测量误差理论与数据处理
误差理论与数据处理
③ 差动法 被测量对传感器起差动作用 干扰因素起相同作用 --- 被测量的作用相加 --- 干扰的作用相减 作用:抑制干扰 提高灵敏度和线性度 ④ 比值补偿法 利用比值补偿原理 --- 影响因素在输出计算式的分子、分母上同时出现 --- 约消 例:比色高温计 --- 消除辐射率变化的影响 ⑤ 半周期偶数观测法 --- 系统误差随某因素成周期性变化 测量 --- ½变化周期 两次测量所得的周期系统误差 --- 数值相等、正负相反 --- 取平均值 自动检测 --- 检测的时间间隔为½周期(克服随时间周期变化因素的影响) 综合:传感器信号转换 --- 选频放大器、滤波器、滤色片 --- 截断/删除无用 频带(只让有用信号频带通过) --- 减轻校正、补偿难度 有影响的因素 --- 定值/较窄范围 --- 系差稳定 --- 修正值 措施 --- 恒温、稳压或稳频
如:米 --- 公制长度基准
光在真空中1s时间内传播距离的1/299792485 1m = 1650763.73
--- 氪-86的2p10-5d5能级间跃迁在真空中的辐射波长
② 理论真值:设计时给定或用数学、物理公式计算出的给定值 ③ 相对真值:标准仪器的测得值或用来作为测量标准用的标准器的值
⑧ 检测方法误差 检测方法、采样方法、测量重复次数、取样时间
⑨ 检测人员造成的误差 人员视觉、读数误差、经验、熟练程度、精神方面原因(疲劳)
4 、误差分类
按误差来源:装置误差、环境误差、方法误差、人员误差
按掌握程度:已知误差、未知误差 按变化速度:静态误差、动态误差 按特性规律:系统误差、随机误差、粗大误差
h
1 2
-K K
总体期望:无限次测量(不可能实现) --- 有限次测量代替 估计(Estimation ) --- 有限次样本推测总体参数 --- 估计值(^) 同一被测量 n 次测量 算术平均(Mean value) x 估计 真值x0
误差理论与数据处理
服从正态分布的随机误差具有以下特征:
①单峰性。绝对值小的误差出现的概率比绝对值大的误差出现的概率大。
②对称性。绝对值相等的正、负误差出现的概率相等。
③有界性。绝对值很大的误差出现的概率很小,甚至趋近于零。
④抵偿性。随机误差的算术平均值随着测量次数的增加而越来越趋于零,即
1
lim n n
n
xi
i 1
计分布规律,可以用统计学方法估算随机误差。
3.异常数据的剔除
剔除测量列中异常数据的标准有 3 准则、肖维准则、格拉布斯准则等。
统计理论表明,测量值的偏差超过 3 的概率已小于 1%。因此,可以认为偏差超过 3
的测量值是由于其它因素(实验装置故障、测量条件的意外变化、较强的外界干扰)或过
失造成的异常数据,应当剔除。方法是用偏差 xi
Sx
(xi x)2 n 1
(7)
S x 的统计意义: S x 小,说明随机误差的分布范围窄,小误差占优势,各测量值的离 散性小,重复性好。反之, S x 大,各测量值的离散性大,重复性差。
一般情况下,在多次测量后,是以算术平均值表达测量结果的,而算术平均值本身也
是随机量,也有一定的分散性,可用平均值的标准偏差 S 来表征这一分散性: x
不确定度(Uncertainty)是指由于测量误差的存在而对被测量值不能肯定的程度,用
符号U 表示。通过不确定度可以对被测量的真值所处的量值范围做出评定,而被测量的真
值将以一定的概率(例对于标准不确定度 P=68.3%)落在这个范围内;同时不确定度大小 反映了测量结果可信程度的高低,不确定度越小,测量结果与被测量的真值越接近。
为了能更直观地反映测量结果的优劣,需要引入相对不确定度 E ,即
误差理论及数据处理
204.94 205.63
205.71
204.7 204.86
1.修正值不要考虑了 2.算术平均值 3.计算残差
205.24
206.65 204.97 205.36 205.16
205.35
205.21 205.19 205.21 205.32
x 205.30V
vi xi x
n( x ) ( xi )
i 1 2 i i 1
i 1 n
i 1
i
i
i 1 2
i
n
B
n xi yi xi yi
i 1 i 1 i 1
n( x ) ( xi )
i 1 2 i i 1
n
n
2
A 2, B 1
第二章 测量误差理论与数据处理
2、 曲线拟合
y 2.66 0.422 x
第二章 测量误差理论与数据处理
曲线拟合例题2
[例] 已知
x y xj yj 0 100 1 223 2 497 3 1104 4 2460 5 5490
1)绘y_x曲线(a) 2)初步估计:y=ax2+b 3) 变换: y’=ax’+b (y’=y, x’=x2)
i 1 i 1 i 1 i 1 n
n
n
n
第二章 测量误差理论与数据处理
直线拟合(续)
求极值(求偏导数) n A, B [2( yi A Bxi )] 0 A i 1 n A, B [2 xi ( yi A Bxi )] 0 B i 1 求解方程
2000
1000
0
0
5
10
15
20
误差理论与数据处理
nx
×100%
◆ (4)方差(Variance) 方差( 度量随机变量和其数学期望之间的偏离程度。 度量随机变量和其数学期望之间的偏离程度。
σ2 =
就是和中心偏离的程度。 就是和中心偏离的程度。在样本容 量相同的情况下,方差越大, 量相同的情况下,方差越大,说明 数据的波动越大, 数据的波动越大,越不稳定
2 数据处理
2.1 有效数字定义、运算规则
2.1.2 运算规则 (2)运算 ) ):结果的末位数字所在的位置应按各量中存 ◆加(减):结果的末位数字所在的位置应按各量中存 疑数字所在数位最少的一个为准来决定。 疑数字所在数位最少的一个为准来决定。
a. 30.4 + 4.325 = 34.725 → 34.7 b. 26.65 -3.905 = 22.745 → 22.74
106.25=1778279.41→1.8×106; pH=10.28→[H+]=5.2×10-11
2 数据处理
2.1 有效数字定义、运算规则
2.1.2 运算规则 (2)运算 ) 对数: ◆对数: lgx的有效数字位数由 的位数决定。 的有效数字位数由x的位数决定 的有效数字位数由 的位数决定。
1 误差理论
1.2 分类
1.2.2 系统误差、随机误差、过失误差
◆(3)过失误差 又称粗大误差和疏忽误差。 又称粗大误差和疏忽误差。是由过程中 的非随机事件如工艺泄漏、测量仪表失灵、 的非随机事件如工艺泄漏、测量仪表失灵、设备故障等引发的 测量数据严重失真现象, 测量数据严重失真现象,致使测量数据的真实值与测量值之间 出现显著差异的误差。 出现显著差异的误差。
2.1 有效数字定义、运算规则
2.1.1 定义
在一个近似数中,从左边第一个不是 的数字起 的数字起, 在一个近似数中,从左边第一个不是0的数字起,到精确到 的位数止,这中间所有的数字都叫这个近似数字的有效数字。 的位数止,这中间所有的数字都叫这个近似数字的有效数字。
误差理论及数据处理
第二章 误差理论及数据处理
除了偏差之外,还可以用极差R来表示样本平行测定值 的精密度。极差又称全距,是测定数据中的最大值与最小值 之差,R=xmax-xmin 其值愈大表明测定值愈分散。由于没有充分利用所有的数据, 故其精确性较差。偏差和极差的数值都在一定程度上反映了 测定中随机误差影响的大小。 此外还有公差,它是指生产部门对分析结果允许误差的 一种表示方法,如果分析结果的误差超出允许的公差范围, 称为超差,该项分析工作应重做。有关公差,由有关主管部 门根据分析对象作出相关规定。
第二章 误差理论及数据处理
第二章 误差理论及数据处理
上述情况说明,精密度高表明测定条件稳定, 这是保证准确度高的先决条件。精密度低的测定结 果是不可靠的,因而是不准确的。但是高精密度的 测定值中也可能包含有系统误差的影响,只有在消 除了系统误差的前提下,精密度高其准确度必然也 高。 对于含量未知的试样,由于仅凭测定的精密度 难以正确评价测定结果,因此常同时测定一个或数 个标准试样,检查标样测定值的精密度,并对照真 实值以确定它的准确度,从而对试样测定结果的可 靠性做出评价。
第二章 误差理论及数据处理
平均偏差:个别测定偏差的绝对值加和除以测量次数,
相对平均偏差:
平均偏差和相对平均偏差由于取了绝对值因而都是正值。
第二章 误差理论及数据处理
(二)标准偏差和相对标准偏差 由于在一系列测定值中,偏差小的值总是占多数,这样 按总测定次数来计算平均偏差时会使所得的结果偏小,大偏 差值得不到充分的反映。因此在数理统计中,一般不采用平 均偏差,而广泛采用标准偏差来衡量数据的精密度,它反映 了各测定值对平均值的偏离程度。标准偏差用s表示:
样本的相对标准偏差(也称为变异系数),用Sr或RSD表示:
误差理论和测量数据处理
误差理论和测量数据处理误差理论和测量数据处理是在科学研究、工程设计和实验室测试中非常重要的一部分。
它们涉及到对测量数据的准确性和可靠性进行评估,以及对误差来源和处理方法的分析。
在本文中,我们将详细介绍误差理论和测量数据处理的基本概念、方法和应用。
一、误差理论的基本概念误差是指测量结果与真实值之间的差异。
在测量过程中,由于各种因素的影响,测量结果往往会存在一定的误差。
误差理论的目标是通过对误差进行分析和处理,提高测量结果的准确性和可靠性。
1. 系统误差和随机误差系统误差是由于测量仪器的固有缺陷、环境条件的变化等因素引起的,它们对测量结果产生恒定的偏差。
而随机误差是由于测量过程中不可避免的各种随机因素引起的,它们对测量结果产生不确定的影响。
2. 绝对误差和相对误差绝对误差是指测量结果与真实值之间的差异的绝对值,它可以用来评估测量结果的准确性。
相对误差是指绝对误差与测量结果的比值,它可以用来评估测量结果的相对准确性。
3. 精度和精确度精度是指测量结果的接近程度,它可以通过对多次测量结果的统计分析来评估。
精确度是指测量结果的稳定性和一致性,它可以通过对同一样本进行多次测量来评估。
二、测量数据处理的基本方法测量数据处理是指对测量数据进行分析、处理和解释的过程。
它包括数据的整理、数据的可视化、数据的统计分析等步骤。
1. 数据的整理数据的整理是指将原始数据进行清洗、筛选和整理,以便后续的分析和处理。
这包括去除异常值、填补缺失值、标准化数据等操作。
2. 数据的可视化数据的可视化是指将数据以图表或图像的形式展示出来,以便更直观地理解数据的分布、趋势和关系。
常用的可视化方法包括直方图、散点图、折线图等。
3. 数据的统计分析数据的统计分析是指对数据进行统计特征、相关性、回归分析等统计方法的应用。
通过统计分析,可以得到数据的均值、标准差、相关系数等指标,从而对数据进行更深入的理解。
4. 数据的模型建立数据的模型建立是指根据测量数据的特征和目标需求,建立数学模型来描述数据的变化规律。
误差理论与数据处理课件(很实用)
报告审核与修改
对报告进行同行评审或专家审核,根据反馈 进行必要的修改和完善。
06
案例分析与实践
案例一:医学数据处理
总结词
医学数据处理是误差理论应用的重要领域,涉及临床 试验、诊断、治疗等多个方面。
详细描述
医学数据处理中,误差的来源包括测量误差、随机误 差和系统误差等。这些误差可能导致数据失真,影响 医学研究的准确性和可靠性。因此,医学数据处理需 要遵循严格的标准和规范,如临床试验数据管理规范 、医疗器械检测标准等。同时,医学数据处理也需要 采用各种误差处理技术,如数据清洗、数据变换、数 据筛选等,以减小误差对数据的影响。
数据预处理包括数据的排序、筛选、分组和编码等操作,为后续的数据分析提供 准确和一致的数据集。
03
误差的识别与控制
系统误差的识别与控制
系统误差的识别
系统误差通常表现为数据呈现一定的 规律性偏差,可以通过对比实验数据 与理论值、检查实验装置和环境条件 等方式进行识别。
系统误差的控制
控制系统误差的方法包括改进实验装 置、优化实验环境、采用标准仪器和 设备、定期校准和检测等措施,以减 小系统误差对数据的影响。
先滞后关系。
时间序列平稳性
检验时间序列数据的平 稳性,以确定是否适合
进行时间序列分析。
05
实验设计与数据分析
实验设计原则
01
02
03
04
科学性原则
实验设计应基于科学理论和实 践经验,确保实验的合理性和
可行性。
随机性原则
实验对象的分配应随机化,以 减少系统误稳定性和可靠性
案例二:金融数据分析
总结词
金融数据分析中,误差的来源包括数据采集、数据处 理和数据分析等多个环节。
误差理论与数据处理第七版
误差理论与数据处理第七版简介《误差理论与数据处理第七版》是由Taylor J.R.所著,是一本针对误差理论和数据处理方法的经典教材。
本书的内容主要围绕了测量和数据处理中的误差分析、不确定度评定以及数据处理方法。
通过本书的学习,读者可以掌握正确的实验设计与数据处理方法,从而提高测量数据的精度和可靠性。
目录1.误差分析基本概念2.误差传播3.误差偏差4.误差控制方法5.不确定度评定6.数据处理方法7.统计处理方法8.随机误差处理9.系统误差处理10.实验设计与方差分析11.实例与案例分析1. 误差分析基本概念本章介绍了误差分析的基本概念,包括误差的定义、分类以及误差的来源和影响因素。
误差分析是任何测量或实验的基础,通过对误差的分析,可以了解测量结果的可靠性和精度。
2. 误差传播本章讨论了误差传播的原理和方法。
误差传播是指在多个测量量进行组合时,误差如何传递到最终结果中。
通过了解误差传播的方法,可以更准确地评估多个测量结果的不确定度,并进行合理的处理。
3. 误差偏差本章主要介绍了误差偏差的概念和处理方法。
误差偏差是指测量结果相对于真实值的系统性偏离,它可以由各种因素引起,如仪器误差、环境条件等。
了解误差偏差的影响和处理方法对于提高测量结果的准确性至关重要。
4. 误差控制方法本章介绍了误差控制的方法和技巧。
误差控制是通过合理的设计和操作,减小和控制各种误差来源,从而提高测量结果的可靠性和精度。
通过本章的学习,读者可以了解到一些常用的误差控制方法和实践经验。
5. 不确定度评定本章主要介绍了不确定度评定的理论和方法。
不确定度是对测量结果的范围进行估计,用于描述测量结果的可信度。
本章重点介绍了不确定度的计算方法和评定准则,使读者能够正确评估测量结果的不确定度,并进行合理的处理和判断。
6. 数据处理方法本章介绍了常用的数据处理方法,包括数据平滑、拟合和插值等。
通过对数据的处理,可以使数据更加平滑、易于分析和解释。
误差理论与数据处理简答题及答案
误差理论与数据处理简答题及答案基本概念题1. 误差的定义是什么?它有什么性质?为什么测量误差不可避免?答: 误差=测得值-真值。
误差的性质有:(1)误差永远不等于零;(2)误差具有随机性;(3)误差具有不确定性;(4)误差是未知的。
由于实验方法和实验设备的不完善, 周围环境的影响, 受人们认识能力所限, 测量或实验所得数据和被测量真值之间不可避免地存在差异, 因此误差是不可避免的。
2. 什么叫真值?什么叫修正值?修正后能否得到真值?为什么?答: 真值: 在观测一个量时, 该量本身所具有的真实大小。
修正值: 为消除系统误差用代数法加到测量结果上的值, 它等于负的误差值。
修正后一般情况下难以得到真值。
因为修正值本身也有误差, 修正后只能得到较测得值更为准确的结果。
3. 测量误差有几种常见的表示方法?它们各用于何种场合?答: 绝对误差、相对误差、引用误差绝对误差——对于相同的被测量, 用绝对误差评定其测量精度的高低。
相对误差——对于不同的被测俩量以及不同的物理量, 采用相对误差来评定其测量精度的高低。
引用误差——简化和实用的仪器仪表示值的相对误差(常用在多档和连续分度的仪表中)。
4. 测量误差分哪几类?它们各有什么特点?答: 随机误差、系统误差、粗大误差随机误差: 在同一测量条件下, 多次测量同一量值时, 绝对值和符号以不可预定方式变化着的误差。
系统误差: 在同一条件下, 多次测量同一量值时, 绝对值和符号保持不变, 或在条件改变时, 按一定规律变化的误差。
粗大误差:超出在规定条件下预期的误差。
误差值较大, 明显歪曲测量结果。
5. 准确度、精密度、精确度的涵义分别是什么?它们分别反映了什么?答: 准确度: 反映测量结果中系统误差的影响程度。
精密度: 反映测量结果中随机误差的影响程度。
精确度: 反映测量结果中系统误差和随机误差综合的影响程度。
准确度反映测量结果中系统误差的影响程度。
精密度反映测量结果中随机误差的影响程度。
误差理论与数据处理-第四章 一般测量问题中的数据处理方法
故测量数据xi的权pi可按其标准差确定。
1 n
n i 1
xi
1
=39.285+ ×10-3×(0+3-3+l-1+1+2+0)
8
=39.2854
误差理论
第四章 一般测量问题中的数据处理方法
与数据处理
✓例4-3 对某圆柱体外径尺寸连续测量10次, 所得结果如下(单位mm):3.985,3.986, 3.988,3.986,3.984,3.982,3.987,3.985 ,3.989,3.986,求最佳结果及其精度(不考 虑系统误差)。
(4 - 6)
这一性质常用于检验所计算i的1 算术平均值和残
差有无差错。
n
(2)残差的平方和最小,即 vi2 min (4 - 7)
i 1
测量结果与其他量之差的平方和都比残差平方
和大,这一性质与最小二乘法一致。
误差理论
与数据处理
第四章 一般测量问题中的数据处理方法
三、算术平均值的标准差
U ks 3 0.63103=1.9×10-3mm d
最终结果为:3.9858+0.0019mm
误差理论
第四章 一般测量问题中的数据处理方法
与数据处理
4.2 加权算术平均值原理
不等精度测量
当对某一量进行多次测量时,由于仪器精度和
测量方法的优劣、测量者熟练程度及测量条件等
方面的差别,各次测量可能具有不同的精度,这
一致性。 (2)无偏性
由(4-3)式可知,算术平均值的误差 x 是各测
量误差xi 的线性和,因而 x 也是正态分布的
随机变量,且具有对称性,数学期望为零。
误差理论与数据处理-第二章 测量误差的规律性及其表述
与数据处理
注意:
正态分布的随机变量的和仍为正态分布的随机变量.
即
n
E 0
D 2 i2
i 1
但在和式中若有部分误差不服从正态分布,则这
一误差和就不服从正态分布.不过,当和式中的误差项
数量增加,而又”均匀”减小,和的分布将趋于正态分 布
实践上,当各随机误差较为”均匀”,即它们的方 差
应注意,标准差没有负值。 方差和标准差可作为测量精度的评定参数
误差理论
与数据处理
随机误差的表征参数(Ⅴ)
➢ 协方差(相关矩)和相关系数
随机误差δx与δy的协方差定义为
Dx,y Ex Exy Ey
相关系数为:
xy
Dx, y
x • y
协方差或相关系数反映误差之间的线性相
该随机误差的算术平均值趋于零.
正态分布随机误差的分布函数和分布密度
误差理论
与数据处理
根据最大似然原理可推得δ的分布密度为:
2
f
1
e 2 2
2
e-自然对数的底,e=2.7183…;
π-圆周率, π=3.14159…;
б-误差δ的均方差或称标准差,对同一分布的随机 误差, б为一常数.
相互独立的随机误差 1,2 之积的数学期望为
E1 •2 E1• E2
误差理论
与数据处理
随机误差的表征参数(Ⅲ)
方差和标准差
定义:
D
E
2
f
d
通常,随机误差的数学期望E(δ)=0,因 而有:
D
误差理论与数据处理
误差理论与数据处理
1误差理论
误差(error)理论是科学测量中一项重要的理论,它描述了测量结
果与理论结果之间的差异,以及这种差异的大小和方向。
当一项测量
结果与理论相符时,这种差异就会减少到一定的程度,从而减少测量
不确定性,使测量结果更精确和准确。
误差分析也是一种重要的测量方法,它主要是根据实际测量结果
来估算实际测量数据与理论测量数据之间的差异,从而决定测量后的
数据处理方式[1]。
通过分析误差,可以有效估算测量数据的有效位数,进而使测量结果更加准确。
2数据处理
数据处理是控制实验测量的一个重要步骤,它可以改善实验测量
的精确程度。
通过数据处理,可以提供准确可靠的实验结果,这对于
建立精确的模型以及验证理论,都有着重要的意义。
数据处理有很多种方法,但最重要的一点是要确定准确的误差结果。
通常可以采用统计方法,如均值、标准差和变异系数,对实验数
据进行精确的数据分析,从而估算实验数据的有效位数和有效位数之
间的差值。
一旦变值较大,就可以采取一定的措施进行纠偏,使实验
数据趋于稳定,从而提高实验数据的准确性。
数据处理本身也可以用于处理和优化测量误差,从而提高测量精度。
这一过程通常包括:编辑测量误差数据,对某些超出预想范围的测量数据进行排除处理,将误差分布情况用图表展示出来,并从中分析出结论性结果。
综上所述,误差理论和数据处理在科学测量中起着非常重要的作用,准确的误差分析可以令实验结果更加有效可靠,而精确的数据处理也可以改善测量精度,可以提供准确的实验数据,为理论的验证和模型的建立提供有力支撑。
误差理论与数据处理
第2章 误差的基本性质与处理
第一节 随机误差
一、随机误差产生的原因
当对同一测量值进行多次等精度的重复测量时,得到一 系列不同的测量值(常称为测量列),每个测量值都含有 误差,这些误差的出现没有确定的规律,即前一个数据出 现后,不能预测下一个数据的大小和方向。但就误差整体 而言,却明显具有某种统计规律。 随机误差是由很多暂时未能掌握或不便掌握的微小因 素构成,主要有以下几方面: ① 测量装置方面的因素 零部件变形及其不稳定 ② 环境方面的因素 ③ 人为方面的因素
测量环 境误差
测量方 法误差
测量人 员误差
测量设备误差
以固定形式复现标准量值的器具, 如标准电阻、标准量块、标准砝 码等等,他们本身体现的量值, 不可避免地存在误差。一般要求 标准器件的误差占总误差的 1/3~1/10。 测量装置在制造过程中由于设计、制 造、装配、检定等的不完善,以及在 使用过程中,由于元器件的老化、机 械部件磨损和疲劳等因素而使设备所 产生的误差。 测量仪器所 带附件和附 属工具所带 来的误差。
−∞ +∞
(2-4) (2-5)
其平均误差为: ρ 此外由 ∫− ρ f ( δ ) d δ
θ =
∫
+∞
−∞
| δ | f (δ ) d δ ≈
=
1 2
4 σ 5
(2-6)
2 σ 3
可解得或然误差为 :
ρ = 0 . 6745 σ ≈
(2-7)
由式(2-2)可以推导出: ① 有 f ( ± δ ) > 0 , f (+δ ) = f (−δ ) 可推知分布具有对称性,即绝对值相 等的正误差与负误差出现的次数相等,这称为误差的对称性; ② 当δ=0时有 f max (δ ) = f (0) ,即 f (±δ ) < f (0) ,可推知单峰性,即绝对值 小的误差比绝对值大的误差出现的次数多,这称为误差的单峰性; ③ 虽然函数 f (δ ) 的存在区间是[-∞,+∞],但实际上,随机误差δ只 是出现在一个有限的区间内,即[-kσ,+kσ],称为误差的有界性; n ④ 随着测量次数的增加,随机误差的算术平均值趋向于零: → ∞ lim n 这称为误差的补偿性。
电子测量 第二章误差理论和数据处理
产生系统误差的主要原因有: ①测量仪器设计原理及制作上的缺陷。例如
刻度偏差,刻度盘或指针安装偏心,使用过程 中零点漂移,安放位置不当等.
②测量时的环境条件如温度、湿度及电源电 压等与仪器使用要求不一致等。
③采用近似的测量方法或近似的计算公式等。 ④测量人员估计读数时习惯偏于某“方向等原 因所引起的误差。 系统误差体现了测量的正确度,系统误差小, 表明测量的正确度高。
I
V
Rx
I
V
Rx
(a)
(b)
对于图(a):
R'x
=
U I
= (RV
// Rx )I I
=
Rx RV Rx + RV
R
=
R'x
-
Rx
=
-RV2 Rx + RV
对于图(a)当电压表内阻RV很大时可选a方案。 对于图(b)当电流表内阻RI很小时可用b方案。
3 理论误差 测量方法建立在近似公式或不完整的理论基础上以及用近似
0.2
0.5
1.0
1.5
2.5
5.0
±S% 0.1
0.2
0.5
1.0
1.5
2.5
5.0
例[2]:检定量程为100μA的1.5级电流表,在50μA刻度上 标准表读数为49μA,问此电流表是否合格?
解: x0=49μA
x=50μA
xm=100μA
m
=
x
- x0 xm
×100%
=
50 - 49×100% 100
一、随机误差的定义、起因和特点
1、定义:
测量术语:“等精度测量”──在相同条件(同一人、 同一仪器同一环境、同一方法)下,对同一量进行重复测 量,称为等精度测量。
误差理论与数据处理课件(全)
个数K 46 41 33 21 16 13 5 2 0 177
+△ 频率K/n 0.128 0.115 0.092 0.059 0.045 0.036 0.014 0.006
0 0.495
(K/n)/d△ 0.640 0.575 0.460 0.295 0.225 0.180 0.070 0.030 0
(四)复杂规律变化的系统误差
(一)实验对比法 (二)残余误差观测法
(五)计算数据比较法
(一)从产生误差根源上消除系统误差 (二)用修正方法消除系统误差 (三)不变系统误差消除法 1。替代法 2。抵消发 3。交换法
一、粗大误差产生的原因 (1)测量人员的主观原因 (2)客观外界条件的原因
第一节:研究误差的意义 1、始终存在着误差 意义:
1)正确认识误差的性质,分析误差产生 的原因,以消除和减少误差。
2)正确处理测量和实验数据 3)正确组织实验过程
由于误差的存在,使测量数据之间产生矛 盾。
( )实际 180
( )理论 180
测量仪器:i角误差、2c误差 观测者:人的分辨力限制 外界条件:温度、气压、大气折光等
……
2.40~2.60 >2.60
和
个数K 40 34 31 25 20 16 …… 1 0 210
—△ 频率K/n 0.095 0.081 0.074 0.059 0.048 0.038
(4)( AT )1 ( A1)T
(5)对称矩阵的逆仍为对称矩阵。
(6)对角矩阵的逆仍为对角矩阵且:
A1 (diag (a11, a22,ann ))1 diag( 1 , 1 1 )
a11 a22 ann
(1)伴随矩阵法:
设Aij为A的第i行j列元素aij的代数余子式,则由 n*n个代数余子式构成的矩阵为A的伴随矩阵 的转置矩阵A*称为A的伴随矩阵。
误差理论及数据处理方法
误差理论及数据处理方法
随机误差是随机变动引起的测量值的波动性,它是由于测量仪器的精
度限制、环境的扰动和测量过程中人为的不确定性等因素导致的。
随机误
差可以通过多次重复测量来进行评估和控制。
数据处理方法是指对测量结果和数据进行分析和处理的一系列数学和
统计方法。
在数据处理中,常用的方法包括均值、标准差、标准误差、回
归分析、方差分析等。
均值是对一组测量结果进行描述和统计的一种方法,它可以表示这组
测量结果的中心位置。
均值的计算公式是将所有测量值相加并除以总个数。
标准差是对一组测量结果的离散程度进行评估的一种方法,它可以表
示这组测量结果的分散程度。
标准差的计算公式是对每个测量值与均值之
差的平方进行加总后再除以总个数,再开方。
标准误差是对均值的不确定性进行估计的一种方法,它可以表示对同
一组测量结果重复测量所得均值的波动程度。
标准误差的计算公式是将标
准差除以该组测量结果的总个数再开方。
回归分析是一种用于研究两个或多个变量之间关系的统计方法。
通过
分析自变量(独立变量)和因变量(依赖变量)之间的关系,可以建立一
个回归方程,从而预测未知因变量的值。
方差分析是一种用于比较两个或多个样本均值之间差异的统计方法。
方差分析可以通过计算组间变异与组内变异比例的F值,来判断不同样本
均值之间是否存在显著性差异。
误差理论和数据处理方法在科学研究和实验中具有重要意义。
通过对误差进行合理评估,并使用合适的数据处理方法,可以提高测量结果和数据的准确性和可靠性,进而确保科学研究的可信度和可重复性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可编辑ppt
5
电子测量的应用
广泛应用于自然科学的一切领域: 大到天文观测、宇宙航天, 小到物质结构、基本粒子; 从复杂深奥生命、细胞、遗传问题 到日常的工农业生
产、医学、商业各部门,都越来越多地采用电子测量和设 备。
电子测量技术的发展与自然科学特别是电子技术的发展 互相促进、互相推动。
3、元件和电路参数的测量,如电阻、电感、电容、频率响 应、通带宽度、品质因数、增益等。
可编辑ppt
4
ቤተ መጻሕፍቲ ባይዱ
电子测量特点
1、测量频率范围极宽,低端可测直流,测交流时可低至 10-4~10-5 Hz,高端可至100GHz左右。
2、量程很广。 3、测量准确度高。
4、测量速度快。 5、易于实现遥测和长期不间断测量,显示方式可以做到 清晰、直观。
可编辑ppt
8
第一节 测量误差的基本概念
真值:一个量在被观测时,该量本身具有的真实大小称为 真值。
一、测量误差的定义 测量误差:就是测量结果与被测量真值的差别。通常可分
为 绝对误差和相对误差两种。 二、测量误差的分类
根据测量误差的性质和特点,可将它们分为系统误差、随 机误差和粗大误差三大类。
三、测量误差对测量结果的影响
可编辑ppt
16
方法误差举例
电流表
R 电压表
电流表 R
第一章 绪论
第一节 测量和计量 第二节 电子测量的特点和应用 第三节 本课程的任务
第二章 测量误差理论与数据处理
可编辑ppt
1
测量
概念: 为确定被测对象的量值而进行
的实验过 程。
可编辑ppt
2
计量
•计量:为了保证量值的统一和准确一致的一 种测量,具有统一性、准确性和法制性等三 大主要特征。 •计量器具:按用途分为计量基准、计量标准 和工作用计量器具三类。 •计量基准:分为国家基准、副基准和工业基 准。 •计量标准:分标准器具和标准物质两类。
[dB]= 20lg ( 1+ ) dB 同理,当A为功率传输函数时,有
[dB]= 10lg ( 1+ ) dB
可编辑ppt
12
[例1] 某单级放大器电压增益的真值A0为100,某次 测量时测得的电压增益A =95,求测量的相对误差和分贝 误差。
[解] 先求得增益的绝对误差为
ΔA = A–A0 =95 –100= –5
可编辑ppt
6
本课程的任务
1. 了解电子测量中最基本的测量原理和测量方法; 2. 具备一定的测量误差分析和测量数据处理能力; 3. 对现代新技术在电子测量中的应用有一定的了解; 4. 对频率、电压等常用电学量的计量方法具备一定的知识。
可编辑ppt
7
第二章 测量误差理论与数据处理
第一节 测量误差的基本概念 第二节 测量误差的估计和处理 第三节 测量误差的合成与分配 第四节 测量数据处理
判断:检定一个1.5级100mA的电流表,发现在50mA处 的误差最大,为1.4mA,其它刻度处的误差均小于1.4mA, 问这块电流表是否合格?
可编辑ppt
14
实际测量时如何选取量程?
设某仪表的等级是 s 级,其满刻度值为xm ,被测量的 真值为x0 ,则测量的绝对误差
Δx xm . s% 可见,仪表等级选定后,测量中绝对误差的最大值与 满刻度值成正比。 测量的相对误差为
可编辑ppt
3
电子测量
广义说: 凡是利用电子技术来进行的测量都可以说是电子测量。
狭义说: 是指在电子学中测量有关电的量值。通常包括以下几个
方面的内容:
1、电能量的测量,如电流、电压、电功率等。
2、信号的特性及所受干扰的测量,如信号的波形和失真度、 频率、相位、脉冲参数、调制度、信号频谱、信噪比等。
可编辑ppt
9
绝对误差:又叫作绝对真误差,可表示为: Δx=x–x0
绝对误差的大小和符号分别表示了给出值偏离真值的程度 和方向。 实际值:满足准确度要求,用来代替真值使用的量值。
修正值C:与绝对误差大小相等、符号相反的量,即 C = x0 –x
可编辑ppt
10
相对误差:又叫作相对真误差,它是绝对误差与真值的比 值,通常用百分数表示。即
恒值系统误差:不随某些测量条件而变化的系统误差。 造成系统误差的原因很多,常见的有:测量设备原因 (测量设备的缺陷、测量仪器不准、测量仪表的安装、放 置和使用不当等);测量环境原因(温度、湿度、电源电 压变化、周围电磁场的影响等);测量方法原因;测量人 员的原因(感觉器官不完善、生理上的最小分辨能力限制、 不正确的测量习惯等)。
( Δx/x0) 100%
分贝误差:在电子学和声学中常用分贝来表示相对误差, 叫分贝误差,它实质上是相对误差的另一种表示形式。
例如某有源网络的电压传输函数为A0,则该传输函数可用 分贝表示为
A0[dB]=20lg A0 dB 当测量中存在误差时,测得的传输函数偏离A0[dB]一个 数值[dB ],即
(xm . s%)/ x0 可见,仪表等级选定后, x0越接近xm,测量中相对误差 的最大值越小,测量越准确。
因此,实际测量时,在一般情况下应使被测量的数值尽 可能在仪表满刻度的2/3以上。
可编辑ppt
15
系统误差
系统误差的定义:在相同条件下多次测量同一量时, 误差的绝对值和符号保持恒定,或在条件改变时按某种确 定规律而变化的误差称为系统误差。
则相对误差为
= ΔA/ A0 = –5 /100= –5%
分贝误差为 [dB]= 20lg ( 1+ ) dB = 20lg ( 1 – 0.05 ) dB
= –0.446 dB
可编辑ppt
13
引用相对误差:又叫满度相对误差,即 n Δx/xm
常用电工仪表分为±0.1、 ±0.2、 ±0.5、 ±1.0、 ±1.5、 ±2.5、 ±5.0七级,分别表示它们的引用相对误 差所不超过的百分比。
A[dB]= A0[dB]+ [dB]
可编辑ppt
11
分贝误差[dB]与相对误差关系:
由A=A0+ΔA可得 A[dB]=20lg (A0+ΔA) dB
= 20lg A0 ( 1+ΔA/ A0 ) dB = 20lg A0 dB + 20lg ( 1+ΔA/ A0 ) dB
= A0[dB] + 20lg ( 1+ ) dB 与式A[dB]= A0[dB]+ [dB]比较,可得分贝误差为