的通项的应用.应用二项式定理典型式的通项,求出当2r =时的系数,即可求得结果,体现了数学中的方程思想与运算能力相结合的问题. 10.【2015高考安徽,理11】371()x x+的展开式中5x 的系数是 .(用数字填写答案) 【答案】35【解析】由题意,二项式371()x x +展开的通项372141771()()rr r r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =.【考点定位】1.二项式定理的展开式应用.【名师点睛】常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误. 11.【2015高考福建,理11】()52x + 的展开式中,2x 的系数等于 .(用数字作答) 【答案】80【解析】()52x + 的展开式中2x 项为2325280C x =,所以2x 的系数等于80.【考点定位】二项式定理.【名师点睛】本题考查二项式定理的特定项问题,往往是根据二项展开式的通项和所求项的联系解题,属于基础题,注意运算的准确度.12.【2015高考北京,理9】在()52x +的展开式中,3x 的系数为 .(用数字作答)【答案】40【考点定位】本题考点为二项式定理,利用通项公式,求指定项的系数.【名师点睛】本题考查二项式定理,利用通项公式求出指定项的系数,本题属于基础题,要求正确使用通项公式1r n r r r n T C a b -+=,准确计算指定项的系数.13.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =. 【考点定位】二项式定理.【名师点睛】本题考查二项式定理,准确写出二项展开式,能正确求出奇数次幂项以及相应的系数和,从而列方程求参数值,属于中档题.【2015高考湖南,理6】已知5的展开式中含32x 的项的系数为30,则a =( )B. C.6 D-6 【答案】D. 【解析】试题分析:r rr r r x a C T -+-=2551)1(,令1=r ,可得6305-=⇒=-a a ,故选D.【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的运用,属于容易题,只要掌握nb a )(+的二项展开式的通项第1+r 项为rr n r nr b a C T -+=1,即可建立关于a 的方程,从而求解. 【2015高考上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示). 【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C = 【考点定位】二项展开式【名师点睛】(1)求二项展开式中的指定项,一般是利用通项公式进行化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r +1,代回通项公式即可.(2)对于三项式问题一般先变形化为二项式再解决.【2015高考上海,理8】在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示). 【答案】120【解析】由题意得,去掉选5名女教师情况即可:55961266120.C C -=-= 【考点定位】排列组合【名师点睛】涉及排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.。

安徽省各地高三数学上学期最新考试试题分类汇编 排列组合与二项式定理 理(含解析)

安徽省各地高三数学上学期最新考试试题分类汇编 排列组合与二项式定理 理(含解析)

安徽省各地2015届高三上最新考试数学理试题分类汇编排列组合与二项式定理一、二项式定理1、(蚌埠市2015届高三第一次质量检测)523x ⎫⎪⎭的展开式中的常数项为2、(合肥市2015届高三第一次教学质量检测)641)1)的展开式中x 的系数是 A 、3- B 、3 C 、4- D 、43、(淮北市、亳州市2015届高三第一次模拟)在52512⎪⎭⎫ ⎝⎛-x x 的二项展开式中,x 的系数为 4、(江南十校2015届高三上学期期末大联考)已知二项展开式5(1)ax +=2345123451a x a x a x a x a x +++++,集合A ={80,40,32,10},若(1,2,3,4,5)i a A i ∈=,则a =_____5、(宿州市2015届高三第一次教学质量检测)二项式262()x x-的展开式中不含3x 项的系数之和为(A )161 (B )159 (C ) 161- (D )159-6、(宣城市2015届高三上学期期末考试)若21()n x x -展开式中的所有二项式系数和为512,则该展开式中的常数项为___7、(滁州市高级中学联谊会2015届高三上学期期末联考)6x⎛+ ⎝的展开式的常数项是8、(皖江名校2015届高三1月联考)9(a x +的展开式中常数项为672,则展开式中3x 的系数为____参考答案1、152、A3、258-4、25、A6、847、158、18 【解析】二项式9(a x的展开式的通项为39992199()r r r r r r r a T C C a x x ---+==,令3902r -=,解得6r =,故639672C a =,解得2a =,令3932r -=,解得8r =,所以展开式中3x 的系数为89218C ⨯=.二、排列组合1、(蚌埠市2015届高三第一次质量检测)甲、乙、丙三所学校的6名学生参加数学竞赛培训,其中有1名甲学校的学生,2名乙学校的学生,3名丙学校的学生,培训结束后要照相留念,要求同一学校的学生互不相邻,则不同的排法种数为2、(淮北市、亳州市2015届高三第一次模拟)某项实验,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法共有()A.34种 B.48种 C.96种 D.144种3、(滁州市高级中学联谊会2015届高三上学期期末联考)将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.18种 B.24种 C.36种 D.72种4、(合肥八中2015届高三第四次段考)在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,则实验顺序的编排方法共有种(请用数字作答)参考答案1、1202、C3、C4、96。

2015学年高考理科数学年安徽卷答案

2015学年高考理科数学年安徽卷答案
【解析】由题可知,当 P 点运动时,在空间中,满足条件的 AP 绕 AB 旋转形成一个圆锥,用一个与圆锥高 成 60 角的平面去截圆锥,所得图形为椭圆,故选 C.
【提示】根据题意, PAB 30 为定值,可得点 P 的轨迹为一以 AB 为轴线的圆锥侧面与平面 的交线,
则答案可求. 【考点】圆锥曲线的定义,线面位置关系. 8.【答案】B
【解析】因为 |a 1|| sin b | t ,所以 (a 1)2 sin2 b t2 ,所以 a2 2a t2 1 ,故当 t 确定时,t2 1 确定,
所以 a2 2a 唯一确定,故选 B. 【提示】根据代数式得出 a2 2a t2 1, sin 2b t2 ,运用条件,结合三角函数可判断答案.
5 【提示】由题意可得 2x y﹣4 0 , 6﹣x﹣3y 0 ,去绝对值后得到目标函数 z 3x﹣4y 10 ,然后结合圆心 到直线的距离求得| 2x y﹣4 6﹣x﹣3y |的最大值.
【考点】简单的线性规划.
15.【答案】 2 2
【解析】设 F(c,0)
关于直线
y

n
面,故选 A.
【提示】根据线面垂直的判定定理得出 A 正确;B 根据面面垂直的性质判断 B 错误;根据面面平行的判断
定理得出 C 错误;根据面面平行的性质判断 D 错误.
【考点】直线、平面的位置关系.
5.【答案】D
【解析】因为
f
(x)


x

1 x

cos(x)


x

1 x
5/8
设平面 BB1C1C 的法向量为 n (x,y,z) ,
n
OB
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省各地2015届高三上最新考试数学理试题分类汇编
排列组合与二项式定理
一、二项式定理
1、(蚌埠市2015届高三第一次质量检测)5
23x x ⎛⎫+ ⎪⎝
⎭的展开式中的常数项为 2、(合肥市2015届高三第一次教学质量检测)64(1)(1)x x +-的展开式中x 的系数是
A 、3-
B 、3
C 、4-
D 、4 3、(淮北市、亳州市2015届高三第一次模拟)在52512⎪⎭⎫ ⎝
⎛-x x 的二项展开式中,x 的系数为 4、(江南十校2015届高三上学期期末大联考)已知二项展开式5(1)ax +=2345123451a x a x a x a x a x +++++,集合A ={80,40,32,10},若(1,2,3,4,5)i a A i ∈=,则a =_____
5、(宿州市2015届高三第一次教学质量检测)二项式26
2
()x x -的展开式中不含3x 项的系数之和为 (A )
161 (B )159 (C ) 161- (D )159-
6、(宣城市2015届高三上学期期末考试)若21()n x x -展开式中的所有二项式系数和为512,则该展开式中的常数项为___
7、(滁州市高级中学联谊会2015届高三上学期期末联考)61x x ⎛⎫+ ⎪⎝
⎭的展开式的常数项是 8、(皖江名校2015届高三1月联考)9()a x x +
的展开式中常数项为672,则展开式中3x 的系数
为____
参考答案
1、15
2、A
3、25
8-
4、2
5、A
6、84
7、15
8、18 【解析】二项式9()a x x +的展开式的通项为39992199()()r r r r r r r a T C x C a x x
---+==,令3902r -=,解得6r =,故639672C a =,解得2a =,令3932
r -=,解得8r =,所以展开式中3x 的系数为89218C ⨯=.
二、排列组合
1、(蚌埠市2015届高三第一次质量检测)甲、乙、丙三所学校的6名学生参加数学竞赛培训,其中有1名甲学校的学生,2名乙学校的学生,3名丙学校的学生,培训结束后要照相留念,要求同一学校的学生互不相邻,则不同的排法种数为
2、(淮北市、亳州市2015届高三第一次模拟)某项实验,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法共有()A.34种B.48种C.96种D.144种
3、(滁州市高级中学联谊会2015届高三上学期期末联考)将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()
A.18种B.24种C.36种D.72种
4、(合肥八中2015届高三第四次段考)在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,则实验顺序的编排方法共有种(请用数字作答)
参考答案
1、120
2、C
3、C
4、96。

相关文档
最新文档