3.1存贮模型
存贮模型
存储模型物资的存储是经济生活中的常见现象。
例如,为了保证正常生产,工厂不可避免地要存储一些原材料和半成品。
当销售不畅时,工厂也会形成一定的产成品存储(积压);商品流通企业为了其经营活动,必须购进商品存储起来;但对企业来说,如果物资存储过多,不但占用流动资金,而且还占用仓储空间,增加保管成本,甚至还会因库存时间延长而使存货出现变质和失效带来损失。
反之,若物资存储过少,企业就会由于缺少原材料而被迫停产,或失去销售机会而减少利润,或由于缺货需要临时增加人力和成本。
因此寻求合理的存储量、订货量和订货时间是存储论研究的重要内容。
假定在单位时间内(或称计划期)的需求量为已知常数,货物供应速率、订货费、缺货费已知,其订货策略是将单位时间分成n等分的时间区间T,在每个区间开始订购或生产货物量,形成循环存储策略。
存储问题是确定何时需要补充和确定应当补充多少量,因为需求率是常数,可采用当库存水平下降到某一订购点时订购固定批量的策略。
为此先要建立一个数学模型,将目标函数通过决策变量表示出来,然后确定订购量和订购间隔时间,使费用最小。
1 不允许缺货的经济批量模型为进行存储状态分析,特作如下假定:①需求是连续均匀的,设需求速率为D;②当存储量降至零时,可立即补充,不会造成缺货(即认为供应速率为无穷);③每次订货费为a ,单位货物的存储费为b ,都为常数;④每次订货量都相同,均为Q 。
存储状态的变化图图1设)(t I 表示一个运行周期开始后经时间t 后的库存量,T 为一个运行周期,∈--=t nT t D Q t I ),()([ nT , T n )1(+),Λ,1,0=n在一个周期`T 内的平均库存量为[]Q DtQt dt t I T TT 21022101)(=-=⎰上述公式也可由求三角型面积得到。
由于DT Q =,所以一个周期长度为=T D Q 。
设货物的单价或生产成本为p ,所以一个运行周期内(订货一次)货物存储费用为a ,货物的买价为Qp ,储存费用为'21Qb ('b 为一个周期内单位货物的储存费)。
数学模型课后解答
《数学模型》作业答案第二章(1)(2012年12月21日)1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑N=10的分配方案,,432 ,333 ,235321===p p p ∑==31.1000i ip方法一(按比例分配) ,35.23111==∑=i ipNp q ,33.33122==∑=i ipNp q 32.43133==∑=i ipNp q分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为:4 ,3 ,2321===n n n第10个席位:计算Q 值为,17.92043223521=⨯=Q ,75.92404333322=⨯=Q 2.93315443223=⨯=Q3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).iin p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i ii n p尽量接近.再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得⎰⎰+=ntdn wkn r k vdt 0)(2π)22 2n wk k(r n πvt +=∴ .2 22n vk w n v rk t ππ+=∴《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:kr rT c T c T C ++=2)(212221r c Tc dT dC+-= 令0=dTdC, 解得 r c c T 21*2= 由rT Q = , 得212c rc rT Q ==**与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:⎥⎦⎤⎢⎣⎡+-++=kQ Q rT r c r Q c c T Q T C 23221)(221),(2223322221222TkQ rT Q c r c rT Q c T c T C--+--=∂∂Tk rT Q c c rT Qc Q C ++-=∂∂332 令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00QCTC, 得到驻点:⎪⎪⎩⎪⎪⎨⎧+-+-+=-+=**323222233232132233221)(22c c krc c c r k c c c c c r c Q c c k c c c rc c T与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为 ∑⎰=→∆⋅-==∆i Ti i t TT r k c dt t g c t g c 1022022)()()(limξ又 )()(00T T r T r k -=- ∴ T k r T =0 , ∴ 贮存费变为 kT T r k r c 2)(2⋅-= 于是不允许缺货的情况下,生产销售的总费用(单位时间内)为kTr k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=k r k r c Tc dT dC 2)(221-+-=. 0=dTdC令, 得)(221r k r c kc T -=*易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况.∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的. 总费用函数()xc b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b kc b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t TTt <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值. 解:按分段价格,单位时间内的销售量为⎪⎩⎪⎨⎧<<-<<-=T t T bp a T t bp a x 2,20,21又 t q t q β+=0)(.于是总利润为[][]⎰⎰--+--=22221121)()()()(),(TTT dt bp a t q p dt bp a t q p p p=22)(022)(20222011T Tt t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+---)(2)822(12011bp a TT T q T p b p -+---=∂∂β )(2)8322(22022bp a TT t q T p b p -+---=∂∂β 0,021=∂∂=∂∂p p 令, 得到最优价格为: ⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=)43(21)4(210201T q b a b p T q b a b p ββ 在销售期T 内的总销量为⎰⎰+-=-+-=20221210)(2)()(TTT p p bTaT dt bp a dt bp a Q 于是得到如下极值问题:)8322)(()822)((),(max 2022201121T t q T p bp a T T q T p bp a p p ββ---+---=t s . 021)(2Q p p bTaT =+-利用拉格朗日乘数法,解得:⎪⎩⎪⎨⎧+-=--=880201TbT Q b a p T bT Q b a p ββ 即为21,p p 的最优值.第三章3(2008年10月21日)6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为0.18元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元);每天每吨角钢的贮存费2c =0.18(元).又现在的订货周期T 0=30(天) 根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++=令0=dT dC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 又k T C 10035095025003)(*+⨯+⨯==300+100k k T C 100309302500)(0+⨯+==353.33+100k )(0T C -)(*T C =(353.33+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克,B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为:max S=20x+30ys.t. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =702l925002+-=TdT dC以及x=0,y=0组成的凸四边形区域.直线l :20x+30y=c 在可行域内 平行移动.易知:当l 过1l 与2l 的交点时, x S 取最大值.由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 max S =2053010⨯+⨯=350(元)2. 某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为211020 max x x z +=⎪⎩⎪⎨⎧∈≥≤+≤+Z y x x x x x x x st ,,0,13522445212121这是一个整线性规划问题. 用图解法求解. 可行域为:由直线2445:211=+x x l1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.2ll1x1l2x易知:当l 过l 1与l2的交点时,z 取最大值由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为:max S=3x +2ys.t. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .max S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于5.1节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s(2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成⎪⎩⎪⎨⎧-=-=i s dtds s i dt diλσμ)1(.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dtdsi s dt ds λ.)(∞s t s 单调减少至故(1).s s(t) .s(t) .100≤∴单调减少由若σs;)(,0 .01,10单调增加时当t i dtdis s s ∴-σσ.)(,0.01,1单调减少时当t i dtdis s ∴-σσ .0)(lim.0)18(t ==∞→∞t i i 即式知又由书上.)( .0,1m i t i dtdis 达到最大值时当∴==σ(2)().0 0.1-s,1,10 dtdit s s σσσ从而则若 ()().0.0lim ==∴∞∞→i t i t i t 即单调减少且4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a Aab ab b aA E ±=∴=-==-1,22 .0λλλλλ ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay a k t y t x =-=-===时,当即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 第五章2(2008年11月14日)6. 模仿5.4节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.解: 设给药速率为(),0t f ()()()()().,,0/t VC t x t f t kx t x k ==+则排除速率为常数(1)快速静脉注射: 设给药量为,0D 则()()().,0,0000t k e VDt C V D C t f -===解得 (2)恒速静脉滴注(持续时间为τ): 设滴注速率为()(),00,000==C k t f k ,则解得()()()()⎪⎩⎪⎨⎧-≤≤-=----τττ t e e Vkk t e Vkk t C t k kt kt,10 ,10(3) 口服或肌肉注射: ()(),解得)式节(见134.5010010tk eD k t f -=()()()⎪⎪⎩⎪⎪⎨⎧=≠--=---010101001 ,,01k k te VkD k k e e k k V D k t C kt t k kt 3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在5.5节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mml mg M νβ 求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e eba v aw Q v bl a vl β()10/10==l M w 其中,()()97628571.0502002.008.0212===⨯----ee Q Q vl b β(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbl a e b a v aw Q '103‘ 只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--vbl a v ble e b a v aw Q 1'21'04 .256531719.1110096.0032.0012.004.0508002.03.0508002.05010002.03.05010002.043111'1'≈--=--=--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⨯⨯⨯⨯⨯⨯--e e e e e e e e e e e e e e e e Q Q v abl v bl v abl v bl v bl a v bl v bl a vbl 44.235,84.29543≈≈ QQ4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ab ab b aA E ±=∴=-==-1,22 .0λλλλλ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay a k t y t x =-=-===时,当即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即《数学模型》作业解答第六章(2008年11月20日)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h Nxrx x F --=)1()((1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ ,(1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点;②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dt dx .∴0x 不稳定; ③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22N x > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为⎩⎨⎧=0)(..max x F t s h 即 )1(max N xrx h -=,易得 2*0N x = 此时 4rN h =, 但2*0N x =这个平衡点不稳定.这是与6.1节的产量模型不同之处.要获得最大持续产量,应使渔场鱼量2Nx >,且尽量接近2N ,但不能等于2N .2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln '=.其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为()Ex xNrx dt t dx -=ln 记 Ex xNrx x F -=ln )(① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.②最大持续产量的数学模型为:⎪⎩⎪⎨⎧≠=-=.0,0ln ..max x Ex x N rx t s Ex h 由前面的结果可得 rE ENeh -=r Er Ee r EN Ne dE dh ---=,令.0=dEdh 得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x . 解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点;Ex()x f② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrx r N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定; ③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max N x rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定.要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.《数学模型》第七章作业(2008年12月4日)1.对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11k k k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2. 对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为: ⎪⎩⎪⎨⎧=+=+++)()2(111k k k k k y h x x x f y 在),(000y x P 点附近用直线来近似曲线h f ,,得到 ⎪⎩⎪⎨⎧>-=->-+-=-+++)2( 0, )()1( 0),2(0010101 ββααy y x x x x x y y k k k k k 由(2)得 )3( )(0102 y y x x k k -=-++β(1)代入(3)得 )2(0102x x x x x k k k -+-=-++αβ 0012222 x x x x x k k k αβαβαβ+=++∴++对应齐次方程的特征方程为 02 2=++αβαβλλ特征根为48)(22,1αβαβαβλ-±-= 当8≥αβ时,则有特征根在单位圆外,设8<αβ,则 248)()4(2222,1αβαβαβαβλ=+-+= 212,1<⇔<∴αβλ 即平衡稳定的条件为2 <αβ与207P 的结果一致.(2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为: ⎪⎩⎪⎨⎧>-+=->-+-=--+++)5( 0 , )2()4( 0),2(01010101 ββααy y y x x x x x y y k k k k k k 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++将(4)代入(6),得 ⎥⎦⎤⎢⎣⎡-+--+-=-++++)2()2()(20101203x x x x x x x x k k k k k ααβ 001234424 x x x x x x k k k k αβαβαβαβ+=+++∴+++对应齐次方程的特征方程为(7) 024 23 =+++αβαβλαβλλ代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧-==++-=++424321133221321αβλλλαβλλλλλλαβλλλ 对(7)作变换:,12αβμλ-= 则 ,03=++q p μμ其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p 用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w p q q p q q μμμ 其中,231i w +-= 求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3)上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程.为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-= ---------------(4) 当αβ 8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11k k k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)2(11k k k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y k k k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3)(1)代入(3),可得)2(0102x x x x x k k k -+-=-++αβ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4)上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程.为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-= ---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.《数学模型》作业解答第八章(2008年12月9日)1. 证明8.1节层次分析模型中定义的n 阶一致阵A 有下列性质:(1) A 的秩为1,唯一非零特征根为n ;(2) A 的任一列向量都是对应于n 的特征向量.证明: (1)由一致阵的定义知:A 满足ik jk ij a a a =⋅,n k j i ,,2,1,, =于是对于任意两列j i ,,有ij jkik a a a =,()n k ,,2,1 =.即i 列与j 列对应分量成比例. 从而对A 作初等行变换可得:∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−00000011211 n b b b A 初等行变换 B 这里0≠B .()1=∴B 秩,从而秩()1=A再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P ,使B PA =,于是∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==--0000001121111 n c c c BP PAP C 易知C 的特征根为0,,0,11 c (只有一个非零特征根).又A ~C ,A ∴与C 有相同的特征根,从而A 的非零特征根为11c ,又 对于任意矩阵有()n a a a A Tr nn n =+++=+++==+++111221121 λλλ.故A 的唯一非零特征根为n .(2)对于A 的任一列向量()Tnk k k a a a ,,,21 ,()n k ,,2,1 = 有()()T nk k k nk k k n j nk n j k n j k n j jk nj n j jk j n j jk j T nk k k a a a n na na na a a a a a a a a a a a a A ,,,,,,2121112111121121 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑====== A ∴的任一列向量()T nk k k a a a ,,,21 都是对应于n 的特征向量.7. 右下图是5位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出5位选手的名次.解:这个5阶竞赛图是一个5阶有向Hamilton 图.其一个有向Hamilton 圈为332541→→→→→.所以此竞赛图是双向连通的.32154→→→→13542→→→→42135→→→→→→→41325→等都是完全路径.此竞赛图的邻接矩阵为 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0011110100000010110001010A 令()T e 1,1,1,1,1=,各级得分向量为()()T Ae S 3,2,1,2,21==, ()()()T AS S 5,4,2,3,412==,()()()T AS S 9,7,4,6,723== , ()()()T AS S 17,13,7,11,1334==由此得名次为5,1(4),2,3 (选手1和4名次相同).注:给5位网球选手排名次也可由计算A 的最大特征根λ和对应特征向量S 得到:8393.1=λ,()T S 2769.0,2137.0,1162.0,1794.0,2137.0= 数学模型作业(12月16日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层准则层方案层2.简述层次分析法的基本步骤. 问对于一个即将毕业的大学生选择工作岗位的决策问题要分成哪3个层次?具体内容分别是什么?答:层次分析法的基本步骤为:(1).建立层次结构模型;(2).构造成对比较阵;(3).计算权向量并做一致性检验;(4).计算组合权向量并做组合一致性检验. 对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪3个层次?试给出一致性指标的定义以及n 阶正负反阵A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这3个层次; 一致性指标的定义为:1--=n nCI λ.n 阶正互反阵A 是一致阵的充要条件为:A 的最大特征根λ=n .第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=n m n m D 21112 当mn 2较小,1 n 时,有()m n m n n m n m D 41181211122--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--≈ E D -=1 , m n E 4≈② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-; 记m q m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为n q ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为()1122--+=⋅+⋅n n n n npq q m npq m q m于是带走产品的平均数是 ()122-+-n n npq q m m ,未带走产品的平均数是 ()()122-+--n n npqq m m n ) ∴此时传送带效率公式为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--=+-=--1111112222'n n n n m m n m n m n n p q q m m D ③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- ()()2112211111mn n m n m n --+--≈⎪⎭⎫ ⎝⎛-- ∴ ()()26211'm n n D ---≈ 当1 n 时,并令'1'D E -=,则 226'mn E ≈ ④ 两种办法的比较:由上知:m n E 4≈,226'mn E ≈ ∴ m n E E 32/'=,当n m 时,132 mn , ∴ E E '. 所以第二种办法比第一种办法好.《数学模型》作业解答第九章(2008年12月23日)一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)?解:设每天订购n 百份纸,则收益函数为⎩⎨⎧≤--+=n r n n r r n r r f 7))(4(7)( 收益的期望值为G(n) = ∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出 n =5,4,3,2,1,0时的收益期望值.G(0)=0;G(1)=4-×0.05+7×0.1+7×(0.25+0.35+0.15+0.1)=6.45;G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=;G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14=G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10= 当报童每天订300份时,收益的期望值最大.数模复习资料第一章1. 原型与模型原型就是实际对象.模型就是原型的替代物.所谓模型, 按北京师范大学刘来福教授的观点:模型就是人们为一定的目的对原型进行的一个抽象.如航空模型、城市交通模型等.模型⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧数学模型如地图、电路图符号模型如某一操作思维模型抽象模型如某一试验装置物理模型如玩具、照片等直观模型形象模型2. 数学模型对某一实际问题应用数学语言和方法,通过抽象、简化、假设等对这一实际问题近似刻划所得的数学结构,称为此实际问题的一个数学模型. 例如力学中著名的牛顿第二定律使用公式22dt xd mF =来描述受力物体的运动规律就是一个成功的数学模型.或又如描述人口()t N 随时间t 自由增长过程的微分方程()()t rN dtt dN =. 3. 数学建模所谓数学建模是指根据需要针对实际问题组建数学模型的过程.更具体地说,数学建模是指对于现实世界的某一特定系统或特定问题,为了一个特定的目的,运用数学的语言和方法,通过抽象和简化,建立一个近似描述这个系统或问题的数学结构(数学模型),运用适当的数学工具以及计算机技术来解模型,最后将其结果接受实际的检验,并反复修改和完善.数学建模过程流程图为:4.数学建模的步骤依次为:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用 5.数学模型的分类数学模型可以按照不同的方式分类,常见的有:a. 按模型的应用领域分类 数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧再生资源利用模型水资源模型城镇规划模型生态模型环境模型(污染模型)交通模型人口模型b. 按建模的数学方法分类数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧规划论模型概率模型组合数学模型图论模型微分方程模型几何模型初等数学模型c. 按建模目的来分类 数学模型 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧控制模型决策模型优化模型预报模型分析模型描述模型d.层次分析法的基本步骤:1.建立层次结构模型2.构造成对比较阵3.计算权向量并作一致性检验4.计算组合权向量并作组合一致性检验e.n 阶正互反正A 是一致阵的充要条件为A 的最大特征值为nf.正互反阵最大特征根和特征向量的实用算法:幂法、和法、根法4.在“椅子摆放问题”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余条件不变.试构造模型并求解.解:设椅子四脚连线呈长方形ABCD. AB 与CD 的对称轴为x 轴,用中心点的转角θ表示椅子的位置.将相邻两脚A 、B 与地面距离之和记为)(θf ;C 、D 与地面距离之和记为)(θg .并旋转0180.于是,设,0)0(,0)0(=g f 就得到()()0,0=ππf g .数学模型:设()()θθg f 、是[]π2,0上θ的非负连续函数.若[]πθ2,0∈∀,有。
(完整版)数学模型姜启源-第三章(第五版)
平均每天费用950元 • 50天生产一次,每次5000件, 贮存费4900+4800+…+100 =122500元,准备费5000元,总计127500元.
平均每天费用2550元
c2 t1x x
c3 x
其中 c1,c2,c3, t1, ,为已知参数
模型求解 求 x使 C(x)最小
dC 0 dx
x
c t 2 2c t
11
21
2c 2
3
结果解释 x c1t12 2c2t1
2c32
dB
dt
/ 是火势不继续蔓延的最少队员数
x
x 0.45
0.4 0.35
0.3 0.25
0.2 0.15
0.1 0.05
0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 a
a
1
空杯质量w2取决于材料 (纸杯、塑料杯、玻璃杯).
设w2=150g 半升啤酒杯w1=500g a=0.3 x=0.3245
一杯啤酒约剩1/3时重心最低,最不容易倾倒!
问题分析与模型假设 x
w1 ~ 啤酒 (满杯) 质量
1
w2 ~空杯侧壁质量, w3 ~空杯底面质量
啤酒杯重心s(x)由啤酒重心和空杯 重心合成.
• s2=1/2 •xs(x) 液面 • s1=x/2 0
液面高度x时啤酒质量w1x, 啤酒重心位置 s1=x/2
忽略空杯底面质量w3 空杯重心位置 s2=1/2
数学模型-第03章(第五版)
存在恰当的x,使f1(x), f2(x)之和最小.
分析
• 关键是对B(t)作出合理的简化假设.
失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 画出时刻t森林烧毁面积B(t)的大致图形.
B
分析B(t)比较困难, 转而讨论单位时间 烧毁面积 dB/dt (森林烧毁的速度).
第三章
材料强度最大
简单优化模型
利润最高 风险最小
优化——工程技术、经济管理、科学研究中的常见问题. 运输费用最低
用数学建模方法解决优化问题的过程 优化目标与决策 模型假设与建立 数学求解与分析
简单优化模型归结为函数极值问题,用微分法求解. 属于数学规划的优化模型在第四章讨论.
第 三 章 简 单 优 化 模 型
3.2 森林救火
问题
森林失火后,要确定派出消防队员的数量. 队员多,森林损失小,救援费用大; 队员少,森林损失大,救援费用小. 综合考虑损失费和救援费,确定队员数量.
分析
记队员人数x, 失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 时刻t森林烧毁面积B(t).
• 损失费f1(x)是x的减函数, 由烧毁面积B(t2)决定.
啤酒杯重心s(x)只与质量比a有关 对于每个a, s(x) 有一最小点. a=0.3, x=0.35左右 s最小, 即重心最低.
0.5
s
0.45 a=1 0.4 a=0.5 0.35 a=0.3 0.3
0.25 a=0.1 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
建立啤酒杯重心模型一
啤酒杯重心模型一
x
s=s(x) ~ 液面高度x的啤酒杯重心
数学建模课后习题答案
第一章 课后习题6.利用1.5节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。
解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为:)()0(mg M x =由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程M x x dtdx=-=)0(,λ (1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。
由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程:0)0(,=-=y y x dtdyμλ (2) 方程(1)可转换为:tMe t x λ-=)(带入方程(2)可得:)()(t t e e M t y λμμλλ----=将01386=λ和1155.0=μ带入以上两方程,得:t Me t x 1386.0)(-= )(6)(13866.01155.0---=e e M t y t针对孩子求解,得:严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解:严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987=课后习题7.对于1.5节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。
解:已知血液透析法是自身排除率的6倍,所以639.06==μut e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ )(6600)(t t e e t y λμ---=1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dtdzt 解得:()2,274.112275693.01386.0≥+=--t e e t z t t用matlab 画图:图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。
存储模型的理论
存储模型的理论存储模型是用于描述和组织数据在存储系统中的方式和结构的理论框架。
它是计算机科学中的一个重要概念,通过定义数据的存储方式和数据之间的关系,能够帮助我们更有效地管理和利用存储资源。
存储模型主要包括以下几个方面的理论内容:1. 数据结构:数据结构是存储模型的基础,它定义了存储系统中数据的组织方式和访问方法。
常见的数据结构包括数组、链表、栈、队列、树和图等。
通过选择适合的数据结构,我们可以提高数据的访问效率和存储空间利用率。
2. 数据模型:数据模型定义了数据在存储系统中的逻辑结构和操作方法。
常见的数据模型包括层次模型、网络模型、关系模型和面向对象模型等。
每种数据模型都有不同的特点和适用范围,可以根据需求选择适合的模型进行数据管理。
3. 存储层次结构:存储层次结构定义了不同级别的存储设备之间的关系和数据传输方式。
常见的存储层次结构包括主存储器、缓存、辅存储器和外部存储器等。
通过合理划分和管理存储层次结构,可以提高系统的存储性能和可扩展性。
4. 存储管理机制:存储管理机制包括内存管理和文件管理两个方面。
内存管理负责将进程所需的数据和指令加载到内存中,并进行合理的调度和回收。
文件管理则负责将数据以文件的形式进行存储和管理,并提供文件的访问和保护机制。
除了上述基本理论,存储模型还涉及到数据压缩、存储容量规划、数据备份和数据恢复等方面的内容。
这些理论和技术的不断发展和创新,使得存储系统能够更好地满足用户的需求,并提高数据的可靠性和安全性。
总之,存储模型是计算机科学中重要的理论框架,通过定义数据的存储方式和结构,可以帮助我们更好地管理和利用存储资源。
它涵盖了数据结构、数据模型、存储层次结构和存储管理机制等方面的内容,是计算机科学和信息技术领域中的核心概念之一。
存储模型是计算机科学中一个重要的理论框架,它帮助我们理解和组织数据在各种存储系统中的方式和结构。
在现代计算机系统中,数据的存储和管理是至关重要的一环,好的存储模型能够提高系统的性能、可靠性和可扩展性。
存储模型ppt课件
未来存储模型的展望
分布式存储的发展
分布式存储可以提供更高的可靠性和可扩 展性,未来将有更多的应用场景。
超高速存储
随着数据量的爆炸式增长,超高速 存储技术将成为未来的发展趋势。
如基于SSD的存储、光存储等。
A
B
C
D
智能化和自动化
未来存储系统将更加智能化和自动化,能 够自动优化性能、预测容量需求、自动备 份和恢复等。
存储模型的分类
总结词
根据不同的分类标准,存储模型可以分为多种类型, 如按数据访问方式可分为随机存储模型和顺序存储模 型;按数据组织方式可分为线性存储模型和哈希存储 模型等。
详细描述
根据数据访问方式的不同,存储模型可以分为随机存 储模型和顺序存储模型。随机存储模型允许数据在任 意位置被访问,而顺序存储模型则只能按顺序访问数 据。此外,根据数据的组织方式,存储模型还可以分 为线性存储模型和哈希存储模型等。线性存储模型将 数据按照线性结构(如数组或链表)进行组织,而哈 希存储模型则通过哈希函数将数据的键值映射到存储 位置。
02
直接连接存储(DAS)
DAS的原理
DAS是指将存储设备通过直接电 缆与服务器连接,实现数据的存
储和访问。
在DAS架构中,存储设备可以是 独立的磁盘阵列、磁带库等,通
过电缆直接连接到服务器。
数据传输速率取决于连接电缆的 长度和质量,通常采用光纤通道
或SCSI等高速接口。
DAS的特点
简单性
DAS架构简单,易于部署和管 理。
数据安全和隐私保护
随着数据价值的提升,数据安全和隐私保 护将成为未来存储技术的重要研究方向。
谢谢观看
可扩展性
随着数据量的增长,可以方便 地增加存储设备来扩展存储容 量和性能。
3.1存贮模型
3.1 存贮模型工厂要定期订购原料,存入仓库供生产之用;车间一次加工出一批零件,供装配线每天生产之需;商店成批购进各种商品,放在货柜里以备零售;水库在雨季蓄水,用于旱季的灌溉和发电。
显然,这些情况下都有一个贮存量多大才合适的问题。
贮存量过大,贮存费用太高;贮存量太小,会导致一次性订购费用增加,或不能及时满足需求。
本节在需求量稳定的前提下讨论两个简单的存贮模型:不允许缺货模型和允许缺货模型。
前者适用于一旦出现缺货会造成重大损失的情况(如炼铁厂对原料的需求),后者适用于像商店购货之类的情形,缺货造成的损失可以允许和估计。
不允许缺货的存贮模型先考察这样的问题:配件厂为装配线生产若干种部件,轮换生产不同的部件时因更换设备要付生产准备费(与生产数量无关),同意不见的产量大于需求时因积压资金、占用仓库要付贮存费。
今已知某产品的日需求量为100件,生产准备费5000元,贮存费每日每件1元。
如果生产能力远大于需求,并且不允许出现缺货,试安排该产品的生产计划,即多少天生产一次(称为生产周期),每次产量多少,可使总费用最小。
问题分析 让我们试算一下:若每天生产一次,每次100件,无贮存费,生产准备费5000元,故每天费用为5000元; 若十天生产一次,每次1000件,贮存费900+800+…+100=4500元,生产准备费5000元,总计9500元,平均每天费用为950元;若五十天生产一次,每次5000件,贮存费4900+4800+…+100 =122500元,生产准备费5000元,总计127500元,平均每天费用为2550元。
虽然从以上结果看,十天生产一次比每天和五十天生产一次的费用少,但是,要得到准确的结论,应该建立生产周期、产量与需求量、生产准备费,贮存费之间的关系,即数学建模。
从上面的计算看,生产周期短、产量少,会使贮存费小,准备费大;而周期长、产量多,会使贮存费大,准备费小。
所以必然存在一个最佳的周期,使总费用最小。
存储模型
间内,存贮以速度r减少。T、t均为待定参数。
由图易知 (p r)t r(T t)
可得
pt rT,
t rT p
即以速度 p生产 t 时间的产量等于T时间内的需求量。
T时间内的存贮量
t
( p r)xdx
0
T时间内的存贮费为
T
1
t
(
2
(rT p
rx)dx r)tTc2
解 已 知c1 5,p=500/30,r=100/30, c2 =
0.4/30,则
即最优生产周期为17天,生产时间为3.4天,生产 批量为56件。
四、模型三
模型三——允许缺货,生产时间很短。模型一、 二是在不允许缺货的情况下推导出来的,模型三是 允许缺货,并将缺货损失定量化来加以分析。
这里除假设允许缺货,其余条件与模型一相同,
1 2
(
p
r
)tT
则T时间内总的平均费用F(T)为
则有
与模型一中式相比较,它们只差因子 p pr
当p (生产速度很大)时,则生产时间很短,
即为模型一。
例2 某厂每月需某产品100件,生产能力为每月 500件,每批装配费为5元,每月每件产品存贮费 为0.4元,求最优生产周期、生产时间和生产批 量。
一、存贮问题的基本要素
一般的存贮问题通常包含下面5个基本要素。
(一)需求
需求是存贮系统的输出,需求量可以通过供 销渠道获得,它可以是确定的,如自动生产线上 每个班组对某种零件的需求量;它也可以是随机 的,如市场每天对某种商品的销售量。
(二)补充(订货或生产)
补充是存贮系统的输入,存贮物品的补充可以 由工厂生产获得,也可以通过订货得到。从订货到 货物入库,通常需要一段时间,称为滞后时间。由 于滞后时间的存在,管理者为了能及时补充,就必 须提前订货,所提前的时间称为提前时间。滞后时 间可以是随机的,也可以是确定的。
数学建模——存储模型
数学建模——存储模型存储模型摘要本文建立的是在产品需求稳定不变,生产准备费和产品贮存费为常数、生产能力无限的条件下的存贮模型。
在不允许缺货和允许缺货的这两种情况下,为了简化模型的建立,我们采用了连续的变量来更加合理地来描述问题。
模型的求解是一个以每天的平均费用作为目标函数来求解的优化模型。
本文主要是通过数学中的微积分知识,借助Matlab程序实现,来求目标函数的极值问题,从而求得总费用最小的方案。
首先,在模型一中我们提出了不允许缺货的优化模型,即综合考虑在产品需求稳定不变、生产准备费和产品贮存费为常数、生产能力无限、不允许缺货以及确定生产周期和产量的情况下,使总费用最小的模型。
这个模型中,通过对得到的目标函数进行分析求解,可以得出经济订货批量公式(EQQ公式),验证了模型一的准确性。
其次,模型二中考虑当缺货的损失费不超过不允许缺货导致的准备费和贮存费时,提出了允许缺货的贮存模型。
根据贮存量函数和周期之间的关系,得到适用于模型二的目标函数。
此外,在模型二的求解中,当函数中的变量都各自趋于某一定值时,可以近似认为不允许缺货模型是缺货模型的特例。
总而言之,本文中的存贮模型是在总费用中增加购买货物本身的费用时,重新确定最优订货周期和订货批量的优化模型,并且证明了在不允许缺货模型和允许缺货模型中结果都与原来的一样,充分考虑了模型的优化。
关键词:不允许缺货;允许缺货;订货周期;订货批量;matlab程序一、问题重述在我们的周边有一家配件厂,据我们得知,该厂为装配线生产若干种部件时因更换要付生产准备费(与生产数量无关),同一部件的产量大于需求时因积压资金、占用仓库要付贮存费。
现已知某一部件的日需求量为100件,生产准备费5000元,贮存费每日每件1元。
如果生产能力远大于需求,试求在以下两种情况下来安排该产品的生产计划,即多少天生产一次(称为生产周期),每次产量多少,可使总费用最小。
(1)不允许出现缺货(2)允许出现缺货二、问题分析在第(1)问时,我们不如先来试算一下以下几种情况的结果:若每天生产一次,每次100件,则我们可知,此时无贮存费,生产准备费5000元,每天费用为5000元;若10天生产一次,每次1000件,则我们可知,此时贮存费为900+800+…+100=4500元,生产准备费5000元,总计9500元,平均每天费用为950元;若50天生产一次,每次5000件,则我们可知,此时贮存费为4900+4800+…+100=122500元,生产准备费5000元,总计127500元,平均每天费用为2550元;从以上的计算看,生产周期短、产量少,会使贮存费小,准备费大;而周期长、产量多,会使贮存费大,准备费小。
存储模型
时补充存贮,补充量Q=S-x(即将存贮补充到S)。
3.(t,s,S)混合策略每隔t时间检查存贮量x,当
x>s时不补充;当x≤s时,补充存贮量使之达到S。
(四)费用
1.订货费它包括两部分,一部分是订购一次货物
所需的订购费用(如手续费、出差费等),它是仅
与订货次数有关的一种固定费用。另一部分是货物 的成本费 kx(x 为订货数量, k 为单价),成本费随 订货数量变化而变化。 2.保管费包括货物的库存费和货物的损坏变质等
假设每隔 T 时间补充一次,则订货量必须满足 T
时间内的需求 rT ,即订货量 Q rT ,每次订货费 为 c1 ,货物单价为 k ,则订货费为 c1 krT T 时间内的存贮 量(如图)为
T
1 2 (rT rt )dt rT 0 2
1 2 则T时间内的存贮费为 rT c2 2 1 2 故T时间内的总费用 c1 krT rT c2 2 为确定订货周期 T 及每次订货量 Q,考虑 T 时间内
例2
某厂每月需某产品100件,生产每件产品存贮费
为 0.4 元,求最优生产周期、生产时间和生产批 量。
解 已 知 c1 5,p=500/30,r=100/30, c2 =
0.4/30,则
即最优生产周期为17天,生产时间为3.4天,生产
批量为56件。
四、模型三
支出的费用。
3.缺货费由于供不应求造成缺货带来的损失费用, 如停工停产造成的损失和罚款等。
(五)目标函数
为了衡量存贮策略的好坏,必须建立一个衡
量指标,这个指标称为目标函数。通常把目标函
数取为该策略的平均费用或平均利润。
二、模型一
模型一——不允许缺货,生产时间很短 为了使模型简单,易于理解,便于计算,可作以
存贮问题建模
数学建模
模型结果分析
❖如果缺货损失非常大,以至于可以忽略存储费c2 , 则一般不允许缺货。
❖从数学角度,即令 c3 ,则
T*
2c1 c2r
c2 c3 c3
T0*
2c1 c2r
Q*
2c1r c2
c3 c2 c3
Q0*
2c1r c2
❖ 不允许缺货模型可视为允许缺货模型的特例
数学建模
模型结果分析
数学建模
问题分析与模型假设
问题分析 ❖ 最佳以进企货业周的期总取支决出于最企小业为的目利标润来或决损定失进的货大周小期。 ❖ 只有产品的存储与缺货信息,没有明确的销售信息。 模型假设 ❖ 1)进货周期为T,最大存储量为Q,产品销售速度
为r,每周期进货费为c1,单位时间单位产品存储费 为c2、缺货损失费为c3; ❖ 2)销售至T1 (<T)时库存不足,出现缺货,但所缺货 物将在下周期订货时补足; ❖ 3)时刻t(0<t<T)时货物存储量为q(t)。
模型求解
❖根据二元函数极值必要条件,令 C 0, C 0
T
Q
❖解得最优解 T * 2c1 c2 c3 , Q* 2c1r c3
c2r c3
c2 c2 c3
❖于是每周期的最优订货量 R* rT * 2rc1 c2 c3
c2 c3
❖ 易见,T与进货费c1成正比,与存储费c2、缺货损失 费c3及销售速度r成反比,这些均与一般常识吻合。
q
存
Q0
储
r
量
A
匀
O
T0
t
图1.9 不允许缺货时的货物存储量 q(t)
速 减 少
数学建模
模型建立与求解
数学模型第三版课后习题答案
《数学模型》作业解答第二章(1)(2008年9月16日)1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑N=10的分配方案, 方法一(按比例分配)分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为: 第10个席位:计算Q 值为3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).iin p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i ii n p尽量接近.再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得⎰⎰+=ntdn wkn r k vdt 0)(2π第二章(2)(2008年10月9日)15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-TML , [v ]=1-LT,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.量纲矩阵为:A=)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---ρ()()()()()()(001310013212s v P T M L 齐次线性方程组为:它的基本解为)1,1,3,1(-=y由量纲i P 定理得 1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[g ]=LM 0T -2,其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即 的基本解为y=(-3 ,-1 ,1 ,1)由量纲i P 定理 得 g v μρπ13--=. 3ρμλgv =∴,其中λ是无量纲常数. 16*.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[γ]=LM 0T 0 ,[g ]=LM 0T -2其中L ,M ,T 是基本量纲. 量纲矩阵为A=)()()()()()()()(210010110011311g v T M L μργ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----齐次线性方程组Ay=0 即 的基本解为 得到两个相互独立的无量纲量 即 1212/12/31,--==πμργπγg g v . 由0),(21=Φππ , 得 )(121-=πϕπ ∴ )(12/12/3-=μργϕγυg g , 其中ϕ是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为其量纲表达式为:112120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t10-=MT L , 其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()()(120011010001010k g m l t T M L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- 齐次线性方程组 的基本解为得到两个相互独立的无量纲量∴g l t =1π, )(21πϕπ=, 2/12/12mg kl =π ∴)(2/12/1mgkl g l t ϕ=,其中ϕ是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为t ,'t ;l ,'l ;m ,'m . 又)(2/12/1g m l k g l t '''='ϕ 当无量纲量l l m m '='时, 就有 ll l g g l tt '=⋅'='. 《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:令0=dTdC, 解得 r c c T 21*2= 由rT Q = , 得212c rc rT Q ==**与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00Q CTC, 得到驻点:与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为又 ( ∴ T =0于是不允许缺货的情况下,生产销售的总费用(单位时间内)为k r k r c Tc dT dC 2)(221-+-=. 0=dT dC令, 得)(221r k r c k c T -=* 易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的. 总费用函数()xc b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b k c b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t TT t <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值. 解:按分段价格,单位时间内的销售量为 又 t q t q β+=0)(.于是总利润为=22)(022)(20222011T T t t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+--- 0,021=∂∂=∂∂p p 令, 得到最优价格为: 在销售期T 内的总销量为 于是得到如下极值问题: 利用拉格朗日乘数法,解得: 即为21,p p 的最优值.6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为0.18元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元); 每天每吨角钢的贮存费2c =0.18(元).又现在的订货周期T 0=30(天) 根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++=令0=dTdC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 又k T C 10035095025003)(*+⨯+⨯==300+100kk T C 100309302500)(0+⨯+==353.33+100k)(0T C -)(*T C =(353.33+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克,B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为:max S=20x+30ys.t. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =702l 以及x=0,y=0组成的凸四边形区域. 直线l :20x+30y=c 在可行域内 平行移动.易知:当l 过1l 与2l 的交点时, x S 取最大值. 由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 m ax S =2053010⨯+⨯=350(元)已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为 这是一个整线性规划问题. 用图解法求解. 可行域为:由直线1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.易知:当l 过l 1与l 2的交点时,z 取最大值由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为:max S=3x +2ys.t. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值. 由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .m ax S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于5.1节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s(2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成(1).s s(t) .s(t) .100≤∴单调减少由若σs (2)().00.1-s ,1,1dtdit s s σσσ从而则若 4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 第五章2(2008年11月14日)6. 模仿5.4节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.解: 设给药速率为(),0t f (1)快速静脉注射: 设给药量为0D .t k - (2)恒速静脉滴注(持续时间为τ): 设滴注速率为,00,000==C k t f k ,则解得(3) 口服或肌肉注射: ()(),解得)式节(见134.5010010tk eD k t f -=3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在5.5节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e e ba vaw Q v bl a vl β ()10/10==l M w 其中,(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbla eb a v aw Q '103‘只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--vbl a v ble e b a v aw Q 1'21'04 4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 《数学模型》作业解答第六章(2008年11月20日)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42N hr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点; ②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dtdx .∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22N x > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为即 )1(max Nxrx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln '=.其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xN rx ∴r ENe x -=0,01=x . ∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.由前面的结果可得 rE ENeh -=dE dh 得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x . 解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即 02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点; ② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrx r N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定;③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max N x rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定. 要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.《数学模型》第七章作业(2008年12月4日)1.对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较. 2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2. 对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为: 在),(000y x P 点附近用直线来近似曲线h f ,,得到由(2)得 )3( )(0102 y y x x k k -=-++β (1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ 对应齐次方程的特征方程为 02 2=++αβαβλλ特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则 即平衡稳定的条件为2 <αβ与207P 的结果一致.(2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为: 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得对应齐次方程的特征方程为(7) 024 23=+++αβαβλαβλλ 代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则 对(7)作变换:,12αβμλ-=则其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p 用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w pq q p q q μμμ其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3) 上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程: 容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ 8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 解:已知商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y kk k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3) (1)代入(3),可得)2(0102x x x x x kk k -+-=-++αβ ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4) 上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程: 容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.《数学模型》作业解答第八章(2008年12月9日)1. 证明8.1节层次分析模型中定义的n 阶一致阵A 有下列性质: (1) A 的秩为1,唯一非零特征根为n ; (2) A 的任一列向量都是对应于n 的特征向量. 证明: (1)由一致阵的定义知:A 满足ik jk ij a a a =⋅,n k j i ,,2,1,, =于是对于任意两列j i ,,有ij jkika a a =,()n k ,,2,1 =.即i 列与j 列对应分量成比例. 从而对A 作初等行变换可得:∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−00000011211 n b b b A 初等行变换B 这里0≠B .()1=∴B 秩,从而秩()1=A再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P ,使B PA =,于是∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==--0000001121111 n c c c BP PAP C 易知C 的特征根为0,,0,11 c (只有一个非零特征根).又A ~C ,A ∴与C 有相同的特征根,从而A 的非零特征根为11c ,又 对于任意矩阵有()n a a a A Tr nn n =+++=+++==+++111221121 λλλ.故A 的唯一非零特征根为n .(2)对于A 的任一列向量()Tnk k k a a a ,,,21 ,()n k ,,2,1 =有()()T nk k k nk k k n j nkn j k n j k n j jk nj n j jk j n j jk j Tnk k k a a a n na na na a a a a a a a a a a a a A ,,,,,,2121112111121121 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑======A ∴的任一列向量()Tnk k k a a a ,,,21 都是对应于n 的特征向量.7. 右下图是5位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出5位选手的名次.解:这个5阶竞赛图是一个5阶有向Hamilton 图.其一个有向Hamilton 圈为332541→→→→→.所以此竞赛图是双向连通的. 等都是完全路径.此竞赛图的邻接矩阵为令()Te 1,1,1,1,1=,各级得分向量为()()TAe S 3,2,1,2,21==,()()()TAS S 5,4,2,3,412==, ()()()TAS S 9,7,4,6,723==,()()()TAS S 17,13,7,11,1334==由此得名次为5,1(4),2,3 (选手1和4名次相同).注:给5位网球选手排名次也可由计算A 的最大特征根λ和对应特征向量S 得到:8393.1=λ,()T S 2769.0,2137.0,1162.0,1794.0,2137.0=数学模型作业(12月16日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层 准则层方案层2.成哪3答:层次分析法的基本步骤为:(1).建立层次结构模型;(2).构造成对比较阵;(3).计算权向量并做一致性检验;(4).计算组合权向量并做组合一致性检验. 对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪3个层次?试给出一致性指标的定义以及n 阶正负反阵A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这3个层次; 一致性指标的定义为:1--=n nCI λ.n 阶正互反阵A 是一致阵的充要条件为:A 的最大特征根λ=n .第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为当mn2较小,1 n 时,有 E D -=1 , mnE 4≈② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-;记mq m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为nq ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为 于是带走产品的平均数是 ()122-+-n n npqq m m , 未带走产品的平均数是 ()()122-+--n n npq q m m n )∴此时传送带效率公式为 ③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- 当1 n 时,并令'1'D E -=,则 226'mn E ≈ ④ 两种办法的比较:由上知:mnE 4≈,226'm n E ≈ ∴ m n E E 32/'=,当n m 时,132 mn, ∴ E E '. 所以第二种办法比第一种办法好.《数学模型》作业解答第九章(2008年12月23日)一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)?解:设每天订购n 百份纸,则收益函数为 收益的期望值为G(n) =∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出 n =5,4,3,2,1,0时的收益期望值. G(0)=0;G(1)=4-×0.05+7×0.1+7×(0.25+0.35+0.15+0.1)=6.45; G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=; G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14= G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10= 当报童每天订300份时,收益的期望值最大.数模复习资料第一章 1. 原型与模型原型就是实际对象.模型就是原型的替代物.所谓模型, 按北京师范大学刘来福教授的观点:模型就是人们为一定的目的对原型进行的一个抽象.如航空模型、城市交通模型等.模型⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧数学模型如地图、电路图符号模型如某一操作思维模型抽象模型如某一试验装置物理模型如玩具、照片等直观模型形象模型2. 数学模型对某一实际问题应用数学语言和方法,通过抽象、简化、假设等对这一实际问题近似刻划所得的数学结构,称为此实际问题的一个数学模型. 例如力学中著名的牛顿第二定律使用公式22dt xd mF =来描述受力物体的运动规律就是一个成功的数学模型.或又如描述人口()t N 随时间t 自由增长过程的微分方程()()t rN dtt dN =. 3. 数学建模所谓数学建模是指根据需要针对实际问题组建数学模型的过程.更具体地说,数学建模是指对于现实世界的某一特定系统或特定问题,为了一个特定的目的,运用数学的语言和方法,通过抽象和简化,建立一个近似描述这个系统或问题的数学结构(数学模型),运用适当的数学工具以及计算机技术来解模型,最后将其结果接受实际的检验,并反复修改和完善.数学建模过程流程图为:4.数学建模的步骤依次为:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用 5.数学模型的分类数学模型可以按照不同的方式分类,常见的有:a. 按模型的应用领域分类 数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧再生资源利用模型水资源模型城镇规划模型生态模型环境模型(污染模型)交通模型人口模型b. 按建模的数学方法分类数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧规划论模型概率模型组合数学模型图论模型微分方程模型几何模型初等数学模型。
存储论模型
存贮模型摘要:在需求量稳定的情况下讨论两个简单的存贮模型:不允许缺货模型和允许缺货模型。
前者适用于一旦出现缺货会造成重大损失的情况,后者适用于像商店购货之类的情形,造成缺货的损失可以允许和估计。
本文主要写了存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量。
并且证明了在不允许缺货模型和允许缺货模型中结果都与原来的一样。
关键词:不允许缺货允许缺货订货周期订货批量Storage ModelAbstract:In discussing the demand for the stability of the two simple memory model: model and allow the stock out of stock are not allowed models. The former applies to the event of a shortage would cause significant losses, which applies to store purchases and the like, as the case, resulting in the loss of stock can be allowed and estimates. In this paper, wrote a total cost of the memory model to increase the cost of purchase of the goods themselves, re-determine the optimal order cycle and order quantity. And prove out the model and allow the stock does not allow the model results are the same as the original.Key words: Not allowed out of stock Allowed out of stock Order cycle Order Quantity1 问题的重述《数学模型》(第三版)在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量。
存贮模型
解 根据(4-28)~(4-31)可得 2 2040 (170 500) t 0.176 170 1040 500
2 500 2040 1040 S 137 170 (170 500)
Q 1040 0.176 183 2 170 500 2040 1040 C (t , S ) 23202 170 500 那么,每年订货次数应为 1 1 5.68
C (t , S ) 23235
同样可得
1 1040 t ,Q Q 5 5
500 1040 S 155 170 500 5
C (t , S ) 23394
所以每年应订货6次,每次订货批量为 1040/6吨,每的的总存贮费用为23 235元。 二、随机性存贮模型 前面我们讨论的模型 其数据都是确定的,这类 存贮模型 叫确定性存贮模型。以下我们讨论含 有随机数据存贮模型 。为此,我们先通过一个 例题介绍一直建立这种模型的基本思想。
2040 1 C (t ) 170 1040 0.152 22858 0.152 2 于是每年的订货次数应为
1 1 6.58 t 0.152
由于订货的次数应为正整数,故可以比较订货 次数分别为6次和7次的费用。若订货次数为 1 6,可得每的总费用为 C ( ) 22973 。若订货 6 次数为7,可得每 年的总费用为 C ( 1 ) 22908 。
t
0.176
同样,由于订货次数应为正整数,故可分别比 较订货次数为5次和6次的费用。若每年订货6 次,则订货周期批量分别为
1 1040 t ,Q 6 6
相应的
C2 500 1040 S Q 129 ,从而 C1 C2 170 500 6
存贮模型讲课ppt课件
简要概述本次讲课的主要内容,包括存贮模型的 基本概念、应用场景、优缺点等。
重点解析
深入解析存贮模型的核心知识点,帮助听众更好 地理解和掌握。
案例分析
通过实际案例,展示存贮模型在实际问题中的应 用和效果,加深听众对存贮模型的认识。
对未来研究的展望
技术发展
探讨存贮模型在未来的技术发展趋势,如人工智能、大数据等技 术在存贮模型中的应用。
通过存贮模型的建立和分析,可以为企业提供科学的决策依据,降低运营成本,提 高市场竞争力。
存贮模型的分类和特点
存贮模型可以根据物品的需求量、存贮容量、 补货策略等因素进行分类,如确定性存贮模型 和随机性存贮模型。
确定性存贮模型的特点是需求量、补货周期等 参数是确定的,而随机性存贮模型则考虑了需 求量、补货周期等参数的不确定性。
安全可靠。
物联网中的存贮模型应用
数据采集
对物联网设备产生的数据进行采集、处理和 存储。
数据传输
将处理后的数据传输到云平台或其他应用系 统,实现数据共享和利用。
数据处理
对采集到的数据进行清洗、分析和处理,提 取有价值的信息。
数据安全
采用加密、认证等手段确保物联网数据的安 全可靠。
06 总结与展望
总结
存贮模型讲课ppt课件
目录
• 存贮模型概述 • 存贮模型的原理 • 存贮模型的实例分析 • 存贮模型的发展趋势和挑战 • 存贮模型的实践应用 • 总结与展望
01 存贮模型概述
存贮模型的背景和意义
存贮模型是用于描述物品存贮和运输过程中相关问题的数学模型,具有实际应用价 值。
随着物流、供应链等领域的快速发展,存贮模型在优化资源配置、提高物流效率等 方面发挥重要作用。
存储论四个模型公式
存储论四个模型公式存贮论(或称为库存论)是定量方法和技术最早的领域之一,是研究存贮系统的性质、运行规律以及如何寻找最优存贮策略的一门学科,是运筹学的重要分支。
存贮论的数学模型一般分成两类:一类是确定性模型,它不包含任何随机因素,另一类是带有随机因素的随机存贮模型。
1 存贮模型中的基本概念所谓存贮实质上是将供应与需求两个环节以存贮中心联结起来,起到协调与缓和供需之间矛盾的作用。
存贮模型的基本形式如图 1 所示。
1.存贮问题的基本要素(1)需求率:单位时间内对某种物品的需求量,用 D 表示。
(2)订货批量:一次订货中,包含某种货物的数量,用Q 表示。
(3)订货间隔期:两次订货之间的时间间隔,用T 表示。
2.存贮模型的基本费用(1)订货费:每组织一次生产、订货或采购的费用,通常认为与定购数量无关,记为。
(2)存贮费:所有用于存贮的全部费用,通常与存贮物品的多少和时间长短有关。
单位存贮费记为。
(3)短缺损失费:由于物品短缺所产生的一切损失费用,通常与损失物品的多少和短缺时间的长短有关,记为。
3.存贮策略所谓一个存贮策略,是指决定什么情况下对存贮进行补充,以及补充数量的多少。
下面是一些比较常见的存贮策略。
(1)t 循环策略:不论实际的存贮状态如何,总是每隔一个固定的时间t ,补充一个固定的存贮量Q 。
(2)(t,S) 策略:每隔一个固定的时间t 补充一次,补充数量以补足一个固定的最大存贮量S 为准。
因此,每次补充的数量是不固定的,要视实际存贮量而定。
当存贮(余额)为I 时,补充数量为Q = S −I 。
(3)(s,S) 策略:当存贮(余额)为I ,若I > s ,则不对存贮进行补充;若I ≤s ,则对存贮进行补充,补充数量Q = S −I 。
补充后达到最大存贮量S 。
s 称为订货点(或保险存贮量、安全存贮量、警戒点等)。
在很多情况下,实际存贮量需要通过盘点才能得知。
若每隔一个固定的时间t 盘点一次,得知当时存贮I ,然后根据I 是否超过订货点s ,决定是否订货、订货多少,这样的策略称为(t,s,S)策略。
存贮模型
模型一 不允许缺货的存储模型1. 模型准备(背景介绍)存储原料或货物对于企业、商品流动各部门都是不可少的。
存储过多,会导致占用资金过多、存储费用过高等问题。
但存储量过少,会导致订货批次增多而增加订货费用,有时造成的缺货可发生经营的损失。
因此,怎样选择库存和订货是一个需要研究的问题。
如:某工厂平均每天需要某种原料20吨,已知每吨原料每天的保管费为75.0元,每次的订货费用为75元,如果工厂不允许缺货并且每次订货均可立即补充,请为该工厂做出最佳决策:即多长时间订一次货,每次订多少货才能使每天所花费的总费用最少。
2. 模型假设(分析问题)在求解时需要考虑的问题有以下两项:)1(进货费用:包括订货费用1C 元(固定费用)与货物的成本费用C 元/吨,与订货数量有关(是可变费用)。
)2(单位时间内的存储费用:2C 元/吨。
总费用21T T T +=,其中1T 为进货费用,2T 为存储费用。
模型二 最优价格模型模型假设某工厂产品的产量等于市场上的销售量,制定在这种产销平衡状态下使工厂利润最大的最优价格。
设每件产品售价为p ,成本为q ,与产量相等的销售量为Q ,在市场竞争的情况下Q是p 的减函数,记作)(=p f Q 称为需求函数。
由于总收入与总支出分别为pQ R =与qQ C =模型一解答3. 建立模型设每隔t 天订一次货,每次订货数量为x ,每次订货费用为1C ,单位时间内每单位货物存储费用为2C ,每天内对货物的需求量为R 。
在上述假定的条件下有Rt x =,每次的进货费用为:CRt C Cx C +=+11 则平均每天的进货费用为:RC tC T +=11 每天的平均库存量为2x ,平均库存费为Rt C x C T 222212=⋅=。
则每天总费用为2)(21Rt C RC t C t T ++= 4. 模型求解制定最优存储方案,就归结为确定订货周期t ,使)(t T 达到最小值。
因为R C tC dt t dT 22121)(+-=,令0)(=dt t dT ,得驻点212RC C t =,而 02)2(133221>=''C R C RC C T 所以212RC C t =时)(t T 取得最小值,由于Rt x =,所以,每批最佳订货量为212122C R C RC C R x ==上式是经济学中著名的经济定货批量公式,它表明订货费越高,需求量越大,则每次订货批量应越大;存储费用越高,则每次订货批量应越小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 存贮模型
工厂要定期订购原料,存入仓库供生产之用;车间一次加工出一批零件,供装配线每天生产之需;商店成批购进各种商品,放在货柜里以备零售;水库在雨季蓄水,用于旱季的灌溉和发电。
显然,这些情况下都有一个贮存量多大才合适的问题。
贮存量过大,贮存费用太高;贮存量太小,会导致一次性订购费用增加,或不能及时满足需求。
本节在需求量稳定的前提下讨论两个简单的存贮模型:不允许缺货模型和允许缺货模型。
前者适用于一旦出现缺货会造成重大损失的情况(如炼铁厂对原料的需求),后者适用于像商店购货之类的情形,缺货造成的损失可以允许和估计。
不允许缺货的存贮模型
先考察这样的问题:配件厂为装配线生产若干种部件,轮换生产不同的部件时因更换设备要付生产准备费(与生产数量无关),同意不见的产量大于需求时因积压资金、占用仓库要付贮存费。
今已知某产品的日需求量为100件,生产准备费5000元,贮存费每日每件1元。
如果生产能力远大于需求,并且不允许出现缺货,试安排该产品的生产计划,即多少天生产一次(称为生产周期),每次产量多少,可使总费用最小。
问题分析 让我们试算一下:
若每天生产一次,每次100件,无贮存费,生产准备费5000元,故每天费用为5000元; 若十天生产一次,每次1000件,贮存费900+800+…+100=4500元,生产准备费5000元,总计9500元,平均每天费用为950元;
若五十天生产一次,每次5000件,贮存费4900+4800+…+100 =122500元,生产准备费5000元,总计127500元,平均每天费用为2550元。
虽然从以上结果看,十天生产一次比每天和五十天生产一次的费用少,但是,要得到准确的结论,应该建立生产周期、产量与需求量、生产准备费,贮存费之间的关系,即数学建模。
从上面的计算看,生产周期短、产量少,会使贮存费小,准备费大;而周期长、产量多,会使贮存费大,准备费小。
所以必然存在一个最佳的周期,使总费用最小。
显然,应该建立一个优化模型。
一般地,考察这样的不允许缺货的存贮模型:产品需求稳定不变,生产准备费和产品贮存费为常数、生产能力无限、不允许缺货,确定生产周期和产量,使总费用最小。
模型假设 为了处理的的方便,考虑连续模型,即设生产周期T 和产量Q 均为连续量。
根据问题性质作出如下假设:
1、每次订货费为1C ,每天每吨货物贮存费2C 为已知;
2、每天的货物需求量r 吨为已知;
3、订货周期为T 天,每次订货Q 吨,当贮存量降到零时订货立即到达。
模型建立: 订货周期T ,订货量Q 与每天需求量r 之间满足
rT Q =
订货后贮存量)(t q 由Q 均匀地下降,即rt Q t q -=)(。
T 2T 一个订货周期总费用⎰==T rT C QT C dt t q C C 02
2221
2
121)(贮存费订货费 即 22121rT C C T C +=)
( 一个订货周期平均每天的费用)(T C 应为
rT C T C T T C T C 212
1)()(+== 问题归结为求T 使)(T C 最小。
模型求解 令0=dT
C d ,不难求得 2
12rC C T = 从而 212C r C Q =
(经济订货批量公式,简称EOQ 公式) 模型分析 若记每吨货物的价格为k ,则一周期的总费用C 中应添加kQ ,由于rT Q =,故
C 中添加一常数项kr ,求解结果没有影响,说明货物本身的价格可不考虑。
从结果看,1C 越高,需求量r 越大,Q 应越大;2C 越高,Q 越小,这些关系当然符合常识的,不过公式在定量上的平方根关系却是凭常识无法得到的。
允许缺货的存贮模型
模型假设
1,2同上
3、订货周期为T 天,订货量Q 吨,允许缺货,每天每吨货物缺货费3C 为已知。
模型建立 缺货时贮存量q 视作负值,)(t q 的图形如下,货物在1T t =时售完。
于是1rT Q =。
2 一个订货周期内总费用⎰⎰-=-===T T T Q rT r
C T T r C dt t q C r
Q C QT C dt t q C C 112
3213302
21221
)(2)(2|)(|212)(缺货费贮存费订货费 即 23221)(21121),(Q rT C r r Q C C Q T C -++= 一个订货周期平均每天的费用),(Q T C 应为
rT
Q rT C rT Q C T C T Q T C Q T C 2)(2),(),(2
3221-++== 模型求解
⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00Q
C T C 可以求出Q T ,的最优值,分别记作T '和Q ',有
32321332212,2C C C C r C Q C C C rC C T +⋅='+⋅=
' 模型分析
若记3
32C C C +=μ ,则与模型一相比有 T T μ=' , μQ
Q ='
显见Q Q T T <'>',,即允许缺货时应增大订贷周期,减少订贷批量;当缺货费3C 相对
于贮存费2C 而言越大时,μ越小,T '和Q '越接近T 和Q 。
问题
1、在模型一和模型二中的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量。
证明在不允许缺货模型中结果与原来的一样,而在模型二中最优订货周期和订货批量都比原来的结果减少。
2、建立不允许缺货的生产销售存贮模型。
设生产速率为常数k ,销售速率为常数r ,r k >.
在每个生产周期T 内,开始的一段时间)0(0T t ≤≤一边生产一边销售,后来的一段时间)(0T t T ≤≤只销售不生产。
贮存量)(t q 的变化如图,设每次生产开工费用为1C ,单位时间每件产品贮存费为2C ,以总费用最小为准则确定最优周期T 。
q
0t 0
T。