n阶Vandermonde行列式的又一证明

合集下载

Vandermonde行列式的一种应用

Vandermonde行列式的一种应用

C n−2 =
参考文献:
1≤ j<i≤n
∏ (bi − bj )
[1]陈建功.实函数论[M].北京:科学出版社,1958. [2]北京大学几何与代数小组.高等代数[M].北京:高等教育出版社,1991.
[责任编辑:陈秀岐]
One Kind of Application of Vandermonde Determinant
"
1
1 " y m −1 . ym y m +1 " yn
∑b b
其中
" bik = (−1) k a n − K ( K = 1,2,", n)
i1 i2 1≤i1<i2<" <ik ≤n
按其足 b 表示这 n 个数码中任取 k 个, ∑b b "
ik
an
(2)
" " m −1 " bn m " bn m +1 " bn " " " n bn
1 bn "
1≤ j < i ≤ n
∏ (bi − b j ) ∏ ( y − bi )
i =1
2 n n ⎡ 2 ⎞ − ∑ bb ⎤ ⎛∑ y y b b + + ∑ ⎜ i⎟ i i j⎥ ⎢ i =1 ⎝ i =1 ⎠ 1≤ j <i≤ n ⎣ ⎦
n
Hn =
(7)
式(7)是一个关于 项
y 的 n + 2 次多项式,其 n − 2 次
n −3 1 n −1 1 n+2 1
n −3 " bn n −1 " bn n+2 " bn

Vandermonde行列式的一类推广_尤兰

Vandermonde行列式的一类推广_尤兰

端即证。
下面我们给出本文的主要结论,即广义 Vandermonde
行列式D(n q^1,…,q^k)的计算公式。
定理 1
Σ D(n q^ 1,…,q^ k)=Dn
(-1) σ …σ τ(r1 …rk) n+r1 +q1
n+rk -qk
(r1…r)k ,
qj-n≤rj≤qj,
,其
1≤j≤k
Σ 中(r1…rk)是 0,…,k-1 的一个排列, 是对所有满足 qj-
总第 292 期 2014 年 10 月(上)
The Science Education Article Collects
Total.292 October 2014(A)
Vandermonde 行列式的一类推广
尤兰王振
(盐城工学院基础教学部 江苏·盐城 224051)
中图分类号:G642
文献标识码:A

x n-1 n
仪 =
(xj-x)i
1≤i<j≤n

本文将研究一类形式更为一般的行列式:对于给定的 n
个 元 素 x1, … ,xn,n 个 整 数 p1, … ,pn, 定 义 n 阶 行 列 式
p
p
x1 1 … xn 1
D(x1,…,xn;p1,…,pn)= ··· ··· ···
x … x pn
Σ =
1≤j1<…<ji≤n
xj1…xji,并规定 σ0=1。则由 Vieta 定理知(y-x1)(y-
x2)…(y-xn)=yn-σ本文的主要结论之前,先介绍两个引理.
仪 Σ 引理 1:
(ys-y)t =
(-1)τ(r1
y …rk) r1 1

关于范德蒙德行列式的性质探讨

关于范德蒙德行列式的性质探讨

范德蒙德行列式的应用探讨李珊珊摘要:范德蒙德行列式作为一种重要的、著名的行列式性质独特、形式优美,利用范德蒙德行列式能大大降低我们解题时的难度,起到事半功倍的效果. 本文将介绍范德蒙德行列式的概念及其性质,并且给出范德蒙德行列式在行列式计算,向量空间理论,线性变换理论,多项式理论和微积分问题五个方面较全面的具体应用,并对方法和技巧做出概括和总结.关键词:范德蒙德行列式;向量空间;线性变换;多项式;微积分中图分类号:O13Discussion on The Application of VandermondeDeterminantLi Shan-shanAbstract:The determinant is an important tool in Mathematics. It is the basis of the follow-up to the content system, such as linear equations, matrix, vector spaces and linear transformations. And it has a wide range of applications. As an important and famous determinant, Vandermonde determinant has not only unique structure, but also exquisite form. Using V andermonde determinant can greatly reduce our computation on solving problems. That is also the essence of using V andermonde determinant. This article will introduce the concept of V andermonde determinant and its calculation method and properties. What's more, this article will summarize V andermonde determinant in determinant computation, vector space, linear transformation theory, theory of polynomial and solving the problems of calculus in specific applications. And the article in the methods and techniques of Vandermonde determinant will make a summary.Keywords: V andermonde determinant; vector space; linear transformation; polynomial; Calculus1. 引言行列式在高等代数中是一个重要的数学工具,活跃在数学的各个分支. 行列式最早出现在16世纪关于求解线性方程组的问题中. 它的研究是伴随着线性代数的发展而发展起来的. 18世纪,法国著名的数学家范德蒙德(A.T.V andermonde ,1735-1796)将行列式的理论脱离线性方程组,而放到理论高度作为专门的理论进行研究,并在此基础上确立了行列式的一些性质,使行列式逐步成为一门独立的数学研究课题. 范德蒙德行列式是范德蒙德在1772年提出的一种著名的行列式,具有重要的理论研究价值和广泛的应用价值. 利用范德蒙德行列式和它的一些性质,我们可以使计算变得更为简单、直接,从而大大的提高对高等代数和数学分析中问题的计算速度. 自上世纪50年代以来,数学工作者对范德蒙德行列式的计算方法和在一些应用方面进行了研究. 不同研究者的角度、出发点和研究方向均不相同. 例如:北京大学第三版《高等代数》教材(高等教育出版社,王萼芳 石生明修订)中就提到了范德蒙德行列式在行列式计算和多项式根的存在性问题中的应用. 在一些高校的学报中我们也可以找到许多范德蒙德行列式的应用. 如:徐杰在《范德蒙德行列式的应用》(职校论坛,2009)中探讨了应用范德蒙德行列式证明向量的线性相关性问题;张文治、赵艳在《范德蒙德行列式应用三则》(北华航天工业学院学报,2007)中给出了构造范德蒙德行列式计算缺项行列式;程伟健、贺冬冬在《范德蒙德行列式在微积分中的应用》(大学数学,2004)中研究了利用范德蒙德行列式求高阶无穷小和证明K 阶导数极限存在问题等等. 综上所述,虽然国内外对范德蒙德行列式的应用研究比较多,但是对应用方法技巧的总结、归纳还比较欠缺和零散,系统性、规范性不足. 针对这种情况,本文较为系统的探讨范德蒙德行列式的应用,并对方法和技巧做出了总结.2. 范德蒙德行列式的概念及其性质定义 形如12322221231111123111...1........................n n n n n n na a a a a a a a a a a a ----的行列式,称为n 阶范德蒙德(V andermonde )行列式,记为n D .范德蒙德行列式构造独特、形式优美,并且有独特的性质. 下面将给出范德蒙德行列式的各种性质.首先,范德蒙德行列式拥有普通行列式的所有性质.(1)行列互换,行列式不变;(2)以一个数乘行列式的一行(列),相当于用这数乘此行列式;(3)行列式某一行(列)是两组数的和,则此行列式等于两个行列式的和; (4)如果行列式中两行(列)成比例,则行列式为零; (5)把一行(列)的倍数加到另一行(列),行列式不变; (6)行列式中两行(列)的位置,行列式符号改变.其次,我们给出范德蒙德行列式的五个更特别的性质. 性质1 对任意的(2)n n ≥,123222212311111123111...1......()..................n n n i j j i nn n n n na a a a D a a a a a a a a a a ≤<≤----==-∏,并且0n D =的充要条件是12,,...,n a a a 这n 个数中至少有两个相等,其中∏表示同类因子的乘积.证明: 对n 进行数学归纳. 当2n =时,211211n D a a a a ==-,结果正确. 假设对于1n -结论成立,即111()n i j j i n D a a -≤<≤-=-∏.则对于n 阶的情况有,在n D 中第n 行减去第1n -行的1a 倍,第1n -行减去第2n -行的1a 倍,以此类推,由下向上依次减去上一行的1a 倍,有2131122221231311212122123131111...10 0..................0...n n n nn n n n n n nna a a a a a D a a a a a a a a a a a a a a a a a a ---------=------=2131122221231311212122123131.....................n n nn n n n n n nna a a a a a a a a a a a a a a a a a a a a a a a ---------------=1232222213111232222123111...1...()()...().....................n n n n n n n na a a a a a a a a a a a a a a a a a -------.后面这是一个1n -阶的范德蒙德行列式,根据归纳法假设,它等于所有可能差(2)i j a a j i n -≤<≤的乘积,而包含1a 的差全在前面出现了. 因之,结论对n 阶范德蒙德行列式也成立. 根据数学归纳法,可知 1()n i j j i nD a a ≤<≤=-∏.由n D =1()i j j i na a ≤<≤-∏,可知0n D =的充要条件是12,,...,n a a a 这n 个数中至少有两个相等,证毕.注 2.1 因为T n n D D =,所以范德蒙德行列式还可以写成211112122221333211...1...1..................1...n n n n nnna a a a a a a a a a a a ----,行列式的值不变.性质2 若将范德蒙德行列式n D 顺时针旋转90 ,可得1211112222(1)1233312...1...1...1..................1n n n n n n n n n nnna a a a a a D a a a a a a --------=, 则有(1)(1)2(1)n n nn DD -=-.证明:因为T n n D D =,所以2111121222(1)21333211 (1)...1..................1...n n Tn n n n nnna a a a a a D D a a a a a a ----==,交换行列式的第1列与第n 列,则根据行列式的性质(6),行列式的值变为原来的-1倍,即有12111122221233312...1 (1)...1..................1n n n n n nnna a a a a a D a a a a a a ----=-, 再交换所得行列式的第2列和第1n -列,行列式变为原来的2(1)-倍,即有121111222221233312...1 (1)(1)...1..................1n n n n n n n n n nnna a a a a a D a a a a a a --------=-, 依次进行下去,得到最终的行列式12111122221233312...1...1...1..................1n n n n n n n n nnna a a a a a a a a a a a --------, 这样进行了(1)2(1)n n --次,于是1211112222(1)12233312...1...1(1)...1..................1n n n n n n n n n n n nnna a a a a a D a a a a a a ---------=-,结论得到证明.性质3 若将范德蒙德行列式n D 逆时针旋转90 ,可得(2)nD =212111121222211111 (1)...1 (1)...n n n nnn n n n n n n n n n n n a a a a a a a a a a a a --------------,有(1)(2)2(1)n n nn D D -=-.事实上,与性质2 的证明类似,依次交换行列式的两行,我们容易得到性质3 的结果.性质4 若将范德蒙德行列式n D 旋转180 ,可得(3)nD =111112122121211111............ (1)1...11n n n n n n n n n n nn n n n n a a a a a a a a a a a a -------------, 有(3)nn D D =.事实上,类似于性质2和性质3的证明,连续进行两次性质2 或性质3 的变换,就可以得到性质4 的结果.性质 5 n 阶准范德蒙1232222123(4)111112311111231231111n n nk k k k n k k k k nnnnnnx x x x x x x x D x x x x x x x x x x x x ----++++=1212,,...,1()n k n ki j p p p p p p j i nx x x x x --≤<≤=-∑∏,(1,2,,1)k n =- ,其中12,,,n k p p p - 是1,2,,n 中()n k -个数的一个正序排列,12,,,n kp p p -∑表示对所有()n k -阶排列求和.证明:在行列式中增补第(1)k +行和(1)n +列相应的元素. 考虑1n +阶范德蒙德行列式123222221231111111231231111112312311111()n n k k k k k n n kkkkknk k k k k nnnnnnnx x x x x x x x x xD x x x x x xx x x x x x x x x xx x x x x-----++++++=,按第1n +列展开,有11,12,11,11,111()1...()...()()inn n n i n n n n i j j i nD x A xA x A x A x x x x x x +++++++≤<≤=++++=---∏,其中,1(1,2,...,1)i n A i n +=+分别是21,,,...,n x x x 的代数余子式. 于是(4)(1)(1)1,1(1)n i ni n D A +++++=-. (1)对于11,12,11,11,111()1...()...()()inn n n i n n n n i j j i nD x A xA x A x A x x x x x x +++++++≤<≤=++++=---∏,由根与系数的关系(Vieta 定理)有12121,1,,...,1(1)...()n kn kn ii n p p p i j p p p j i nA x x x x x ---++≤<≤=--∑∏,由(1)式,可知1212(4),,...,1()n k n kni j p p p p p p j i nD x x x x x --≤<≤=-∑∏.3. 关于范德蒙德行列式应用的探讨前面介绍了范德蒙德行列式的概念及其性质,接下来我们将从行列式计算,向量空间理论,线性变换理论,多项式理论和微积分问题五个方面探讨范德蒙德行列式的应用.3.1 范德蒙德行列式在行列式计算中的应用范德蒙德行列式在行列式计算问题中起着举足轻重的作用. 利用范德蒙德行列式计算行列式已经被确立为一种特殊的方法被广泛使用. 下面我们来看几个例子:例1 计算行列式12322221232222123123111...1...........................n n n n n n nnnnnnx x x x x x x x D x x x x x x x x ----=.解:法1 构造1n +阶范德蒙德行列式1232222212312222212311111123123111...11......()...........................n n n n n n n n nn n n n n nnnnnnnx x x x x x x x x xD x x x x x x x x x x xx x x x x+----------=,则行列式D 为1()n D x +中元素1n x -的余子式,将行列式1()n D x +按1n +列展开得11,12,11,1()1...nn n n n n D x A xA x A +++++=+++,其中1n x -的系数为21,1,1,1(1)n n n n n n n A M M D ++++=-==-.又111()()...()()n n i j j i nD x x x x x x x +≤<≤=---∏,由根与系数的关系有1n x-的系数是1ni i x =-∑,因此在1()n D x +中1n x -的系数为11()nij i i i j nx x x =≤<≤--∑∏,所以11()nij i i i j nD x x x =≤<≤=--∑∏.法2 由范德蒙德行列式的性质 5,1212,,...,1()n k n ki j p p p p p p j i nD x x x x x --≤<≤=-∑∏,这里11()nij i i i j nD x x x =≤<≤=--∑∏.例2 证明n 阶循环行列式123121112122341.........()()...()..................n n n n n n n a a a a a a a a a a a a f f f a a a a εεε---=, 其中112()...n n f x a a x a x -=+++,12,,...,n εεε是所有的n 次单位根.证明:由于12,,...,n εεε是所有的n 次单位根,其所构成的n 阶范德蒙德行列式12322221231111123111...1......0..................n n n n n n nεεεεεεεεεεεε----≠,令123121123222211212311112341123...111...1................................................n nn n n n n n n n n n na a a a a a a a D a a a a a a a a εεεεεεεεεεεε-------=⋅,再由行列式的乘法,D 的第i 行第j 列的元素是2112311......i i n ij n i n i j n jj n i jd a a a a a εεεε----+-+-+=++++++,1,2,...,i n =,规定n k k a a +=.由于22cossin,(1,2,...,)m m m i m n ππεππ=+=,所以1mm εε=.于是(2)(1)(1)23111111......jj i j i j i ij n i n i n n i d a a a a a εεεε----+-+-+=++++++.又11nε=,因而(1)11,,1,2,...,j i ij j d d i j n ε-==.而右端的数恰好为行列式111231222221231311111231111...100...0 00...0. 00...0....................................nn n n n n nna a a a εεεεεεεεεεεε---- 的第i 行第j 列的元素,即上面的行列式也等于D ,且原循环行列式的值为11121...n a a a , 由行列式D 的形状可知:1112...(),1,2,...,n j j n jj a a a a f j n εεε-=+++==.于是再根据行列式的性质有1232341(1)(2)2345212121.........(1)()()...()..................n n n n nn a a a a a a a a a a a a f f f a a a a εεε---=-.通过对上述例题的分析,可归纳出构造和利用范德蒙德行列式来计算行列式的一些技巧:① 观察要计算的行列式是否具有范德蒙德行列式的的某些结构特征; ② 通过适当的方法构造范德蒙德行列式;③ 结合范德蒙德行列式以及题目的要求进行行列式的求解;④ n 阶循环行列式的解法以多项式理论为基础,结合范德蒙德行列式进行求解,方法简便易行,具有一定的实用价值.3.2 范德蒙德行列式在向量空间理论中的应用向量空间有时也称为线性空间,它是线性代数最基本的概念之一,也是我们在高等代数的学习中接触到的第一个抽象的概念. 向量空间与其子空间的关系问题,向量空间中向量的线性相关性问题都是向量空间研究的重点和难点,对逻辑推理有较高的要求. 对于判断、证明、计算向量空间中相应问题多往往比较难. 但将其与行列式适当结合,特别是与范德蒙德行列式相结合时,题目就会变得容易理解和掌握,如下面几个例子:例3 设V 是数域F 上的n 维向量空间,则V 不能写成它的有限个真子空间的并.证明:对n 进行数学归纳. 当1n =时,显然成立.设1n >时,令123,,,...,n a a a a 是V 的一组基,设1*12{...|}n n S a ka k a k F V -=+++∈⊂, 其中*F 是F 中元素的集合, 令*112:,...n n F S k e ke k e ϕ-→→+++,其中12,,...,n e e e 是单位向量, 则易证ϕ是双射,从而S 中有无穷多个不同的元素.设i V (1,2,...i t =)为V 的真子空间,则S 中的元素在i V 中的个数小于n . 否则,若,1,2,...,j i V j n β∈=,111121112........................................n n n nn n n a k a k a a k a k aββ--⎧=+++⎪⎨⎪=+++⎩,即211111121222222133333211...1...1 (1)...n n n n nn nnn a k k k a k k k a k k k a k k k ββββ----⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由,,1,2,...,,i j k k i j n i j ≠=≠知123,,,...,n a a a a 的系数行列式为范德蒙德行列式, 由范德蒙德行列式的性质 1知系数行列式非零,故,1,2,...,j k a V j n ∈=.进而,1,2,...,i V V i t ==矛盾, 从而S 中只有有限多个元素在1ti i V = ,即V 不能写成它有限个真子空间的并的形式.例4 设V 是数域F 上的n 维向量空间,任给正整数m n ≥,则在V 中存在m 个向量,其中任取n 个向量都线性无关.证明:因为n V F ≅,所以只需在n F 中考虑即可. 取211(1,,,...,)n a c c c -=,222122(1,,(),...,())n a c c c -=, .......................................... 21(1,,(),...,())m m n m m a c c c -=.令111222333212121211()...()1()...()1()...()...............1()...()nnnk k k n k k k n k k k n n k k k n c c c c c c D cc ccc c----=,121...,n k k k m ≤≤≤≤≤c为任意常数.因为111222333212121211()...()1()...()1()...()...............1()...()nnnk k k n k k k n k k k n n k k k n c c c c c c D cc ccc c----=是范德蒙德行列式,由范德蒙德行列式的性质1知n 0D ≠,所以12,,...,nk k k a a a 线性无关. 再由n V F ≅,所以结论成立.在向量空间理论中,我们经常会碰到需要用范德蒙德行列式转化的问题,通过转化我们很容易地得到所需要的结论. 而这就要求我们充分掌握范德蒙德行列式以及它的结构特征,达到灵活的使用.3.3 范德蒙德行列式在线性变换理论中的应用线性变换反映了线性空间中元素之间的一种最基本的联系,它是线性函数的推广.线性变换与行列式、矩阵联系密切. 利用行列式,尤其是范德蒙德行列式,来解决线性变换的特征值与特征向量问题能达到事半功倍的效果.例5 如果12,,...,s λλλ是线性变换的全部两两不同的特征值,(1,2,...)ii V i s λα∈=,则当12...0s ααα+++=时,必有12...0s ααα====.证明:注意到(1)i i i i s αλα=≤≤,对等式12...0s ααα+++=左右两边同时逐次作用,得112222211221111122 0...0 0s s s s s s s s s λαλαλαλαλαλαλαλαλα---+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩, 用矩阵表示为()21111212222112333211 (1)...,,...,(0,0,...,0)1..................1...s s s s s sss λλλλλλαααλλλλλλ----⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭. (2)矩阵211112122221333211...1 (1)..................1...s s s s sss B λλλλλλλλλλλλ----⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭的行列式是范德蒙德行列式,并且由于12,,...,s λλλ两两不同,从而B 是可逆矩阵. 在(2)式两边右乘1B -,得()12,,...,(0,0,...,0)s ααα=,所以12...0s ααα====.例6 设数域F 上的n 维向量空间V 的线性变换σ有n 个互异的特征根12,,...,n λλλ则:(i )与σ可交换的V 的线性变换都是21,,,...,n e σσσ-的线性组合,其中e 为恒等变换;(ii )21,,,,...,n V αασασασα-∀∈线性无关的充要条件是1nii αα==∑,其中(),1,2,...,i i i i n σαλα==.证明:(i )设δ是与σ可交换的线性变换,且(),1,2,...,i i i i n σαλα==, 则{|}ii V k k F λα=∈是δ的不变子空间.令21121...n n xe x x x δσσσ--=++++且(),1,2,...,i i i k i n σαα==,则有下方程组21111211121212221221121.......................................n n n n n nn n n n k x x x x k x x x x k x x x x λλλλλλλλλ------⎧=+++⎪=+++⎪⎨⎪⎪=+++⎩ , (3) 可知(3)的系数行列式是范德蒙德行列式,且系数行列式1()i j j i nD λλ≤<≤=-∏,因为12,,...,n λλλ互异,由范德蒙德行列式的性质 1知0D ≠.于是方程组(3)有唯一解,所以δ是21,,,...,n e σσσ-的线性组合. (ii )先证明充分性. 因为1nii αα==∑,所以21111212222121123333211 (1)...(,,,...,)(,,...,)1..................1...n n n n n n n nnλλλλλλασασασαααααλλλλλλ-----=.且2111121222213331211...1...()01..................1...n n n i j j i nn n nnλλλλλλλλλλλλλλ---≤<≤-=-≠∏,因而211112122221333211...1...1..................1...n n n n n nnλλλλλλλλλλλλ----是可逆矩阵. 又由12,,...,n ααα是V 的一组基,可知21,,,...,n ασασασα-线性无关. 再证必要性.设12,,...,n e e e 是分别属于12,,...,n λλλ的特征向量,则12,,...,n e e e 构成V 的一组基,因而有1122...n n k e k e k e α=+++. 若0,1,2,...,i k i n ≠=则i i k e 是σ的属于i λ的特征向量,故结论成立. 若存在{1,2,...,}j n ∈使0j k ≠,不妨设12,,...,r k k k 全不为零, 而1...0r n k k +===,因而有1122...r r k e k e k e α=+++,则211111111212222222212112333333321......(,,,...,)(,,...,).....................n n n n r n rr rr rr r k k k k k k k k e e e k k k k k k k k λλλλλλασασασαλλλλλλ-----⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭.利用范德蒙德行列式的性质 1可知21111111121222222221333333321...........................n n n n rr rr rr r k k k k k k k k A k k k k k k k k λλλλλλλλλλλλ----⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭有一个r 阶子式不为零,所以秩(A )=r ,从而21(,,,...,)n r ασασασα-=秩, 又因为21,,,...,n ασασασα-线性无关,所以21(,,,...,)n n ασασασα-=秩.而r n <,矛盾. 所以1nii αα==∑,其中(),1,2,...,ii i i nσαλα==.在高等代数中,线性变换一直是最难的部分之一,题目的变化也很多. 在这些题目中,我们巧妙地运用范德蒙德行列式来使复杂的问题得到解决.3.4 范德蒙德行列式在多项式理论中的应用多项式是一类最常见、最简单的函数,它的应用非常广泛. 虽然多项式在整个高的代数中相对独立,然而却为高等代数的基本内容提供了理论依据. 研究多项式、多项式根的存在性问题、多项式求根问题是多项式理论中的重难点. 而多项式的求根问题又与行列式相关联,巧妙应用它们之间的联系,会起到化繁为简的作用. 例7 设01()n n f x c c x c x =+++ ,若()f x 至少有n+1个不同的根,则()0f x =. 证明:121,,,n x x x + 为()f x 的n+1个不同的根,则有齐次线性方程组20112112012222201121100n n nn n n n n n c c x c x c x c c x c x c x c c x c x c x +++⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩. (4) 将01,,,n c c c 看作方程组(4)的未知量.因为方程组(4)的系数行列式D 是范德蒙行列式,且1()0i j i j nD x x ≤<≤=-≠∏,由克莱姆法则知方程组(4)只有零解,从而有010n c c c ==== ,即()f x 是零多项式.例8 设12,,,n a a a 是数域F 中互不相同的数,12,,,n b b b 是数域F 中任一组给定的不全为零的数,则存在唯一的数域F 上次数小于n 的多项式()f x ,使(),1,2,,i i f a b i n == .证明:设1011()n n f x c c x c x --=+++ , 由(),1,2,,i i f a b i n == ,知21011211112101222122210121n n n n n n n n n n c c a c a c a b c c a c a c a b c c a c a c a b------⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩ . (5) 因为12,,,n a a a 互不相同,所以方程组(5)的系数行列式21111212222133312111()01...1n n n i j i j nn nnna a a a a a D a a a a a a a a ---≤<≤-==-≠∏.由克莱姆法则知方程组(5)有唯一解,即存在唯一的数域F 上次数小于n 的多项式1011()n n f x c c x c x--=+++ ,使得(),1,2,,i i f a b i n == .在多项式理论中,涉及到求根问题的有很多. 在分析有些题目时,范德蒙德行列式是能够起到关键的作用. 主要应用在多项式组成的方程组中,系数组成的行列式是范德蒙德行列式. 若系数行列式不为零(即范德蒙德行列式的性质 1),则由克莱姆法则知方程组只有零解. 熟练有效地运用范德蒙德行列式,对我们最终解决问题会有直接的帮助.3.5 范德蒙德行列式在微积分中的应用无穷大量、无穷小量、高阶导数和极限是微积分的主要内容. 这些概念的正确理解和掌握对学好微积分是必要的. 在解决这类问题的时候,有时巧妙地构造范德蒙德行列式变换形式,可以使问题得到容易理解的解答.例9 设f(x )在区间I 上n 阶可导(2)n ≥,若对x I ∀∈,0|()|f x M ≤,()|()|n n f x M ≤(0,n M M 是正常数).证明:若存在1n -个正常数121,,...,n M M M -,对x I ∀∈,()|()|(1,2,...,1)k k f x M k n ≤=-.证明:设121,,,,0,()n i i j a a a I a a a i j -∈≠≠≠ 且, 由泰勒公式,对1,2,...,1i n ∀=-,()()11()()()()!!k n n kni ii k fx ff x a f x a a k n ξ==+=++∑,由此得()()11()()()()!!k n n k nii i k fx fa f x a f x a k n ξ===+--∑,所以有()()101()|()||||()||()|||2,!!!k n n k nii i n k fx fA a f x a f x a M M k n n ξ==≤+++≤+∑其中11||m ax n ii n A a ≤≤-=.令1()1()()!kn k ii k a fx A x k ===∑,(x I ∈,1,2,...,1)i n =-, (6)则0|()|2!i n A A x M M n ≤+,(x I ∀∈,1,2,...,1)i n =-.由于方程组(6)的系数行列式D 为231111123122222311111...2!3!(1)!...2!3!(1)!..................2!3!(1)!n n n n n n n a a a a n a a a a D n a a a a n --------=--211112122221121333211111...1......1...1!2!...(1)!...............1...n n n n n n n n a a a a a a a a a a a a n a a a --------=-右边的行列式为121,,,n a a a - 的范德蒙德行列式,由0,()i i j a a a i j ≠≠≠知0D ≠,由克莱姆法则知,存在与x 无关的常数()()()121,,...,k k k n λλλ-,使得 1()()1()(),,1,2,...,1n k k i i i fx A x x I k n λ-==∀∈=-∑,由此推得x I ∀∈,1,2,...,1k n =-11()()()0011|()||||()|||(2)!n n k k k ii ik i i A fx A x M M M n λλ--==≤≤+=∑∑.例10 设函数f(x)在x=0附近有连续的n 阶导数,且'()(0)0,(0)0,...,(0)0n f f f≠≠≠,若121,,...,n p p p +是一组两两互异的实数,证明:存在惟一的一组实数121,,...,n λλλ+,使得当0h →时,11()(0)n i i i f p h f λ+=-∑是比n h 高阶的无穷小.证明:由题设的条件,可得()i f p h ,1,2,...,1i n =+在0x =处带有皮亚诺余项的麦克劳林展开式为:()110()(0)(),!k knk nk p h f p h fo h k ==+∑(1q )()220()(0)(),!kknk nk p h f p h fo h k ==+∑(2q ).........................()110()(0)(),!k knk nn n k p h f p h fo h k ++==+∑(1n q +)112211()()...()n n q q q λλλ++⨯+⨯++⨯,得111()11111()(0)(1)(0)()(0)()!n n nn k k kn ii i ii i i k i f p h f f p fh o h k λλλ+++====-=-++∑∑∑∑.当0h →时,若11()(0)n i i i f p h f λ+=-∑为比n h 高阶的无穷小,则有121112211222112211112211...1...0...0 0n n n n n n n n n n p p p p p p p p p λλλλλλλλλλλλ++++++++++=⎧⎪+++=⎪⎪+++=⎨⎪⎪+++=⎪⎩, 这是以121,,...,n λλλ+为未知数的线性方程组,其系数行列式有123122221231111231111...1......()0..................n n j i i j n nn nn n p p p p D p p p p p p p p p p ++≤<≤++==-≠∏,所以上述方程组有惟一的解,即存在唯一的一组实数121,,...,n λλλ+,使得当0h →时,11()(0)n i i i f p h f λ+=-∑为比n h 高阶的无穷小.例11 设f(x)至少有k 阶导数,且对某个实数α有()lim ()0,lim ()0k x x x f x x f x αα→∞→∞==. (7)试证:()lim ()0,0,1,2,...,i x x f x i k α→∞==,其中(0)()()fx f x =.证明:由条件(7)知,要证明()lim ()0i x x f x α→∞=,只要将()()i f x 写成()f x 与()()k f x 的线性组合的形式即可,利用泰勒公式,21'"(1)()()()()()...()()2!(1)!!k kk k m mmmf x m f x m f x f x fx fk k ξ--+=+++++- (8)其中,1,2,...,m x x m m k ξ<<+=.这是关于'"(1)(),(),...,()k f x f x f x -的线性方程组,其系数行列式为21211111...2!(1)!2212...2!(1)! (1)...2!(1)!k k k k D kkkk ----=-212121111 (1)122 (21133)...31!2!...(1)!...............1...k k k k kkk ---=-,后一行列式是范德蒙德行列式,且有212121111 (1)122...21!2!...(1)!133...3 (1)...k k k k kkk---=-,所以D =1. 于是可从方程组(8)把'"(1)(),(),.()k f x f x f x-写成()(1,2,...,)f x m m k +=与()()(1,2,...,)k m fm k ξ=的线性组合. 只需证明()lim ()lim ()0,(1,2,..,)k m x x x f x m x fm k ααξ→∞→∞+===.事实上,设x t x k ≤≤+,于是()()()lim ()lim ()()lim ()lim ()0,(0,)i i i x x x x x x x ft t ft t ft i k tt ααααα→∞→∞→∞→∞====.在此式中分别令,0t x m i =+=和令,m t i k ξ==,则得()lim ()lim ()0,(1,2,..,)k m x x x f x m x fm k ααξ→∞→∞+===.通过对以上例题的分析可以总结利用范德蒙德行列式解决微积分问题的方法: ① 首先要应用泰勒公式,写出函数在某点的近似解;② 根据构造函数在某点的泰勒展开形式,构造范德蒙德行列式;③结合范德蒙德行列式和题目本身进行求解.4. 结束语范德蒙德行列式为问题的求解提供了十分有效地手段. 对范德蒙德行列式的应用,不仅需要对范德蒙德行列式的形式、特点及性质熟练掌握,而且要能灵活的应用. 范德蒙德行列式应用中,构造范德蒙德行列式是解决问题的难点和关键点. 要巧妙地构造范德蒙德行列式进行解题,必须对高等数学的基础知识熟练掌握,要善于将知识衔接起来. 达到这样的境界非一日之功,因此只有打好高等数学的基础,不断地分析解决典型的题目,找出内在的规律,日积月累,对范德蒙德行列式的应用才能得到进一步的掌握.参考文献:[1] 北京大学数学系集合与代数教研室前代数小组.高等代数[M].北京:高等教育出版社,2003.[2] 华东师范大学数学系.数学分析[M]. 北京:高等教育出版社,2001.[3] 裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,2006.[4] 邹应.数学分析习题及其解答[M].武汉:武汉大学出版社,2001.[5] 章乐.几道考研试题的推广[J].大学数学,2003.[6] 牛莉.线性代数[M].北京:中国水利水电出版社,2005.[7] 吴良森,毛羽辉,宋国栋,魏木生,数学分析习题精解[M].北京:科学出版社,2002.[8] 易大义, 陈道琦. 数值分析引论[M].杭州: 浙江大学出版社, 1998.。

范德蒙行列式的证明及其应用

范德蒙行列式的证明及其应用

范德蒙德行列式的证明及其应用摘要:介绍了n阶范德蒙行列式的定义,用递推法和拉普拉斯定理两种方法证明了范德蒙行列式,辅以实例研究了它在高等代数中的一些应用.向量空间理论用来解决线性问题;在线性变换理论、多项式理论和微积分理论中,主要用它构造线性方程组,进而应用克拉默法则或相关定理判断根的情况;在行列式计算中,主要运用范德蒙行列式的结论简化n阶行列式的计算过程.探究范德蒙行列式的历史及相关应用,为更进一步钻研其相关性质与应用奠定了良好的基础.关键词:范德蒙德行列式;向量空间;线性变换;应用1引言行列式本身有着长远的历史发展过程.它的理论最早可追溯到十七世纪末,在十九世纪末,其理论体系已基本形成.1683年,定义行列式概念的是日本数学家关孝和.同一年,德国数学家莱布尼茨首先开始使用指标数的系数集合来表示有三个未知数的三个一次方程组的系数.他这种解决方程组的思维方式为行列式理论的深入研究工作打下了坚实地基础.1771年,范德蒙创造性的在深入研究行列式理论的基础上,尝试解线性方程组.他这种勇于创新、敢于探索的精神为大家所认可,被公认为行列式的奠基人.他以现在被大家所熟悉的拉格朗日著作中的相关知识为理论基础,进行了反复的钻研,为后来研究群的概念奠定了良好的基础.第一个阐述行列式的数学家便是范德蒙.他运用自己的聪明才智、活跃的思维、批判的科研态度给出了现代代数书中二阶子式及余子式的定义,经过推理,演绎这一系列严谨的过程,完善了行列式的概念,并给出了行列式的数学符号记录.1772年,皮埃尔-西蒙.拉普拉斯在范德蒙著作和自身灵感的启示下,思维方法发生了变化,得出了子类型的概念.自此起,人们对行列式展开了单独的研究.人们为了深入了解行列式理论的本质特征,在19世纪展开了更深层次的研究.柯西积极吸收前人的劳动成果的同时,首次给出了行列式的系统理论.包括双重组标记法、行列式的乘法定理等.1832年至1833年,问卡尔.雅可给出了一个特殊的行列式的计算结果.基于此,1839年,卡塔兰发现了Jacobian行列式.范德蒙行列式整齐、完美的结构形式让我们体验到数学之美.简单探索它的应用,感悟数学的魅力.如果我们能够深入探索范德蒙行列式并灵活运用它,未来将更广泛的应用在数学各个领域.2范德蒙行列式的定义及证明2.1定义行列式1121121111---n nn n na a a a a a(1)称为n 阶的范德蒙(Vandermonde )行列式.由范德蒙行列式的定义,我们可以得出结论:对任意的(2)n n ≥阶范德蒙行列式等于n a a a ,,21这n 个数的所有可能的差)1(n i j a a j i ≤<≤-的乘积. 2.2范德蒙德行列式的证明 2.2.1用递推法证明12112211120011111221111a a a a a a a a a a D n n n n n n n n r a r r a r r a r n n n n n -----------−−−−−−→−---)()()()()()(12132312221133122123121a a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n n c ---------−−−→−---展开按上式112312)())((----=n n D a a a a a a仿上做法,有2224231)())((-----=n n n D a a a a a a D 再递推下去,直到11=D .故)()()())()(())((112242311312j i ni j n n n n n a a a a a a a a a a a a a a a a D -=-------=∏≤<≤-2.2.2用Laplace 定理证明 已知在n 级行列式 nnnj n in ij i nj a a a a a a a a a D 111111=中,除第i 行(或第j 列)的元素ij a 以外,行列式中其余元素全是零,则由Laplace 定理得:此行列式等于ij a 与它的代数余子式ij A 的乘积ij ij A a D =,在113121122322213211111----=n nn n n nnn a a a a a a a a a a a a D中,从最后一行开始,每一行减去它相邻前一行的1a 倍,得)()()(0)()()(0011111213231222113312211312a a a a a a a a a a a a a a a a a a a a a a a a D n n n n n n n n n ---------=---根据上述定理)()()()()()(1213231222113312211312a a a a a a a a a a a a a a a a a a a a a a a a D n n n n n n n n n ---------=---把每列的公因子提出来,得223223211312111)())((------=n nn n nn n a a a a a a a a a a a a D等式右边的第二个因子是1-n 阶行列式,用1-n D 表示,则上式中111312)())((----=n n n D a a a a a a D同样地,可以得到2224231)())((-----=n n n D a a a a a a D此处2-n D 是一个2-n 阶范德蒙行列式,一直继续下去,得)()())(())((122311312-------=n n n n n a a a a a a a a a a a a D)(1j i ni j a a -=∏≤<≤3范德蒙德行列式的应用3.1在向量空间理论中的应用在解析几何中,直观上我们经常认为一维、二维、三维向量空间是有意义的.当3>n 时,就没有直接的现实意义,但在高等代数这门课程中,n 维向量空间却是很常见的.当涉及线性相关问题时,通常我们通过构造同构映射的方法,将其转化为范德蒙行列式的问题,进而利用该行列式是否为零判断线性相关性.例1.设V 是数域F 上的n 维向量空间,任给正整数n m ≥,则在V 中存m 个向量,其中任取n 个向量都线性无关]7[.证明:因为n F F ≅,所以只须在n F 中考虑.取)3,,3,3,1(121-=n a))3(,,3,1(2122-=n a))3(,,3,1(1m n m m a -=令.1,)3()3(31)3()3(31)3()3(3121121212222111m k k k D n k n k k k n k k k n k n nnnk≤≤≤≤≤=--- 121212)3()3(31)3()3(31)3()3(31222111---=n k k k n k k k n k k k n n n nD 是范德蒙行列式 且0≠n D ,所以n k k k a a a ,,,21 线性无关.3.2在线性变换中的应用线性变换是代数学中的一个重要概念,它的抽象性使我们在掌握这个概念时比较困难.此时,我们可以应用线性变换的定义及性质,考虑构造新函数,运用方程思想解决此类问题.例2.设数域F 上的n 维向量V 的线性变换σ有个互异的特征值n λλλ,,,21 ,则与σ可交换的V 的线性变换是12,,,,-n e σσσ 的线性组合,这里e 为恒等变换.证明:由题意,由于σ是n 维向量V 上的线性变换,由线性变换的定义得n i i i i ,,2,1,)( ==αλασ,假设{}F k k V i ∈=|αλ是δ的不变子空间.根据不变子空间的特点,δ是与σ可交换的线性变换.令112210--++++=n n x x x e x σσσδ 且n i k i i i ,,2,1,)( ==αασ,则有以下方程组⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=------111012121021111101n n n n nn n n n x x x k x x x k x x x k λλλλλλ (2) 由于线性方程组的系数矩阵的行列式)(j 1j i ni D λλ-∏=≤<≤,所以方程组(2)有唯一解,即就是12,,,,-n e σσσ 这n 个向量线性无关,题目得证. 3.3多项式理论中的应用在多项式理论中,许多题目涉及求根问题.一般情况下,我们可以用综合除法解决这类问题,但是在不知道多项式函数最高次项系数和常数项系数的条件下,我们可根据题意列出线性方程组.通过计算该线性方程组对应的系数矩阵的行列式是否为零判断根的情况,进而得出结论.例 3.设n n x c x c c x f +++= 110)(.若()f x 至少有1+n 个不同的根,则0)(=x f .证明:取121,,,+n x x x 为()f x 的1+n 个不同的根.则有由齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++++000121211022222101212110n n n n n nn n n x c x c x c c x c x c x c c x c x c x c c (3) 其中n c c c ,,,10 看作未知量.且0)(1≠-∏=≤<≤j i ni j x x D .由于该方程组的等式右端的数均为零,由变形后的定理得:此方程组的解全为零.从而010====n c c c .即)(x f 是零多项式. 3.4微积分中的应用例4.设)(y f 在],[b a 上连续,在),(b a 内存在2阶导数]2[.证明:在b x a <<上有)(21)()()()(''c a b a f b f a x a f x f f=-----.这里),(b a c ∈证明:在],[b a 上构造函数)(1)(1)(1)(1)(2222b f b b x f x x a f a a y f y y y F =是范德蒙行列式,而函数)(y F 满足中值定理条件:因)()()(y F x F a F ==.由中值定理,在),(b a 内存在b x x x a <<<<21,使0)()(2''1''==x F x F .故存在),(21x x c ∈,使0)(''=c F .即就是0)(1)(1)(1)(200)(222''''==b f b b x f x x a f a ac f c F .按行列式定义展开,即得所证. 3.5行列式计算中的应用涉及行列式计算问题时,经常运用行列式的性质解决问题,但其复杂多变的形式给行列式的计算增加了难度.对于具体的行列式,我们可以根据它的性质和定义解决.但对于那些结构特殊的、抽象的行列式,可通过观察、归纳总结,我们可以用特殊的方法迅速解决问题. (1)用提取公因式计算行列式例5.计算nn n n n n n D 222333222111= 解:由观察得到:该行列式中每行元素都分别是同一个数的不同方幂,并且其方幂次数从左至右依次增加,但它的次数是由1递加至n ,由行列式的相关性质,得1212121333122211111321---⨯⨯⨯⨯=n n n n n n n n D仔细观察,我们在右边的行列式中,从第2行开始,每行的1都写成该行中这个自然数的零次幂的形式,则它为n 阶范德蒙行列式,故)]1([)2()24)(23)(1()13)(12(!--------=n n n n n D n!1!2)!2()!1(! --=n n n (2)对换行列式中每一行(或每一列)的次序例6.计算1111)()()1()1(1111n b b b n b n b b b b b D n nn nn nn ------=---+ 分析:遇到这类问题,我们经常考虑运用行列式的六条性质来解决.为此,我们可以调换该行列式的次序,将它化为标准形式.解:把1+n 行依次与上面的每一行交换至第1行,第n 行依次与上面的每一行交换至第2行,以此类推,由自然数排列的逆序原则,共经过2)1(12)2()1(+=+++-+-+n n n n n 次交换 得到1+n 阶范德蒙行nn nn n n n n n n b b b n b b b n b b b D)()1()()1(1111)1(1112)1(1-------=---++)]1([)]1(2)[()2)(1()1(2)1(--------------=+n b n b b b b n b b b b b n n !1k nk =∏=(3)用拆行(列)计算行列式n 阶行列式中的i 行(列)由两个互异元素构成,且任意相邻两行(列)都含有共同元素,那么我们可以利用行列式的初等变换原则,通过消去一些分行中某一元素的方法,巧妙运用范德蒙行列式结论.例7.计算4阶行列式3424332332223121244233222211432111111111a a a a a a a a a a a a a a a a a a a a D ++++++++++++=分析:观察此行列式,我们可以看出:该行列式满足拆项行(列)计算行列式的特点,因此我们可以用该方法来解决这个问题.解:消去此行列式第二行每一项中的数字1,得:342433233222312124423322221143211111a a a a a a a a a a a a a a a a a a a a ++++++++ (4) 消去行列式 (4)第三行中加号前的元素,得:34243323322231212423222143211111a a a a a a a a a a a a a a a a ++++ (5)再从行列式(5)中消去第4行中与第三行一样的元素得:343332312423222143211111aaaaa a a aa a a a因为该行列式为4阶范德蒙行列式,故)(11114134333231242322214321j i i j a a a a a a a a a a a a a a -∏==≤<≤ (4)用加边法计算行列式行列式的各行(或列)有明显范德蒙行列式定义的特点,但共同元素的方幂并不是按连续的自然数的顺序依次增加,此时我们可以考虑用加边法.例8.计算4级行列式444422221111d c b a d c b a d c b a D =分析:D 不是范德蒙德行列式,但具有该行列式的特点,可考虑构造5级的范德蒙德行列式,再利用范德蒙德行列式的结果,间接求出D 的值. 解:构造5阶范德蒙行列式33333222225a11111x d c b a x d c b a x d c b D =按第五列展开得45534523525155x A x A x A x A A D ++++=其中3x 的系数为D D A -=-=+5445)1( 又利用范德蒙行列式的结果得))()()(())()()()()((5d x c x c d b x b d b c a x a d a c a b D ----⨯------= ])([))()()()()((34 ++++-⨯------=x d c b a x c d b d b c a d a c a b其中3x 的系数为))()()()()()((d c b a c d b d b c a d a c a b D +++------=故))()()()()()((d c b a c d b d b c a d a c a b D +++------=4结束语范德蒙德行列式还可以应用于数学其他科目上.例如:在数学分析中,我们可以用它来构造高阶无穷小量,在线性代数中,我们可以用它来解决向量组线性相关性的证明问题.范德蒙行列式广泛的作用更加激发了我们深入探索它的欲望.我们希望在掌握相关的基础课程和基本理论之上,研究范德蒙行列式,用科学技术指导实践,更好的服务社会,促进经济发展.参考文献:[1]范臣君.范德蒙行列式在构造高阶无穷小的应用[J].吉林师范大学学报,2015.2(1) [2]万勇,李兵.线性代数[M].:复旦大学出版社,2006. [3]何江妮.范德蒙德行列式的证明及其应用[J].科教文化.[4]Kenneth C .Louden .Compiler Construction Principles and Practice[M].:机械工业出版社,2002.[5]徐杰.范德蒙行列式的应用[J].科技信息,2009(17).[6]SERGE Lang.Linear Algebra(2nd ed)[M].NeW York:Columbia University,1988. [7]刘彦信.高等代数(第三版)[M].西北工业大学出版社,2004.[8]北京大学数学系几何与代数教研室代数小组.高等代数(第三版)[M].:高等教育出版社,2003.[9]北京大学数学系几何与代数教研室代数小组.高等代数(第三版)[M].:高等教育出版社,2003.Proof of Fandemengde Determinant and its Application Abstract : This paper introduces the definition of n-order Vandermondedeterminant. We proved Vandermonde determinant by recurisive method and Laplasse theorem , and explored its application in the higher algebra by some examples.Vector space theory is used to solve linear problem; It was used to structure linear equcations in linear transformation theory, polynomial theory and calculus theory , and judge the situation of root by Cramers rule or related theorem; In the calculation process of determinant calculation,It is maily used to simplify the n-order determinant. It laid a good foundation for further studying its properties and application by exploring the history of Vandermonde determinant and related applications.Keywords: fandemeng determinant; vectort space; linear trasformation; application。

范德蒙德行列式

范德蒙德行列式

02
范德蒙德行列式的性质
行列式的值唯一确定
• 范德蒙德行列式的值是由其元素唯一确定的。行列式的元素满足线性关系,即对于任意两个不同的排列,其对 应的行列式值是相等的。这种线性关系是范德蒙德行列式的一个重要性质,也是其广泛应用于矩阵计算和线性 方程组求解的基础。
转置不改变行列式的值
• 范德蒙德行列式的转置不改变其值。也就是说,对于任意一个n阶范德蒙德行 列式D,有D^T=D。这个性质在计算行列式时非常重要,因为它意味着我们 不需要对每个元素进行单独处理,而可以将它们按照一定的规律进行排列,从 而简化计算过程。
范德蒙德行列式的推广
范德蒙德行列式是组合数学中的重要公式,可以用于求解一 些组合数的问题。通过对该行列式的推广,我们可以将其应 用于更广泛的数学问题中。
推广的范德蒙德行列式可以用于求解更复杂的组合数问题, 也可以用于研究矩阵的特性。通过对行列式的深入研究,我 们可以得到许多有价值的数学结论。
范德蒙德行列式在量子力学中的应用
代数余子式
• 在范德蒙德行列式的定义中,我们可以看到每个子行列式都是由给定点的坐标差组成的。这些子行列式称为代 数余子式(Algebraic Minors)。
范德蒙德矩阵
• 范德蒙德矩阵(Vandermonde Matrix)是由给定平面上任意n个点的所有有 序坐标差组成的矩阵。其行向量和列向量都由给定点的坐标构成。
THANK YOU
感谢观看
03
范德蒙德行列式的计算方 法
递归法
递归法是一种通过不断将问题分解为更小的子问题来解决问题的方法。在计算范德蒙德行列式时,可 以将行列式拆分成更小的行列式,然后逐个计算,最终得到原行列式的值。
具体来说,我们可以将范德蒙德行列式的每一行都拆分成两个或更多的行,然后利用拆分后的行列式 与原行列式的递推关系,从低阶行列式推导出高阶行列式的值。这种方法虽然比较繁琐,但对于计算 一些低阶的范德蒙德行列式非常有效。

证明范蒙得(Vandermonde)行列式

证明范蒙得(Vandermonde)行列式

1 x1
1 x2
x2 x1 xi x j
2i j 1
所以当n=2时(1)成立. 现在假设(1)对于n-1阶Vandermonde行列式,即
1 Dn 1 x2 x2
n2
1 x3 x3
n2

1 xn xn
n2

n i j来证明对n阶Vandermonde行列式也成立.
1 0 Dn 0 0 x2
n2
1 x2 x1 x2 x2 x1
1 x3 x1 x3 x3 x1 x3
n2

1 xn x1 xn xn x1
n2
x2 x1
n
当i j , 当 i j; 当i j , 当 i j;
其中
ij
1, 当i j , 0, 当i j.
例5.已知行列式
1 D 1 2 5 2 1 3 4 3 1 4 2 4 1 5 3
求 A41 A42 A43 A44 , 其中 A41 , A42 , A43 , A44 是D 的第4行元素的代数余子式.
a11 ai1 a j1 an1 a12 ai 2 a j2 an 2 a1n ain a jn a nn
a j1 Aj1 a j 2 Aj 2 a jn Ajn
在上式两端用
ai1 , ai 2 , , ain 代替 a j1 , a j 2 , , a jn , 得
x3 x1
xn
xn x1
1 x2 x1 x3 x1 xn x1 x2 x2
n2
1 x3 x3

f范德蒙行列式 -回复

f范德蒙行列式 -回复

f范德蒙行列式-回复范德蒙行列式(Vandermonde determinant)是离散数学和线性代数中一种重要的行列式形式。

它由18世纪法国数学家亚历山大·范德蒙(Alexandre-Théophile Vandermonde)首次提出。

范德蒙行列式在数值计算、概率统计、多项式插值等领域中有广泛的应用。

本文将详细介绍范德蒙行列式的定义、性质以及应用。

一、范德蒙行列式的定义范德蒙行列式是指形如下面这样的行列式:\[V_n(x) = \begin{vmatrix}1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & x_n & x_n^2 & \cdots & x_n^{n-1} \\\end{vmatrix}\]其中,\(x_1, x_2, \ldots, x_n\)是n个实数或复数。

二、范德蒙行列式的性质范德蒙行列式具有以下几个重要的性质:1. 行互换性质:范德蒙行列式在交换任意两行(或列)的位置后,其值仍不变。

2. 行倍性性质:将范德蒙行列式的某一行(或列)乘以同一个数k后,其值变为原来的k倍。

3. 一阶行列式性质:当n=1时,范德蒙行列式为:\(V_1(x) = x_1\)。

4. 行列式的连乘性质:对于任意两个范德蒙行列式\(V_l(x_1, x_2, \ldots, x_l)\)和\(V_m(x_1, x_2, \ldots, x_m)\),它们的连乘形式为:\[V_{l+m}(x_1, x_2, \ldots, x_l, x_{l+1}, \ldots, x_{l+m}) = V_l(x_1, x_2, \ldots, x_l) \cdot V_m(x_1, x_2, \ldots, x_m)\]三、范德蒙行列式的计算方法1. 当n=1时,\(V_1(x) = x_1\)。

浅析Vandermonde行列式的相关性质及其应用 毕业论文

浅析Vandermonde行列式的相关性质及其应用  毕业论文

本科毕业论文(设计)题目:浅析Vandermonde行列式的相关性质及其应用专业:数学与应用数学姓名:指导教师:职称:答辩日期:二〇一〇年五月八日浅析Vandermonde行列式的相关性质及其应用摘要:在高等数学的学习中,行列式无疑是一个重点和难点,它是后续课程线性方程组、矩阵、向量空间和线性变换的基础。

而行列式的计算具有一定的规律性和技巧性。

Vandermonde行列式是一类很重要的行列式。

本文系统的阐述了Vandermonde 行列式的相关性质及其应用,通过各种方法说明了行列式中的一些计算问题以及如何利用Vandermonde行列式计算一般的行列式,用多个例子论述并总结了Vandermonde 行列式在科研和实践生活中如何更好的应用。

关键字: 行列式;Vandermonde行列式;VandermondeVandermonde determinant of the natureand application of relevantAbstract: Within the study of advanced-math,determinant obviously bing important and difficult,was the basic of lated courses including Linear Equations,Vector spaces,Matrix,Linear transformation.There was a series regulations and skills in calculation of determinant.And Vandermonde determinant was an important determinant.Firstly,this thesis described the related natures and the application of Vandermonde determinant systermatically. Secondly,it illustrated several issues of Vandermonde determinant and how to take use of Vandermonde determinant to calculate the general determinant through some approaches.Finally,this thesis instructed and concluded how to take better use of Vandermonde determinant in scientific study and practice.Key words:Determinant; Vandermonde determinant; Vandermonde1 引言在中学数学和解析几何里,我们学习过两个未知量和三个未知量的线性方程组及其解法。

范德蒙行列式及其应用

范德蒙行列式及其应用

目录摘要及关键词 (1)一、范德蒙行列式 (1)(一)范德蒙行列式定义 (1)(二)范德蒙行列式的推广 (4)二、范德蒙行列式的相关应用 (8)(一) 范德蒙行列式在行列式计算中的应用 (8)(二) 范德蒙行列式在微积分中的应用 (14)(三) 范德蒙行列式在多项式理论中的应用 (19)(四) 范德蒙行列式推广的应用 (21)三、结束语 (22)四、参考文献 (23)范德蒙行列式及其应用摘要:在北大版高等代数的教科书中,行列式是一个重点也是一个难点,它是学习线性方程组、矩阵、向量空间和线性变换的基础,起着重要作用。

而行列式的计算具有一定的规律性和技巧性,同时可以应用在很多领域。

本文将通过对n阶范德蒙行列式的计算、推广及其证明,讨论它在行列式计算,微积分和多项式理论中的相关应用,然后主要研究一些与范德蒙行列式有关的例子,从中掌握行列式计算的某些方法和技巧,这将有助于我们更好的应用范德蒙行列式解决问题。

关键词:范德蒙行列式、行列式The Determinant of Vandermonde and Its ApplicationYuping- Xiao(Department of Mathematics Bohai University Jinzhou 121000 China) Abstract: Higher algebra textbook edition in Beijing University,the determinant is not only animportant point but also a difficult point,it is a foundation of learning linear equations,matrices,vector space and linear transformation,it plays an important role.And the calculation of determinant has a certain regularity and skills,it can be applied in many areas at the same time. This paper will be through the calculation,expansion and prove of a n band Vandermonde determinant,and discuss the calculation of determinant,the relevant application in the calculus and multinomial theory, then study some examples about the determinant of Vandermonde,and acquire some methods and skills of determinant calculation,This will help us better use the determinant of Vandermonde to solve the problems.Key words: the Vandermonder determinant; determinant一、范德蒙行列式(一)范德蒙行列式定义定义1[1]关于变元x,2x n x的n阶行列式1122221211112111n n nn n n nx x x D x x x x x x ---= (1) 叫做1x ,2x n x 的n 阶范德蒙行列式。

Vandermonde行列式在行列式计算中的应用

Vandermonde行列式在行列式计算中的应用

Vandermonde行列式在行列式计算中的应用
屈力进
【期刊名称】《湖北第二师范学院学报》
【年(卷),期】2008(025)008
【摘要】利用Vandermonde行列式计算一些结构特殊的行列式,要注意到行列式的行或列含有从高到低的幂次,常可考虑将行列式化成Vandermonde行列式来计算.
【总页数】2页(P91-92)
【作者】屈力进
【作者单位】湖北省经济管理干部学院,人文科学系,武汉,430073
【正文语种】中文
【中图分类】O151.21
【相关文献】
1.范德蒙行列式在行列式计算中的应用 [J], 牛海军
2.分块行列式的第一降阶定理在行列式计算与证明中的应用 [J], 吕智颖;李晓红;石国庆
3.范德蒙德行列式在行列式计算中的应用 [J], 侯丽芬
4.论行列式计算机中VanderMonde行列式的应用 [J], 王源
5.拉普拉斯定理在行列式计算中的应用 [J], 冯依虎;杨星星
因版权原因,仅展示原文概要,查看原文内容请购买。

精品毕业论文浅析Vandermonde行列式的相关性质及其应用课件

精品毕业论文浅析Vandermonde行列式的相关性质及其应用课件

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

摘要在高等数学的学习中,行列式无疑是一个重点和难点,它是后续课程线性方程组、矩阵、向量空间和线性变换的基础。

而行列式的计算具有一定的规律性和技巧性。

Vandermonde行列式是一类很重要的行列式。

本文系统的阐述了Vandermonde行列式的相关性质及其应用,通过各种方法说明了行列式中的一些计算问题以及如何利用Vandermonde行列式计算一般的行列式,用多个例子论述并总结了Vandermonde行列式在科研和实践生活中如何更好的应用。

关键字: 行列式;Vandermonde行列式;Vandermonde目录第一章引言 (1)第二章预备知识 (2)2.1 定义 (2)2.2 行列式的性质 (2)2.3 行列式计算中的几种基本方法 (3)2.3.1 三角形法 (3)2.3.2 加边法或升级法 (4)2.3.3 递推法或数学归纳法 (5)第三章行列式的一种特殊类型Vandermonde行列式 (6)3.1 Vandermonde行列式的证法 (6)3.2 Vandermonde行列式的性质 (7)3.2.1 推广的性质定理]7[:行列式 (7)3.2.2 一个Vandermonde行列式为0的充分必要条件 (9)3.2.3 V andermonde行列式的偏导数]8[ (9)3.3 Vandermonde行列式的翻转与变形 (11)3.4 Vandermonde行列式的应用 (12)第四章小结 (17)第五章参考文献 (18)第六章谢辞 (19)引言在中学数学和解析几何里,我们学习过两个未知量和三个未知量的线性方程组及其解法。

但是在数学研究和实际问题的解决过程中,经常会遇到由多个未知量而组成的多个方程组,并且未知量的个数和方程组的个数也未必相等。

为了解决这些具体的问题,经过一代代数学家的不懈努力,终于由莱布尼茨和日本数学家关孝和分别发明了行列式。

范德蒙行列式的一个性质的证明及其应用

范德蒙行列式的一个性质的证明及其应用

范德蒙行列式的一个性质的证明及其应用
刘建中
【期刊名称】《河北大学学报(自然科学版)》
【年(卷),期】2000(020)001
【摘要】用增补法(升阶法)证明了范德蒙(Vandermonde)行列式的一个性质,并使其能解决一类行列式的计算问题.
【总页数】3页(P83-85)
【作者】刘建中
【作者单位】天津电力职工大学,天津,300181
【正文语种】中文
【中图分类】O151.2
【相关文献】
1.范德蒙行列式的证明及其应用 [J], 何江妮
2.范德蒙行列式的新证明及其应用 [J], 叶彩儿
3.范德蒙行列式的2种证明及其应用 [J], 张泽锋;陈秀琴
4.范德蒙行列式的2种证明及其应用 [J], 张泽锋;陈秀琴
5.抛物线的一个焦点弦性质证明、推广及在高考中的应用 [J], 王新宏
因版权原因,仅展示原文概要,查看原文内容请购买。

【精品】PPT课件 例3 证明范蒙得(Vandermonde)行列式16页文档

【精品】PPT课件  例3 证明范蒙得(Vandermonde)行列式16页文档


26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的Βιβλιοθήκη 心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
16
【精品】PPT课件 例3 证明范蒙得 (Vandermonde)行列式
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档