高二期中考试理科试题
河南省2023-2024学年高二上学期期中考试物理试题及答案
河南省2023~2024学年高二年级学业质是监测考试物理全卷满分100分,考试时间75分钟。
注意事项:1.答卷前,考生务必将自已的姓名、班级、考场号、座位号、考生号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.关于电路的知识,下列说法正确的是()A .电阻率超大,导体的电阻越大B .电源的作用是在电源内部把电子由正极搬运到负极,保持两极之间有电压C .通过导体横截面的电荷量越大,导体中的电流越大D .电阻R 表示导体对电流的阻碍作用,R 越小通过电阻的电流一定越大2.关于静电场知识,下列说法正确的是()A .摩擦起电的过程中产生了电荷,所以不遵循电荷守恒定律B .电场强度为零的地方,电势一定为零C .电势降低的方向就是电场强度的方向D .工作人员在超高压带电作业时,穿用金属丝编制的工作服应用了静电屏蔽的原理3.如图所示,上表面绝缘的力传感器放在水平面上,带电金属小球B 静止在力传感器上,手握固定带电金属小球A 的绝缘柄,使小球A 静止在小球B 正上方高h 处,此时力传感器的示数为1F ;将两球接触后,A 球仍移到原来的位置,此时力传感器的示数为2F 。
若两个小球完全相同,两球接触前带不等量的异种电荷,不计小球的大小,则下列判断正确的是()A .一定有12F F >B .一定有12F F <C .可能有12F F =D .无法判断1F 、2F 的大小关系4.A 、B 两根平等长直导线垂直纸面固定,两导线中通有大小相等的恒定电流,在两导线连线的垂直平分线上有一小磁针,在磁场力作用下保持静止状态,如图所示,忽略地磁场的影响。
自贡蜀光中学高中二年级下理科数学期中考试理科数学_人教新课标
x 1 ,令
f ( x ) 2ln x x , f (x) 2 1 , 当 x (0,2) 时 , f (x) 0 , f (x) 为增函数 , 当 x (2, ) 时 ,
x
f (x) 0, f (x) 为减函数 ,所以 f (x) 的极大值为 f (2) 2ln 2 2 .
15 . 过抛物线 y 2=6 x 的焦点作直线 , 交抛物线于 A( x1 , y1), B(x2, y2) 两点 , 如果 x1+ x2=8 ,那么
C
y 2 4 x ⋯⋯⋯⋯⋯⋯⋯⋯5⋯分
所求的抛物线 的方程为
(2 ) 假设存在符合题意的直线 l , 其方程为 y
由
y2 4x , 消 x 得 y2 2 y 2t 0
y 2x t
2x t
,
l
C
因为直线 与抛物线 有公共点 , 所以得
4 8t 0 ,解得 t
1 2 .⋯⋯⋯⋯⋯⋯⋯⋯9⋯分
OA l
d
, 再利用积分知识可得正弦曲线 y=sinx 与 x 轴围成的
区域的面积 , 从而可求概率 . 解: 构成试验的全部区域为圆内的区域 , 面积为 π3, 正弦曲线 y=-sinx 与 x
π
轴围成的区域记为 M , 根据图形的对称性得 :面积为 S=2 0 sin xdx =-2cosx| 0 =4 , 由几何概率的计算公
在点( , 处的切线方程是
A. a 1,b 2 B.a 1,b 2 C.a 1,b -2 D.a 1,b 2
9. 设 f (x)
1 x3 1 x2 2ax, 若 f (x) 在 ( 2,
32
3
) 上存在单调递增区间
, 则实数 a 的取值范围为
2021-2022学年甘肃省兰州市第一中学高二下学期期中考试理科数学试题(解析版)
甘肃省兰州市第一中学2021-2022学年高二下学期期中考试数学理科试题说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.〖答案〗写在答题卡上.交卷时只交答题卡.一.选择题(共12小题,满分60分,每小题5分)1. 复数2iz=-(i为虚数单位)的共轭复数的虚部为()A. -1B. 1C. i-D. i〖答案〗B〖解析〗由题意知:2iz=+,则虚部为1.故选:B.2. 在用反证法证明“已知x,y∈R,且x y+<,则x,y中至多有一个大于0”时,假设应为()A. x,y都小于0 B. x,y至少有一个大于0C. x,y都大于0 D. x,y至少有一个小于0〖答案〗C〖解析〗“至多有一个大于0”包括“都不大于0和有且仅有一个大于0”,故其对立面为“x,y都大于0”.故选:C.3. 函数y=x2cos 2x的导数为()A. y′=2x cos 2x-x2sin 2xB. y′=2x cos 2x-2x2sin 2xC. y′=x2cos 2x-2x sin 2xD. y′=2x cos 2x+2x2sin 2x〖答案〗B〖解析〗y′=(x2)′cos 2x+x2(cos 2x)′=2x cos 2x+x2(-sin 2x)·(2x)′=2x cos 2x-2x2sin 2x.故选:B.4. 函数21ln2y x x=-的单调递减区间为()A. ()1,1-B.()1,+∞C.()0,1D.()0,∞+〖答案〗C〖解 析〗函数21ln 2y x x=-的定义域为()0,∞+, ()()21111x x x y x x x x +--=-==′,()()1100x x x x ⎧+-<⎪⎨⎪>⎩,解得01x <<,所以函数21ln 2y x x=-的单调递减区间为()0,1. 故选:C.5. 用S 表示图中阴影部分的面积,则S 的值是( )A. ()d ca f x x⎰B. ()d caf x x⎰C.()d ()d bc abf x x f x x +⎰⎰D.()d ()d cb baf x x f x x-⎰⎰〖答 案〗D〖解 析〗由定积分的几何意义知区域内的曲线与x 轴的面积代数和. 即()d ()d cbbaf x x f x x-⎰⎰,选项D 正确.故选D .6. 把3封信投到4个信箱中,所有可能的投法共有( ) A. 7种 B. 12种C. 43种D. 34种〖答 案〗D〖解 析〗由题意可得,第1封信投到信箱中有4种投法,第2封信投到信箱中有4种投法,第3封信投到信箱中有4种投法,所以由分步乘法计数原理可得共有34444⨯⨯=种投法, 故选:D.7. 设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能是( )A. B.C.D.〖答 案〗A 〖解 析〗根据()f x 的图像可知,函数从左到右,单调区间是:增、减、增、减,也即导数从左到右,是:正、负、正、负.结合选项可知,只有A 选项符合,故本题选A. 8. 已知函数()33f x x x m=-+只有一个零点,则实数m 的取值范围是( )A.[]22-, B.()(),22,-∞-+∞C.()2,2-D.(][),22,-∞-+∞〖答 案〗B 〖解 析〗由函数()33f x x x m=-+只有一个零点,等价于函数33y x x =-+的图像与y m =的图像只有一个交点,33y x x =-+,求导233y x '=-+,令0y '=,得1x =±当1x <-时,0y '<,函数在(),1-∞-上单调递减; 当11x -<<时,0y '>,函数在()1,1-上单调递增;当1x >时,0y '<,函数在()1,+∞上单调递减;故当1x =-时,函数取得极小值2y =-;当1x =时,函数取得极大值2y =; 作出函数图像,如图所示,由图可知,实数m 的取值范围是()(),22,-∞-+∞.故选:B.9. 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A. 120种 B. 240种 C. 360种 D. 480种〖答 案〗B〖解 析〗先将5名志愿者分为4组,有25C 种分法, 然后再将4组分到4个项目,有44A 种分法,再根据分步乘法原理可得不同的分配方案共有2454C A 240⋅=种.故选:B. 10. (1+2x 2 )(1+x )4的展开式中x 3的系数为( ) A. 12B. 16C. 20D. 24〖答 案〗A〖解 析〗由题意得x 3的系数为3144C 2C 4812+=+=,故选A . 11. 下列说法正确的是( )①设函数()y f x =可导,则()()()11lim13x f x f f x →+-'=△△△;②过曲线()y f x =外一定点做该曲线的切线有且只有一条;③已知做匀加速运动的物体的运动方程是()2s t t t=+米,则该物体在时刻2t =秒的瞬时速度是5米/秒;④一物体以速度232v t t =+(米/秒)做直线运动,则它在0=t 到2t =秒时间段内的位移为12米;⑤已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充要条件. A. ①③ B. ③④C. ②③⑤D. ③⑤〖答 案〗B〖解 析〗对于选项①,设函数()f x ,则()()()()001(1)1111limlim 1333x x f x f f x f f xx →→+-+-==',故①错.对于选项②,过曲线()y f x =外一定点做该曲线的切线可以有多条,故②错.对于选项③,已知做匀速运动的物体的运动方程为()2S t t t=+,则()21S t t '=+,所以()25S '=,故③正确.对于选项④,一物体以速度232v t t =+做直线运动,则它在0=t 到2t =时间段内的位移为()223220032d (| 2)1tt t t t +=+=⎰,故④正确.对于选项⑤,已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充分不必要条件,例如()3,'()0f x x f x =≥,故⑤错.故选B . 12. 已知()2cos f x x x=+,x ∈R ,若()()1120f t f t ---≥成立,则实数t 的取值范围是( )A. 20,3⎛⎫ ⎪⎝⎭B. 20,3⎡⎤⎢⎥⎣⎦C.()2,0,3∞∞⎛⎫-⋃+⎪⎝⎭D. 23⎛⎤-∞ ⎥⎝⎦,〖答 案〗B 〖解 析〗函数()y f x =的定义域为R ,关于原点对称,()()()2cos 2cos f x x x x x f x -=-+-=+=,∴函数()y f x =为偶函数,当0x ≥时,()2cos f x x x=+,()2sin 0f x x '=->,则函数()y f x =在[)0,∞+上为增函数,由()()1120f t f t ---≥得()()112f t f t -≥-,由偶函数的性质得()()112f t f t -≥-,由于函数()y f x =在[)0,∞+上为增函数,则112t t-≥-,即()()22112t t -≥-,整理得2320t t -≤,解得203t ≤≤,因此,实数t 的取值范围是20,3⎡⎤⎢⎥⎣⎦. 故选:B.二.填空题(共5小题,满分25分,每小题5分)13.10d ⎤=⎦⎰x x ___________.〖答 案〗142π-〖解析〗11]d d =-⎰⎰⎰x x x x x ,根据定积分的几何意义可知,⎰x 表示以()1,0为圆心,1为半径的圆的四分之一面积,所以201144ππ=⋅⋅=⎰x ,而1210011d |22⎛⎫=+= ⎪⎝⎭⎰x x x c ,所以101]d 42π=-⎰x x .故〖答 案〗为:142π-.14. 在二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为______. 〖答 案〗243〖解 析〗因为二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32, 所以232n=,故5n =,取1x =可得二项式5214x x ⎛⎫- ⎪⎝⎭的展开式中各项系数和为53,即243.故〖答 案〗为:243.15. 若函数()y f x =在区间D 上是凸函数,则对于区间D 内的任意1x ,2x ,…,n x都有()()()12121n n x x x f x f x f x f n n ++⋅⋅⋅+⎛⎫++⋅⋅⋅+≤⎡⎤ ⎪⎣⎦⎝⎭,若函数()sin f x x =在区间(0,)π上是凸函数,则在△ABC 中,sin sin sin A B C ++的最大值是______.〖答案〗〖解析〗由题设知:1(sin sin sin )sin()sin 3332A B C A B C π++++≤==,∴sin sin sin 2A B C ++≤,当且仅当3A B C π===时等号成立.故〖答案〗为:2.16. 在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____. 〖答 案〗(e, 1).〖解 析〗设点()00,A x y ,则00ln y x =.又1y x '=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,代入点(),1e --,得001ln 1ex x ---=-,即00ln x x e =,考查函数()ln H x x x=,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()'ln 1H x x =+,当1x >时,()()'0,>H x H x 单调递增,注意到()H e e=,故00ln x x e=存在唯一的实数根0x e=,此时01y =,故点A 的坐标为(),1A e .17. 若函数()2ln f x ax x x=+有两个极值点,则实数a 的取值范围是__________.〖答 案〗12a -<<〖解 析〗2012f x xlnx ax x f x lnx ax =+'=++()(>),(). 令12g x lnx ax =++(),由于函数函数()2ln f x ax x x=+有两个极值点0g x ⇔=()在区间∞(0,+)上有两个实数根.1122axg x a x x +'=+=(),当0a ≥ 时,0g x '()> ,则函数g x () 在区间∞(0,+)单调递增,因此0g x =() 在区间∞(0,+)上不可能有两个实数根,应舍去. 当0a < 时,令0gx '=() ,解得12x a =-,令0gx '()> ,解得102x a <<-,此时函数g x ()单调递增;令0gx '()< ,解得12x a >-,此时函数g x ()单调递减.∴当12x a =-时,函数g x ()取得极大值.要使0g x =()在区间∞(0,+)上有两个实数根,则11022g ln a a ()>,⎛⎫-=- ⎪⎝⎭,解得102a -<<.∴实数a 的取值范围是(12a -<<.三.解答题(共5小题,满分65分) 18. 设i 为虚数单位,∈a R ,复数12iz a =+,243iz =-.(1)若12z z ⋅是实数,求a 的值;(2)若12z z 是纯虚数,求1z .解:(1)()()()()122i 43i 3846iz z a a a ⋅=+-=++-,因为12z z ⋅是实数,则460a -=,解得32a =.(2)()()()()122i 43i 2i 8346i 43i 43i 43i 2525a z a a a z +++-+===+--+,因为12z z 为纯虚数,则830460a a -=⎧⎨+≠⎩,解得83a =.所以1103z ==.19.>.>只要证22>,只要证1313+>+>,只要证4240>显然成立,故原结论成立.20. 数列{}n a 满足26a =,()*1111+--=∈+n n a n n a n N .(1)试求出1a ,3a ,4a ;(2)猜想数列{}n a 的通项公式并用数学归纳法证明.解:(1)26a =,()*1111+--=∈+n n a n n a n N 当1n =时,1211111a a --=+,11a ∴=,当2n =时,3212121a a --=+,315a ∴=,当3n =时,3413131a a --=+,428a ∴=,所以11a =,315a =,428a =.(2)猜想(21)n a n n =-下面用数学归纳法证明:假设n k =时,有(21)k a k k =-成立,则当1n k =+时,有()1211111112k k k a k a k k +++--+-==+++,()()()122111k k k a k a +++-=+-⎡⎤⎣⎦()()11211k a k k +∴=++-⎡⎤⎣⎦故对*,(21)=∈-n n a n n N 成立.21. 已知函数()e cos xf x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 解:(Ⅰ)因为()e cos x f x x x=-,所以()()()e cos sin 1,00x f x x x f -''=-=.又因为()01f =,所以曲线()y f x =在点()()0,0f 处的切线方程为1y =.(Ⅱ)设()()e cos sin 1x h x x x =--,则()()e cos sin sin cos 2e sin x x h x x x x x x=--=-'-.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,所以()h x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减. 所以对任意π0,2x ⎛⎤∈ ⎥⎝⎦有()()00h x h <=,即()0f x '<. 所以函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.因此()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为()01f =,最小值为22f ππ⎛⎫=-⎪⎝⎭. 22. 设函数()f x ()20x ax x aa e ++=>,e 为自然对数的底数.(1)求f (x )的单调区间:(2)若ax 2+x +a ﹣e x x +e x ln x ≤0成立,求正实数a 的取值范围.解:(1)函数()()20xax x af x a e ++=>,e 为自然对数的底数,则()()11xaa x xaf xe-⎛⎫---⎪⎝⎭'=,令()0f x'=可得11x=,21111axa a-==-<,∴当1,axa-⎛⎫∈-∞⎪⎝⎭,()1,+∞时,()0f x'<,()f x单调递减;当1,1axa-⎛⎫∈ ⎪⎝⎭时,()0f x'>,()f x单调递增;∴()f x的单调增区间为1,1axa-⎛⎫∈ ⎪⎝⎭,单调减区间为1,aa-⎛⎫-∞⎪⎝⎭,()1,+∞;(2)ax2+x+a﹣e x x+e x ln x≤0成立⇔2xax x ae++≤x﹣ln x,x∈(0,+∞),由(1)可得当x=1函数y2xax x ae++=取得极大值21ae+,令g(x)= x﹣ln x,(x>0),g′(x)= 11x -,可得x=1时,函数g(x)取得极小值即最小值.∴x﹣ln x≥g(1)=1,当(]0,1a∈时,21ae+即为函数y2xax x ae++=的最大值,∴2xax x ae++≤x﹣ln x成立⇔21ae+≤1,解得a12e-≤;当()1,a∈+∞时,211ae+>,不合题意;综上所述,0<a12e-≤.甘肃省兰州市第一中学2021-2022学年高二下学期期中考试数学理科试题说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.〖答 案〗写在答题卡上.交卷时只交答题卡. 一.选择题(共12小题,满分60分,每小题5分) 1. 复数2i z =-(i 为虚数单位)的共轭复数的虚部为( ) A. -1 B. 1C.i -D. i〖答 案〗B〖解 析〗由题意知:2i z=+,则虚部为1.故选:B.2. 在用反证法证明“已知x ,y ∈R ,且0x y +<,则x ,y 中至多有一个大于0”时,假设应为( ) A. x ,y 都小于0 B. x ,y 至少有一个大于0 C. x ,y 都大于0D. x ,y 至少有一个小于0〖答 案〗C〖解 析〗“至多有一个大于0”包括“都不大于0和有且仅有一个大于0”,故其对立面为“x ,y 都大于0”.故选:C.3. 函数y =x 2cos 2x 的导数为( ) A. y ′=2x cos 2x -x 2sin 2x B. y ′=2x cos 2x -2x 2sin 2x C. y ′=x 2cos 2x -2x sin 2xD. y ′=2x cos 2x +2x 2sin 2x〖答 案〗B〖解 析〗y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x . 故选:B.4. 函数21ln 2y x x =-的单调递减区间为( )A.()1,1- B.()1,+∞C.()0,1D.()0,∞+〖答 案〗C〖解 析〗函数21ln 2y x x=-的定义域为()0,∞+, ()()21111x x x y x x x x +--=-==′,()()1100x x x x ⎧+-<⎪⎨⎪>⎩,解得01x <<,所以函数21ln 2y x x=-的单调递减区间为()0,1. 故选:C.5. 用S 表示图中阴影部分的面积,则S 的值是( )A. ()d ca f x x⎰B. ()d caf x x⎰C.()d ()d bc abf x x f x x +⎰⎰D.()d ()d cb baf x x f x x-⎰⎰〖答 案〗D〖解 析〗由定积分的几何意义知区域内的曲线与x 轴的面积代数和. 即()d ()d cbbaf x x f x x-⎰⎰,选项D 正确.故选D .6. 把3封信投到4个信箱中,所有可能的投法共有( ) A. 7种 B. 12种C. 43种D. 34种〖答 案〗D〖解 析〗由题意可得,第1封信投到信箱中有4种投法,第2封信投到信箱中有4种投法,第3封信投到信箱中有4种投法,所以由分步乘法计数原理可得共有34444⨯⨯=种投法, 故选:D.7. 设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能是( )A. B.C.D.〖答 案〗A 〖解 析〗根据()f x 的图像可知,函数从左到右,单调区间是:增、减、增、减,也即导数从左到右,是:正、负、正、负.结合选项可知,只有A 选项符合,故本题选A. 8. 已知函数()33f x x x m=-+只有一个零点,则实数m 的取值范围是( )A.[]22-, B.()(),22,-∞-+∞C.()2,2-D.(][),22,-∞-+∞〖答 案〗B 〖解 析〗由函数()33f x x x m=-+只有一个零点,等价于函数33y x x =-+的图像与y m =的图像只有一个交点, 33y x x =-+,求导233y x '=-+,令0y '=,得1x =±当1x <-时,0y '<,函数在(),1-∞-上单调递减; 当11x -<<时,0y '>,函数在()1,1-上单调递增;当1x >时,0y '<,函数在()1,+∞上单调递减;故当1x =-时,函数取得极小值2y =-;当1x =时,函数取得极大值2y =; 作出函数图像,如图所示,由图可知,实数m 的取值范围是()(),22,-∞-+∞.故选:B.9. 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A. 120种 B. 240种 C. 360种 D. 480种〖答 案〗B〖解 析〗先将5名志愿者分为4组,有25C 种分法, 然后再将4组分到4个项目,有44A 种分法,再根据分步乘法原理可得不同的分配方案共有2454C A 240⋅=种.故选:B. 10. (1+2x 2 )(1+x )4的展开式中x 3的系数为( ) A. 12B. 16C. 20D. 24〖答 案〗A〖解 析〗由题意得x 3的系数为3144C 2C 4812+=+=,故选A . 11. 下列说法正确的是( )①设函数()y f x =可导,则()()()11lim13x f x f f x →+-'=△△△;②过曲线()y f x =外一定点做该曲线的切线有且只有一条;③已知做匀加速运动的物体的运动方程是()2s t t t=+米,则该物体在时刻2t =秒的瞬时速度是5米/秒;④一物体以速度232v t t =+(米/秒)做直线运动,则它在0=t 到2t =秒时间段内的位移为12米;⑤已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充要条件. A. ①③ B. ③④C. ②③⑤D. ③⑤〖答 案〗B〖解 析〗对于选项①,设函数()f x ,则()()()()001(1)1111limlim 1333x x f x f f x f f xx →→+-+-==',故①错.对于选项②,过曲线()y f x =外一定点做该曲线的切线可以有多条,故②错.对于选项③,已知做匀速运动的物体的运动方程为()2S t t t=+,则()21S t t '=+,所以()25S '=,故③正确.对于选项④,一物体以速度232v t t =+做直线运动,则它在0=t 到2t =时间段内的位移为()223220032d (| 2)1tt t t t +=+=⎰,故④正确.对于选项⑤,已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充分不必要条件,例如()3,'()0f x x f x =≥,故⑤错.故选B . 12. 已知()2cos f x x x=+,x ∈R ,若()()1120f t f t ---≥成立,则实数t 的取值范围是( )A. 20,3⎛⎫ ⎪⎝⎭B. 20,3⎡⎤⎢⎥⎣⎦C.()2,0,3∞∞⎛⎫-⋃+⎪⎝⎭D. 23⎛⎤-∞ ⎥⎝⎦,〖答 案〗B 〖解 析〗函数()y f x =的定义域为R ,关于原点对称,()()()2cos 2cos f x x x x x f x -=-+-=+=,∴函数()y f x =为偶函数,当0x ≥时,()2cos f x x x=+,()2sin 0f x x '=->,则函数()y f x =在[)0,∞+上为增函数,由()()1120f t f t ---≥得()()112f t f t -≥-,由偶函数的性质得()()112f t f t -≥-,由于函数()y f x =在[)0,∞+上为增函数,则112t t-≥-,即()()22112t t -≥-,整理得2320t t -≤,解得203t ≤≤,因此,实数t 的取值范围是20,3⎡⎤⎢⎥⎣⎦. 故选:B.二.填空题(共5小题,满分25分,每小题5分)13.10d ⎤=⎦⎰x x ___________.〖答 案〗142π-〖解析〗11]d d =-⎰⎰⎰x x x x x ,根据定积分的几何意义可知,⎰x 表示以()1,0为圆心,1为半径的圆的四分之一面积,所以201144ππ=⋅⋅=⎰x ,而1210011d |22⎛⎫=+= ⎪⎝⎭⎰x x x c ,所以101]d 42π=-⎰x x .故〖答 案〗为:142π-.14. 在二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为______. 〖答 案〗243〖解 析〗因为二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32, 所以232n=,故5n =,取1x =可得二项式5214x x ⎛⎫- ⎪⎝⎭的展开式中各项系数和为53,即243.故〖答 案〗为:243.15. 若函数()y f x =在区间D 上是凸函数,则对于区间D 内的任意1x ,2x ,…,n x都有()()()12121n n x x x f x f x f x f n n ++⋅⋅⋅+⎛⎫++⋅⋅⋅+≤⎡⎤ ⎪⎣⎦⎝⎭,若函数()sin f x x =在区间(0,)π上是凸函数,则在△ABC 中,sin sin sin A B C ++的最大值是______.〖答案〗〖解析〗由题设知:1(sin sin sin )sin()sin 3332A B C A B C π++++≤==,∴sin sin sin 2A B C ++≤,当且仅当3A B C π===时等号成立.故〖答案〗为:2.16. 在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____. 〖答 案〗(e, 1).〖解 析〗设点()00,A x y ,则00ln y x =.又1y x '=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,代入点(),1e --,得001ln 1ex x ---=-,即00ln x x e =,考查函数()ln H x x x=,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()'ln 1H x x =+,当1x >时,()()'0,>H x H x 单调递增,注意到()H e e=,故00ln x x e=存在唯一的实数根0x e=,此时01y =,故点A 的坐标为(),1A e .17. 若函数()2ln f x ax x x=+有两个极值点,则实数a 的取值范围是__________.〖答 案〗12a -<<〖解 析〗2012f x xlnx ax x f x lnx ax =+'=++()(>),(). 令12g x lnx ax =++(),由于函数函数()2ln f x ax x x=+有两个极值点0g x ⇔=()在区间∞(0,+)上有两个实数根.1122axg x a x x +'=+=(),当0a ≥ 时,0g x '()> ,则函数g x () 在区间∞(0,+)单调递增,因此0g x =() 在区间∞(0,+)上不可能有两个实数根,应舍去. 当0a < 时,令0gx '=() ,解得12x a =-,令0gx '()> ,解得102x a <<-,此时函数g x ()单调递增;令0gx '()< ,解得12x a >-,此时函数g x ()单调递减.∴当12x a =-时,函数g x ()取得极大值.要使0g x =()在区间∞(0,+)上有两个实数根,则11022g ln a a ()>,⎛⎫-=- ⎪⎝⎭,解得102a -<<.∴实数a 的取值范围是(12a -<<.三.解答题(共5小题,满分65分) 18. 设i 为虚数单位,∈a R ,复数12iz a =+,243iz =-.(1)若12z z ⋅是实数,求a 的值;(2)若12z z 是纯虚数,求1z .解:(1)()()()()122i 43i 3846iz z a a a ⋅=+-=++-,因为12z z ⋅是实数,则460a -=,解得32a =.(2)()()()()122i 43i 2i 8346i 43i 43i 43i 2525a z a a a z +++-+===+--+,因为12z z 为纯虚数,则830460a a -=⎧⎨+≠⎩,解得83a =.所以1103z ==.19.>.>只要证22>,只要证1313+>+>,只要证4240>显然成立,故原结论成立.20. 数列{}n a 满足26a =,()*1111+--=∈+n n a n n a n N .(1)试求出1a ,3a ,4a ;(2)猜想数列{}n a 的通项公式并用数学归纳法证明.解:(1)26a =,()*1111+--=∈+n n a n n a n N 当1n =时,1211111a a --=+,11a ∴=,当2n =时,3212121a a --=+,315a ∴=,当3n =时,3413131a a --=+,428a ∴=,所以11a =,315a =,428a =.(2)猜想(21)n a n n =-下面用数学归纳法证明:假设n k =时,有(21)k a k k =-成立,则当1n k =+时,有()1211111112k k k a k a k k +++--+-==+++, ()()()122111k k k a k a +++-=+-⎡⎤⎣⎦()()11211k a k k +∴=++-⎡⎤⎣⎦故对*,(21)=∈-n n a n n N 成立.21. 已知函数()e cos x f x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 解:(Ⅰ)因为()e cos x f x x x =-,所以()()()e cos sin 1,00x f x x x f -''=-=. 又因为()01f =,所以曲线()y f x =在点()()0,0f 处的切线方程为1y =.(Ⅱ)设()()e cos sin 1x h x x x =--,则()()e cos sin sin cos 2e sin x x h x x x x x x=--=-'-. 当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,所以()h x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减. 所以对任意π0,2x ⎛⎤∈ ⎥⎝⎦有()()00h x h <=,即()0f x '<. 所以函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.因此()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为()01f =,最小值为22f ππ⎛⎫=- ⎪⎝⎭. 22. 设函数()f x ()20x ax x a a e ++=>,e 为自然对数的底数.(1)求f (x )的单调区间:(2)若ax 2+x +a ﹣e x x +e x ln x ≤0成立,求正实数a 的取值范围.解:(1)函数()()20x ax x a f x a e ++=>,e 为自然对数的底数,则()()11xaa x xaf xe-⎛⎫---⎪⎝⎭'=,令()0f x'=可得11x=,21111axa a-==-<,∴当1,axa-⎛⎫∈-∞⎪⎝⎭,()1,+∞时,()0f x'<,()f x单调递减;当1,1axa-⎛⎫∈ ⎪⎝⎭时,()0f x'>,()f x单调递增;∴()f x的单调增区间为1,1axa-⎛⎫∈ ⎪⎝⎭,单调减区间为1,aa-⎛⎫-∞⎪⎝⎭,()1,+∞;(2)ax2+x+a﹣e x x+e x ln x≤0成立⇔2xax x ae++≤x﹣ln x,x∈(0,+∞),由(1)可得当x=1函数y2xax x ae++=取得极大值21ae+,令g(x)= x﹣ln x,(x>0),g′(x)= 11x -,可得x=1时,函数g(x)取得极小值即最小值.∴x﹣ln x≥g(1)=1,当(]0,1a∈时,21ae+即为函数y2xax x ae++=的最大值,∴2xax x ae++≤x﹣ln x成立⇔21ae+≤1,解得a12e-≤;当()1,a∈+∞时,211ae+>,不合题意;综上所述,0<a12e-≤.。
高二第二学期期中考试数学试题(理科),DOC
高二第二学期期中考试数学试题(理科)一、选择题(每小题5分,共60分)1、复数1ii -的共轭复数的虚部为()A .1B .1-C .12D .12-2、若2133adx a a =-+⎰,则实数a =()A .2B .2-3、化简(为()4、函数),a b 内的A .1个B 56A .157A .0B 8、4 A .129A .2-10A.6011、已知函数()f x 是定义在R 上的奇函数,且当(],0x ∈-∞时,()2x f x e ex a -=-+,则函数()f x 在1x =处的切线的方程是()12、函数()f x 满足()00f =,其导函数()f x '的图象如右图 所示,则()f x 的图象与x 轴所围成的封闭图形的面积是()A.1B.43C.2D.83二、填空题(每小题5分,共20分)13、若()102100121021x a a x a x a x -=++++,则3a =.14、若()2120x i x i m ++++=有实数根,i 是虚数单位,则实数m 的值为. 15、若函数()()3261f x x ax a x =++++有极值,则实数a 的取值范围是 16、函数()()f x x R ∈满足()11,f =且()f x 在R 上的导函数()12f x '>,则不等式()12x f x +<的解集是.三、解答题(共计70分)17、(10n2倍.(1)求(218、(12(1)求(2)若19、(12((20、(12(1)求(2(321、(1222、(12分)已知a R ∈,函数()ln 1.af x x x =+-(1)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (2)求()f x 在区间(]0,e 上的最小值.高二第二学期期中考试数学试题(理科)答案一、选择题(每小题5分,共60分)CBCACADBADBB二、填空题(每小题5分,共20分)13、1680-;14、2-;15、36a a <->或16、(),1-∞ 三、解答题(共6个小题,总计70分) 17、(1)83n =分;01288888822565C C C C ++++==分.(2)848k k k --18、312分.19、6分;(212分. 20、(2)312x x =-令f '故(f 所以(33 ⎪⎝⎭3 ⎪⎝⎭故()f x 在223x x =-=或处取得最大值,又23f ⎛⎫-= ⎪⎝⎭2227c +,()22f c =+,所以()f x 的最大值为2c +.因为()2f x c <在[]1,2-上恒成立,所以22,c c >+所以12c c <->或12分.21、(1)若两名老师傅都不选派,则有44545C C =种;…3分(2)若两名老师傅只选派1人,则有13414325425460C C C C C C +=种;…7分 (3)若两名老师傅都选派,则有224242233254254254120C C C C C C A C C ++=种. 故共有5+60+120=185种选派方法.……………………………12分22、(1)当1a =时,()()1ln 1,0,,f x x x x=+-∈+∞所以()()22111,0,.x f x x x x x -'=-+=∈+∞又f (2令f 若a 7若],a e 时,若a e 时,函(]0,e 上分。
河南省洛阳市2022-2023学年高二上学期期中考试理科数学试卷(含答案)
(3) 已知点的坐标为(5,3),点在曲线 ′ 上运动,求线段的中点的轨迹方程.
22. (12 分)
如图,长方体 — 1 1 1 1 中, = 2 = 21 ,
点在棱上且1 丄平面1 1
(1)求 的值
21. ( 12 分)
已知两定点 (-4,0), (-1,0),动点 满足 | | = 2 ||,直线 :(2 + 1) + ( + 1) −
5 − 3 = 0.
(1) 求动点的轨迹方程,并说明轨迹的形状;
(2) 记动点的轨迹为曲线,把曲线向右平移 1 个单位长度,向上平移 1 个单位长度后得到曲线 ′ ,
反射光线所在直线的方程.
20. (12 分)
在直角梯形 中, //, = 2 = 2 =2 2,∠ = 900 如图(1). 把△沿
翻折,使得平面 ⊥平面,如图(2).
(1) 求证: ⊥ ;
(2) 若为线段的中点,求点到平面的距离.
所成角的余弦值为
A.
6
B.
3
3
C.
3
15
D.
5
10
5
12. 若圆 2 + 2 − 4 − 4 − 10 = 0至少有三个不同的点到直线: = 的距离为 2 2,则直线的倾斜角
的取值范围是
A.[ 12 , 4 ]
5
B. [ 12 , 12 ]
C. [ 6 , 3 ]
B. - 5
C. 10
D. -10
2.已知(4,1,9),(2,4,3),则线段的长为
A. 39
B.7
2022-2023学年四川省成都市高二下学期期中考试数学(理)试题2【含答案】
2022-2023学年四川省成都市高二下学期期中考试数学(理)试题一、单选题1.已知i 为虚数单位,复数1iiz -=,则z =()A .1B .2C .3D .2【答案】B【分析】由复数的四则运算可得1i z =--,再由复数模的计算公式求解即可.【详解】解:因为21i (1i)i(i i )1i i i iz --⋅===--=--⋅,所以22(1)(1)2z =-+-=.故选:B.2.如图茎叶图记录了甲乙两位射箭运动员的5次比赛成绩(单位:环),若两位运动员平均成绩相同,则运动员乙成绩的方差为()A .2B .3C .9D .16【答案】A【分析】根据甲、乙二人的平均成绩相同求出x 的值,再根据方差公式求出乙的方差即可.【详解】因为甲乙二人的平均成绩相同,所以8789909193888990919055x+++++++++=,解得2x =,故乙的平均成绩8889909192905++++=,则乙成绩的方差222222[(8890)(8990)(9090)(9190)(9290)]25s -+-+-+-+-==.故选:A.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线方程为20x y -=,则双曲线C 的离心率为()A .2B .2C .3D .5【答案】D 【分析】先求得ba,进而求得双曲线的离心率.【详解】依题意,双曲线的一条渐近线方程为20,2x y y x -==,所以2222222,15b c c a b b e a a a a a +⎛⎫=====+= ⎪⎝⎭.故选:D4.已知m ,n 表示两条不同的直线,α表示平面.下列说法正确的是()A .若m α ,n α∥,则m n ∥B .若m α⊥,n α⊥,则m n ∥C .若m α⊥,m n ⊥,则n α∥D .若m α ,m n ⊥,则n α⊥【答案】B【分析】根据空间直线与平面间的位置关系判断.【详解】对于A ,若m α ,n α∥,则m 与n 相交、平行或异面,故A 错误;对于B ,若m α⊥,n α⊥,由线面垂直的性质定理得m n ∥,故B 正确;对于C ,若m α⊥,m n ⊥,则n α∥或n ⊂α,故C 错误;对于D ,若m α ,m n ⊥,则n 与α相交、平行或n ⊂α,故D 错误.故选:B .5.“4m =”是“直线()34420m x y -+-=与直线220mx y +-=平行”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C【分析】由直线()34420m x y -+-=与直线220mx y +-=平行可求得m 的值,集合充分条件、必要条件的定义判断可得出结论.【详解】若直线()34420m x y -+-=与直线220mx y +-=平行,则()()23442342m mm m ⎧-=⎪⎨--≠-⎪⎩,解得4m =.因此,“4m =”是“直线()34420m x y -+-=与直线220mx y +-=平行”的充要条件.故选:C.6.执行该程序框图,若输入的a 、b 分别为35、28,则输出的=a ()A .1B .7C .14D .28【答案】B【分析】根据程序框图列举出循环的每一步,即可得出输出结果.【详解】第一次循环,35a =,28b =,a b ¹成立,a b >成立,则35287a =-=;第二次循环,7a =,28b =,a b ¹成立,a b >不成立,则28721b =-=;第三次循环,7a =,21b =,a b ¹成立,a b >不成立,则21714b =-=;第四次循环,7a =,14b =,a b ¹成立,a b >不成立,则1477b =-=.7a b ==,则a b ¹不成立,跳出循环体,输出a 的值为7.故选:B.7.函数()()22e xf x x x =-的图像大致是()A .B .C .D .【答案】B【分析】由函数()f x 有两个零点排除选项A ,C ;再借助导数探讨函数()f x 的单调性与极值情况即可判断作答.【详解】由()0f x =得,0x =或2x =,选项A ,C 不满足,即可排除A ,C由()()22e x f x x x =-求导得()()22e xx x f '=-,当2x <-或2x >时,()0f x ¢>,当22x -<<时,()0f x '<,于是得()f x 在(),2-∞-和()2,+∞上都单调递增,在()2,2-上单调递减,所以()f x 在2x =-处取极大值,在2x =处取极小值,D 不满足,B 满足.故选:B8.已知曲线1cos :sin x C y θθ=+⎧⎨=⎩(θ为参数).若直线323x y +=与曲线C 相交于不同的两点,A B ,则AB 的值为A .12B .32C .1D .3【答案】C【详解】分析:消参求出曲线C 的普通方程:22(1)1x y -+=,再求出圆心(1,0)到直线的距离d ,则弦长222AB r d =-.详解:根据22cos sin 1θθ+=,求出曲线C 的普通方程为22(1)1x y -+=,圆心(1,0)到直线的距离3233231d -==+,所以弦长222AB r d =-321=14=-,选C.点睛:本题主要考查将参数方程化为普通方程,直线与圆相交时,弦长的计算,属于中档题.9.过椭圆C :()222210x y a b a b +=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=【答案】A【分析】由l 与x 轴交点横坐标可得半焦距c ,设出点A ,B 坐标,利用点差法求出22,a b 的关系即可计算作答.【详解】依题意,焦点(2,0)F ,即椭圆C 的半焦距2c =,设1122(,),(,)A x y B x y ,00(,)P x y ,则有2222221122222222b x a y a b b x a y a b⎧+=⎨+=⎩,两式相减得:2212121212()()a ()()0b x x x x y y y y +-++-=,而1201202,2x x x y y y +=+=,且0012y x =-,即有2212122()()0b x x a y y --+-=,又直线l 的斜率12121y y x x -=-,因此有222a b =,而2224a b c -==,解得228,4a b ==,经验证符合题意,所以椭圆C 的方程为22184x y +=.故选:A10.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是A .413B .21313C .926D .31326【答案】A【分析】根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在ABD ∆中,3AD =,1BD =,120ADB ∠=︒,由余弦定理,得222cos12013AB AD BD AD BD =+-⋅︒=,所以213DF AB =.所以所求概率为224=1313DEF ABC S S ∆∆⎛⎫= ⎪⎝⎭.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.11.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,2PA AB ==,4=AD ,E 为PC 的中点,则面PCD 与直线BE 所成角的余弦值为()A .35B .23015C .2515D .10515【答案】D【分析】以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法结合同角三角函数的基本关系可求得面PCD 与直线BE 所成角的余弦值.【详解】因为PA ⊥平面ABCD ,四边形ABCD 为矩形,以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z轴建立如下图所示的空间直角坐标系,则()2,0,0B 、()2,4,0C 、()0,4,0D 、()002P ,,、()1,2,1E ,设平面PCD 的法向量为(),,n x y z = ,()2,0,0DC =uuu r,()0,4,2DP =-uuu r ,则20420n DC x n DP y z ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,取1y =,可得()0,1,2n = ,()1,2,1BE =- ,所以,4230cos ,1565BE n BE n BE n⋅===⨯⋅,所以,22230105sin ,1cos ,11515BE n BE n ⎛⎫=-=-= ⎪ ⎪⎝⎭,因此,面PCD 与直线BE 所成角的余弦值为10515.故选:D.12.已知函数()ln 1f x x ax =+-有两个零点1x 、2x ,且12x x <,则下列命题正确的个数是()①01a <<;②122x x a +<;③121x x ⋅>;④2111x x a->-;A .1个B .2个C .3个D .4个【答案】C【分析】由()0f x =可得1ln xa x+=,设()ln 1x g x x +=,其中0x >,则直线y a =与函数()g x 的图象有两个交点,利用导数分析函数()g x 的单调性与极值,数形结合可判断①;构造函数()()2h x f x f x a ⎛⎫=-- ⎪⎝⎭,其中10x a <<,分析函数()h x 的单调性,可判断②③;分析出1211e x x <<<、1210x x a<<<,利用不等式的基本性质可判断④.【详解】由()0f x =可得ln 1x a x+=,令()ln 1x g x x +=,其中0x >,则直线y a =与函数()g x 的图象有两个交点,()2ln xg x x '=-,由()0g x '>可得01x <<,即函数()g x 的单调递增区间为()0,1,由()0g x '<可得1x >,即函数()g x 的单调递减区间为()1,+∞,且当10e x <<时,()ln 10x g x x+=<,当1e x >时,()ln 10x g x x +=>,如下图所示:由图可知,当01a <<时,直线y a =与函数()g x 的图象有两个交点,①对;对于②,由图可知,1211ex x <<<,因为()11ax f x a x x -'=-=,由()0f x ¢>可得10x a<<,由()0f x '<可得1x a >,所以,函数()f x 的增区间为10,a ⎛⎫⎪⎝⎭,减区间为1,a ⎛⎫+∞ ⎪⎝⎭,则必有1210x x a <<<,所以,110x a <<,则121x a a->,令()()222ln ln h x f x f x x a x x ax a a a ⎛⎫⎛⎫⎛⎫=--=----+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中10x a <<,则()212112022a x a h x a x x x x a a ⎛⎫- ⎪⎝⎭'=-+=<⎛⎫-- ⎪⎝⎭,则函数()h x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,所以,()110h x h a ⎛⎫>= ⎪⎝⎭,即()1120f x f x a ⎛⎫--> ⎪⎝⎭,即()112f x f x a ⎛⎫<- ⎪⎝⎭,又()20f x =,可得()212f x f x a ⎛⎫<- ⎪⎝⎭,因为函数()f x 的单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭,则212x x a >-,即122x x a +>,②错;对于③,由1122ln 1ln 1ax x ax x =+⎧⎨=+⎩,两式相加整理可得()1212ln 22x x x x a a ++=>,所以,()12ln 0x x >,可得121x x >,③对;对于④,由图可知1211ex x <<<,则11x ->-,又因为21x a >,所以,2111x x a->-,④对.故选;C.【点睛】证明极值点偏移的相关问题,一般有以下几种方法:(1)证明122x x a +<(或122x x a +>):①首先构造函数()()()2g x f x f a x =--,求导,确定函数()y f x =和函数()y g x =的单调性;②确定两个零点12x a x <<,且()()12f x f x =,由函数值()1g x 与()g a 的大小关系,得()()()()()1112122g x f x f a x f x f a x =--=--与零进行大小比较;③再由函数()y f x =在区间(),a +∞上的单调性得到2x 与12a x -的大小,从而证明相应问题;(2)证明212x x a <(或212x x a >)(1x 、2x 都为正数):①首先构造函数()()2a g x f x f x ⎛⎫=- ⎪⎝⎭,求导,确定函数()y f x =和函数()y g x =的单调性;②确定两个零点12x a x <<,且()()12f x f x =,由函数值()1g x 与()g a 的大小关系,得()()()2211211a a g x f x f f x f x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭与零进行大小比较;③再由函数()y f x =在区间(),a +∞上的单调性得到2x 与21a x 的大小,从而证明相应问题;(3)应用对数平均不等式12121212ln ln 2x x x xx x x x -+<<-证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.二、填空题13.已知函数()sin cos f x x x =+,则π4f ⎛⎫'= ⎪⎝⎭______.【答案】0【分析】求出()f x ',代值计算可得出π4f ⎛⎫' ⎪⎝⎭的值.【详解】因为()sin cos f x x x =+,则()cos sin f x x x '=-,故πππcos sin 0444f ⎛⎫'=-= ⎪⎝⎭.故答案为:0.14.天府绿道是成都人民朋友圈的热门打卡地,经统计,天府绿道旅游人数x (单位:万人)与天府绿道周边商家经济收入y (单位:万元)之间具有线性相关关系,且满足回归直线方程为ˆ12.60.6yx =+,对近五个月天府绿道旅游人数和周边商家经济收入统计如下表:x23 3.5 4.57y26384360a则表中a 的值为___________.【答案】88【分析】根据样本平均值满足回归直线方程求解.【详解】样本平均值满足回归直线方程,x 的平均值为23 3.5 4.5745++++=,则y 的平均值2638436012.640.65a++++=⨯+,解得88a =,故答案为:88.15.已知函数f (x )=e x +ax ﹣3(a ∈R ),若对于任意的x 1,x 2∈[1,+∞)且x 1<x 2,都有()()()211212x f x x f x a x x -<-成立,则a 的取值范围是__.【答案】(﹣∞,3]【分析】原不等式等价于()()1212f x a f x a x x ++<,构造()()f x ah x x+=,由函数单调性的定义可知,h (x )在[1,+∞)上单调递增,即有h '(x )≥0在[1,+∞)上恒成立,亦即a ﹣3≤xe x ﹣e x 在[1,+∞)上恒成立,构造g (x )=x e x ﹣e x ,由导数求解函数g (x )的最小值,即可得到a 的取值范围.【详解】原不等式等价于()()1212f x a f x a x x ++<,令()()f x ah x x+=,则不等式等价于h (x 1)<h (x 2)对于任意的x 1,x 2∈[1,+∞)且x 1<x 2都成立,故函数h (x )在[1,+∞)上单调递增,又函数f (x )=e x +ax ﹣3,则()e 3x ax a h x x +-+=,所以h '(x )2e e 30x x x ax -+-=≥在[1,+∞)上恒成立,即x e x﹣e x +3﹣a ≥0在[1,+∞)上恒成立,即a ﹣3≤x e x ﹣e x 在[1,+∞)上恒成立,令g (x )=x e x ﹣e x ,因为g '(x )=x e x >0在[1,+∞)上恒成立,所以g (x )在[1,+∞)上单调递增,则g (x )≥g (1)=0,所以a ﹣3≤0,解得a ≤3,所以实数a 的取值范围是(﹣∞,3].故答案为:(﹣∞,3].16.已知点F 为抛物线28y x =的焦点,()2,0M -,点N 为抛物线上一动点,当NFNM最小时,点N 恰好在以M 、F 为焦点的双曲线上,则该双曲线的渐近线的斜率的平方为______.【答案】222+【分析】作出图形,分析可知MN 与抛物线28y x =相切时,NFNM取最小值,设直线MN 的方程为2x my =-,将该直线的方程与抛物线的方程联立,求出m 的值,进而可求出点N 的坐标,利用双曲线的定义求出a 的值,结合c 的值可得出22221b ca a=-,即为所求.【详解】抛物线28y x =的焦点为()2,0F ,其准线为:2l x =-,如下图所示:过点N 作NE l ⊥,垂足为点E ,由抛物线的定义可得NF NE =,易知//EN x 轴,则NMF MNE ∠=∠,所以,cos cos NF NE MNE NMF MNMN==∠=∠,当NFNM取最小值时,NMF ∠取最大值,此时,MN 与抛物线28y x =相切,设直线MN 的方程为2x my =-,联立228x my y x=-⎧⎨=⎩可得28160y my -+=,则264640m ∆=-=,解得1m =±,由对称性,取1m =,代入28160y my -+=可得28160y y -+=,解得4y =,代入直线MN 的方程2x y =-可得2x =,即点()2,4N ,则224NF =+=,()2222442MN =++=,设双曲线的标准方程为()222210,0x y a b a b -=>>,由双曲线的定义可得2424a MN NF =-=-,所以,()221a =-,又因为2c =,则()221221c a ==+-,所以,()222221211222b c a a =-=+-=+.故答案为:222+.三、解答题17.在直角坐标系xOy 中,直线l 的参数方程为12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0ρθθ-=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)已知直线l 与曲线C 交于A ,B 两点,设()2,0M ,求MA MB 的值.【答案】(1)3230x y --=,24y x=(2)323【分析】(1)根据直线参数方程消掉参数t 即可得到直线的普通方程;(2)由直线参数方程中t 的几何意义即可求解.【详解】(1)∵直线l 的参数方程为12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),∴消去t 可得直线l 的普通方程为:3230x y --=.∵曲线C 的极坐标方程为2sin 4cos 0ρθθ-=,即22sin 4cos 0ρθ-ρθ=,又∵cos x ρθ=,sin y ρθ=,∴曲线C 的直角坐标方程为24y x =.(2)将12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)代入24y x =,得238320t t --=,显然0∆>,即方程有两个不相等的实根,设点A ,B 在直线l 的参数方程中对应的参数分别是1t ,2t ,则1283t t +=,12323t t =-,∴12323MA MB t t ==.18.已知函数()32f x x x ax b =-++,若曲线()y f x =在()()0,0f 处的切线方程为1y x =-+.(1)求a ,b 的值;(2)求函数()y f x =在[]22-,上的最小值.【答案】(1)1a =-;1b =(2)9-【分析】(1)根据函数的切线方程即可求得参数值;(2)判断函数在[]22-,上单调性,进而可得最值.【详解】(1)由已知可得()01f b ==.又()232f x x x a '=-+,所以()01f a '==-.(2)由(1)可知()321f x x x x =--+,()2321f x x x '=--,令()0f x ¢>,解得13x <-或1x >,所以()f x 在12,3⎡⎫--⎪⎢⎣⎭和[]1,2上单调递增,在1,13⎡⎫⎪⎢⎣⎭上单调递减.又()29f -=-,()10f =,所以函数()y f x =在[]22-,上的最小值为9-.19.某校组织全体学生参加“数学以我为傲”知识竞赛,现从中随机抽取了100名学生的成绩组成样本,并将得分分成以下6组:[40,50),[50,60),[60,70),……,[90,100],统计结果如图所示:(1)试估计这100名学生得分的平均数(同一组中的数据用该组区间中点值代表);(2)现在按分层抽样的方法在[80,90)和[90,100]两组中抽取5人,再从这5人中随机抽取2人参加这次竞赛的交流会,求两人都在[90,100]的概率.【答案】(1)70.5(2)110【分析】(1)根据频率分布直方图直接代入平均数的计算公式即可求解;(2)根据分层抽样在[)80,90分组中抽取的人数为15531015⨯=+人,在[]90,100分组中抽取的人数为2人,利用古典概型的概率计算公式即可求解.【详解】(1)由频率分布直方图的数据,可得这100名学生得分的平均数:()450.01550.015650.02750.03850.015950.011070.5x =⨯+⨯+⨯+⨯+⨯+⨯⨯=分.(2)在[)80,90和[]90,100两组中的人数分别为:100×(0.015×10)=15人和100×(0.01×10)=10人,所以在[)80,90分组中抽取的人数为15531015⨯=+人,记为a ,b ,c ,在[]90,100分组中抽取的人数为2人,记为1,2,所以这5人中随机抽取2人的情况有:()()()()()()()()()(){},,,1,2,1,2,1,2,12ab ac bc a a b b c c Ω=,共10种取法,其中两人得分都在[]90,100的情况只有(){}12,共有1种,所以两人得分都在[]90,100的概率为110P =.20.在如图所示的几何体中,四边形ABCD 是边长为2的正方形,四边形ADPQ 是梯形,PD //QA ,PD ⊥平面ABCD ,且22PD QA ==.(1)求证:BC ⊥平面QAB ;(2)求平面PBQ 与平面PCD 所成锐二面角的余弦值.【答案】(1)证明见解析(2)66【分析】(1)由PD ⊥平面ABCD ,PD //QA ,可得QA ⊥平面ABCD ,进而得到QA BC ⊥,结合BC AB ⊥,进而得证;(2)以DA 为x 轴,DC 为y 轴,DP 为z 轴,D 为原点建立空间直角坐标系,找出平面PBQ 与平面PCD 的法向量,根据两面的法向量即可求解.【详解】(1)证明:∵PD ⊥平面ABCD ,PD //QA ,∴QA ⊥平面ABCD .∵BC ⊂平面ABCD ,∴QA BC ⊥.在正方形ABCD 中,BC AB ⊥,又AB QA A ⋂=,AB ,QA ⊂平面QAB ,∴BC ⊥平面QAB .(2)建立空间直角坐标系如图:以DA 为x 轴,DC 为y 轴,DP 为z 轴,D 为原点,则有()2,2,0B ,()002P ,,,()2,0,1Q ,()0,2,1QB =- ,()2,0,1PQ =- ,设平面PBQ 的一个法向量为(),,m x y z = ,则有00m QB m PQ ⎧⋅=⎪⎨⋅=⎪⎩ ,得2020y z x z -=⎧⎨-=⎩,令2z =,则1x =,1y =,()1,1,2m = ,易知平面PCD 的一个法向量为()1,0,0n =r ,设平面PBQ 与平面PCD 所成二面角的平面角为α,则16cos 616m n m n α⋅===⨯⋅ ,即平面PBQ 与平面PCD 所成锐二面角的余弦值66.21.已知椭圆()2222:10x y C a b a b +=>>的离心率为32,左、右焦点分别为1F 、2F ,P 为C 的上顶点,且12PF F △的周长为423+.(1)求椭圆C 的方程;(2)设过定点()0,2M 的直线l 与椭圆C 交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)2214x y +=(2)332,,222⎛⎫⎛⎫--⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【分析】(1)由椭圆的定义以及离心率可得出a 、c 的值,进而可求得b 的值,由此可得出椭圆C 的方程;(2)分析可知直线l 的斜率存在,设直线l 的方程为2y kx =+,设()11,A x y 、()22,B x y ,将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由0∆>结合0OA OB ⋅> 可求得k 的取值范围.【详解】(1)设椭圆C 的半焦距为c .因为12PF F △的周长为121222423PF PF F F a c ++=+=+,①因为椭圆C 的离心率为32,所以32c a =,②由①②解得2a =,3c =.则221b a c =-=,所以椭圆C 的方程为2214x y +=.(2)若直线l x ⊥轴,此时,直线l 为y 轴,则A 、O 、B 三点共线,不合乎题意,设直线l 的方程为2y kx =+,设()11,A x y 、()22,B x y ,联立()22221141612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,()()()222Δ164411216430k k k =-+⨯=->,解得234k >,由韦达定理可得1221641k x x k +=-+,1221241x x k =+,则()()()2121212122224y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,A 、O 、B 不共线,则cos 0AOB ∠>,即()()()22221212121221213216412441k k k OA OB x x y y k x x k x x k +-++⋅=+=++++=+ 22164041k k -=>+,解得204k <<,所以,2344k <<,解得322k -<<-或322k <<,所以实数k 的取值范围为332,,222⎛⎫⎛⎫--⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.【点睛】方法点睛:圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.22.已知函数()2ln f x x x ax a =-+.(1)若()f x a ≤,求a 的取值范围;(2)若()f x 存在唯一的极小值点0x ,求a 的取值范围,并证明()0210a f x -<<.【答案】(1)1[,)e +∞(2)12a <;证明见解析;【分析】(1)可利用分离参数法,将问题转化为ln x a x ≥恒成立,然后研究ln ()x g x x=的单调性,求出最大值;(2)通过研究()f x '在()0,∞+内的变号零点,单调性情况确定唯一极小值点;若不能直接确定()f x '的零点范围及单调性,可以通过研究()g x '的零点、符号来确定()f x '的单调性,和特殊点(主要是能确定()f x '符号的点)处的函数值符号,从而确定()f x 的极值点的存在性和唯一性.【详解】(1)()f x 的定义域为()0,∞+.由()f x a ≤,得ln x a x ≥在()0,x ∈+∞恒成立,转化为max ln ()x a x ≥令ln ()x g x x =,则21ln ()x g x x -'=,∴ln ()x g x x=在()0,e 单调递增,在(),e +∞单调递减,∴()g x 的最大值为1(e)g e=,∴1a e ≥.∴a 的取值范围是1[,)e+∞.(2)设()()g x f x '=,则()ln 12g x x ax =+-,1()2g x a x'=-,0x >.①当a<0时,()0g x '>恒成立,()g x 在()0,∞+单调递增,又()1120g a =->,212121()21122(1)0a a a g e a ae a e ---=-+-=-<所以()g x 存在唯一零点()10,1x ∈.当()10,x x ∈时,()()0f x g x '=<,当()1,1x x ∈时,()()0f x g x '=>.所以()f x 存在唯一的极小值点01x x =.②当0a =时,()ln 1g x x =+,()g x 在()0,∞+单调递增,1()0g e =,所以()g x 在()0,∞+有唯一零点1e.当1(0,)∈x e时,()()0f x g x '=<,当1(,1)x e∈时,()()0f x g x '=>.所以()f x 存在唯一的极小值点01x e =.③当0a >时,令()0g x '>,得1(0,)2x a ∈;令()0g x '<,得1(,)2x a ∈+∞,∴()g x 在1(0,)2a 单调递增,在1(,)2a+∞单调递减,所以()g x 的最大值为1()ln(2)2g a a =-④当102a <<时,1()0g e<,()1120g a =->,1()02g a >,21212()212(1)10l 1n g a a aa a =-+-<--+-=-<(或用11111()20a a g eae a --=-<)由函数零点存在定理知:()g x 在区间()0,1,()1,+∞分别有一个零点2x ,3x 当()20,x x ∈时,()()0f x g x '=<;当()23,x x x ∈时,()()0f x g x '=>;所以()f x 存在唯一的极小值点02x x =,极大值点3x .⑤当12a ≥时,102g a ⎛⎫≤ ⎪⎝⎭,()()0f x g x '=≤所以()f x 在()0,∞+单调递减,无极值点.由①②④可知,a 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭,当()00,x x ∈时,()0f x '<;所以()f x 在()00,x 单调递减,()0,1x 单调递增.所以()0(1)0f x f <=.由()000ln 120f x x ax '=+-=,得00ln 21x ax =-.所以20000ln ()f x x ax ax =-+2000(21)x ax ax a=--+200ax a x =+-2000()(21)1f x a ax a x --=--+[]00(1)(1)1x a x =-+-,因为0(0,1)x ∈,1,2a ⎛⎫∈-∞ ⎪⎝⎭,所以010x -<,()01112102a x +-<⨯-=所以()0(21)0f x a -->,即()021f x a >-;所以()0210a f x -<<.【点睛】本题通过导数研究函数的零点、极值点的情况,一般是先研究导函数的零点、单调性,从而确定原函数的极值点存在性和个数.同时考查学生运用函数思想、转化思想解决问题的能力和逻辑推理、数学运算等数学素养.。
四川省师范大学附属中学2022-2023学年高二上学期期中考试理科数学试题
对于D,由 ,所以 是 和 的最大公约数,因此用更相减损术求294和84的最大公约数时,需做减法的次数是 ,故D错误;
故选:B.
8. 已知一个三棱锥的三视图如图所示,俯视图是等腰直角三角形,若该三棱锥的四个顶点均在同一球面上,则该球的体积为( )
A. B. C. D.
A. 63B. 64C. 127D. 128
【答案】C
【解析】
【详解】由 及 是公比为正数的等比数列,得公比q=2,
所以 .
6. 已知命题 “关于 的方程 有实根”,若非 为真命题的充分不必要条件为 ,则实数 的取值范围是( )
A. B.
C. D.
【答案】A
【解析】
【分析】求出当命题 为真命题时 的取值范围,根据已知条件可得出关于实数 的不等式,即可求得 的取值范围.
(1)求样本的容量 及直方图中 的值;
(2)估计参加这次数学竞赛成绩的众数、中位数、平均数.
20. 已知圆 方程为
(1)若 时,求圆 与圆 : 的公共弦所在直线方程及公共弦长;
(2)若圆 与直线 相交于 , 两点,且 ( 为坐标原点),求实数 的值.
21. 如图,正三棱柱 中(底面是正三角形且侧棱与底面垂直的棱柱是正三棱柱),底面边长为 ,若 为 的中点.
A. B. C. D.
【答案】C
【解析】
【分析】根据题意结合零点分析可得 , ,结合等差数列的定义与前 项和公式求 ,再根据恒成立问题结合裂项相消法理解运算.
【详解】当 时,令 ,则 ,即 ,
由题意可得: ,
则 ,
∴ ,即 ,
故数列 是以首项为0,公差为1的等差数列,则 ,
当 时,则 ,
高二化学(理科)期中考试试题
高二化学(理科)期中考试试题一.选择题(每小题3分,共60分)1.下列过程中,需要加快化学反应速率的是()A.钢铁的腐蚀 B.食物腐烂C.工业炼钢 D.塑料老化2.下列关于化学反应速率的叙述,正确的是( ) A.化学反应速率可用某时刻生成物的浓度表示B.在同一反应中,用反应物或生成物物质的量浓度在单位时间内的变化表示的化学反应速率的大小相等C.化学反应速率通常用单位时间内反应物浓度的减小或生成物浓度的增大来表示D.在任何反应中,反应现象在较短时间内出现,则反应速率大;反应现象在很长时间内才出现,则反应速率小3.某一反应物的浓度为3mol/L,经5秒钟后,浓度变为2mol/L,则这5秒里该反应物的平均反应速率是( )A. 0.2 mol/sB. 0.2 mol·L/sC. 0.2 mol/(L·s)D. 12 mol/(L·min)4.下列说法错误的是( )A.当碰撞的分子具有足够的能量和适当的取向时,才能发生化学反应B.发生有效碰撞的分子一定是活化分子C.活化分子间的碰撞一定是有效碰撞D.活化分子间每次碰撞不一定发生化学反应5.在25℃、101kPa下,1g甲醇燃烧生成CO2和液态水时放热22.68kJ,下列热化学方程式正确的是()A.CH3OH(l)+3/2O2(g)→CO2(g)+2H2O(l)△H=+725.8kJ/molB.2CH3OH(l)+3O2(g)→2CO2(g)+4H2O(l)△H=-1452kJ/molC.2CH3OH(l)+3O2(g)→2CO2(g)+4H2O(l)△H=-725.8kJ/molD.2CH3OH(l)+3O2(g)→2CO2(g)+4H2O(l)△H=+1452kJ/mol6.决定化学反应的主要因素是()A、温度B、压强C、浓度D、反应物本身的性质7.能使碳酸钙的分解速率显著增大的措施是( )A.增加少量的CaCO3固体 B.升高温度C.加入MnO2 D.增大压强8.升高温度时,化学反应速率加快,主要是由于( )A.分子运动速率加快,使反应物分子间的碰撞机会增多B.反应物分子的能量增加,活化分子百分数增大,有效碰撞次数增多,化学反应速率加快C.该化学反应的过程是放热的D.该化学反应的过程是吸热的9、下列措施一定能使化学反应速率增大的是()A.增大反应物的量B.增大压强C.升高温度D.使用催化剂10.化学平衡主要研究下列哪一类反应的规律 ( )A.可逆反应B.任何反应C部分反应 D.气体反应11.在密闭容器中于一定条件下进行下列反应:2SO2+ O22SO3当到达平衡时通入18O2,再次平衡时,18O存在于 ( )A.SO2、O2B.SO2、SO3C.SO2、O2、SO3D.O2、SO312.可逆反应达到平衡的重要特征是 ( )A.反应停止了B.正逆反应的速率均为零C.正逆反应速率不断增大D.正逆反应的速率相等13.改变反应条件使化学平衡向正反应方向移动时,下列变化中正确的是 ( )A.生成物浓度一定增大B.生成物的物质的量分数一定增大C.反应物的转化率一定增大D.某生成物的产率可能提高14、欲提高合成氨:N2+3H2 2NH3反应的反应速率,下列措施可行的是()①采用高温②采用高压③使用催化剂④增大N2的浓度⑤增大H2的浓度A.①②③B.②③④C.①③⑤D.全部15.以下自发反应可用焓判据来解释的是 ( )A.硝酸铵自发地溶于水B.2N2O5(g)===4NO2(g)+O2(g)ΔH=+56.7 kJ/molC.(NH4)2CO3(s)===NH4HCO3(s)+NH3(g)ΔH=+74.9 kJ/molD.2H2(g)+O2(g)===2H2O(l)ΔH=-571.6 kJ/mol16.反应 X(g)+(正反应放热),在一定条件下,反应物Y 的转化率与反应时间(t )的关系如下图所示。
昆十六中高二年级下学期期中考试数学试卷(理科)
昆十六中高二年级下学期期中考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分.共60分.在每小题给出的四个选项中,只有一个是正确的,将正确答案的代号涂在答题卡上.1。
一个容量为32的样本,已知某组样本的频率为 0。
375,则该组样本的频数为( )A。
4 B.8 ﻩC。
12ﻩﻩD。
162、若,且是第二象限角,则的值为 ( C )A. B. C.ﻩD.3、某几何体的正视图和侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是(C)ﻩA。
B。
ﻩC. ﻩD.4.已知:函数f(x)= 错误!;则满足f(x)= 错误! 的x的值为(B )A 2 B 3 C 错误! D错误!5、现有男大学生6名,女大学生4名,其中男、女班长各1人。
从这10人中选派5人到某中学顶岗,班长中至少有一人参加,则不同有选派方法有()A。
169种ﻩB。
140种ﻩC。
126种ﻩD。
196种6.曲线y= ln x(x>0)的一条切线为y = 2x + m,则m的值为( D )ﻫA ln2-1B 1—ln2 C 1+ln2 D -1-ln27.已知:定义域为R的函数f(x)为奇函数,当x>0时,f(x)= x3+1;则x<0时,f(x)的解析式为( B)ﻫA f(x)= x3+1 B f(x)= x3 -1 C f(x)= —x3 +1D f(x)= -x3 -18.△ABC中,∠A =错误!,边BC = 错误!,错误!·错误!= 3,且边AB < AC,则边AB的长为(A)ﻫA 2 B 3 C 4 D 69.已知等差数列{an }的公差为2,若a1,a3,a4成等比数列.则a2的值为( C )ﻫA —4B 4C —6D 610.设分别是双曲线的左、右焦点,若双曲线上存在点,使,且,则双曲线的离心率为( B )A. ﻩﻩB.ﻩC.ﻩﻩD.11、、是空间不同的直线,、是空间不同的平面,对于命题,命题,下面判断正确的是A. 为真命题ﻩB.为真命题为真命题ﻩD.为假命题12。
宁夏银川市第二中学2022-2023学年高二上学期期中考试数学(理)试题
绝密★启用前银川二中2022-2023学年第一学期高二年级期中考试理 科 数 学 试 题命题:米永强 李丽 审核:任晓勇注意事项:1. 本试卷共22道题,满分150分。
考试时间为120分钟。
2. 答案写在答题卡上的指定位置。
考试结束后,交回答题卡。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知命题:R,25x p x ∀∈>,则p ⌝为( )A .R,25x x ∀∉>B .R,25x x ∀∈≤C .00R,25xx ∃∈> D .00R,25xx ∃∈≤2. 已知等差数列}{n a 的公差为d ,则“0>d ”是“数列}{n a 为单调递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 已知等差数列{}n a 满足13512a a a ++=,10111224a a a ++=,则{}n a 的前13项的和为( )A .12B .36C .78D .1564. 若a b >,0ab ≠,则下列不等式恒成立的是( )A .22b a > B .bc ac > C .ba 11> D .c b c a +>+5. 命题“若1a b +>,则,a b 中至少有一个大于1”的否命题为( )A .若,a b 中至少有一个大于1,则1a b +>B .若1a b +≤,则,a b 都不大于1C .若1a b +≤,则,a b 中至少有一个大于1D .若1a b +≤,则,a b 中至多有一个大于16. 滕王阁始建于唐朝永徽四年,因唐代诗人王勃诗句“落霞与孤鹜齐飞,秋水共长天一色”而流芳后世.如图,小华同学为测量滕王阁的高度,在滕王阁的正东方向找到一座建筑物AB ,高为12m ,在它们的地面上的点M 处(B ,M ,D 三点共线)测得楼顶A ,滕王阁顶部C 的仰角分别为15︒和60︒,在楼顶A 处测得阁顶部C 的仰角为30,则小华估算滕王阁的高度为(1.732≈,精确到1m )A .42mB .45mC .51mD .57m7. 已知等差数列{}n a 中,其前5项的和525S =,等比数列{}n b 中,1132,8,b b ==则37a b =( ) A .54B .54-C .45D .54-或548. 设等比数列{}n a 的前n 项和为n S ,若39S =,636S =,则789(a a a ++= )A .144B .81C .45D .639. 若命题“存在R x ∈,使220x x m ++≤”是假命题,则实数m 的取值范围是( )A .(],1-∞B .()1,+∞C .(),1-∞D .[)1,+∞ 10. 已知关于x 的不等式22430(0)x ax a a -+<<的解集为()12x x ,,则1212ax x x x ++的最大值( )A. B. CD11. 历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起到了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,89,……即()()()()()()121,123,F F F n F n F n n n *===-+-≥∈N ,此数列在现代物理、准晶体结构等领域有着广泛的应用,若此数列被4整除后的余数构成一个新的数列}{n b ,则54321b b b b +++ 的值为 ( )A .72B .71C .73D .7412. 已知数列}{n a 的前n 项和为,n S 且满足,)(333221*∈=+++N n n a a a n n 若对于任意的 ]1,0[∈x ,不等式21)1(222+-++--<a a x a x S n 恒成立,则实数a 的取值范围为 ( )A .),3[]1,(+∞--∞ B. ),3]1,(+∞--∞(C . ),1[]2,(+∞--∞ D. ),12,(+∞--∞()二、填空题:本题共4小题,每小题5分,共20分.13. 已知实数,x y 满足约束条件2027020x x y x y -≥⎧⎪+-≤⎨⎪--≤⎩,则34z x y =+的最大值是__________.14. 在ABC ∆中,c b a ,,分别是角C B A ,,的对边.若c b a ,,成等比数列,且c b a c a )(22-=-,则A 的大小是___________.15. 写出一个同时满足下列性质①②③的数列{}n a 的通项公式:n a =__________. ①{}n a 是无穷数列; ②{}n a 是单调递减数列; ③20n a -<<.16. 设数列{}n a 的前n 项和为n S ,已知1222,(1)2n n n a a a -+=+-=,则60S =_________.三、解答题:本题共6道小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)设命题p :实数x 满足32≤<x ,命题q :实数x 满足03422<+-a ax x ,其中0>a .(1)若1=a ,且q p ∧为真,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.18.(本小题满分12分)在①3213a a a b ++=,②133=S 这两个条件中,任选一个补充在下面的问题中,并解答.已知等差数列}{n a 的各项均为正数,32=a ,且3,1,532++a a a 成等比数列.(1)求数列}{n a 的通项公式;(2)已知正项等比数列}{n b 的前n 项和为n S ,11a b =,_________,求n S .(注:如果选择两个条件并分别作答,只按第一个解答计分.)19.(本小题满分12分)ABC ∆中,c b a ,,分别是角C B A ,,的对边,已知0cos 3sin =+B a A b ,ABC ∠的平分线交AC 于点D ,且2=BD .(1)求B ;(2)若3=a ,求b .20.(本小题满分12分)已知函数)(0,3)2()(2≠+-+=a x b ax x f .(1)若2)1(=f ,且1,0->>b a ,求141++b a 的最小值; (2)若a b -=,解关于x 的不等式1)(≤x f .21.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,112a =,当2n ≥时,11n n n n S S S S --=-. (1)求n S ;(2)设数列2n n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若()292nn T n λ≤+⋅恒成立,求λ的取值范围.22.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,()*322n n a S n n N =+∈.(1)证明:数列{}1n a +为等比数列; (2)设()31log 1n n b a +=+,证明:222121111nb b b ++⋅⋅⋅+<.。
二〇一三学年度高二理科第一学期期中考试(问卷、答卷、答案)
广州市第四十一中学二〇一三学年度第一学期期中考试(问卷)高二级化学科第I卷选择题(50分)一、单选题(每小题只有一个选项正确,每小题2分,共30分)1.已知反应A+B=C+D的能量变化如图所示,下列说法正确的是A.该反应为放热反应B.该反应为吸热反应C.反应物的总能量高于生成物的总能量D.该反应只有在加热条件下才能进行2.下列关于热化学反应的描述中正确的是A.HCl和NaOH反应的中和热ΔH=-57.3kJ/mol,则H2SO4和Ca(OH)2反应的中和热ΔH=2×(-57.3)kJ/molB.CO(g)的燃烧热是—283.0kJ/mol,则2CO2(g) =2CO(g)+O2(g)反应的ΔH=+2×283.0kJ/molC.需要加热才能发生的反应一定是吸热反应D.1mol甲烷燃烧生成气态水和二氧化碳所放出的热量是甲烷的燃烧热3.已知:H+(aq)+OH-(aq)===H2O(l) △H=-57.3 kJ·mol-1。
现将一定量的稀盐酸、浓硫酸、稀醋酸分别和1L 1mol·L-1的NaOH溶液恰好完全反应,其反应热分别为△H1、△H2、△H3,则△H1、△H2和△H3的大小关系为A.△H1=△H2>△H3 B.△H3>△H2>△H1C.△H3>△H1>△H2D.△H2>△H1>△H34.已知下列热化学方程式:(l)C(s)+1/2O2(g)=CO(g) ΔH1(2))g(O)g(H222=2H2O(g)ΔH2由此可知C(s)+ H2O(g) == CO(g) + H2(g) ΔH3。
则ΔH3等于( )A.ΔH1-ΔH2B.ΔH1-12ΔH2 C.2ΔH1-ΔH2D.12ΔH2 -ΔH15.白磷与氧可发生如下反应:P4+5O2=P4O10。
已知断裂下列化学键需要吸收的能量分别为:P—P a kJ·mol—1、P—O b kJ·mol—1、P=O c kJ·mol—1、O=O d kJ·mol—1。
厦门市海沧中学高二年段期中考试理科数学试题
厦门市海沧中学高二年段期中考试理科数学试题一、选择题(本大题共12个小题,每小题5分,共60分,把正确答案填在题中横线上) 1、函数2sin y x x =+的导数为( ▲ ) A .'2sin y x x =+ B .'2cos y x x =+ C .'2sin y x x =- D .'sin y x x =-2、曲线1y x =在点(1,2)-处切线的斜率为(▲) A .14 B .14- C .1 D .1-3、下列值等于1的是( ▲ )A.⎰10xdx B.⎰+10)1(dx x C.⎰101dx D.⎰1021dx4、如上图,函数()y f x =的图象在点P 处的切线方程是 8y x =-+ ,则()()55f f '+=(▲) A .2B .1C .0.5D .05、只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( ▲ )A .6个B .9个C .18个D .36个 6、若函数42()f x ax bx c =++满足'(1)2f =,则'(1)f -=( ▲)A.1-B.2-C.2D.07、i 是虚数单位,已知复数413(1)3iZ i i+=++-,则复数Z 对应点落在(▲) A .第一象限 B .第二象限 C .第三象限 D .第四象限8、复数22(2)(2)z a a a a i =-+-- 对应的点在虚轴上,则(▲)A .2a ≠或1a ≠B .2a ≠且1a ≠C .0a =D .2a =或0a =9、给出定义:若函数)(x f 在D 上可导,即)('x f 存在,且导函数)('x f 在D 上也可导,则称)(x f 在D 上存在二阶导函数,记)("x f ='')]([(x f .若0)("<x f 在D 上恒成立,则称)(x f 在D 上为凸函数. 以下四个函数在)2,0(π上不是..凸函数的是 ( ▲ ) A. ()sin 2f x x = B.x x x f 2ln )(-= C.)(x f =-123-+x x D.)(x f =-x xe -. 10、已知)(x f y =是定义在R 上的函数,且1)1(=f ,)('x f >1,则x x f >)(的解集是( ▲ ) A .(0 , 1) B .)1,0()0,1( - C .),1(+∞ D .),1()1,(+∞--∞11、已知函数'()y xf x =的图象如图(1)所示,下面四个图象中()y f x =的图象大致是(▲ )12、函数3211()232f x x ax bx c =+++ (,,)a b c R ∈,若函数()f x 在区间(0,1)内取极大值,在区间(1,2)内取极小值,则22(3)z a b =++的取值范围是(▲)A.,22⎛⎫ ⎪ ⎪⎝⎭B .1,42⎛⎫⎪⎝⎭ C .()1,2 D .()1,4 二、填空题(本大题共5个小题,每小题4分,共20分,把正确答案填在题中横线上)13、在复平面内,复数2i -与32i +对应的向量分别是OA 与OB,其中O 是原点,向量AB所对应的复数是 _▲_ .14、如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则(1)(1)limx f x f x∆→+∆-=∆____▲_____.(用数字作答)15、设sin ,0,2()1,,22x x f x x ππ⎧⎡⎫∈⎪⎪⎢⎪⎣⎭=⎨⎡⎤⎪∈⎢⎥⎪⎣⎦⎩,则20()f x dx ⎰为 _▲_ . 16. 函数)(x f 的导函数)(x f y '=的图象如图所示, 其中4,2,3-是)(x f '=0的根, 现给出下列命题:①)4(f 是)(x f 的极小值; ② )3(f 是)(x f 极小值;③ )2(f 是)(x f 极大值; ④ )2(-f 是)(x f 极大值; ⑤)3(-f 是)(x f 极大值. 其中正确的命题是 _▲_. 17、观察下列不等式:112>,111123++>,111312372+++⋅⋅⋅+>,111122315+++⋅⋅⋅+>,1115123312+++⋅⋅⋅+>,…,由此猜想第n 个不等式为_▲_()n N *∈厦门市海沧中学高二年段期中考试理科数学答题卡一、选择题。
高二历史(理科)期中考试试题
高二历史(理科)期中考试试题一、单项选择题(共35题每题2分)1、你知道孔子曾担任的司寇一职是干什么的?A 是管土地的B 是管工程的C 是管军事的D 是管司法的2、孔子是春秋时期哪国人?A 齐国B 鲁国C晋国 D 燕国3、老子坐化的地方在哪里?A 函谷关B 洛阳C 青城山D 楼观台4、百家争鸣现象出现的根本原因是什么?A 各国战争B 各派提出改造社会的不同方案C 铁器牛耕的使用D 私学兴起土阶层壮大5、秦始皇在“焚书坑儒”中那些书籍可以不烧?A 《诗经》《尚书》B 《礼仪》《孟子》C《春秋》《老子》 D 《医药》《种树》6、白鹿洞书院在哪个省?A 河南B 湖南C 江西D 四川7、你能知道禅宗六祖是谁吗?A 弘忍B 慧能C 神秀D 达摩8、以下人物既是汉赋作家又是天文作家的是谁?A 僧一行B郭守敬 C 张衡 D 沈括9、孙思邈的医学著作是什么?A 《千金药方》B 《本草纲目》C 伤害杂病注》D《黄帝内经》10、以下被称为中国十七世纪百科全书的著作是什么?A 《本草纲目》B 《天工开物》C《农政全书》D《齐民要术》11、目前所知中国最早的成熟文字是:A 小篆B 隶书C 甲骨文D 草书12、秦始皇统一天下后将哪种字体作为统一文字?A 隶书B 大篆C 行书D 小篆13、汉字发展为自觉的书法艺术是在什么时候?A 魏晋时期B 隋唐C 南宋D 明清14、号称“天下第一行书”是谁的哪部作品A 颜真卿的《多宝塔碑》B 王羲之的《兰亭序》C 柳公权的《玄秘塔碑》D 怀素和尚的书法15、什么时候篆刻发展成一门艺术A 唐朝B 宋朝C 明朝D 清朝16、《女史箴图》的作者是谁A 唐伯虎B 朱耷C 顾恺之D 吴道之17、吴道之的代表作是什么A 《人物龙凤图》B 《送子天王图》C 《山径春行图》D 《松鹰图》18、文人画出现于中国历史的哪个时期A 西汉B 三国C 魏晋D 唐朝19、《清明上河图》的作者是谁A 张择端B 阎立本C 张大千D 齐白石20、木刻版画最早出现在哪种文学读物中A 散文B 小说C 诗歌D 汉赋21、中国最早的一部诗歌总集是什么A 《离骚》B 《九歌》C 《天问》D 《诗经》22、《将进酒》的作者是谁A 杜甫B 陈子昂C 白居易D 李白23、“烽火连三月,家书抵万金”是谁的名句A 白居易B 杜甫C 李白D 杜牧24、苏轼的代表词作是什么A 《声声漫·寻寻觅觅》B 《青玉案·元夕》C 《念奴娇·赤壁怀古》D 《永遇乐·登京口北固亭有怀》25、以下人物中与莎士比亚齐名的中国人是谁A 关汉卿B 王实甫C 洪升D 马致远26、以下哪部作品是深刻反映现实的百科全书或巨著A 《三国演义》B 《水浒传》C 《红楼梦》D 《金瓶梅》27、中国戏曲起源于以下哪种形式A 梨园B 傩戏C 南戏D 京剧28、标志中国古代戏曲成熟的是什么A 南戏B 元杂剧C 昆曲D 京剧29、发出“愿天下人终成眷属”的是以下哪部作品A 《西厢记》B 《窦娥冤》C 《桃花扇》D 《牡丹亭》30、京剧是在为清朝哪位皇帝祝寿时开始形成的A 顺治B 康熙C 乾隆D 雍正31、你能知道黄梅戏是哪个地方的地方戏A 浙江B 江苏C 广东D 安徽32、人类历史上最早的哲学诞生在哪个国家A 古罗马B 古希腊C 古代中国D 古代印度33、提出“人是万物的尺度”观点的人是谁A 泰勒斯B 苏格拉底C 普罗塔哥拉D 亚里斯多德34、苏格拉底哲学的核心思想是什么A 万物皆生于水B 人非工具C 知识即美德D 真理高于一切35、亚里斯多德最大的哲学贡献是什么A 使哲学真正成为一门独立的学科B 创立逻辑学C 发表了哲学名著《形而上学》D 认为真理高于一切二卷二、主观性试题(30分)1、试写出唐朝时期中国诗歌繁荣的原因?并分别写出在初唐,盛唐,中唐,晚唐时期的各一位著名诗人及作品.(16分)2、试写出古希腊哲学的代表派别,代表人物及其观点?(14分)高二级理科历史期中考试答案一、单项选择题1、D2、B3、D4、C5、D6、C7、B8、C9、A 10、C 11、C 12、D 13、A 14、B 15、C 16、C 17、B 18、C 19、A 20、B 21、D 22、D 23、B 24、C 25、A 26、C 27、B 28、B 29、A 30、C 31、D 32、B 33、C34、C 35、B二、主观性试题1、(1)原因:A 繁荣开放文化多元的盛唐B 科举取仕制度C 汉代以来的五言诗和七言诗的基础(2)初唐:陈子昂《登幽州台歌》盛唐:李白《将进酒》中唐:白居易《长恨歌》晚唐:杜牧《山行》2、(1)派别:A 自然哲学泰勒斯万物皆生于水B 智者学派普罗塔哥拉人是万物的尺度(2)苏格拉底知识即美德(3)亚里斯多德吾爱吾师,吾更爱真理。
高二第二学期期中考试理科
平煤高级中学2012—2013学年第二学期期中考试高二数学试卷(理科)(平行班) 分值150分 时间100分钟第Ⅰ卷12小题,每小题5分,共60分) 、在复平面内,复数(12)z i i =+对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 、曲线1y x =在点)1,1(--处切线的斜率为( ) A .14 B .14- C .1 D .1-、下面使用类比推理正确的是( )A .“若33a b ⋅=⋅,则a b =”类比推出“若00a b ⋅=⋅,则a b =”;B .“l o g ()l o g lo g aa axy x y =+”类比推出“sin()sin sin αβαβ+=”;C .“()a b c ac bc +=+” 类比推出“()a b c a c b c +⋅=⋅+⋅”;D .“()n n n ab a b =” 类比推出“()n n n a b a b +=+”.、有一段推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊄平α,直线a ⊂平面α,直线b ∥平面α,则直线b ∥直线a ” 的结论显然是错误的,( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误、利用数学归纳法证明不等式1111()2321nf n +++⋅⋅⋅+<- (2,n ≥且)n N *∈的过程,由n k =到1n k =+时,左边增加了( )A .1项B .k 项C .12k -项D .2k 项6、复数22(2)(2)z a a a a i =-+-- 对应的点在虚轴上,则( )A .2a ≠或1a ≠B .2a ≠且1a ≠C .0a =D .2a =或0a = 7、若函数3211()22132f x ax ax ax a =+-++的图像经过四个象限,则实数a 的取值范围是( )A .53316a -<<-B .83516a -<<-C .81316a -<<-D .63516a -<<-8、用反证法证明命题“三角形的内角中至少有一个不大于60 ”时,反设正确的是( )A .假设三内角都大于60 ;B .假设三内角都不大于60 ;C .假设三内角至多有一个大于60 ;D .假设三内角至多有两个大于609、已知函数x x f x f -'=2)1()(,则=')2(f ( )A .1B .2C .3D .410、已知复数i iz 4321-+=,则下列四个计算结果中正确的是( ) A .i 5251+- B .i 5251- C .i 5152- D .i 5152+- 11、由曲线x y sin =,x y cos =与直线0=x ,2π=x 所围成的平面图形的面积为( )A .222-B .12-C .122-D .22- 12、已知函数'()y xf x =的图像如图⑴所示,下面四个图像中()y f x =的图像大致是( )数二 7—1数二 7—2二、填空题(本大题共4小题,每小题5分,共20分) 13、设z 是如图向量→--OA 表示的复数,则2z 的值为 .14、⎰=462cos ππxdx = .15、函数13)(3+-=x x x f 在]0,3[-上的最大值是16、观察下列不等式:112>,111123++>,111312372+++⋅⋅⋅+>,111122315+++⋅⋅⋅+>,1115123312+++⋅⋅⋅+>,…,由此猜想第n 个不等式为 ()n N *∈数二 7—318、(本小题满分12分)在曲线2(0)y x x =≥上某一点A 处作一切线使之与曲线以及x 轴所围成的面积为112,试求: ⑴切点A 的坐标; ⑵过切点A 的切线方程.19、(本小题满分12分)若c b a ,,均为实数,且222π+-=y x a ,322π+-=z y b ,622π+-=x z c .用反证法证明:c b a ,,中至少有一个大于0.数二 7—520、(本小题满分12分)用总长14.8米的钢条做一个长方体容器的框架,如果所做容器的底面的一边长比另一边长多0.5米,那么高是多少时容器的容积最大?并求出它的最大容积.21、(本小题满分12分)用数学归纳法证明:n n n n )1()12()1(531-=--+-+-22、(本小题满分12分)已知函数2()ln f x x a x =+⑴当2a =-时,求函数的单调区间; ⑵若函数2()()g x f x x=+在[)1,+∞上是单调函数,求实数a 的取值范围 数二 7—6数二 7—7…………………………………………………密………封………线………内………不………准………答………题…………………………………………………………………。
四川省内江市第六中学2021-2022学年高二下学期期中理科数学试题
14.若命题 "x R, x 2 x a 1 0" 是假命题,则实数 a 的取值范围为___________.
15.已知
1
a x
(2x
1 x
)5
的展开式中各项系数的和为
2,则该展开式中常数项为______.
16.已知两点 A3,0 和 B 3, 0 ,动点 P x, y 在直线 l:y=-x+5 上移动,椭圆 C 以 A,B
9.设双曲线
x a
2 2
y2 b2
1a
0, b
0 的两条渐近线与直线 x
a2 c
分别交于
A, B 两点, F
为该
双曲线的右焦点,若 60 AFB 90 ,则该双曲线离心率 e 的取值范围是
A. 1, 2
B.
2
3 3
,
C. 2,2
D.
2
3 3
,
2
10.关于曲线 C : x4 y2 1,给出下列四个命题:
)
A.
1 2
B.1
C. 2
D. 5
12.已知四面体 ABCD 的所有棱长均为 2 , M , N 分别为棱 AD, BC 的中点, F 为棱 AB 上
试卷第 2页,共 5页
异于 A, B 的动点.有下列结论: ①线段 MN 的长度为1;
②点 C 到面 MFN 的距离范围为 0,
2 2 ;
③ FMN 周长的最小值为 2 1;
)
A.若命题 p : n N , n2 2n ,则 p : n N , n2 2n B.“ a b ”是“ ln a ln b ”的必要不充分条件
C.若命题“ p q ”为真命题,则命题 p 与命题 q中至少有一个是真命题
2010-2023历年福建福清东张中学高二上学期期中考试理科化学试卷(带解析)
2010-2023历年福建福清东张中学高二上学期期中考试理科化学试卷(带解析)第1卷一.参考题库(共10题)1.Zn-MnO2干电池应用广泛,其电解质溶液是ZnCl2-NH4Cl混合溶液。
(1)该电池的负极材料是。
电池工作时,电子流向(填“正极”或“负极”)。
(2)若ZnCl2-NH4Cl混合溶液中含有杂质Cu2+,会加速某电极的腐蚀.其主要原因是。
欲除去Cu2+,最好选用下列试剂中的(填代号)。
a.NaOHb.Znc.Fed.NH3·H2O2.下列因素中,对发生在溶液中且无气体参加的反应的速率不产生显著影响的是()A.浓度B.温度C.压强D.反应物的性质3.下列关于如图装置的说法正确的是()A.银电极是负极B.铜电极上发生的反应为Cu-2e-=Cu2+C.外电路中的电子是从银电极流向铜电极。
D.该装置能将电能转化为化学能4.未来新能源的特点是资源丰富,在使用时对环境无污染或很少污染,且有些可以再生。
下列属最有希望的新能源的是()①天然气②煤③核能④水电⑤太阳能⑥燃料电池⑦风能⑧氢能A.①②③④B.⑤⑥⑦⑧C.③④⑤⑥D.除①②外5.在2A﹢B2C﹢D反应中,表示该反应速率最快的是()A.v(A)=0.8mol·L-1·s-1B.v(B)=0.3mol·L-1·s-1C.v(C)=0.6mol·L-1·s-1D.v(D)=0.5mol·L-1·s-16.已知448℃时反应H2(g)+I2(g)2HI(g)的平衡常数是49,则在该温度下的平衡常数是()A.B.2401C.7D.7.PCl5的热分解反应如下:PCl5(g)PCl3(g)+Cl2(g)(1)写出反应的平衡常数表达式;(2)已知某温度下,在容积为10.0L的密闭容器中充入2.00molPCl5,达到平衡后,测得容器内PCl3的浓度为0.150mol/L。
2021-2022年高二下学期期中考试数学理试题 含答案
2021-2022年高二下学期期中考试数学理试题含答案一、选择题(每小题4分,共40分)1.如果复数(+i )(1+m i )是实数,则实数m =( ).A、-1B、1C、-D、2.已知曲线y = x2 -3 x的一条切线的斜率为1,则切点的横坐标为( ).A、-2B、-1C、 2D、33.如图是函数y=f(x)的导函数y=f′(x)的图象,则下面判断正确的是( )A.在区间(-3,1)上y=f(x)是增函数B.在(1,3)上y=f(x)是减函数C.在(4,5)上y=f(x)是增函数D.在x=2时y=f(x)取到极小值4.已知数列1,a+a2,a2+a3+a4,a3+a4+a5+a6,…,则数列的第k项是( ) A.a k+a k+1+…+a2kB.a k-1+a k+…+a2k-1C.a k-1+a k+…+a2kD.a k-1+a k+…+a2k-25.曲线y =与直线y – x – 2 = 0围成图形的面积是( ) .A、 B、 C、 D、6.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为 ( )A.540B.300C.180D.1507.对于命题“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四面体( )A.各正三角形内的点B.各正三角形某高线上的点C.各正三角形的中心D.各正三角形各边的中心8.若a>2,则方程13x3-ax2+1=0在(0,2)上恰好有( )A.0个根 B.1个根C.2个根 D.3个根9.在数列{a n}中,a n=1-12+13-14+…+12n-1-12n,则a k+1=( )A.a k+12k+1B.a k+12k+2-12k+4C.a k+12k+2D.a k+12k+1-12k+210.(1+)6(1+)10展开式中的常数项为 ( )A.1 B.46 C.4245 D.4246二、填空题(每小题4分,共20分)11.用反证法证明命题:“若x,y > 0,且x + y > 2,则,中至少有一个小于2”时,假设的内容应为.12.函数f(x) = x3 - 12 x 在[-3,3]上的最小值是_________,最大值是.13.已知函数f(x) =在R上有极值,则实数a的取值范围是.14.由这六个数字组成__ __个没有重复数字的六位奇数.15.对于二项式(1-x),有下列四个命题:①展开式中T= -Cx;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项;④当x=xx时,(1-x)除以xx的余数是1.其中正确命题的序号是__________.(把你认为正确的命题序号都填上)大钟高中xx第二学期期中考试试卷高二数学(理)一、选择题(每小题4分,共40分)二、填空题(每小题4分,共20分)11.________________________________________________________12._____ __ ; _______13.____________ 14.____________ 15.______________三、解答题(每小题12分,共60分)16. 7个人排成一排,在下列情况下,各有多少种不同排法?(写出解答过程及结果)(1)甲排头: (1分)(2)甲不排头,也不排尾: (1分)(3)甲、乙、丙三人必须在一起:(1分)(4)甲、乙之间有且只有两人: (1分)(5)甲、乙、丙三人两两不相邻(2分)(6)甲在乙的左边(不一定相邻)(2分)(7)甲、乙、丙三人按从高到矮,自左向右的顺序: (2分)(8)甲不排头,乙不排当中:(2分)解:(1)(2)(3)(4)(5)(6)(7)(8)17.已知数列{an }满足Sn+ an= 2n +1.(1)写出a1,a2,a3,并推测an的表达式;(2)用数学归纳法证明所得的结论.18. 若展开式中第二、三、四项的二项式系数成等差数列.(1)求n的值;及展开式中二项式系数最大的项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江陵县实验高中2012-2013学年度上学期期中考试
高二数学试卷(理)
一、选择题:(本大题共10小题,每小题5分,共50分) 1.以M (-4,3)为圆心的圆与直线2x +y -5=0相离,那么圆M 的半径r 的取值范围是( ) A .0<r <2 B .0<r <5 C .0<r <25
D .0<r <10
2.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是 ( ) A.求输出,,a b c 三数的最大数 B.求输出,,a b c 三数的最小数 C.将,,a b c 按从小到大排列 D.将,,a b c 按从大到小排
3.程序框图,能判断任意输入的数x 的奇偶性:其中判断框内的条件是 ( ) A.0m =? B.0x = ? C.1x = ? D.1m =?
4.如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是 ( )
A .π2
B .2
π C .π21 D .π2
5.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,
其中标号为1,2的卡片放入同一信封,则不同的放法共有 ( )
第2题图
第3题图
A .12种
B .18种
C .36种
D .54种
6.若直线220(,0)ax by a b +-=>始终平分圆224280x y x y +---=的周长,则12
a b
+
的最小值为
( )
A .1
B .5
C
. D
.3+7.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有 ( )
A .311C 种
B .3
8A 种 C .39
C 种
D .38C 种 8.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是
( )
A .4
B .5
C
.1 D
.
9.在5
1
(1)x x
+
-的展开式中,常数项为 ( )
(A )51 (B )-51 (C )-11 (D )11
10.计算机是将信息转化为二进制数处理的,二进制即“逢二进一”如2(1101)表示二进
制数,将它转化为十进制数为32101212021213⨯+⨯+⨯+⨯=,那么二进制
1
20102
)111(个转化为十进制数为 ( )
A . 201121-
B .
201021- C . 200921- D . 200821-
二、填空题(本大题共5小题,每小题5分,共25分)
11.某校为了解高一学生寒假期间学习情况,抽查了100名同学,统计他们每天平均 学习时间,绘成频率分布直方图(如图).
则这100名同学中学习时间在6至8小时之间的人数为 .
12.设二项式n
x
x )13(3+
的展开式的各项系数之和为P ,所有二项式系数之和为S ,若
P+S=272,则n= .
13.若圆2221:240C x y m x m +-+-=
与圆2
22
2:24480C x y x m y m ++-+-=相交,
则m 的取值范围是 .
14. 用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有个
(用数字作答).
15.阅读下面的程序框图,输出的结果S的值为___;
三、解答题:(共6小题,共75分.解答应写出文字说明,证明过程或演算步骤)
16.一枚质量均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,连续抛掷两次.
(1)两次朝上的面上的数字点数之和为偶数的概率是多少;
(2)记两次朝上的面上的数字分别为p,q,若把p,q分别作为点A的横坐标和纵坐标,
求点A(p,q)在函数
12
y
x
=的图象上的概率.
17.某校高三数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示,若130~140分数段的人数为2人.
(1)估计这所学校成绩在90~140分之间学生的参赛人数;
(2)估计参赛学生成绩的中位数;
(3)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、
第五组)中任意选出两人,形成帮扶学习小组,若选出的两人成绩之差大于20,则称这两人为“黄金搭档组”,试求出的两人为“黄金搭档组”的概率.
18.设圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧
长之比为3:1;③圆心到直线:20l x y -=5
,求该圆的方程
19.下面是计算应纳税所得额的算法过程,其算法如下:
第一步 输入工资x(注x<=5000);
第二步 如果x<=800,那么y=0;如果800<x<=1300,那么 y=0.05(x-800); 否则 y=25+0.1(x-1300)
第三步 输出税款y, 结束。
请画出该算法的程序框图并写出程序。
(注意:程序框图与程序必须对应)
20.已知n
x
x )21(4⋅+
的展开式前三项中的x 的系数成等差数列.
(1)求展开式中所有的x 的有理项; (2.
21.已知圆O 的方程为x 2+y 2=1,直线l 1过点A (3,0),且与圆O 相切.
(1)求直线l 1的方程;
(2)设圆O 与x 轴交于P ,Q 两点,M 是圆O 上异于P ,Q 的任意一点,过点A 且与x 轴垂直的直线为l 2,直线PM 交直线l 2于点P ′,直线QM 交直线l 2于点Q ′.求证:以P ′Q ′为直径的圆C 总过定点,并求出定点坐标.。