高一数学必修1_2_期末复习资料(1-5)
人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)
2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第二部分 函数1、函数的定义域、值域2、判断相同函数3、分段函数4、奇偶性5、单调性1.定义域 值域(最值) 1.函数()()3log 3f x x =++的定义域为____________________ 2.函数22()log (23)f x x x 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x ==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),()f x x g x ==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________ 2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得), (1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =.1()2xy = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数 B .)()(x g x f -是奇函数 C .)()(x g x f +是偶函数 D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。
高一数学一年末考试章节复习知识点:第一章
高一数学一年末考试章节复习知识点:第一章数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。
查字典数学网为大伙儿举荐了高一数学必修一期末考试章节复习知识点,请大伙儿认真阅读,期望你喜爱。
一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(2) 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。
u 注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1) 列举法:{a,b,c}2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{xR| x-32} ,{x| x-32}3) 语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1) 有限集含有有限个元素的集合(2) 无限集含有无限个元素的集合(3) 空集不含任何元素的集合例:{x|x2=-5}二、集合间的差不多关系1.包含关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.相等关系:A=B (55,且55,则5=5)实例:设A={x|x2-1=0} B={-1,1} 元素相同则两集合相等即:①任何一个集合是它本身的子集。
AA②真子集:假如AB,且A B那就说集合A是集合B的真子集,记作AB (或BA)③假如AB, BC ,那么AC④假如AB 同时BA 那么A=B3. 不含任何元素的集合叫做空集,记为规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高一数学目录(高中数学人教A版必修1-必修5的目录)
下面是高中数学人教A版必修1-必修5的目录,一是纪念这套教材,二是为一些老师编写教学计划方便。
必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式小结复习参考题。
高一数学必修一知识点整理大全
高一数学必修一知识点整理大全数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
下面是小编给大家带来的高一数学必修一知识点整理大全,以供大家参考!高一数学必修一知识点整理大全一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员}B={12345}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a:A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
高一数学期末复习资料(1-5)总复习题(共5套)
期末复习资料之一 必修1 复习题一、选择题1、 下列函数中,在区间()0,+∞不是增函数的是( ) A.xy 2= B. x y lg = C. 3x y = D. 1y x=2、函数y =log 2x +3(x≥1)的值域是( )A.[)+∞,2B.(3,+∞)C.[)+∞,3D.(-∞,+∞)3、若{|2},{|xM y y P y y ====,则M∩P ( )A.{|1}y y >B. {|1}y y ≥C. {|0}y y >D. {|0}y y ≥ 4、对数式2log (5)a b a -=-中,实数a 的取值范围是( )A.a>5,或a<2B.2<a<5C.2<a<3,或3<a<5D.3<a<45、 已知xax f -=)( )10(≠>a a 且,且)3()2(->-f f ,则a 的取值范围是( )A. 0>aB. 1>aC. 1<aD. 10<<a6、函数y =(a 2-1)x在(-∞,+∞)上是减函数,则a 的取值范围是( ) A.|a |>1 B.|a |>2C.a>2D.1<|a |<26、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 -- B 、)2,1()1,2( -- C 、[)(]2,11,2 -- D 、)2,1()1,2( --8、值域是(0,+∞)的函数是( )A 、125xy -=B 、113xy -⎛⎫= ⎪⎝⎭C、yD9、函数|log |)(21x x f =的单调递增区间是A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞10、图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( )A 、0<a<b<1<d<cB 、0<b<a<1<c<dC 、0<d<c<1<a<bD 、0<c<d<1<a<b11、函数f(x)=log 31(5-4x-x 2)的单调减区间为( )A.(-∞,-2)B.[-2,+∞]C.(-5,-2)D.[-2,1]12、a=log 0.50.6,b=log 20.5,c=log 35,则( )A.a <b <cB.b <a <cC.a <c <bD.c <a <b13、已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是( )A.(0,1)B.(1,2)C.(0,2)D.[2,+∞]14、设函数1lg )1()(+=x x f x f ,则f(10)值为( )A .1 B.-1 C.10 D.101 二、填空题 15、函数)1(log 21-=x y 的定义域为 16、.函数y =2||1x -的值域为________ 17、将(61)0,2,log 221,log 0.523由小到大排顺序:x18. 设函数()()()()4242xx f x x f x ⎧≥⎪=⎨<+⎪⎩,则()2log 3f =19、计算机的成本不断降低,如果每隔5年计算机的价格降低31,现在价格为8100元的计算机,15年后的价格可降为20、函数),2[log +∞=在x y a 上恒有|y|>1,则a 的取值范围是 。
((完整版))人教版高一数学期末复习(公式总结及综合练习和答案),推荐文档
增函数
x (0,1)时,y (, 0) x (1, )时,y (0, )
表2
p q
p为奇数 q为奇数
ab 0
பைடு நூலகம்
p为奇数 q为偶数
p为偶数 q为奇数
ab
ab
幂函数 y x ( R)
0 1
1
1
ab
奇函数
偶函数
第一象限 性质
减函数
增函数
人教版高中数学必修一至必修四公式(必会)
过定点(0,1)
x 0,
yR
图象
过定点 (0,1)
过定点 (1, 0)
性质
减函数
增函数
x (, 0)时,y (1, ) x (, 0)时,y (0,1) x (0, )时,y (0,1) x (0, )时,y (1, )
减函数
x (0,1)时,y (0, ) x (1, )时,y (, 0)
f (x1 ) f (x2 ) 0即f (x1 ) f (x2 ) 则认为该函数在其定义域内单调递减。(具体情况具体定)
函数的周期:若 f (x T ) f (x) ,则 T 为函数周期。
必修四:
4、关于扇形的计算公式: l 2πR 2 R;S πR 2 1 R 2 1 Rl
单调递增:(, p ) ( p,) 单调递减:( p,0)(0, p )
对数函数:
loga a 1 , loga b logb a 1, loga 1 0 , a loga N N (N、a 0且a 1) ,
log a b
1 log b
(a、b a
0且a、b
1) , log b
a
(k ,0) x k 使
2
(x ) =
2020-2021学年高一数学人教A版必修第一册期末复习重难点知识集锦 集合与常用逻辑用语
第一章集合与常用逻辑用语重难点知识集锦1.1集合的概念一、重难点解析1.教学重点:了解集合的含义与表示.2.教学难点:区别元素与集合的概念,能选用怡当方法表示集合.二、重点知识1.元素与集合的相关概念(1)元素:一般地,把研究对象统称为元素,常用小写的拉丁字母a,b,c…表示.(2)集合:一些元素组成的总体,简称集,常用大写拉丁字母A,B,C…表示.(3)集合相等:指构成两个集合的元素是一样的.(4)集合中元素的特性:确定性、互异性和无序性.2.元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)不属于:如果a不是集合A中的元素,就说a不属于集合A,记作a∉A.3.常见的数集及表示符号4.集合的表示方法(1)列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(2)描述法,用集合所含元素的共同特征表示集合的方法称为描述法.一般形式为A={x∈I | p},其中x 叫做代表元素,I是代表元素x的取值范围,p是各元素的共同特征.1.2集合间的基本关系一、重难点解析1.教学重点:集合间的包含与相等关系,子集与真子集的概念,空集的概念.2.教学难点:元素与子集,即属于与包含之间的区别.二、重点知识1. 集合与集合的关系(1)子集:对于两个集合A ,B ,如果集合 A 中任意一个元素都是集合 B 中的元素,就称集合A 为集合B 的子集.记作:A B ⊆或B A ⊇.读作:“A 包含于B ”(或“B 包含A ”).(2)集合相等:如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等.记作A = B .即:若A B ,且B A ,则A = B .2. 真子集:对于两个集合A 与B ,如果集合A B ⊆,但存在元素x B ∈,且x A ∉,就称集合A 是集合B 的真子集.记作:A B (或B A ).3. 空集:一般地,我们把不含任何元素的集合叫做空集,记为∅.空集是任何集合的子集.4. 子集性质:(1)任何一个集合是它本身的子集,即A A ⊆.(2)对于集合A ,B ,C ,如果A B ⊆,且B C ⊆,那么A C ⊆.5. 结论:含n 个元素的集合的所有子集的个数是2n ,所有真子集的个数是21n -.1.3集合间的基本运算一、重难点解析1.教学重点:理解两个集合的并集与交集的含义,会用集合语言表达数学对象或数学内容.2.教学难点:区别交集与并集的概念及符号表示,二、重点知识1.集合的运算性质a .,,A A A A A A B B A ∅⋃=⋃=⋃=⋃;b .,,A A A A A B B A ∅∅⋂=⋂=⋂=⋂;c .()(),U U A C A A C A U ∅⋂=⋃=;d .,A B A A B A B A B A ⋂=⇔⊆⋃=⇔⊆.2.集合运算中的常用方法(1)数轴法:若已知的集合是不等式的解集,用数轴法求解.(2)图象法:若已知的集合是点集,用图象法求解.(3)V enn 图法:若已知的集合是抽象集合,用Venn 图法求解.1.4充分条件与必要条件一、重难点解析1教学重点:充分理解充要条件的概念2教学难点:命题条件的充要性判断二、重点知识1.定义:若p⇒q且q⇒p,则记作p⇔q,此时p是q的充分必要条件,简称充要条件. 2.条件与结论的等价性:如果p是q的充要条件,那么q也是p的充要条件.3.概括:如果p⇔q,那么p与q互为充要条件.命题按条件和结论的充分性、必要性可分四类:①充分必要条件(充要条件),即p⇒q且q⇒p;②充分不必要条件,即p⇒q且q p.③必要不充分条件,即p q且q⇒p.④既不充分又不必要条件,即p q且q p.1.5全称量词与存在量词一、重难点解析1.教学重点:理解全称量词和存在量词的意义;能判断全称命题和存在命题的真假2.教学难点:全称命題和存在命题真假的判定二、重点知识1.四种命题的关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.2. 含逻辑联结词的命题的真假判断∨”有真则真,其余为假;(1)命题“p q∧”有假则假,其余为真;(2)命题“p q(3)¬p和p为真假对立的命题.3. 全(特)称命题及其否定(1)全称命题p:∀x∈M,p(x).它的否定¬p:∃x0∈M,¬p(x0) ;(2)特称命题p:∃x0∈M,p(x).它的否定¬p:∀x∈M,¬p(x) ;(3)命题p∨q的否定是(¬p)∧(¬q);命题p∧q的否定是(¬p)∨(¬q).。
高中数学人教版A版必修一学案:第二单元 章末复习课 Word版含答案
章末复习课网络构建核心归纳1.指数函数的图象和性质一般地,指数函数y =a x(a >0且a ≠1)的图象与性质如下表所示.数的范围,通常要用分类讨论思想.(2)a >1时,a 值越大,图象向上越靠近y 轴,递增速度越快;0<a <1时,a 值越小,图象向上越靠近y 轴,递减速度越快.(3)在同一坐标系中有多个指数函数图象时,图象的相对位置与底数大小有如下关系:在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小.即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过令x =1时,y =a 去理解,如图.2.对数函数的图象和性质对数函数y =log a x (a >0且a ≠1)与指数函数y =a x(a >0且a ≠1)互为反函数,其图象关于直线y =x 对称.(如图)4.幂函数的性质(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1). (2)如果α>0,则幂函数的图象过原点,并且在区间[0,+∞)上为增函数.(3)如果α<0,则幂函数的图象在区间(0,+∞)上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴,当x 从原点趋向于+∞时,图象在x 轴上方无限地逼近x 轴.(4)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.要点一 指数、对数的运算指数式的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算,其次若出现分式则要注意分子、分母因式分解以达到约分的目的.对数运算首先注意公式应用过程中范围的变化,前后要等价,熟练地运用对数的三个运算性质并结合对数恒等式,换底公式是对数计算、化简、证明常用的技巧.【例1】 (1)化简:a 43 -8a 13 b4b 23 +23ab +a 23 ÷⎝ ⎛⎭⎪⎫1-23b a ×3ab ; (2)求值:12lg 3249-43lg 8+lg 245.解 (1)原式=a 13 a -8bb 13 2+2a 13 b 13 +a 132×a 13a 13 -2b 13×a 13 b 13=a 13a -8b a -8b×a 13 ×a 13 b 13 =a 3b .(2)法一 12lg 3249-43lg 8+lg 245=lg 427-lg 4+lg 7 5=lg ⎝⎛⎭⎪⎫427×14×75 =lg 10=12lg 10=12.法二 原式=12(5lg 2-2lg 7)-43·32lg 2+12(2lg 7+lg 5)=52lg 2-lg 7-2lg 2+lg7+12lg 5 =12lg 2+12lg 5=12(lg 2+lg 5) =12lg 10=12. 【训练1】 (1)化简:(8)-23 ×(3102)92 ÷105;(2)计算:2log 32-log 3329+log 38-25log 53.解 (1)原式=⎝⎛⎭⎫232 -23 ×⎝⎛⎭⎫1023 92 ÷1052 =2-1×103×10-52 =2-1×1012 =102.(2)原式=log 34-log 3329+log 38-5log 59=log 3⎝ ⎛⎭⎪⎫4×932×8-9=-7. 要点二 指数函数、对数函数、幂函数的图象问题 函数图象的画法4解析 法一 当x =0时,y =0,故可排除选项A ,由1-x >0,得x <1,即函数的定义域为(-∞,1),排除选项B ,又易知函数在其定义域上是减函数,故选C .法二 函数y =2log 4(1-x )的图象可认为是由y =log 4x 的图象经过如下步骤变换得到的:(1)函数y =log 4x 的图象上所有点的横坐标不变.纵坐标变为原来的2倍,得到函数y =2log 4x 的图象;(2)把函数y =2log 4x 关于y 轴对称得到函数y =2log 4(-x )的图象;(3)把函数y =2log 4(-x )的图象向右平移1个单位,即可得到y =2log 4(1-x )的图象,故选C .答案 C【训练2】在同一直角坐标系中,函数f(x)=x a(x≥0),g(x)=log a x的图象可能是( )解析法一当a>1时,y=x a与y=log a x均为增函数,但y=x a递增较快,排除C;当0<a<1时,y=x a为增函数,y=log a x为减函数,排除A.由于y=x a递增较慢,所以选D.法二幂函数f(x)=x a的图象不过(0,1)点,故A错;B项中由对数函数f(x)=log a x的图象知0<a<1,而此时幂函数f(x)=x a的图象应是增长越来越慢的变化趋势,故B错;D对;C项中由对数函数f(x)=log a x的图象知a>1,而此时幂函数f(x)=x a的图象应是增长越来越快的变化趋势,故C错.答案 D要点三大小比较问题数的大小比较常用方法:(1)比较两数(式)或几个数(式)大小问题是本章的一个重要题型,主要考查数、指数函数、对数函数幂函数图象与性质的应用及差值比较法与商值比较法的应用.常用的方法有单调性法、图象法、中间搭桥法、作差法、作商法.(2)当需要比较大小的两个实数均是指数幂或对数式时,可将其看成某个指数函数、对数函数或幂函数的函数值,然后利用该函数的单调性比较.(3)比较多个数的大小时,先利用“0”和“1”作为分界点,即把它们分为“小于0”,“大于等于0小于等于1”,“大于1”三部分,再在各部分内利用函数的性质比较大小.π,c=π-2,则( )【例3】设a=log2π,b=log12A.a>b>c B.b>a>c C.a>c>b D.c>b>a解析因为π>2,所以a=log2π>1,所以b=log1π<0.因为π>1,所以0<π-2<1,即20<c<1,所以a>c>b.答案 C【训练3】 设a =log 123,b =⎝ ⎛⎭⎪⎫130.2,c =213 ,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c解析 a =log 123<0,0<b =⎝ ⎛⎭⎪⎫130.2<1,c =213 >1,故有a <b <c . 答案 A要点四 函数的定义域与值域 函数值域(最值)的求法(1)直观法:图象在y 轴上的“投影”的范围就是值域的范围. (2)配方法:适合二次函数.(3)反解法:有界量用y 来表示.如y =1-x 21+x 2中,由x 2=1-y 1+y ≥0可求y 的范围,可得值域.(4)换元法:通过变量代换转化为能求值域的函数,特别注意新变量的范围. (5)单调性:特别适合于指、对数函数的复合函数. 【例4】 (1)函数f (x )=1log 2x -的定义域为( ) A .(-∞,2) B .(2,+∞) C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)(2)设0≤x ≤2,y =4x -12 -3·2x+5,试求该函数的最值. (1)解析 由题意知⎩⎪⎨⎪⎧log 2x -,x -2>0,解得⎩⎪⎨⎪⎧x ≠3,x >2,所以函数f (x )的定义域为(2,3)∪(3,+∞).答案 C(2)解 令k =2x(0≤x ≤2),∴1≤k ≤4.则y =22x -1-3·2x+5=12k 2-3k +5.又y =12(k -3)2+12,k ∈[1,4],∴y =12(k -3)2+12,在k ∈[1,3]上是减函数,在k ∈[3,4]上是增函数,∴当k =3时,y min =12;当k =1时,y max =52.即函数的最大值为52,最小值为12.【训练4】 (1)若f (x )=1log 0.5x +,则函数f (x )的定义域为( )A .⎝ ⎛⎭⎪⎫-12,+∞ B .(0,+∞)C .⎝ ⎛⎭⎪⎫-12,0D .⎝ ⎛⎦⎥⎤-12,0(2)函数f (x )=ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为________.解析 (1)f (x )=1log 0.5x +的定义域为:⎩⎨⎧⎭⎬⎫x ⎩⎪⎨⎪⎧2x +1>0,log 0.5x +,即⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎩⎪⎨⎪⎧ x >-12,2x +1<1, 解得{x |-12<x <0}.故选C .(2)由条件知⎩⎪⎨⎪⎧1+1x>0,x ≠0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,x ≠0,-1≤x ≤1⇒x ∈(0,1].答案 (1)C (2)(0,1]。
新高考高一数学期末复习必修一复习试题1-2套
A.最大值-1/4B.最大值1/4C.最小值-1/4D.最小值1/4
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.
13.函数 的定义域是____________。(用集合表示)
14.已知f(x) 偶函数,当x<0时,f(x)= ,则当x>0时,f(x)=__________.
(1)当 时,求函数 的单调递增区间;
(2)求函数 的零点个数.
新高考高一数学必修一复习试题2
一、选择题(每小题5分,共60分)
23.设集合 , ,则 = ( )
A. B. C. D.
24.化简: ()
A. 4B. C. 或4D.
25.下列四组函数,表示同一函数的是()
A. B. ,
C. D.
26.已知函数 ,那么 的值是()
38.函数 的单调增区间是_____.
三、解答题:(共70分)
39.设集合 ,集合
(1)若 ,求实数 的取值范围;
(2)若 ,求实数 的取值范围.
40.已知函数 是奇函数,且 ,
(1)求函数解析式;
(2)判断并证明 在 上的单调性
41.设函数 是定义在 上的减函数,并且满足 , .
(1)求 的值,
(2)如果 ,求 的取值范围。
新高考高一数学必修一复习试题1
一、选择题(每小题5分,共60分)D.
2.若全集 ,则集合 的真子集共有()
A. 个B. 个C. 个D. 个
3.已知集合 ,集合 ,则集合 ( )
A. B. C. D.
4.等式 的解集为()
A. B.
高一数学期末复习教学案《必修第一册》 期末复习(一)集合与逻辑
高一数学期末复习教学案《必修第一册》 期末复习(一) 集合与逻辑 班 级 姓 名【课前预习】1. 已知集合2|340=A x R ax x .若A 中只有一个元素,则实数a 的取值范围为 .2.已知全集为=U R , [1,3),[2,4]A B =-=,如图阴影部分所表示的集合为 .3.集合A ={x |1£x <5},B =[-a ,a +3],若A ÍB ,则实数a 的取值范围是 .4.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为 .5.已知集合U =(1,7),A =[2,5),B =[3,7),则(C U A )È(C U B )= .6.集合{}2|9100A x x x =--=,{}|10B x mx =+=,且A ÇB =B ,则m 的取值集合 是 .7.(多选题)下列说法正确的是( )A .“1a >”是“21a >”的充分不必要条件;B .“a b >”是“22ac >bc ”的充要条件C .命题“x R ∀∈,210x +<”的否定是“x R ∃∈,使得210x +≥”D .已知函数()y f x =的定义域为R ,则“()00=f ”是“函数()y f x =为奇函数”的必要不充分条件.8. 已知条件p :x >a ,条件q :11x -<.若p 是q 的必要不充分条件,则实数a 的取值范围是 .9. 已知()24f x x x m =-+,()2log g x x =,若“[]11,4x ∀∈,[]22,4x ∃∈,使得()()12f x g x >成立”为真命题,则实数m 的取值范围是 .10.已知全集U R =,集合A ={x |log 2(x -1)£3},,{|}B x x a =≥.如果A B,则实数a 的取值范围为 .【典型例题】例1.已知函数()4log f x x =,1,416x ⎡⎤∈⎢⎥⎣⎦的值域是集合A ,关于x 的不等式3122x a x +⎛⎫> ⎪⎝⎭()a R ∈的解集为B ,集合51x C x x ⎧-⎫=⎨⎬+⎩⎭≥0,集合{}()1210D x m x m m =+≤<->. (1)若A B B =,求实数a 的取值范围; (2)若D C ⊆求实数m 的取值范围.例2.已知命题:“{}|11x x x ∃∈-<<,使等式20x x m --=成立”是真命题.(1)求实数m 的取值集合M ;(2)设不等式()(2)0x a x a -+-<的解集为N ,若x ∈N 是x ∈M 的必要条件,求a 的取值范围.期末复习(一)【课外作业】 班级 姓名1.集合{}{}b a B a A ,,log ,32==,若{}2=B A ,则B A = .2.设集合A ={x |x 2+x -2<0},B =(-1,0),则C A B = .3.某次月考数学优秀率为70%,语文优秀率为75%,则这两门学科都优秀的百分率至少为 .4.已知[,3)A a a =+,(,1][5,)B =-∞-+∞,若A ÇB ¹f ,则实数a 的取值范围是 .5.已知集合2{|log 1}A x x =<-,{|B k =函数14()k f x x-=在(0,)+∞上是增函数}.则 ()R C A B = .6.已知P ={x|x 2-8x -20≤0},非空集合S ={x|1-m≤x≤1+m}.若x ∈P 是x ∈S 的必要条件,则实数m 的取值范围是 .7. 若命题“∃x 0∈R ,使得3x 20+2ax 0+1<0”是假命题,则实数a 的取值范围是____________.8.(多选题)下列命题正确的是( )A .“1a >”是“11a <”的必要不充分条件;B .若,a b ∈R ,则2b a b a a b a b+≥⋅= C . 命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-” D .设a R ∈,“1a =”,是“函数()1xx a e f x ae-=+在定义域上是奇函数”的充分不必要条件9.集合1{|0}1x A x x -=<+,{|||}B x x b a =-<,若“1a =”是“A B ≠∅”的充分条件,则实数b 的取值范围是 .10.若命题p:“2log 11m -≤”, 与命题q: “函数2()2+f x x mx m =-图像与x 轴至多一个交点”至少有一个是真命题,则实数m 的取值范围是 .11.在①A B ⊆;②R R C B C A ⊆;③A B A =;这三个条件中任选一个,补充在下面问题中.若问题中的实数a 存在,求a 的取值范围;若不存在,说明理由. 问题:已知集合{}2log (1)1,A x x x R =->∈,{}()(4)0,B x x a x a x R =--+>∈,是否存在实数a ,使得 ?注:如果选择多个条件分别解答,按第一个解答计分.12.已知集合{}2|514A x y x x ==--, 集合()212|log 61B y y x x ⎧⎫⎪⎪==---⎨⎬⎪⎪⎩⎭, 集合{}|121C x m x m =+≤≤-. (1)求A ÇB ; (2)若A C A =,求实数m 的取值范围.13.已知p :24120x x ,q :22210(0)x x m m . (1)若p 是q 充分不必要条件,求实数m 的取值范围; (2)若“”是“”的充分条件,求实数m 的取值范围.。
人教版(新教材)高中数学第一册(必修1)精品课件:第一章集合与常用逻辑用语章末复习课
【例1】 (1)设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中元
素的个数是( )
A.4
B.5
C.6
D.7
(2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )
A.1
B.3
ቤተ መጻሕፍቲ ባይዱ
C.5
D.9
解析 (1)∵a∈A,b∈A,x=a+b,所以x=2,3,4,5,6,8,∴B中有6个元素, 故选C. (2)当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y =-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x -y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时, x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个. 答案 (1)C (2)C
【训练4】 (1)若p:x2+x-6=0是q:ax+1=0的必要不充分条件,则实数a的值为 ________. (2) 若 - a<x< - 1 成 立 的 一 个 充 分 不 必 要 条 件 是 - 2<x< - 1 , 则 a 的 取 值 范 围 是 ________.
解析 (1)p:x2+x-6=0,即x=2或x=-3. q:ax+1=0,当 a=0 时,方程无解;当 a≠0 时,x=-1a. 由题意知p q,q p,故a=0舍去;
当 a≠0 时,应有-1a=2 或-1a=-3,解得 a=-12或 a=13. 综上可知,a=-12或 a=13. (2)根据充分条件、必要条件与集合间的包含关系,应有{x|-2<x<-1} {x|-a<x< -1},故有a>2. 答案 (1)-12或13 (2)a>2
【新教材】高中数学必修第一册期末复习重点突破训练(1)二次函数在给定区间上最值问题
【新教材人教版A高一数学】高中数学必修第一册期末复习压轴突破训练汇编9套题数学必修一期末压轴训练二次函数在闭区间上最值的求法二次函数的单调性与对称轴和开口方向有关,往往来讲,二次函数的开口方向一般是给定的,在此情况下,二次函数的单调性就和对称轴与闭区间的位置关系有关。
因而在求最值时,往往需要讨论对称轴和区间的位置关系,这类题目在后续学习中经常遇见。
例题精讲:一.选择题(共7小题)1.若函数2()5f x x mx =++在区间[1,5]上单调递增,则m 的取值范围为()A .[2-,)+∞B .(-∞,2]-C .[10-,)+∞D .(-∞,10]-2.已知函数2247y x ax =++在区间[3-,1]-上是单调函数,则实数a 的取值范围是()A .(-∞,1]B .[6,)+∞C .(-∞,2][6 ,)+∞D .(-∞,1][3 ,)+∞3.若二次函数2()21f x ax ax =++在区间[2-,3]上的最大值为6,则(a =)A .13B .13-或5C .13或5-D .13-4.若函数2()43f x x x =--在区间[n ,]m 上的值域为[7-,2],则m n -的取值范围是()A .[1,5]B .[2,7]C .[3,6]D .[4,7]5.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为()A .0B .12C .1D .26.已知函数2()2(2)1f x ax a x =--+,[1x ∈-,3]是单调函数,则a 的取值范围是()A .[0,1]B .[1-,0]C .[1-,1]D .[1-,2]7.函数2()2f x x x =--在[a ,]b 上的值域是[3-,1],若1b =,则a b +的取值集合为()A .[3-,1]-B .[2-,0]C .[4-,0]D .[2-,1]二.解答题(共5小题)8.已知函数2()f x x ax=-(1)若在区间[1,)+∞上是增函数,求实数a 的取值范围;(2)求函数()f x 在区间[1,2]上的最小值.9.已知函数2()41f x x mx =-+,m R ∈.(1)若关于x 的不等式()0f x <解集为空集,求m 的取值范围;(2)若函数()f x 在区间[2-,)+∞上是单调增函数,求f (1)的最小值.10.山东新旧动能转换综合试验区是党的十九大后获批的首个区域性国家发展战略,也是中国第一个以新旧动能转换为主题的区域发展战略.济南新旧动能转换先行区肩负着山东新旧动能转换先行先试的重任,某制造企业落户济南先行区,该企业对市场进行了调查分析,每年固定成本1000万元,每生产产品x (百件),需另投入成本()R x 万元,且210300,060()10006103000,60x x x R x x x x ⎧+<<⎪=⎨+-⎪⎩,由市场调研知,每件产品售价6万元,且全年内生产的产品当年能全部销售完.(1)求年利润()W x (万元)关于年产量x (百件)的函数解析式.(利润=销售额-成本)(2)年产量x 为多少(百件)时,企业所获利润最大?最大利润是多少?11.已知函数2()3f x x ax =+-.(1)若不等式()4f x >-的解集为R ,求实数a 的取值范围;(2)若不等式()26f x ax -对任意[1x ∈,3]恒成立,求实数a 的取值范围.12.已知函数2()1f x x ax =-+.(1)求()f x 在[0,1]上的最大值;(2)当1a =时,求()f x 在闭区间[t ,1]()t t R +∈上的最小值.参考答案一.选择题(共7小题)1.【解答】解:2()5f x x mx =++ 在区间[1,5]上单调递增,12m∴-,故2m -.故选:A .2.【解答】解:函数的对称轴是x a =-,若函数在区间[3-,1]-上是单调函数,则3a --或1a --,解得:3a 或1a ,故选:D .3.【解答】解:显然0a ≠,有2()(1)1f x a x a =+-+,当0a >时,()f x 在[2-,3]上的最大值为f (3)151a =+,由1516a +=,解得13a =,符合题意;当0a <时,()f x 在[3-,2]上的最大值为(1)1f a -=-,由16a -=,解得5a =-,所以,a 的值为13或5-.故选:C .4.【解答】解:2()43f x x x =-- ,f ∴(2)7=-,(1)f f -=(5)2=,()f x 在区间[n ,]m 上的值域为[7-,2],∴当1n =-,2m =或2n =,5m =时m n -的最小值3,当1n =-,5m =时,m n -取得最大值6,故m n -的范围[3,6]故选:C .5.【解答】解:因为2()2a f x x ax =-+的开口向上,对称轴2a x =,①122a 即1a 时,此时函数取得最大值g (a )f =(1)12a=-,②当122a >即1a >时,此时函数取得最大值g (a )(0)2a f ==,故g (a )1,12,12aa a a ⎧-⎪⎪=⎨⎪>⎪⎩,故当1a =时,g (a )取得最小值12.故选:B .6.【解答】解:当0a =时,函数()41f x x =+,为增函数,符合题意;当0a ≠时,函数2()2(2)1f x ax a x =--+的对称轴为2a x a-=,且函数在区间[1-,3]是单调函数,∴21a a--,或23a a-,解得01a <或10a -<.综上,实数a 的取值范围是[1-,1].故选:C .7.【解答】解:22()2(1)1f x x x x =--=-++,1x ∴=-时,()f x 取到最大值1,方程223x x --=-的根是3x =-或1.若1b =,则31a --,a b ∴+的取值集合围是:[2-,0].故选:B .二.解答题(共5小题)8.【解答】解:(1)函数()f x 的对称轴是2a x =,若在区间[1,)+∞上是增函数,则12a,解得:2a ;(2)①12a即2a 时,()f x 在[1,2]递增,故()min f x f =(1)1a =-,②122a <<即24a <<时,()f x 在[1,)2a 递减,在(2a,2]递增,故2()(24mina a f x f ==-,③22a即4a 时,()f x 在[1,2]递减,故()min f x f =(2)42a =-.9.【解答】解:(1)()0f x < 解集为空集,∴判别式△2160m m =-,解得016m .(2)2()41f x x mx =-+,图象开口向上,对称轴8mx =,因为函数()f x 在区间[2-,)+∞上是单调增函数,所以28m -,解得16m -,f (1)4m =-是关于m 的减函数,所以当16m =-时,f (1)取最小值为20.10.【解答】解:(1)当060x <<时,22()600(10300)1000103001000W x x x x x x =-+-=-+-;当60x 时,10001000()600(6103000)1000102000W x x x x x x=-+--=--.2103001000,060()1000102000,60x x x W x x x x ⎧-+-<<⎪∴=⎨--+⎪⎩;(2)当060x <<时,22()10300100010(15)1250W x x x x =-+-=--+,当15x =时,()1250max W x =万元;当60x 时,()W x 单调递减,4150()(60)3max W x W ==.∴年产量x 为60(百件)时,企业所获利润最大,最大利润是41503万元.11.【解答】解:(1)由不等式()4f x >-的解集为R ,234x ax ∴+->-解集为R ,即210x ax ++>解集为R ,可得△0<,即240a -<,解得22a -<<,故a 的取值范围是(2,2)-.(2)由不等式()26f x ax -对任意[1x ∈,3]恒成立,()26f x ax ∴-,即2326x ax ax +--对任意[1x ∈,3]恒成立,即230x ax -+对任意[1x ∈,3]恒成立,3()min a x x ∴+,[1x ∈,3];3xx += ;当且仅当3x x=,即x =a ∴故a 的取值范围是(-∞,.12.【解答】解:(1)2()1f x x ax =-+的开口向上,对称轴2a x =,所以在区间[0,1]的哪个端点离对称轴远,则在哪个端点处取得最大值,当122a 即1a 时,()f x 取得最大值f (1)2a =-,当122a >即1a >时,()f x 的最大值(0)1f =,(2)当1a =时,2()1f x x x =-+的对称轴12x =,当12t时,()f x 在[t ,1]t +上单调递增,所以2()()1min f x f t t t ==-+,当112t +即12t -时,()f x 在[t ,1]t +上单调递减,2()(1)1min f x f t t t =+=++,当112t t <<+即1122t -<<时,()f x 在1(,)2t 上单调递减,在1(2,1)t +上单调递增,故13()()24min f x f ==,令()()min g t f x =,则2211,2311(),42211,2t t t g t t t t t ⎧-+⎪⎪⎪=-<<⎨⎪⎪++-⎪⎩.。
高一数学必修1,2,3,4,5试题及答案
高二数学必修部分测试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.0sin 390=()A .21B .21-C .23 D .23- 2.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值为() A 1223133A 4.,b 满足:|3a =,|2b =,||a b +=||a b -=()A 3D .105.下面结论正确的是()C.6A C 789、函数⎪⎩⎪⎨⎧+∞∈--∞∈-=--),2(,22]2,(,2211x x y x x 的值域为______________。
A 、),23(+∞- B 、]0,(-∞ C 、23,(--∞ D 、]0,2(- 10.当x>1时,不等式x+11-x ≥a 恒成立,则实数a 的取值范围是 A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3]11.已知a,b,c 成等比数列,且x,y 分别为a 与b 、b 与c 的等差中项,则y c x a +的值为() (A )21(B )-2(C )2(D )不确定 12.已知数列{a n }的通项公式为a n =n n ++11且S n =1101-,则n 的值为()(A )98(B )99(C )100(D )101二、填空题(本大题共4小题,每题4分,共16分,把答案填在题中横线上)13141516。
17得到y 1819(本小题满分12分)已知向量a ,b 的夹角为60,且||2a =,||1b =,(1)求a b ;(2)求||a b +.20.已知数列{a n },前n 项和S n =2n-n 2,a n =log 5bn ,其中bn>0,求数列{bn}的前n 项和。
21(本小题满分14分)已知(3sin ,cos )a x m x =+,(cos ,cos )b x m x =-+,且()f x a b =(1)求函数()f x 的解析式;(2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最小值是-4,求此时函数()f x 的最大值,并求出相应的x 的值. 22如图如图,在底面是直角梯形的四棱锥S-ABCD ,∠ABC=90°,SA ⊥面ABCD ,SA=AB=BC=1,AD=1/2.ACAD 13.3π171)2-+x ,∴18.19.解:(1)1||||cos602112a b a b ==⨯⨯= (2)22||()a b a b +=+所以||3a b +=20.当n=1时,a 1=S 1=1当n ≥2时,a 1=S n -S n-1=3-2n ∴a n =3-2nb n =53-2n∵25155123)1(23==+-+-n n bn bn b 1=5∴{b n }是以5为首项,251为公比的等比数列。
高一第二学期期末复习资料-家长打印版(共48页)
18. 已知在 ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c ,且 b sin A 3a cos B 3c .
(1)求角 A 的大小; (2)若 a 4 , D 为 BC 的中点, ABC 的面积为 3 3 ,求 AD 的长.
2
12
必修二 第 7 章 复数 期末考试复习
概念
3
5
题型五: 平面向量的应用
13. O 是△ABC 所在平面内的一定点,P 是△ABC 所在平面内的一动点,若(―P→B -―P→C )·(―O→B ―→ ―→ ―→ ―→ ―→
+ OC )=( PC - PA )·( OA + OC )=0,则 O 为△ABC 的( )
A.内心
B.外心
C.重心
D.垂心
2.(多选)下列命题中正确的是( )
A.向量 a 与 b 不共线,则 a 与 b 都是非零向量 ―→ ―→ ―→
B.已知 A,B,C 是平面内任意三点,则 AB + BC + CA =0 ―→ ―→ ―→ ―→ ―→
C.若 O 为△ABC 所在平面内任一点,且满足( OB - OC )·( OB + OC -2 OA )=0,则
ABC 的面积.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
10
15.在△ABC 中,角 A,B,C 的对边分别为 a,b,c,且(2a﹣c)(a2﹣b2+c2)=2abccosC. (1)求角 B 的大小; (2)若 sin A 3 cos C 1 ,求 b 的值.
2a
16.如图,在 ABC 中, B 60 , AB 8 , AD 7 ,点 D 在 BC 上,且 cos ADC 1 . 7
,且 a + b = 5,
高中数学必修第一册 《一元二次函数、方程和不等式》期末复习专项训练(学生版+解析版)
高中数学必修第一册《一元二次函数、方程和不等式》期末复习专项训练一、单选题l. (2022·四川绵阳·高一期末〉下列结论正确的是(〉A.若的b,则。
c>bc c.若。
>b,则。
+c>b+cl I B.若α>b,则-〉-a D D.着。
>b,则。
2> b22.(2022·辽宁·新民市第一高级中学高一期末〉已知α<b<O,则(〉A.a2 <abB.ab<b2C.a1 <b1D.a2 >b i3.(2022·陕西汉中·高一期末〉若关于工的不等式,咐2+2x+m>O的解集是R,则m的取值范围是(〉A.(I, +oo)B.(0, I〕C.( -J, I)D.(J, +oo)4.(2022·广东珠海高一期末〉不等式。
+l)(x+3)<0的解集是(〉A.RB.②c.{对-3<x<-I} D.{xi x<-3,或x>-l}5. (2022·四川甘孜·高一期末〉若不等式似2+bx-2<0的解集为{xl-2<x<I},则。
÷b=( )A.-2B.OC.ID.26. (2022·湖北黄石·商一期末〉若关于X的不等式x2-ax’+7>。
在(2,7)上有实数解,则α的取值范围是(〉A.(唱,8)B.(叫8] c.(叫2./7) D.(斗)7.(2022·新疆乌市一中高一期末〉已知y=(x-m)(x-n)+2022(n> m),且α,β(α〈别是方程y=O的两实数根,则α,β,111,n的大小关系是(〉A.α<m<n<βC.m<α〈β<nB.m<α<n<βD.α<m<β<n8.(2022·浙江·杭州四中高一期末〉已失11函数y=κ-4+...2....(x>-1),当x=a时,y取得最小值b,则。
高一数学必修1第一章知识点归纳
高一数学必修1第一章知识点总结一、集合 (一)集合有关概念1、集合的含义:练习1:下列四组对象,能构成集合的是( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2、元素与集合的关系(1)如果a 是集合A 的元素,则a 属于A ,记作a____A (2)如果a 不是集合A 的元素,则a 不属于A ,记作a_____A 3、常用数集自然数集______,正整数集______,整数集______,有理数集______,实数集______。
练习2:用适当的符号填空 (1)5______N , (2)Q Q ____,___21π-(3){}()(){}1|,____2,1,2|______3+=≤x y y x x x (4){}32|_______52+≤+x x ,4、集合的中元素的三个特性(1) 元素的______ (2) 元素的______ (3) 元素的 ______练习3:若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 练习4:下面有四个命题:(1)集合N 中最小的数是1; (2)若a -不属于N ,则a 属于N ;(3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A .0个B .1个C .2个D .3个 5、集合常用的表示方法: 1) _______:{a,b,c ……}2) ________:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x>2} ,{x| x-3>2}3) __________:例:{不是直角三角形的三角形}; 4) Venn 图练习5:集合M={0,2,3,7},P={x|x=ab ,a 、b ∈M ,a ≠b},用列举法表示,则P=___________. 练习6: 集合 }0)(|{=x f x 0}f(x)|{x >f(x)}y |{x =f(x)}y |{y = )}(|,{x f y y x =)(含义练习7:已知集合⎭⎬⎫⎩⎨⎧∈-∈=N x N x A 68|,试用列举法表示集合A = ___ _ 练习8:方程组⎩⎨⎧=-=+42y x y x 的解集是( )(A ) {}13-=或x (B ){})1,3(- (C ){}1,3- (D ))1,3(- (二)集合间的基本关系1.“包含”关系:子集(B A ⊆): 注:有两种可能:① 任何一个集合是它本身的子集,即:________B (A )2.“相等”关系:________ ,如图所示:3.“真包含”关系:________,如图所示:练习10:能满足关系{a,b}⊆M⊆{a,b,c,d,e}的集合M的个数是A.8个B.6个C.4个D.3个4.不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的_______,空集是任何非空集合的_______。
高一数学期末复习计划
高一数学期末复习计划高一数学期末复习这样做!距离期末考试时间紧张,如何在剩下的这些天内做好数学的复习,至关重要,根据以往的经验给各位学生提点建议,希望能够起到作用,让学生能够全面复习到必修一和必修四,更重要的是一些易错点和重难点要多花时间,因为现在搞懂,两年后的高三复习就会有很好的基础,才能得心应手,毕竟,最终目的都是为了高考。
必修一主要学了四大块内容:(1)集合(2)函数(3)指数和对数函数(零点问题。
众所周知,函数的性质和零点问题是重难点,因为函数的性质出题方式会很灵活,而且极易与其他知识点结合一起出题(比如三角函数,集合,不等式等等),而零点问题历来都是高考的必考考点(以填空题出现),因为零点问题考察学生对整个函数知识体系的掌握,要求很高,而且零点问题对“数形结合,分类讨论,化归”数学思想要求很高,更有甚者,零点存在定理涉及到大学数学知识,所以更是重中之重,希望同学们多花时间,多做这一类题型的归纳总结。
必修四主要学了四大块内容:(1)三角函的图像与性质(2)向量(3)三角和差公式(4)三角恒等变型。
这四块内容尤以向量和三角恒等变型最为重要,纵观历年江苏高考,三角函数题一直以来都是送分题(第一道大题,小题也很简单),但是对高一学生来讲,三角函数包含的公式、定理,图像特征都比较多,而且规律性不强,要想学好还得多下功夫。
二向量作为高考的必考考点(一道填空题),根据往年的江苏高考出题来看,向量的难度还是偏大,很多学生解不出来,原因有二:第一,高一所学的向量偏重基本公式定理的应用,难度不大。
第二,对于向量的基底解题,很多学生根本没有总结归纳,直接导致出现了难题,如果不能建系用坐标解答,就只能放弃。
所以,现在的高一学生还得在这两块知识上多下功夫。
其次,我们来谈一下复习的方法和注意事项。
(1)挤时间:高一学生学校作业很多,自主复习的时间很少,但是自主复习必不可少,就需要学生挤出时间(比如吃饭时间,坐车时间,多动动脑子想想题型)。
人教版高中数学必修一知识点与典型习题——第一部分-集合(含答案)
2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第一部分 集合1、集合与元素的关系2、集合与集合的关系3、集合的交并补运算4、不等式的解集1.集合与元素的关系1.已知集合{}23,,02+-=m m m A 且A ∈2,则实数m 的值为( )A .3B .2C .0或3D .0,2,3均可 2.已知实数{}21,3,a a ∈,则实数a 的值为( )A .1B .1或3C .0或3D .0或12.集合与集合的关系1.满足条件{}{},,a A a b c ⊆⊆的所有集合A 的个数是 ( ) A .1个 B .2个 C .3个 D .4个 2.【教材12】已知集合{}1,2A =,集合B 满足{}1,2AB =,则集合B 有_______个.A .1个B .2个C .3个D .4个3.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,则实数k 的取值范围是 4.设集合{}|35A x x =<<,{}|12B x a x a =-≤≤+,且A B ⊆,则实数a 的取值范围是( )A .34a <≤B .34a ≤<C .34a ≤≤D .∅3.集合的交并补运算基本策略:有限集——列举法;无限集——画数轴 1.设集合}7,5,3,1{=U ,}5,1{=M ,则=M C U _________ 2.设全集U ={1,2,3,4},集合S ={1,3},T ={4},则等于( )A .{2,4}B .{4}C .ΦD .{1,3,4} 3.已知集合{}|lg(2)A x y x ==-,集合{}|22B x x =-≤≤,则AB =( )A .{}|2x x ≥-B .{}|22x x -<<C .{}|22x x -≤<D .{}|2x x <4.设集合}421{,,=A ,集合},,|{A b A a b a x xB ∈∈+==,则集合B 中有( )个元素 A .4 B .5C .6D .7 5.设a ,b 都是非零实数,y =a a +b b +abab可能取的值组成的集合是________.4.不等式的解集(1)一元二次不等式1.不等式21x >的解集为_________________2.不等式22320x x -->的解集为_________________ (2)分数不等式(除化为乘,注意分母不为0)1.不等式101xx +>-解集为__________________ 2.不等式121xx+>-解集为__________________(3)指数不等式(利用单调性)1.不等式3121x +>解集为__________________ 2.不等式2339x x-+>解集为__________________3.若213211()(),22a a +-<则实数a 的取值范围是____________ (4)对数不等式(利用单调性,注意真数>0)1.已知集合{}|lg(2)A x y x ==-,集合{}|22B x x =-≤≤,则A B =________ 2.已知集合{}|10x M x e =-≥,{}3|log (1)1N x x =-≥,则M N =_____________3.已知集合1{2},{lg 0}2xA xB x x =>=>,则()R A B =____________5.含参数集合问题1.已知集合}012|{2=+-=x ax x A 有且只有一个元素,则a 的值的是 . 2.含有三个实数的集合既可表示成a {,ab ,}1,又可表示成2{a ,b a +,}0,则20162015b a += . 3.已知集合}121{+≤≤+=a x a x P ,集合}52{≤≤-=x x Q(1)若3a =,求集合()R C P Q ;(2)若P Q ⊆,求实数a 的取值范围2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第一部分 集合1、集合与元素的关系2、集合与集合的关系3、集合的交并补运算4、不等式的解集1.集合与元素的关系1.已知集合{}23,,02+-=m m m A 且A ∈2,则实数m 的值为( A )A .3B .2C .0或3D .0,2,3均可 2.已知实数{}21,3,a a ∈,则实数a 的值为( C )A .1B .1或3C .0或3D .0或12.集合与集合的关系1.满足条件{}{},,a A a b c ⊆⊆的所有集合A 的个数是 ( D ) A .1个 B .2个 C .3个 D .4个 2.【教材12】已知集合{}1,2A =,集合B 满足{}1,2AB =,则集合B 有( D )个.A .1个B .2个C .3个D .4个3.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,则实数k 的取值范围是1[1,]2- 4.设集合{}|35A x x =<<,{}|12B x a x a =-≤≤+,且A B ⊆,则实数a 的取值范围是( C )A .34a <≤B .34a ≤<C .34a ≤≤D .∅3.集合的交并补运算基本策略:有限集——列举法;无限集——画数轴1.设集合}7,5,3,1{=U ,}5,1{=M ,则=M C U __{3,7}_______ 2.设全集U ={1,2,3,4},集合S ={1,3},T ={4},则等于( A )A .{2,4}B .{4}C .ΦD .{1,3,4} 3.已知集合{}|lg(2)A x y x ==-,集合{}|22B x x =-≤≤,则AB =(C )A .{}|2x x ≥-B .{}|22x x -<<C .{}|22x x -≤<D .{}|2x x <4.设集合}421{,,=A ,集合},,|{A b A a b a x xB ∈∈+==,则集合B 中有(C )个元素 A .4 B .5 C .6D .75.设a ,b 都是非零实数,y =a a +b b +ab ab可能取的值组成的集合是_{1,3}-___. 4.不等式的解集(1)一元二次不等式1.不等式21x >的解集为____{|1,1}x x x <->或_____________ 2.不等式22320x x -->的解集为__1{|,2}2x x x <->或________ (2)分数不等式(除化为乘,注意分母不为0)1.不等式101xx +>-解集为__(1,1)-_______ 2.不等式121x x +>-解集为____1(,1)3____(3)指数不等式(利用单调性) 1.不等式3121x +>解集为_____1(,)3-+∞______2.不等式2339x x-+>解集为_____(1,2)____3.若213211()(),22a a +-<则实数a 的取值范围是___1(,)2+∞__ (4)对数不等式(利用单调性,注意真数>0)1.已知集合{}|lg(2)A x y x ==-,集合{}|22B x x =-≤≤,则A B =__[2,2)-_ 2.已知集合{}|10x M x e =-≥,{}3|log (1)1N x x =-≥,则M N =___[4,)+∞___3.已知集合1{2},{lg 0}2xA xB x x =>=>,则()R A B =__(1,1]-___5.含参数集合问题1.已知集合}012|{2=+-=x ax x A 有且只有一个元素,则a 的值的是 01或 . 2.含有三个实数的集合既可表示成a {,ab ,}1,又可表示成2{a ,b a +,}0,则20162015b a += 1- . 3.已知集合}121{+≤≤+=a x a x P ,集合}52{≤≤-=x x Q(1)若3a =,求集合()R C P Q ;(2)若P Q ⊆,求实数a 的取值范围解:(1)若3a =,{47}P x x =≤≤,{47}R x x C x P <>=或,所以{(2})7R x x C P Q -≤<=(2)若P =∅,则1210a a a +>+⇒<;若02102215a P a a a ≥⎧⎪≠∅⇒-≤+⇒≤≤⎨⎪+≤⎩.a∈-∞.综上(,2]。
高一数学必修1、2综合试卷及答案
高一数学周测卷--期末模拟 (必修1+必修2)一、选择题:(本大题共10题,每小题5分,共50分)1.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则 ( ) A .B A U ⋃= B .B A C U U ⋃=)( C )(B C A U U ⋃= D .)()(B C A C U U U ⋃= 2.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减函数,那么实数a 的取值范围是( )A 、3a ≤- B 、3a ≥- C 、a ≤5 D 、a ≥5 3.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x4. 设()f x 是(,)-∞+∞上的奇函数,且(2)()f x f x +=-,当01x ≤≤时,()f x x =, 则(7.5)f 等于( )A. 0.5B. 0.5-C. 1.5D. 1.5-5.下列图像表示函数图像的是( )yxyx yx yxA B C D6.在棱长均为2的正四面体BCD A -中,若以三角形ABC 为视角正面的三视图中,其左视图的面积是( ). A .3 B .362 C .2 D .22 7.7.221:46120O x y x y +--+=与222:86160O x y x y +--+=的位置关系是( ) A .相交B .外离C .内含D .内切8.圆:02y 2x 2y x 22=---+上的点到直线2y x =-的距离最小值是( ). A .0 B .21+ C .222- D .22-9.如果函数1ax ax )x (f 2++=的定义域为全体实数集R ,那么实数a 的取值范围是( ).A .[0,4]B .)4,0[C .),4[+∞D .(0,4) 10. 已知不同直线m 、n 和不同平面α、β,给出下列命题:A BCD①////m m αββα⎫⇒⎬⊂⎭②//////m n n m ββ⎫⇒⎬⎭③,m m n n αβ⊂⎫⇒⎬⊂⎭异面④//m m αββα⊥⎫⇒⊥⎬⎭其中错误的命题有( )个 A .0 B .1C .2D .311点(7,4)P -关于直线:6510l x y --=的对称点Q 的坐标是( ) A .(5,6) B .(2,3) C .(5,6)- D .(2,3)-12已知22:42150C x y x y +---=上有四个不同的点到直线:(7)6l y k x =-+的距离等于5,则k 的取值范围是( )A .(,2)-∞B .(2,)-+∞C .1(,2)2D .1(,)(2,)2-∞+∞二、填空题:(本大题共有5小题,每小题4分,满分20分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末复习资料 一 必修1 复习题一、选择题1、 下列函数中,在区间()0,+∞不是增函数的是( ) A.x y 2= B. x y lg = C. 3x y = D. 1y x=2、函数y =log 2x +3(x≥1)的值域是( )A.[)+∞,2B.(3,+∞)C.[)+∞,3D.(-∞,+∞) 3、若{|2},{|x M y y P y y ====,则M∩P ( )A.{|1}y y >B. {|1}y y ≥C. {|0}y y >D. {|0}y y ≥ 4、对数式2log (5)a b a -=-中,实数a 的取值范围是( ) A.a>5,或a<2 B.2<a<5C.2<a<3,或3<a<5D.3<a<45、 已知x a x f -=)( )10(≠>a a 且,且)3()2(->-f f ,则a 的取值范围是( ) A. 0>a B. 1>a C. 1<a D. 10<<a6、函数y =(a 2-1)x在(-∞,+∞)上是减函数,则a 的取值范围是( ) A.|a |>1 B.|a |>2C.a>2D.1<|a |<26、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 -- B 、)2,1()1,2( -- C 、[)(]2,11,2 -- D 、)2,1()1,2( --8、值域是(0,+∞)的函数是( )A 、125xy -=B 、113xy -⎛⎫= ⎪⎝⎭C、y =D9、函数|log |)(21x x f =的单调递增区间是A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞10、图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( )A 、0<a<b<1<d<cB 、0<b<a<1<c<dC 、0<d<c<1<a<bD 、0<c<d<1<a<b11、函数f(x)=log 31(5-4x-x 2)的单调减区间为( )A.(-∞,-2)B.[-2,+∞]C.(-5,-2)D.[-2,1]12、a=log 0.50.6,b=log 20.5,c=log 35,则( )A.a <b <cB.b <a <cC.a <c <bD.c <a <b13、已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是( )A.(0,1)B.(1,2)C.(0,2)D.[2,+∞]14、设函数1lg )1()(+=x x f x f ,则f(10)值为( )A .1 B.-1 C.10 D.101 二、填空题 15、函数)1(log 21-=x y 的定义域为 16、.函数y =2||1x -的值域为________17、将(61)0,2,log 221,log 0.523由小到大排顺序:x18. 设函数()()()()4242xx f x x f x ⎧≥⎪=⎨<+⎪⎩,则()2log 3f =19、计算机的成本不断降低,如果每隔5年计算机的价格降低31,现在价格为8100元的计算机,15年后的价格可降为20、函数),2[log +∞=在x y a 上恒有|y|>1,则a 的取值范围是 。
21、已知函数f(x)=5log )(log 41241+-x x ,x ∈[2,4],则当x= ,f(x) 有最大值 ;当x= 时,f(x)有最小值三、解答题:22、点(2,1)与(1,2)在函数()2ax b f x +=的图象上,求()f x 的解析式。
23、 已知函数xxx f -+=11lg )(,(1)求)(x f 的定义域; (2)使0)(>x f 的x 的取值范围. 24、设1221)(+-=x x f (1)求f (x )的值域;(2)证明f (x )为R 上的增函数; 25、 已知函数f(x)=11+-xx a a (a>0且a≠1).(1)求f(x)的定义域和值域; (2)讨论f(x)的单调性.26、已知()32log ([1,9])f x x x =+∈,求函数22[()]()y f x f x =+的最大值与最小值。
期末复习资料之二 必修2第一二章立几复习题一、选择题:(本大题共10小题,每小题4分,共40分)1.如果直线a 、b 为异面垂直直线,则a 与过b 的平面所成的角a 的范围为( )A .0°<a <90°B .0°≤a <90°C .0°<a ≤90°D .0°≤a ≤90° 2.分别在两个相交平面内的两条直线间的位置关系是( )A .异面B .平行C .相交D .以上都有可能 3.以下四个命题中,正确命题的个数是( )①有两个侧面是矩形的棱柱是直棱柱②有两个面平行,其余各面均为平行四边形的几何体是棱柱 ③棱柱被平行于侧棱的平面所截,截面是平行四边形④长方体是直棱柱,直棱柱也是长方体 (A .0 B .1 C .2 D .3 4.如图代表未折叠正方体的展开图,将其折叠起来,变成正方体后,图形是( )A .B .C .D . 5.当α∥β时,必须满足的条件( )A .平面α内有无数条直线平行于平面β;B .平面α与平面β同平行于一条直线;C .平面α内有两条直线平行于平面β;D .平面α内有两条相交直线与β平面平行. 6.若正棱锥的底面边长与侧棱长都相等,则该棱锥一定不是( )A .三棱锥B .四棱锥C .五棱锥D .六棱锥7.已知方程2x-K =0(K >0),则方程的根的个数为( )A .0B .1C .2D .无法确定 8.已知l ⊥α,m ⊂β,则下面四个命题,其中正确的是( ):①α∥β则l ⊥m ②α⊥β则l ∥m ③l ∥m 则α⊥β ④l ⊥m 则α∥βA .①②B .③④C .②④D .①③9.已知集合A ={x|x 2+3x+2=0},B ={x|x 2+2x+q=0}且A ∩B=B ,则q 的值为( )A .0B .1C .-1D .以上答案都不对10.过正方形ABCD 的顶点A 作线段AP ⊥平面ABCD ,且AP =AB ,则平面ABP 与平面CDP 所成的二面角的度数是( ) A .30° B .45° C .60° D .90° 二、填空题(本大题共4小题,每小题5分,共20分)11.如图1,在圆台oo '中,r =8, r '=4, oo '=3, 则圆台oo '的表面积为 。
12.设斜线和平面所成的角为θ,那么斜线和平面内过斜足的所有直线的夹角中,最大的角为 ;最小的角为 。
13.在棱长为1的正方体ABCD —1111D C B A 中,M 为1AA 的中点,则A 到面MBD 的距离为 。
14.如图2,S 是边长为a 的正三角连ABC 所在平面外一点,SA =SB =SC =a , E 、F 是AB 和SC 的中点,则异面直线SA 与EF 所成的角为 。
三、解答题(本大题共4题,共4分) 15.解不等式lg(x 2+2x)<1(本题为7分)。
16.如图3,在空间四边形ABCD ,E 为AD 的中点,F 为BC 的中点,又AC =13,BD =12,AC ⊥BD ,求EF 。
(本题8分)17.如图4,,,,//,CD EF AB AB αβαγβγα===求证:CD//EF 。
(本题10分)18.如图,在三棱柱ABC -A 1B 1C 1中,四边形A 1ABB 1是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB .(本题15分)(1)求证:平面CA 1B 1⊥平面A 1AB(2)若C 1B 1=3,AB =4,∠ABB 1=60°,求AC 与平面BCC 1所成角的期末复习资料之三 数学必修2第三章 直线方程单元测试题一、选择题(本大题共10小题,每小题5分,共50分) 1、若A(-2,3),B(3,-2),C(21,m)三点共线,则m为( ) A、21 B、21- C、-2 D、22.如果直线0121=+-ay x l :与直线07642=-+y x l :平行,则a 的值为 ( ) A .3 B .-3 C . 5 D .0 3.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A .072=+-y xB .012=-+y xC .250x y --=D .052=-+y x 4、若点P(x 0,y 0)在直线Ax+By+C =0上,则直线方程可表示为( )图1图2B AC BA 、A(x-x 0)+B(y-y 0)=0B 、A(x-x 0)-B(y-y 0)=0C 、B(x-x 0)+A(y-y 0)=0D 、B(x-x 0)-A(y-y 0)=05.与直线01:2=--y m mx l 垂直于点P (2,1)的直线方程是( ) A .012=-+y m mx B .03=++y x C .03=--y x D .03=-+y x 6、若ac >0且bc <0,直线0=++c by ax 不通过( )A 、第三象限B 、第一象限C 、第四象限D 、第二象限 7. 如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有A. k 3<k 1<k 2B. k 1<k 3<k 2C. k 1<k 2<k 3D. k 3<k 2<k 1 8、若三条直线001,0832=+=--=++ky x y x y x 和相交于一点,则k 的值为( )21.-A 2.-B 2.C 21.D 9、若A 、B 是x 轴上两点,点P 的横坐标是2,且|PA|=|PB|,若直线PA 的方程为x –y –1=0,则直线PB 的方程是( )A 、2x-y-1=0B 、x+y-3=0C 、2x+y-7=0D 、2x-y-4=010、设两条平行线分别经过点(30),和(04),,它们之间的距离为d ,则( ) A.03d <≤ B.04d << C.05d <≤ D.35d ≤≤ 二、填空题(本大题共4小题,每小题5分,共20分)11、直线ax-6y-12a =0(a ≠0)在x 轴上的截距是在y 轴上的截距3倍,则a= ___12.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 . 13.直线5x+12y+3=0与直线10x+24y+5=0的距离是 . 14、经过点P (0,-2)作直线m,若直线m 与A (-2,3),B (2,1)的线段总没有公共点,则直线m 斜率的取值范围是 .三、解答题(本大题共3小题,每小题10分,共30分)15、求经过两条直线04:1=-+y x l 和02:2=+-y x l 的交点,且与直线012=--y x 平行的直线方程;16、已知直线L :y=2x-1,求点P (3 ,4)关于直线L 的对称点。