模式识别中的图结构描述方法综述
模式识别的基本理论与方法
模式识别的基本理论与方法模式识别是人工智能和计算机科学领域中的一个重要分支,也是现代科学技术中广泛应用的一种技术手段。
它涉及到从大量的数据中自动识别出某种模式的过程,其应用领域非常广泛,如人脸识别、指纹识别、语音识别等领域。
一、模式识别的基本理论模式是事物或现象中简单重复的部分或整体,模式识别是通过对数据进行分类、聚类等方式分析、发现事物或现象中的规律性,并将其应用于实际生产和科学研究中。
模式识别的基本理论主要包括数据分析、统计学、人工神经网络及算法模型等。
1. 数据分析数据分析是模式识别的一个重要组成部分,它是指通过对数据进行收集、分析、处理和应用,从中发现有用的信息以及可用于决策或预测的模型。
数据分析可以采用统计学、机器学习、人工神经网络等方法,无论采用何种方法,数据分析的目的都是找到数据表达的规律和模式。
2. 统计学统计学是模式识别所使用的数学工具之一,主要通过收集和分析数据来提供决策支持和预测结果。
统计学的主要应用领域包括控制过程、质量控制、风险评估和数据挖掘等。
3. 人工神经网络人工神经网络是一种基于人类大脑神经结构的人工智能技术,它通过对输入的数据进行处理、学习,将数据转换为信号输出,以此模拟人脑的神经网络功能。
人工神经网络可以应用于图像识别、音频识别等领域。
4. 算法模型算法模型是模式识别的基本理论之一,它是指在进行数据分析和处理的时候所采用的算法模型。
常用的算法模型包括决策树、支持向量机、神经网络等。
二、模式识别的方法模式识别的方法主要包括监督学习、无监督学习和半监督学习。
1. 监督学习监督学习是指在训练模型时,数据集中已知了对应的标签或类别信息。
监督学习的主要步骤是将已知数据输入到模型中进行训练,训练好的模型之后可以将未知的数据进行分类或预测处理。
监督学习包括分类和回归两种类型。
2. 无监督学习无监督学习是指在训练模型时,数据集中没有对应的标签或类别信息。
无监督学习的主要步骤是将数据输入到模型中进行训练,训练好的模型之后可以从数据中提取出特定的模式、结构或规律。
模式识别详细PPT
无监督学习在模式识别中的应用
无监督学习是一种从无标签数据中提取有用信息的机器学习方法,在模式识别中主要用于聚类和降维 等任务。
无监督学习在模式识别中可以帮助发现数据中的内在结构和规律,例如在图像识别中可以通过聚类算 法将相似的图像分组,或者通过降维算法将高维图像数据降维到低维空间,便于后续的分类和识别。
通过专家知识和经验,手 动选择与目标任务相关的 特征。
自动特征选择
利用算法自动筛选出对目 标任务最相关的特征,提 高模型的泛化能力。
交互式特征选择
结合手动和自动特征选择 的优势,先通过自动方法 筛选出一组候选特征,再 由专家进行筛选和优化。
特征提取算法
主成分分析(PCA)
通过线性变换将原始特征转换为新的特征, 保留主要方差,降低数据维度。
将分类或离散型特征进行编码 ,如独热编码、标签编码等。
特征选择与降维
通过特征选择算法或矩阵分解 等技术,降低特征维度,提高 模型效率和泛化能力。
特征生成与转换
通过生成新的特征或对现有特 征进行组合、转换,丰富特征
表达,提高模型性能。
04
分类器设计
分类器选择
线性分类器
基于线性判别分析,适用于特征线性可 分的情况,如感知器、逻辑回归等。
结构模式识别
总结词
基于结构分析和语法理论的模式识别方法,通过分析输入数据的结构和语法进行分类和 识别。
详细描述
结构模式识别主要关注输入数据的结构和语法,通过分析数据中的结构和语法规则,将 输入数据归类到相应的类别中。这种方法在自然语言处理、化学分子结构解析等领域有
模式识别总结
模式识别压轴总结
另外,使用欧氏距离度量时,还要注意模式样本测量值的选取,应该是有效 反映类别属性特征(各类属性的代表应均衡) 。但马氏距离可解决不均衡(一个 多,一个少)的问题。例如,取 5 个样本,其中有 4 个反映对分类有意义的特征 A,只有 1 个对分类有意义的特征 B,欧氏距离的计算结果,则主要体现特征 A。
信息获取 预处理 特征提取与选择 聚类 结果解释
1.4 模式识别系统的构成 基于统计方法的模式识别系统是由数据获取, 预处理, 特征提取和选择, 分类决策构成
2
模式识别压轴总结
1.5 特征提取和特征选择 特征提取 (extraction):用映射(或变换)的方法把原始特征变换为较少 的新特征。 特征选择(selection) :从原始特征中挑选出一些最有代表性,分类性能最 好的特征 特征提取/选择的目的,就是要压缩模式的维数,使之便于处理。 特征提取往往以在分类中使用的某种判决规则为准则,所提取的特征使在 某种准则下的分类错误最小。为此,必须考虑特征之间的统计关系,选用 适当的变换,才能提取最有效的特征。 特征提取的分类准则:在该准则下,选择对分类贡献较大的特征,删除贡 献甚微的特征。 特征选择:从原始特征中挑选出一些最有代表性、分类性能最好的特征进 行分类。 从 D 个特征中选取 d 个,共 CdD 种组合。 - 典型的组合优化问题 特征选择的方法大体可分两大类: Filter 方法:根据独立于分类器的指标 J 来评价所选择的特征子集 S,然后 在所有可能的特征子集中搜索出使得 J 最大的特征子集作为最优特征子 集。不考虑所使用的学习算法。 Wrapper 方法:将特征选择和分类器结合在一起,即特征子集的好坏标准 是由分类器决定的,在学习过程中表现优异的的特征子集会被选中。
(模式识别)第六章结构模式识别
例1:G = (VN,VT, P, S)
– VN = {S, B, C} VT = {a, b, c} – P: S→aSBC, CB→BC,S→abC,bB→bb,
bC→bc, cC→cc
S →aSBC→aabCBC→abbBCC→aabbCC→aabbcC →aabbcc 由文法G产生的语言L(G)={anbncn|n≥0}
• 每个待识别的样本都可用若干基元按照一 定的文法组合成的句子表示
• 同一类别的样本可用相同的文法描述 • 当表示某个样本的一个句子中的每个基元
都被识别后,通过句法分析可判断出该句 子是否符合某一个类别的文法。
模式基元
• 信号基元 • 图像基元
– 链码和模板 – 曲线段
链码和模板
• Freeman链码和模板可以用来描述图形的边界和 骨架。
• 字符串的运算
– X=a1a2…am, Y=b1b2…bn, 则X+Y=a1a2…amb1b2…bn
– X+ λ= λ+X=X
• 字符串结构描述适合于串联结构
结构化描述之图形
• 图形G是一个有序对G={N,R},N表示分 析集合,R表示边长集合,通俗的说, N表示图中的顶点,R表示联接顶点的 弧
– 无约束型(0型)文法 – 前后文有关型(1型)文法 – 前后文无关型(2型)文法 – 正规(3型)文法
• L(G)表示由文法G产生的语言
无约束型(0型)文法
• P:α→β,其中α∈V+,β∈V*,α,β无约束
• 由0型文法产生的语言称为0型语言
• 例2:G = (VN,VT, P, S) – VN = {S, A, B},VT = {a, b, c} – P: S→aAbc, Ab→bA, Ac→Bbcc bB→Bb, aB→aaA, aB→λ
模式识别综述
模式识别综述随着现代科学技术的发展,特别是计算机技术的发展,对事物认识的要求越来越高,根据实际需求,形成了一种模拟人的各种识别能力(主要是视觉和听觉)和认识方法的学科,这个就是模式识别,它是属于一种自动判别和分类的理论。
这一理论孕育于20世纪60年代,随着科学技术的发展,特别是20世纪70年代遥感技术的发展和地球资源卫星的发射,人们通过遥感从卫星取得的巨量信息,需要进行空前规模的处理、识别和应用,在此推动下,模式识别技术便得以迅速发展[1]。
发展到现在,应用领域已经非常广阔,包括文本分类、语音识别、视频识别、信息检索和数据挖掘等。
模式识别技术在生物医学、航空航天、工业生产、交通安全等许多领域发挥着重要的作用[2]。
模式识别系统一个典型的模式识别系统如图1所示,由数据获取、预处理、特征提取、分类决策及分类器设计五部分组成。
一般分为上下两部分:上部分完成未知类别模式的分类;下半部分属于分类器设计的训练过程,利用样品进行训练,确定分类器的具体参数,完成分类器的设计。
而分类决策在识别过程中起作用,对待识别的样品进行分类决策[5]。
图1 模式识别系统及识别过程模式识别系统组成单元功能如下。
(1)数据获取用计算机可以运算的符号来表示所研究的对象,一般获取的数据类型有一下几种。
①二维图像:文字、指纹、地图、照片等。
②一维波形:脑电图、心电图、季节震动波形等。
③物理参量和逻辑值:体温、化验数据、参量正常与否的描述。
(2)预处理对输入测量仪器或其他因素所造成的退化现象进行复原、去噪声,提取有用信息。
(3)特征提取和选择对原始数据进行变换,得到最能反映分类本质的特征。
将维数较高的测量空间(原始数据组成的空间)转变为维数较低的特征空间(分类识别赖以进行的空间)。
(4)分类决策在特征空间中用模式识别方法把被识别对象归为某一类别。
(5)分类器设计基本做法是在样品训练基础上确定判别函数,改进判别函数和误差检验。
模式识别的方法1、统计决策方法统计决策方法是对模式的统计分类的方法,即结合统计概率论的贝叶斯决策系统进行模式识别的技术,又称为决策理论识别方法。
模式识别方法简述
XXX大学课程设计报告书课题名称模式识别姓名学号院、系、部专业指导教师xxxx年 xx 月 xx日模式识别方法简述摘要:模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的( 数值的、文字的和逻辑关系的) 信息进行处理和分析, 以对事物或现象进行描述、辨认、分类和解释的过程, 是信息科学和人工智能的重要组成部分。
模式识别研究主要集中在两方面,一是研究生物体( 包括人)是如何感知对象的,属于认识科学的范畴, 二是在给定的任务下, 如何用计算机实现模式识别的理论和方法.前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力, 已经取得了系统的研究成果。
关键词:模式识别;模式识别方法;统计模式识别;模板匹配;神经网络模式识别模式识别(Pattern Recognition)是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。
随着2 0 世纪4 0 年代计算机的出现以及5 0 年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动.(计算机)模式识别在2 0 世纪6 0 年代初迅速发展并成为一门新学科。
模式识别研究主要集中在两方面,一是研究生物体( 包括人)是如何感知对象的,属于认识科学的范畴, 二是在给定的任务下,如何用计算机实现模式识别的理论和方法.前者是生理学家、心理学家、生物学家和神经生理学家的研究内容, 后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力, 已经取得了系统的研究成果。
模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系.它与人工智能、图像处理的研究有交叉关系.例如自适应或自组织的模式识别系统包含了人工智能的学习机制;人工智能研究的景物理解、自然语言理解也包含模式识别问题.又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术.模式识别是一种借助计算机对信息进行处理、判别的分类过程。
模式识别简述_严红平
讲座模式识别简述A Brief Introduction to Pattern Recognition100083)严红平100080)潘春洪严红平女,博士后,中国地质大学(北京)信息工程学院副教授,主要研究方向为模式识别、计算机图形学、图像处理。
1 序言人们在观察事物或现象的时候,常常要根据一定需求寻找观察目标与其他事物或现象的相同或不同之处,并在此特定需求下将具有相同或相似之处的事物或现象组成一类。
例如字母“A”、“B”、“a”、“b”,如果从大小写上来分,会将“A”、“B”划分为一类,“a”、“b”划分为另一类;但是如果从英文字母发音上来分,则又将“A”、“a”划分为一类,而“B”、“b”则为另一类。
另外,不同人写的“A”、“B”、“a”、“b”都不同,但即使人们从未见过某个人写的“A”、“B”、“a”、“b”,或者这些字符出现在混乱的背景里,或部分被遮盖,人们也可以正确地区分出它们,并根据需要将它们进行准确归类,当然,前提条件是人们需要对“A”、“B”、“a”、“b”一般的书写格式、发音方式等有所了解。
人脑的这种思维能力就构成了“模式识别”的概念。
那么,什么是模式?什么是模式识别呢?2 模式和模式识别从以上的例子可以看出,对字符的准确识别首先需要在头脑中对相应字符有个准确的认识。
当人们看到某物或现象时,人们首先会收集该物体或现象的所有信息,然后将其行为特征与头脑中已有的相关信息相比较,如果找到一个相同或相似的匹配,人们就可以将该物体或现象识别出来。
因此,某物体或现象的相关信息,如空间信息、时间信息等,就构成了该物体或现象的模式。
Watanab e[16]定义模式“与混沌相对立,是一个可以命名的模糊定义的实体”。
比如,一个模式可以是指纹图像、手写草字、人脸、或语言符号等。
“广义的说,存在于时间和空间中可观察的事物,如果我们可以区别他们是否相同或相似,都可以称之为模式”[6]。
而将观察目标与已有模式相比较、配准,判断其类属的过程就是模式识别。
图像识别ppt课件
最小距离分类器(最简单) 基于相关的方法 ……
•16
•ppt课件.
数字图像处理
(1) 最小距离分类器
在欧氏空间计算未知量和每一个原型矢量间的距离。 例如,假设每个模式类的原型定义为该类模式的平均矢量:
则欧氏空m 间j 距N 1离j x 判wjx据j,—j—1计,2算, 距,W离测度为:
花瓣宽度(cm)
•ppt课件.
数字图像处理
花瓣长度(cm)
图11.4 Iris Versicolor (杂色的) 和Iris Setosa (多刺的)类的 最小距离分类器的决策边界。黑点和方块是平均值。
•18
边界方程: d12(x) = d1(x)-d2(x) = 2.8x1+1.0x2-8.9 = 0
•26
j 1
•ppt课件.
数字图像处理
(4) BAYES决策规则
每个对象应该归入产生条件风险最小的类别中。
用Rm(x1, x2, … , xn)表示相应于特征向量(x1, x2, … , xn)T的最小风险。
使用Bayes决策的分类器长期风险称为Bayes风险:
R R m ( x 1 ,x 2 , ,x n )p ( x 1 ,x 2 , ,x n ) d 1 d x 2 x d nx
•ppt课件.
数字图像处理
图11.5 美国Banker协会 的E-13B字体的字符 集和对应波形。
字符设计在97个字中以 便读取。每个字符 用含有精细磁性材 料的墨水印刷。
(设计者保证大的均值 分离和小的类分布 的一个示例)
•19
(2) 相关匹配
M×N大小的图像f(x,y)和大 小为J×K的子图w(x,y)之间
迅速增长。
模式识别的主要方法
模式识别是人工智能的一个重要应用领域,其方法主要包括以下几种:
统计模式识别:基于统计原理,利用计算机对样本进行分类。
主要方法有基于概率密度函数的方法和基于距离度量的方法。
结构模式识别:通过对基本单元(如字母、汉字笔画等)进行判断,是否符合某种规则来进行分类。
这种方法通常用于识别具有明显结构特征的文字、图像等。
模糊模式识别:利用模糊集合理论对图像进行分类。
这种方法能够处理图像中的模糊性和不确定性,提高分类的准确性。
人工神经网络:模拟人脑神经元的工作原理,通过训练和学习进行模式识别。
常见的神经网络模型有卷积神经网络(CNN)、循环神经网络(RNN)等。
支持向量机(SVM):通过找到能够将不同分类的样本点最大化分隔的决策边界来进行分类。
SVM在处理高维数据和解决非线性问题时具有较好的性能。
决策树:通过树形结构对特征进行选择和分类。
决策树可以直观地表示分类的决策过程,但易出现过拟合问题。
集成学习:通过构建多个弱分类器,并将其组合以获得更强的分类性能。
常见的集成学习方法有bagging、boosting等。
在实际应用中,根据具体任务的需求和数据特点,可以选择适合的模式识别方法。
同时,也可以结合多种方法进行综合分类,以提高分类的准确性和稳定性。
概述-模式识别的基本方法
三、模糊模式识别
模式描述方法: 模糊集合 A={(a,a), (b,b),... (n,n)}
模式判定: 是一种集合运算。用隶属度将模糊集合划分
为若干子集, m类就有m个子集,然后根据择近原 则模糊统计法、二元对比排序法、推理法、
模糊集运算规则、模糊矩阵 主要优点:
由于隶属度函数作为样本与模板间相似程度的度量, 故往往能反映整体的与主体的特征,从而允许样本有 相当程度的干扰与畸变。 主要缺点: 准确合理的隶属度函数往往难以建立,故限制了它的 应用。
10
四、人工神经网络法
模式描述方法: 以不同活跃度表示的输入节点集(神经元)
模式判定: 是一个非线性动态系统。通过对样本的学习
理论基础:概率论,数理统计
主要方法:线性、非线性分类、Bayes决策、聚类分析
主要优点:
1)比较成熟
2)能考虑干扰噪声等影响
3)识别模式基元能力强
主要缺点:
1)对结构复杂的模式抽取特征困难
2)不能反映模式的结构特征,难以描述模式的性质
3)难以从整体角度考虑识别问题
3
二、句法模式识别
模式描述方法: 符号串,树,图
概述-模式识别的基本方法
一、统计模式识别 二、句法模式识别 三、模糊模式识别 四、人工神经网络法 五、人工智能方法
1
一、统计模式识别
模式描述方法: 特征向量 x
( x1 ,
x2 ,,
xn
)
模式判定:
模式类用条件概率分布P(X/i)表示,m类就有 m个分布,然后判定未知模式属于哪一个分布。
2
一、统计模式识别
12
五、逻辑推理法(人工智能法)
模式描述方法: 字符串表示的事实
模式识别
b.文法
已经有了各种专门的语言来描述特定的模 式。例如描述中外文字字符、染色体图像、 火花室图像、二维数学化学结构、颈动脉 脉冲波形、二维飞机外形、口语单词、指 纹图像等。对于多维模式,用多维文法来 描述。其他如网状文法(web)、图文法、树 (web) 文法、形状文法等都已有了应用。有两个 因素决定了文法的选择,一个是所选基元 的情况,另一个是要权衡文法的描述能力 与文法分析的效率。
14
a.基元选择和基元抽取 通常需在基元抽取的复杂性和文法复杂性两者之 间折衷,也可以用曲线线段的长度和曲率等表示 曲线线段的特征。对于区域范围的模式,一个区 域内存在两个特征互异的子区域时称这个区域为 边缘,存在着小于一定距离的两个边缘时称这个 区域为线,边缘闭合时称为区。常用的特征可以 取灰度特征。也可以用形状和纹理测度来描述区 域。其他还有一些方法亦可用来描述图像基元, 例如灰度矩阵、灰度共生矩阵、梯度共生矩阵、 点测度等。
12
(2) 运用句法(或结构)方法的模式识别系 统的框图如图2所示:
图2 句法模式识别系统
13
图中的“基元”类似于统计方法中的特征。在句 法方法中。用一个“句子”表示一个模式。句子 构成语言语言具有特定的文法。文法就是用基元 构成模式的规则。文法推断是一个总结由基元构 成模式的规律性。从而得到规则即文法的过程, 类似于学习。句法分析则是分析输入模式是否符 合某种文法规则的过程。也就是分析能否用该文 法生成输入模式。分析结果为肯定则对输入模式 完成了分类。分析结果为否定,则拒绝输入模式。 也可以用关系图来表示模式结构信息。
生物认证技术是本世纪最受 关注的安全认证技术,它 发展是大势所趋。人们愿 意忘掉所有的密码、扔掉 所有的磁卡,凭借自身的 唯一性来标识身份与保密。 国际数据集团(I D C)预测:作为未来的 必然发展方向的移动电子商务基础核心技 术的生物识别技术在未来1 0年的时间里将 达到1 0 0美元的市场规模。
知识图谱表示学习方法综述
知识图谱表示学习方法综述知识图谱是一种用来表示和组织知识的图形化模型,能够捕捉到不同实体之间的关系和属性信息。
在知识图谱的表示学习中,旨在通过将实体和关系映射到低维向量空间,使得这些向量能够保留实体和关系之间的语义关联,从而实现对知识图谱的有效表达和理解。
本文将对知识图谱表示学习方法进行综述,包括传统方法和深度学习方法两个方面。
一、传统方法1. 符号化表示方法符号化表示方法将实体和关系表示为离散的符号,例如用实体的文本本身作为表示,用关系的名称作为表示等。
这种方法的优点是表示简单明确,易于解释,而缺点是无法处理语义上的相似性。
2. 矩阵分解方法矩阵分解方法是一种基于矩阵分解的技术,通过将实体和关系的表示分解为两个低维矩阵的乘积,从而捕捉到它们之间的相关性和相互关系。
常用的矩阵分解方法包括SVD、PCA和NMF等。
3. 图模型方法图模型方法采用图论的思想,将实体和关系表示为图中的节点和边,在图上进行推理和计算。
其中,常见的算法包括PageRank、HITS和路径算法等。
二、深度学习方法1. 基于神经网络的方法基于神经网络的方法是近年来在知识图谱表示学习中得到广泛应用的方法,它能够通过多层神经网络模型来学习实体和关系之间的表示。
常见的神经网络模型包括深度自编码器、卷积神经网络和循环神经网络等。
2. 图卷积神经网络方法图卷积神经网络方法是一种专门针对图结构数据进行表示学习的方法,通过定义图上的卷积操作和汇聚操作,实现对实体和关系的学习和表示。
常见的图卷积神经网络模型包括GCN、GraphSAGE和GAT 等。
3. 注意力机制方法注意力机制方法通过引入注意力机制,能够解决在知识图谱表示学习中的信息不平衡和重要性排序等问题。
常见的注意力机制模型包括Transformer、BERT和GPT等。
三、方法比较和发展趋势传统方法相对简单直观,但受限于表示能力和学习能力,难以处理大规模复杂的知识图谱数据。
而深度学习方法则能够通过学习端到端的表示学习模型,更好地表达和理解知识图谱中的实体和关系。
模式识别文献综述
模式识别基础概念文献综述一.前言模式识别诞生于20世纪20年代。
随着20世纪40年代计算机的出现,20世纪50年代人工智能的兴起,模式识别在20世纪60年代迅速发展成为一门学科。
在20世纪60年代以前,模式识别主要限于统计学领域的理论研究,计算机的出现增加了对模式识别实际应用的需求,也推动了模式识别理论的发展。
经过几十年的研究,取得了丰硕的成果,已经形成了一个比较完善的理论体系,主要包括统计模式识别、结构模式识别、模糊模式识别、神经网络模式识别和多分类器融合等研究内容。
模式识别就是研究用计算机实现人类的模式识别能力的一门学科,目的是利用计算机将对象进行分类。
这些对象与应用领域有关,它们可以是图像、信号,或者任何可测量且需要分类的对象,对象的专业术语就是模式(pattern)。
按照广义的定义,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以成为模式。
二.模式识别基本概念<一>.模式识别系统模式识别的本质是根据模式的特征表达和模式类的划分方法,利用计算机将模式判属特定的类。
因此,模式识别需要解决五个问题:模式的数字化表达、模式特性的选择、特征表达方法的确定、模式类的表达和判决方法的确定。
一般地,模式识别系统由信息获取、预处理、特征提取和选择、分类判决等4部分组成,如图1-1所示。
观察对象→→→→→→→→→类→类别号信息获取预处理特征提取和选择分类判决图1-1模式识别系统的组成框图<二>.线性分类器对一个判别函数来说,应该被确定的是两个内容:其一为方程的形式;其二为方程所带的系数。
对于线性判别函数来说方程的形式是线性的,方程的维数为特征向量的维数,方程组的数量则决定于待判别对象的类数。
对M类问题就应该有M个线性判别函数;对两类问题如果采用“+”“-”判别,则判别函数可以只有一个。
既然方程组的数量、维数和形式已定,则对判别函数的设计就是确定函数的各系数,也就是线性方程的各权值。
模式识别理论及其应用综述
( 签训 练样 本) 监 督学 习( 签训 练样 标 对非 未标
本) ,监督学 习和非监督学习又可分为参数
模式识 别理 论
及 其 应 用 综述
熊超 浙江理工大学公共 计算机教 学部
学工作者近 几十年来的努 力,已经取得 了
模 式识 删技 术近 年 来得 到 了迅 速 的 发展 。 本文托其理论基础 与应 并作 了详细的介鳝 与 l
模 式识 剐 ;应 舶 ; 发_ 状 况 ;综 述 晨
统计模式识别方法和结构( 句法) 模式识别方 法 。统计 模式 识 别是 对 模 式 的 统 计 分 类 方 法 ,即结合统计概率论 的贝叶斯决策 系统 进行模式识别的技 术 ,又称为决 策理论识 别方 法 。利 用 模 式 与 子 模式 分 层 结构 的树
状 信 息 所 完 成 的 模 式识 别 工 作 ,就 是 结 构 模 式 识 别或 句 法 模式 识 别 。 13 .模式 识 别系统 不论 是 以 哪 种 模式 识 别方 法 为 基 础 的 模 式 识 别 系统 , 本 上都 是 由两个 过程 组 成 基 的,即设计与实现。设计是指用一定数量的 样本 ( 叫做 训练 集或 学 习集 )进 行 分类 器的 设 计 。实现 是指 用 所设计 的 分 类器对 待识 别 的样 本进 行分 类决 策 。基于 统计 方 法的 模式
征提取 , 选择模块找到合适的特征来表示输 人模 式 ,分类 器被 训练 分割 特 征空 间 。在 分 类模式 中, 被训练的分类器根据测量的特征
将 输 入模 式分 配 到某 个 模式 类 。 统 计 模式 识 别 的 决 策过 程 可 以总 结如
识 别 系统 如 图所 示 :
现代统计学 习理论—— V C理论的建立 ,该 理 论不 仅在 严格 的数学 基 础上 圆满地 回答 了
模式识别的概念及主要方法。
模式识别的概念及主要方法
模式识别是一个人工智能和机器学习的分支,主要研究如何让计算机从数据中“学习”出有用的信息,并能够进行分类和识别模式。
模式识别在许多领域都有应用,如语音识别、图像识别、自然语言处理等。
模式识别的基本方法包括:
1.监督学习:这种方法需要大量的标注数据,通过训练,让计算机学会如何将输入的数据映射到预定的类别中。
例如,在图像识别中,监督学习可以训练计算机识别出猫、狗等类别的图片。
2.无监督学习:与监督学习不同,无监督学习不需要标注数据,而是让计算机从数据中找出潜在的结构或模式。
例如,在聚类分析中,无监督学习可以将数据按照它们的相似性程度进行分组。
3.半监督学习:这种方法结合了监督学习和无监督学习的特点,通过利用部分标注的数据和大量的未标注数据来提高学习的效果。
4.深度学习:这是模式识别中一种新兴的方法,通过构建具有许多层的神经网络来学习数据的复杂特征。
深度学习已经在语音识别、图像识别、自然语言处理等领域取得了显著的成果。
5.表征学习:在这种方法中,计算机试图从原始数据中学习到有用的表征或特征,这些特征可以帮助计算机更好地进行分类或识别。
例如,在计算机视觉中,卷积神经网络可以从原始图像中提取出有用的特征,从而识别出不同的物体。
以上是模式识别的基本概念和主要方法,随着技术的不断发展,模式识别的应用领域也将不断扩大。
图像识别方法
图像识别方法模式识别的主要方法有统计决策方法、结构模式识别方法、模糊模式识别方法、人工神经网络模式识别和支持向量机。
1统计决策识别方法统计决策法以概率论和数理统计为基础,以决策函数为理论,利用它对模式向量进行分类识别,是以定时描述(如统计纹理)为基础的。
基本思想是将特征提取阶段得到的特征向量定义在一个特征空间中,这个空间包含了所有的特征矢量。
不同的特征向量,或者说不同类别的对象,都对应于此空间中的一点。
在分类阶段,则利用统计决策的原理对特征空间进行划分,从而达到识别不同特征对象的目的。
统计识别中应用的统计决策分类理论相对比较成熟,研究的重点是特征提取。
1.1贝叶斯决策方法1.2 几何分类法(判别函数法)(1)线性可分的几何分类法(2)非线性可分的几何分类法1.3监督参数统计法(1)KNN及其衍生法(2)Fisher判别分析法1.4 非监督参数统计法(1)基于概率密度函数估计的直接方法(2)基于样本空间相似度量的间接聚类方法1.5聚类分析法对于位置类别的样本或变量,依据相应的定义把样本分为若干类,分类过程是一个逐步减少类别的过程,在每一个聚类层次,必须满足“类内差异小,类间差异大”的原则,直至归为一类。
通过聚类分析,可根据已知的数据,计算各个观察个体或变量之间亲疏关系的统计量(距离或者相关系数)。
根据某种准则(最短距离法、最长距离法、中间距离法、重心法),使同一类内的差别较小,而类与类之间的差别较大,最终将观察个体或变量分为若干类。
评价聚类效果的指标一般是方差,距离小的样品所组成的类方差较小。
2 结构模式识别结构模式识别是对统计识别方法的补充,用模式的基本组成元素(基元)及其相互间的结构关系对模式进行描述和识别的方法。
对模式的识别常以句法分析的方式进行,即依据给定的一组句法规则来剖析模式的结构。
当模式中每一个基元被辨认后,识别过程就可通过执行语法分析来实现。
因此,结构模式识别也常称为句法模式识别。
模式识别综述
模式识别综述
刘迪;李耀峰
【期刊名称】《黑龙江科技信息》
【年(卷),期】2012(000)028
【摘要】模式识别(Pattern Recognition)又称图形识别,就是通过计算机用数学技术方法来研究模式的自动处理和判读。
通常把环境与客体统称为“模式”。
随着计算机技术的发展,人类有可能研究复杂的信息处理过程。
信息处理过程的一个重要形式是生命体对环境及客体的识别。
对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。
这是模式识别的两个重要方面。
模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。
本文主要阐述了模式识别的基本原理、方法及各种技术,以及在相关领域的应用,并且对模式识别领域的前景做出展望。
【总页数】1页(P120-120)
【作者】刘迪;李耀峰
【作者单位】东北电力大学信息工程学院,吉林吉林132012;吉林供电公司,吉林吉
林132012
【正文语种】中文
【中图分类】TP391.4
【相关文献】
1.基于模式识别的电力系统暂态稳定评估综述 [J], 王志刚
2.轨道角动量模式识别方法综述 [J], 冯文艳;付栋之;王云龙;张沛
3.多功能雷达工作模式识别方法综述 [J], 阳榴;朱卫纲;吕守业;赵宏宇;赫岩
4.基于模式识别的电力系统暂态稳定评估综述 [J], 王志刚[1]
5.DNA甲基化差异模式识别方法综述 [J], 赵倩;张雪;张彦;林正奎;孙野青
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘
要: 从 概率图 、 组合 图 、 代数 图和几何 图等模型角度综述模式 识别 中图结构 的描 述. 分别讲述每一类 图模
型 的图结构构建形式和计算方式 , 回顾 其起源 , 归 纳其历史 发展过 程 , 分 析其研究 现状. 其 中, 着重 论述各类
图模型描述的不同特点和潜在关系 , 剖 析 未 来 发 展 方 向. 引 用 基 于 图 模 型 的模 式 识 别 发 展 史 上 具 有 代 表 性 的
Vo 1 . 4 1 No . 1
第4 1 卷第 1 期
d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 0 — 2 1 6 2 . 2 0 1 7 . 0 1 . 0 0 2
模式识别中的图结构描述方法综述
任 鹏
( 中国石油大学 ( 华 东)信 息与控制工程学 院 , 山东 青岛 2 6 6 5 8 0 )
Ab s t r a c t :W e r e v i e we d g r a p h s t r u c t u r e d e s c r i p t i o n s f r o m f o u r p e r s p e c t i v e s , i . e ., p r o b a b i l i s t i c g r a p h i c a l mo d e l s ,c o mb i n a t o r i a l g r a p h mo d e l s ,a l g e b r a i c g r a p h mo d e l s a n d g e o me t r i c g r a p h mo d e l s .Fo r e a c h t y p e o f g r a p h mo d e l s ,we f i r s t d e s c r i b e d t h e i r c o n s t r u c t i o n
i t s o r i g i n t o t h e s t a t e o f t h e a r t ,a n d p r e d i c t e d i t s p o s s i b l e f u t u r e d i r e c t i o n .We r e f e r e n c e d
2 0 1 7年 1 月
安徽大学学报 ( 自然 科 学 版 )
J o u r n a l o f An h u i Un i v e r s i t y( Na t u r a l S c i e n c e Ed i t i o n )
J a n u a r y 2 0 1 7
论著 , 介绍 引领方 向的研究学者 , 旨在帮助读 者理 清图模 型的发展脉络 , 把握其前沿动态. 关键词 : 图结构描述 ; 模式识别 ; 概率 图模型 ; 组合 图模 型 ; 代数 图模型 ; 几何 图模 型
中 图分 类 号 : TP 2 7 4 ; G 4 8 4 文 献标 志 码 : A 文章编号 : 1 0 0 0 — 2 1 6 2 ( 2 0 1 7 ) 0 1 — 0 0 0 3 — 0 7
a n d c o mp u t a t i o n s c h e me s .W e t h e n p r e s e n t e d t h e d e v e l o p me n t p r o g r e s s o f e a c h mo d e l f r o m
c o mb i n a t o r i a l g r a p h mo d e l s ;a l g e b r a i c g r a p h mo d e l s ;g e o me t r i c g r a p h mo d e l s
f o l l o w t h e s t a t e o f t h e a r t g r a p h mo d e l s i n p a t t e r n r e c o g n i t i o n . Ke y wo r d s :g r a p h s t r u c t u r e d e s c r i p t i o n s ;p a t t e r n r e c o g n i t i o n;p r o b a b i l i s t i c g r a p h i c a l mo d e l s ;
l a n d ma r k wo r k s a n d p i o n e e r i n g r e s e a r c h e r s i n t h e l i t e r a t u r e s u c h t h a t r e a d e r s ma y e a s i l y
A s u r v e y o f g r a p h s t r u c t u r e d e s c r i pt i o n s i n pa t t e r n r e c o g ni t i C o l l e g e o f I n f o r ma t i o n a n d C o n t r o l E n g i n e e in r g ,Ch i n a Un i v e r s i t y o f P e t r o l e u m( E a s t Ch i n a ) ,Qi n g d a o 2 6 6 5 8 0,C h i n a )