第2章二次函数讲义(同步)

合集下载

九年级 二次函数讲义

九年级 二次函数讲义

- 1 -九年级数学下——第二章:二次函数【基础知识与学习要求】一、理解二次函数的概念;会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;1、如果y=ax 2+bx+c(a,b,c 是常数,a ≠0),那么,y 叫做x 的二次函数。

二次函数的图象是抛物线,可用描点法画出二次函数的图象。

2、抛物线的顶点、对称轴和开口方向抛物线y=ax 2+bx+c(a ≠0)的顶点是)44,2(2ab ac a b --,对称轴是abx 2-=,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。

抛物线)0()(2≠++=a k h x a y 的顶点是(-h ,k ),对称轴是x=-h. 二、熟悉二次函数的图像及其性质,会平移二次函数y =ax 2(a ≠0)的图象得到二次函数y =a(x +h)2+k 的图象,了解特殊与一般相互联系和转化的思想; 1、当a >0时抛物线的开口向上;当a <0时抛物线的开口向下.a 越大,抛物线的开口越小;a越小,抛物线的开口越大.a 相同的抛物线,通过平移(或旋转、轴对称)一定能够重合.2、a 、b 同号时抛物线的对称轴在y 轴的左侧;a 、b 异号时抛物线的对称轴在y 轴的右侧.抛物线与y 轴的交点坐标是(0,C ).3.抛物线y=ax 2+bx+c(a≠0),若a>0,当x≤时,y 随x 的增大而减小;当x≥时,y随x 的增大而增大.若a<0,当x≤时,y 随x 的增大而增大;当x≥时,y 随x 的增大而减小.三、会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。

1、抛物线y=ax 2+bx+c 的图象与坐标轴的交点: (1)图象与y 轴一定相交,交点坐标为(0,c);(2)当△=b 2-4ac>0,图象与x 轴交于两点A(x 1,0)和B(x 2,0),其中的x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x 2-x 1|=.当△=0.图象与x 轴只有一个交点;★当△<0.图象与x 轴没有交点.当a>0时,图象落在x 轴的上方,x 为任何实数时,都有y>0;当a<0时,图象落在x 轴的下方,x 为任何实数时,都有y<0.2、抛物线y=ax 2+bx+c 的最值:如果a>0(a<0),则当x=时,y 最小(大)值=. 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值. 四、会用待定系数法求二次函数的解析式;1、当题给条件为已知图象经过三个已知点或已知x 、y 的三对对应值时,可设解析式为一般形式 y=ax 2+bx+c(a≠0).2、当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)2+k(a≠0). 3、当题给条件为已知图象与x 轴的两个交点坐标时,可设解析式为两根式:y=a(x-x 1)(x-x 2)(a≠0). 五、二次函数的实际应用★六、二次函数与其它函数以及几何知识的综合考察【典例剖析】一、考查二次函数的定义、性质,有关试题常出现在选择题中。

二次函数(基础思想)讲义

二次函数(基础思想)讲义

二 次 函 数1、二次函数的常见解析式及其三要素①a 的符号决定抛物线的的开口大小、形状相同;如果a 相同,那么抛物线的开口方向、开口大小完全相同。

②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .③二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=, ④当0>a 时⇔抛物线开口向上⇔顶点为其最低点⇔a b ac y 最小442-=;当0<a 时⇔抛物线开口向下⇔顶点为其最高点⇔ab ac y 最大442-=。

2、二次函数的性质:⑴增减性:以对称轴h x =为界,具有双向性。

⑵对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线的对称轴垂直平分对称点的连线. 即:若A 、B 两点是抛物线上关于对称轴h x =对称的两点,则有:①B A y y =;②h x x B A =+2(即abx x -=+21)。

基础练习题:1、抛物线y = - 2 ( x – 3 )2– 7 对称轴 x = , 顶点坐标为 ; 2、抛物线 y = 2x 2+ 12x – 25的对称轴为 x = , 顶点坐标为 . 3、若将二次函数y =x 2-2x + 3配方为y =(x -h )2+ k 的形式,则y =4、抛物线y = - 4(x +2)2+5的对称轴是 。

5、抛物线 y = - 3x 2+ 5x - 4开口 , y = 4x 2– 6x + 5 开口 .6、已知P 1(11y ,x )、P 2(22y ,x )、P 3(33y ,x )是抛物线3x 2x y 2--=上的三个点,若321x x x 1<<<,则321y y y 、、的大小关系是____________。

7、已知函数y =x 2-2x -2的图象如图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( )A .-1≤x ≤3B .-3≤x ≤1C .x ≥-3D .x ≤-1或x ≥38、如图中有相同对称轴的两条抛物线,下列关系不正确的是( ) A h=m B k=n C k >n D h >0,k >0 9、抛物线4)2(22-+-+=m x m x y 的顶点在原点,则m= 10、如图抛物线对称轴是x=1,与x 轴交于A 、B 两点,若B 点的坐标是(3,0),则A 点的坐标是 11、请选择一组你喜欢的的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:(1)开口向下,(2)当时,y 随x 的增大而增大;当时,y 随x的增大而减小。

初三数学二次函数讲义

初三数学二次函数讲义

学科教师辅导讲义体系搭建(a >0)(a <0) 开口向上 开口向下 直线x =-b2a直线x =-b2a⎛⎫b 4ac -b 2⎛⎫b 4ac -b 2(3)当Δ>0时,有两个不同的交点;当Δ=0时,有一个交点;当Δc<0时,抛物线与x轴没有交点.考点一:二次函数的定义例1、若y=(1+m)是二次函数,且开口向下,则m的值为()A.±3B.﹣3C.+3D.0例2、下列函数关系中,可以看做二次函数y=ax2+bx+c模型的是()A.在一定距离内,汽车行驶的速度与行驶的时间的关系B.我国人中自然增长率为1%,这样我国总人口数随年份变化的关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D.圆的周长与半径之间的关系考点二:二次函数的图像与性质例1、一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.例2、如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0 ;③4ac﹣b2<8a ;④<a<;⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤例3、将抛物线y=2(x+1)2﹣2向右平移2个单位,再向上平移2个单位所得新抛物线的表达式()A.y=2(x+3)2B.y=(x+3)2C.y=(x﹣1)2D.y=2(x﹣1)2考点三:二次函数的表达式例1、把二次函数y=﹣x2﹣x+3配方化为y=a(x﹣h)2+k形式()A.y=﹣(x﹣2)2+2B.y=﹣(x﹣2)2+4C.y=﹣(x+2)2+4D.y=﹣(x﹣1)2+3例2、二次函数图象如图所示,则其解析式是()A.y=﹣x2+2x+4B.y=x2+2x+4C.y=﹣x2﹣2x+4D.y=﹣x2+2x+3考点四:二次函数的应用例1、便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足y=﹣2(x﹣20)2+1558,由于某种原因,价格只能15≤x≤22,那么一周可获得最大利润是()A.20B.1508C.1550D.1558例2、如图,正六边形的边长为10,分别以正六边形的顶点A、B、C、D、E、F为圆心,画6个全等的圆.若圆的半径为x,且0<x≤5,阴影部分的面积为y,反映y与x之间函数关系的大致图形是()A.B.C.D.例3、某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?考点五:二次函数与一元二次方程例1、若二次函数y=ax2+bx+c(a<0)的图象如图所示,且关于x的方程ax2+bx+c=k有两个不相等的实根,则常数k的取值范围是()A.0<k<4B.﹣3<k<1C.k<﹣3或k>1D.k<4例2、如图,一段抛物线y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O和A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3,…如此进行下去,得到一条“波浪线”.若点P(41,m)在此“波浪线”上,m的值为()A.2B.﹣2C.0D.实战演练➢课堂狙击1、若y=(a2+a)是二次函数,那么()A.a=﹣1或a=3B.a≠﹣1或a≠0C.a=3D.a=﹣12、下列函数关系中,是二次函数的是()A.在弹性限度内,弹簧的长度y与所挂物体的质量x之间的关系B.当距离一定时,汽车行驶的时间t与速度v之间的关系C.矩形的面积S和矩形的宽x之间的关系D.等边三角形的面积S与边长x之间的关系3、二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的对称轴是()A.直线x=﹣3B.直线x=﹣2C.直线x=﹣1D.直线x=04、如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1B.2C.3D.45、将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为()A.y=(x+1)2﹣13B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13D.y=(x+1)2﹣3 6、二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中可能的图象为()A.B.C.D.7、如图,已知抛物线y=ax2+bx+c与轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论:①b>0;②a﹣b+c<0;③阴影部分的面积为4;④若c=﹣1,则b2=4a.正确的是()A.①③B.②③C.②④D.③④8、若二次函数y=﹣x2+2x+m2+1的最大值为4,则实数m的值为()A.B.C.±2D.±19、某宾馆有客房50间,当每间客房每天的定价为220元时,客房会全部住满;当每间客房每天的定价增加10元时,就会有一间客房空闲,设每间客房每天的定价增加x元时,客房入住数为y间.(1)求y与x的函数关系式(不要求写出x的取值范围);(2)如果每间客房入住后每天的各种支出为40元,不考虑其他因素,则该宾馆每间客房每天的定价为多少时利润最大?10、如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一动点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.➢课后反击1、若y=(1+m)是二次函数,且开口向下,则m的值为()A.±3B.﹣3C.+3D.02、在同一平面直角坐标系内,一次函数y=ax+b与二次函数y=ax2+5x+b的图象可能是()A.B.C.D.3、如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个4、已知二次函数y=ax2+4x+a﹣1的最小值为2,则a的值为()A.3B.﹣1C.4D.4或﹣15、若二次函数的图象的顶点坐标为(2,﹣1),且抛物线过(0,3),则二次函数的解析式是()A.y=﹣(x﹣2)2﹣1B.y=﹣(x﹣2)2﹣1C.y=(x﹣2)2﹣1D.y=(x﹣2)2﹣16、已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.y=﹣3(x﹣1)2+3B.y=3(x﹣1)2+3C.y=﹣3(x+1)2+3D.y=3(x+1)2+37、某种产品的成本是120元/件,试销阶段每件产品的售价x(元)与产品的日销量y(件)之间关系如表所示:x/元130150165y/件70 50 35若日销售量y是销售价x的一次函数,那么,要使每天所获得最大的利润,每件产品的销售价应定为多少元?此时每天的销售利润是多少?8、已知关于x的一元二次方程x2﹣(2m+1)x+2m=0.(1)求证:不论m为任何实数时,该方程总有两个实数根;(2)若抛物线y=x2﹣(2m+1)x+2m与x轴交于A、B两点(点A与点B在y轴异侧),且AB=4,求此抛物线的表达式;(3)在(2)的条件下,若抛物线y=x2﹣(2m+1)x+2m向上平移b个单位长度后,所得到的图象与直线y=x没有交点,请直接写出b的取值范围.直击中考1、【2016•广州】对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7)D.图象与x轴有两个交点2、【2016•赤峰】函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是()A.B.C.D.3、【2016•临沂】二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x…﹣5﹣4﹣3﹣2﹣10…y…40﹣2﹣204…下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2 D.抛物线的对称轴是x=﹣4、【2016•兰州】二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是()A.1B.2C.3D.45、【2016•武汉】某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.重点回顾二次函数的定义;二次函数的图像与性质;二次函数的表达式与应用;二次函数与一元二次方程。

二次函数讲义

二次函数讲义

第1页共12页二次函数【知识点1】二次函数的图象和性质1.二次函数的定义与解析式(1)二次函数的定义:形如f (x )=ax 2+bx +c (a ≠0)的函数叫做二次函数.(2)二次函数解析式的三种形式①一般式:f (x )=___ax 2+bx +c (a ≠0)___.已知三个点的坐标时,宜用一般式.②顶点式:f (x )=__a (x -m )2+n (a ≠0)____.已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③零点式:f (x )=___a (x -x 1)(x -x 2)(a ≠0)__.已知二次函数与x 轴有两个交点,且横坐标已知时,选用零点式求f (x )更方便.点评:.求二次函数解析式的方法:待定系数法.根据所给条件的特征,可选择一般式、顶点式或零点式中的一种来求.2.二次函数的图象和性质图象函数性质a >0定义域x ∈R (个别题目有限制的,由解析式确定)值域a >0a <0y ∈[4ac -b 24a,+∞)y ∈(-∞,4ac -b 24a]a <0奇偶性b =0时为偶函数,b ≠0时既非奇函数也非偶函数单调性x ∈(-∞,-b2a]时递减,x ∈[-b2a ,+∞)时递增x ∈(-∞,-b 2a]时递增,x ∈[-b2a,+∞)时递减图象特点①对称轴:x =-b 2a;②顶点:(-b 2a ,4ac -b 24a)3.二次函数f (x )=ax 2+bx +c (a ≠0),当Δ=b 2-4ac >0时,图象与x 轴有两个交点M 1(x 1,0)、第2页共12页M 2(x 2,0),|M 1M 2|=|x 1-x 2|=Δ|a |.【知识点2】二次函数、一元二次方程及一元二次不等式之间的关系当0∆<⇔()f x =2ax bx c ++的图像与x 轴无交点⇔20ax bx c ++=无实根⇔20(0)ax bx c ++><的解集为∅或者是R;当0∆=⇔()f x =2ax bx c ++的图像与x 轴相切⇔20ax bx c ++=有两个相等的实根⇔20(0)ax bx c ++><的解集为∅或者是R;当0∆>⇔()f x =2ax bx c ++的图像与x 轴有两个不同的交点⇔20ax bx c ++=有两个不等的实根⇔20(0)ax bx c ++><的解集为(,)αβ()αβ<或者是(,)(,)αβ-∞+∞ 。

9年级上册数学第二章《二次函数1》讲义

9年级上册数学第二章《二次函数1》讲义

第一部分: 基础知识1、定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2、二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.① 当0>a 时⇔抛物线开口向上⇔顶点为其最低点;② 当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3、二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 4、二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5、二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6、抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.② 平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7、顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全 相同,只是顶点的位置不同. 8、求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的 对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9、抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线ab x 2-=, 故:① 0=b 时,对称轴为y 轴; ② 0>ab(即a 、b 同号)时,对称轴在y 轴左侧; ③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):① 0=c ,抛物线经过原点; ② 0>c ,与y 轴交于正半轴; ③ 0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 10、几种特殊的二次函数的图像特征如下:函数解析式开口方向 对称轴顶点坐标2ax y =当0>a 时 开口向上 当0<a 时开口向下0=x (y 轴) (0,0) k ax y +=20=x (y 轴) (0, k ) ()2h x a y -=h x = (h ,0) ()k h x a y +-=2h x = (h ,k )c bx ax y ++=2ab x 2-= (ab ac a b 4422--,) 11、用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12、直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2). (3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:① 有两个交点⇔0>∆⇔抛物线与x 轴相交;② 有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③ 没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k , 则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2 的解的数目来确定: ① 方程组有两组不同的解时⇔l 与G 有两个交点;② 方程组只有一组解时⇔l 与G 只有一个交点; ③ 方程组无解时⇔l 与G 没有交点. (6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121, ()()a a ac b a c a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121第二部分:典型习题1、抛物线y =x 2+2x -2的顶点坐标是( )A.(2,-2)B.(1,-2)C.(1,-3)D.(-1,-3) 2、已知二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( )A.ab >0,c >0 B.ab >0,c <0 C.ab <0,c >0 D.ab <0,c <0CA EF BD第2,3题图 第4题图3、二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( ) A .a >0,b <0,c >0 B .a <0,b <0,c >0 C .a <0,b >0,c <0 D .a <0,b >0,c >04、如图,已知∆ABC 中,BC=8,BC 上的高h =4,D 为BC 上一点,EF BC //,交AB 于点E ,交AC 于点F (EF 不过 A 、B ),设E 到BC 的距离为x ,则∆DEF 的面积y 关于x 的函数的图象大致为( )DO 424O424O 424O 424AyxBC5、抛物线322--=x x y 与x 轴分别交于A 、B 两点,则AB 的长为 .6、已知二次函数11)(2k 2--+=x kx y 与x 轴交点的横坐标为1x 、2x (21x x <),则对于下列结论: ① 当x =-2时,y =1;② 当2x x >时,y >0;③ 方程011)(22=-+-x k kx 有两个不相等的实数根1x 、2x ;④ 11-<x ,12>-x ; ⑤22114k x x k+-=,其中所有正确的结论是 (只需填写序号). 7、已知直线()02≠+-=b b x y 与x 轴交于点A ,与y 轴交于点B ;一抛物线的解析式为()c x b x y ++-=102.(1)若该抛物线过点B ,且它的顶点P 在直线b x y +-=2上,试确定这条抛物线的解析式;(2)过点B 作直线BC ⊥AB 交x 轴交于点C ,若抛物线的对称轴恰好过C 点,试确定直线b x y +-=2的解析式.8、有一个运算装置,当输入值为x 时,其输出值为y ,且y 是x 的二次函数,已知输入值为2-,0,1时, 相应的输出 值分别为5,3-,4-. (1)求此二次函数的解析式;(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y 为正数时输入值x 的取值范围.9、某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的 体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答: ⑴ 第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?yOx第9题⑵ 第三天12时这头骆驼的体温是多少?⑶ 兴趣小组又在研究中发现,图中10时到22时的曲线是抛物线, 求该抛物线的解析式.10、已知抛物线4)334(2+++=x a ax y 与x 轴交于A 、 B 两点,与y 轴交于点C .是否存在实数a ,使得△ABC 为直 角三角形.若存在,请求出a 的值;若不存在,请说明理由.11、已知抛物线y =-x 2+mx -m +2.(1)若抛物线与x 轴的两个交点A 、B 分别在原点的两侧,并且AB =5,试求m 的值;(2)设C 为抛物线与y 轴的交点,若抛物线上存在关于原点对称的两点M 、N ,并且 △MNC 的面积等于27, 试求m 的值.12、已知:抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0). (1)求抛物线与x 轴的另一个交点B 的坐标;(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式; (3)E 是第二象限内到x 轴、y 轴的距离的比为5∶2的点,如果点E 在(2)中的抛物线上,且它与点A 在此抛物线 对称轴的同侧,问:在抛物线的对称轴上是否存在点P ,使△APE 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.14、已知二次函数22-=ax y 的图象经过点(1,-1).求这个二次函数的解析式,并判断该函数图象与x 轴的交点 的个数.15、卢浦大桥拱形可以近似看作抛物线的一部分.在大桥截面1∶11000的比例图上,跨度AB =5 cm ,拱高OC =0.9 cm , 线段DE 表示大桥拱内桥长,DE ∥AB ,如图(1).在比例图上,以直线AB 为x 轴,抛物线的对称轴为y 轴,以1 cm 作为数轴的单位长度,建立平面直角坐标系,如图(2).(1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出函数定义域;(2)如果DE 与AB 的距离OM =0.45 cm ,求卢浦大桥拱内实际桥长(备用数据:4.12 ,计算结果精确到1米).16、已知在平面直角坐标系内,O 为坐标原点,A 、B 是x 轴正半轴上的两点,点A 在点B 的左侧,如图.二次函数c bx ax y ++=2(a ≠0)的图象经过点A 、B ,与y 轴相交于点C . (1)a 、c 的符号之间有何关系?(2)如果线段OC 的长度是线段OA 、OB 长度的比例中项,试证a 、c 互为倒数;(3)在(2)的条件下,如果b =-4,34=AB ,求a 、c 的值.。

(完整word版)九年级数学上册二次函数讲义

(完整word版)九年级数学上册二次函数讲义

初三数学 二次函数讲义一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少2-32y=-2x 2y=3(x+4)22y=3x 2y=-2(x-3)2二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数复习讲义

二次函数复习讲义

二次函数复习讲义一、基本概念1. 二次函数的定义二次函数是指一个变量的二次多项式方程所定义的函数。

其一般形式可表示为:f(x) = ax^2 + bx + c其中,a、b、c为常数,且a不等于0。

2. 二次函数的图像二次函数的图像是一条开口向上或向下的抛物线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

抛物线的顶点坐标为(-b/2a, f(-b/2a))。

3. 二次函数的对称轴和顶点二次函数的对称轴是与抛物线对称的直线,由x = -b/2a表示。

抛物线的顶点坐标即为对称轴的交点。

二、性质与变换1. 平移变换二次函数可通过平移变换进行移动。

设二次函数为f(x),平移的规则如下:a)水平平移:f(x + h)表示将抛物线沿x轴正方向移动h个单位;b)垂直平移:f(x) + k将抛物线沿y轴正方向移动k个单位。

2. 拉伸与压缩变换二次函数可通过拉伸或压缩变换进行缩放。

设二次函数为f(x),变换的规则如下:a)水平拉伸或压缩:f(mx)表示将抛物线的横坐标压缩到原来的1/m倍;b)垂直拉伸或压缩:m*f(x)表示将抛物线的纵坐标拉伸到原来的m 倍。

3. 顶点形式与标准形式的转换二次函数可以通过顶点形式和标准形式之间的转换来说明抛物线的性质。

顶点形式可表示为:f(x) = a(x - h)^2 + k其中,(h, k)为抛物线的顶点坐标。

标准形式可表示为:f(x) = ax^2 + bx + c其中,(h, k)为对称轴的交点。

三、特殊二次函数1. 平方函数平方函数是一种特殊的二次函数,其形式为:f(x) = x^2平方函数的图像是一条开口向上的抛物线,其顶点在(0, 0)处。

2. 平移后的二次函数对于二次函数f(x) = ax^2 + bx + c,进行平移变换可以得到新的二次函数g(x) = a(x - h)^2 + k。

3. 开口向上与开口向下的二次函数当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

九年级数学上册二次函数讲义

九年级数学上册二次函数讲义

初三数学 二次函数讲义一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c=+的性质: 上加下减。

()2x h -4. ()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;0a >二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y 1 10 x o-1 x 0 x 0 -1 x A B C D考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数基础讲义

二次函数基础讲义

二次函数专题讲义§2.1 二次函数所描述的关系【例1】 函数y=(m +2)x22 m +2x -1是二次函数,则m= .【例2】 下列函数中是二次函数的有( )①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=21x+x .A .1个B .2个C .3个D .4个【例3】正方形的边长是5,若边长增加x ,面积增加y ,求y 与x 之间的函数表达式.1、 已知正方形的周长为20,若其边长增加x ,面积增加y ,求y 与x 之间的表达式.2、 已知正方形的周长是x ,面积为y ,求y 与x 之间的函数表达式.3、 已知正方形的边长为x ,若边长增加5,求面积y 与x 的函数表达式【例4】如果人民币一年定期储蓄的年利率是x ,一年到期后,银行将本金和利息自动按一年定期储蓄转存,到期支取时,银行将扣除利息的20%作为利息税.请你写出两年后支付时的本息和y (元)与年利率x 的函数表达式.【例5】某商场将进价为40元的某种服装按50元售出时,每天可以售出300套.据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场将售价定为x ,请你得出每天销售利润y 与售价的函数表达式.【例6】如图2-1-1,正方形ABCD的边长为4,P是BC边上一点,QP⊥AP交DC于Q,如果BP=x,△ADQ 的面积为y,用含x的代数式表示y.【例7】某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元,进行批量生产.已知生产每件产品的成本为40元.在销售过程中发现,当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额-生产成本-投资)为z(万元).(1)试写出y与x之间的函数表达式(不必写出x的取值范围);(2)试写出z与x之间的函数表达式(不必写出x的取值范围);(3)计算销售单价为160元时的年获利,销售单价还可以定为多少元?相应的年销售量分别为多少万件?(4)公司计划:在第一年按年获利最大确定的销售单价,进行销售;第二年年获利不低于1130万元.请你借助函数的大致图象说明,第二年的销售单价x(元)应确定在什么范围内?【例6】如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n个图中,第一横行共有块瓷砖,每一竖列共有块瓷砖(均用含n的代数式表示);(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数表达式(不要求写出自变量n的取值范围);(3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n的值;(4)若黑瓷砖每块4元,白瓷砖每块3元,在问题(3)中,共需花多少元购买瓷砖?(5)是否存在黑瓷砖与白瓷砖相等的情形?请通过计算说明为什么?课后练习:1.已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数.2.当m 时,y=(m -2)x22-m 是二次函数.3.已知菱形的一条对角线长为a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线a 的关系.4.已知:一等腰直角三角形的面积为S ,请写出S 与其斜边长a 的关系表达式,并分别求出a=1,a=2,a=2时三角形的面积.5.在物理学内容中,如果某一物体质量为m ,它运动时的能量E 与它的运动速度v 之间的关系是E=21mv 2(m 为定值). (1)若物体质量为1,填表表示物体在v 取下列值时,E 的取值:(2)若物体的运动速度变为原来的2倍,则它运动时的能量E 扩大为原来的多少倍?6.下列不是二次函数的是( )A .y=3x 2+4 B .y=-31x 2C .y=52-xD .y=(x +1)(x -2)7.函数y=(m -n )x 2+mx +n 是二次函数的条件是( ) A .m 、n 为常数,且m ≠0 B .m 、n 为常数,且m ≠n C .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数8.半径为3的圆,如果半径增加2x ,则面积S 与x 之间的函数表达式为( ) A .S=2π(x +3)2B .S=9π+xC .S=4πx 2+12x +9 D .S=4πx 2+12x +9π 9.下列函数关系中,可以看作二次函数y=ax 2+bx +c (a ≠0)模型的是( ) A .在一定的距离内汽车的行驶速度与行驶时间的关系B .我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C .竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D .圆的周长与圆的半径之间的关系.10.下列函数中,二次函数是( )A .y=6x 2+1 B .y=6x +1 C .y=x 6+1 D .y=26x+111.如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135°的两面墙,另外两边是总长为30米的铁栅栏.(1)求梯形的面积y 与高x 的表达式;(2)求x 的取值范围.12.在生活中,我们知道,当导线有电流通过时,就会发热,它们满足这样一个表达式:若导线电阻为R ,通过的电流强度为I ,则导线在单位时间所产生的热量Q=RI 2.若某段导线电阻为0.5欧姆,通过的电流为5安培,则我们可以算出这段导线单位时间产生的热量Q= .13.某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件.现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每提高1元,其销售量就要减少10件.若他将售出价定为x 元,每天所赚利润为y 元,请你写出y 与x 之间的函数表达式?14.某工厂计划为一批正方体形状的产品涂上油漆,若正方体的棱长为a (m ),则正方体需要涂漆的表面积S (m 2)如何表示?15.⑴已知:如图菱形ABCD 中,∠A=60°,边长为a ,求其面积S 与边长a 的函数表达式.⑵菱形ABCD,若两对角线长a:b=1:3,请你用含a的代数式表示其面积S.⑶菱形ABCD,∠A=60°,对角线BD=a,求其面积S与a的函数表达式.16.如图,在矩形ABCD中,AB=6cm,BC=12cm.点P从点A开始沿AB方向向点B以1cm/s的速度移动,同时,点Q从点B开始沿BC边向C以2cm/s的速度移动.如果P、Q两点分别到达B、C两点停止移动,设运动开始后第t秒钟时,五边形APQCD的面积为Scm2,写出S与t的函数表达式,并指出自变量t的取值范围.17.已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8.点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF.设DE=x,DF=y.(1)AE用含y的代数式表示为:AE= ;(2)求y与x之间的函数表达式,并求出x的取值范围;(3)设四边形DECF的面积为S,求S与x之间的函数表达式.§2.2 结识抛物线学习重点:利用描点法作出y=x2的图象过程中,理解掌握二次函数y=x2的性质,这是掌握二次函数y=ax2+bx +c(a≠0)的基础,是二次函数图象、表达式及性质认识应用的开始,只有很好的掌握,才会把二次函数学好.只要注意图象的特点,掌握本质,就可以学好本节.一、作二次函数y=x2的图象。

2025数学大一轮复习讲义人教版 第二章 二次函数与幂函数

2025数学大一轮复习讲义人教版   第二章  二次函数与幂函数

域为
A.(2,10) C.[2,10]
B.[1,2)
√D.[1,10)
当x∈(-2,2)时,-3<x-1<1, 则f(x)=x2-2x+2=(x-1)2+1∈[1,10).
自主诊断
4.已知函数f(x)=x2+2(a-1)x+2在区间(-∞,-3]上单调递减,则实数 a的取值范围是__(-__∞__,__4_]__.
依题意,设函数f(x)=a(x-2)2+h(a≠0), 由二次函数f(x)的图象过点(0,3),得f(0)=3, 所以4a+h=3,即h=3-4a, 所以f(x)=a(x-2)2+3-4a, 令f(x)=0,即a(x-2)2+3-4a=0, 所以ax2-4ax+3=0, 设方程的两根为x1,x2,
知识梳理
(3)幂函数的性质 ①幂函数在(0,+∞)上都有定义; ②当α>0时,幂函数的图象都过点 (1,1) 和 (0,0) ,且在(0,+∞)上单调 递增; ③当α<0时,幂函数的图象都过点 (1,1) ,且在(0,+∞)上单调递减; ④当α为奇数时,y=xα为 奇函数 ;当α为偶数时,y=xα为 偶函数 .
限内的交点坐标为(1,1),

0<x<1
时,x
m n
>x,则mn <1;
m
又y=x n 的图象关于y轴对称,
m
∴y=x n 为偶函数,
m
m
∴ (x) n =n -xm=x n =n xm,
又m,n互质,∴m为偶数n为奇数.
题型二 二次函数的解析式
例2 已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8, 试确定该二次函数的解析式.
依题意 3b≤12,所以 b≤16,

初三数学-二次函数讲义-详细

初三数学-二次函数讲义-详细

二次函数一、二次函数的解析式1. 二次函数解析式有三种:(1) 一般式:y 二ax2 bx c (a = 0)2(2) 顶点式:y二ax-hi亠k 顶点为h, k(3)交点式:y = a x — x1x — x2咅,0 x?,0是图象与x轴交点坐标。

2. 根据不同的条件,运用不同的解析式形式求二次函数的解析式二、二次函数与一元二次方程_ 2 21. 二次函数y = ax bx c ^^0与一元二次方程ax • bx • c = 0 a = 0的关系。

一元二次方程ax bx 0是二次函数y二ax bx c当函数值y = 0时的特殊情况。

2. 图像与x轴的交点个数:①当厶二b2 -4ac 0时,图像与x轴交于两点A x1,0 ,B x2,0 x<^ x2,其中^,x2是一元二次方程ax ■ bx ■ c = 0 a = 0的两根;②当厶=0时,图像与x轴只有一个交点;③当■ = ::0时,图像与x轴没有交点。

1 '当a 0时,图像落在x轴的上方,无论x为任何实数,都有y -02 '当a :: 0时,图像落在x轴的下方,无论x为任何实数,都有y :::0。

板块一二次函数解析式11. (1)把函数丫=丄x2+3x+2化成它的顶点式的形式为______________________________ ;2⑵把函数y = Jx2+4x +6化成它的交点式形式为___________________________________ ;2⑶把函数y =3(x-2 )+4化为它的一般式的形式为_________________________________ ;⑷把函数y =3(x -1)2-12化成它的交点式为________________________________ ;(5)把函数y =2x2的图象向右平移3个单位,再向下平移2个单位,得到的二次函数解析式是;⑹把抛物线y = x2 2x -3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为—•—2. (1)抛物线了y=a(x+1)(x-3)(a 工0)的对称轴是直线()⑵已知二次函数y = ax ? +bx +c 的对称轴为x = 2,且经过点(1 , 4),(5,0), 求二次函数 的解析式⑶已知二次函数过点(0,-1),且顶点为(-1,2),求二次函数的解析式,并化成它的一 般形式。

二次函数复习讲义(完美)

二次函数复习讲义(完美)

二次函数最全面的复习讲义学习目标1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.知识网络要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数. 要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.二、用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式:(1)一般式:(a,b,c为常数,a≠0);(2)顶点式:(a,h,k为常数,a≠0);(3)交点式:(,为抛物线与x轴交点的横坐标,a≠0).三、2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如或,或,其中a≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组);第三步,解:解此方程或方程组,求待定系数;第四步,还原:将求出的待定系数还原到解析式中.类型一:二次函数的概念1、下列函数中,是关于x的二次函数的是__________________(填序号).(1)y=-3x2;(2);(3)y=3x2-4-x3; (4);(5)y=ax2+3x+6;(6).【变式1】下列函数中,是二次函数的是( )A. B. C.D.【变式2】如果函数是二次函数,求m的值类型二、求二次函数的解析式1.已知二次函数的图象经过原点及点,且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为______________.【答案】或.【变式】已知:抛物线y=x2+bx+c的对称轴为x=1,交x轴于点A、B(A在B的左侧),且AB=4,交y轴于点C.求此抛物线的函数解析式及其顶点M的坐标.【答案】∵对称轴x=1,且AB=4∴抛物线与x轴的交点为:A(-1,0),B(3,0)∴y=x2-2x-3为所求,∵x=1时y=-4,∴M(1,-4).课堂练习1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式【答案与解析】本题已知三点求解析式,可用一般式.设此二次函数的解析式为y=ax2+bx+c(a≠0),由题意得:解得∴所求的二次函数的解析式为y=-x2+3x-5.2 在直角坐标平面内,二次函数图象的顶点为,且过点.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与轴的另一个交点的坐标.【答案】(1).(2)令,得,解方程,得,.∴二次函数图象与轴的两个交点坐标分别为和.∴二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与轴的另一个交点坐标为3.已知二次函数的图象如图所示,求此抛物线的解析式.【答案与解析】解法一:设二次函数解析式为(a≠0),由图象知函数图象经过点(3,0),(0,3).则有解得∴抛物线解析式为.解法二:设抛物线解析式为(a≠0).由图象知,抛物线与x轴两交点为(-1,0),(3,0).则有,即.又,∴∴抛抛物物解析式为.课后巩固练习一、选择题1. 二次函数的图象经过点A(0,0),B(-1,-11),C(1,9)三点,则它的解析式为( ).A. B. C. D.2.二次函数有( )A.最小值-5 B.最大值-5 C.最小值-6 D.最大值-63.把抛物线y=3x2先向上平移2个单位再向右平移3个单位,所得的抛物线是()A.y=3(x-3)2+2B.y=3(x+3)2+2C.y=3(x-3)2-2D.y=3(x+3)2-24.如图所示,已知抛物线y=的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为 ( )A.(2,3)B.(3,2)C.(3,3)D.(4,3)5.将函数的图象向右平移a(a>0)个单位,得到函数的图象,则a的值为( )A.1 B.2 C.3 D.46.若二次函数的x与y的部分对应值如下表:x -7 -6 -5 -4 -3 -2Y -27 -13 -3 3 5 3则当x=1时,y的值为 ( )A.5 B.-3 C.-13 D.-27二、填空题7.抛物线的图象如图所示,则此抛物线的解析式为______________.第7题第10题8.已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),则这个二次函数的关系式为______.9.已知抛物线.该抛物线的对称轴是________,顶点坐标________;10.如图所示已知二次函数的图象经过点(-1,0),(1,-2),当y 随x的增大而增大时,x的取值范围是______________.11.已知二次函数(a≠0)中自变量x和函数值y的部分对应值如下表:…-1 0 1 ……-2 -2 0 …则该二次函数的解析式为______________.12.已知抛物线的顶点坐标为(3,-2),且与x轴两交点间的距离为4,则抛物线的解析式为______________.三、解答题13.根据下列条件,分别求出对应的二次函数解析式.(1)已知抛物线的顶点是(1,2),且过点(2,3);(2)已知二次函数的图象经过(1,-1),(0,1),(-1,13)三点;(3)已知抛物线与x轴交于点(1,0),(3,0),且图象过点(0,-3).14.如图,已知直线y=-2x+2分别与x轴、y轴交于点A,B,以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,求过A、B、C三点的抛物线的解析式.15.在矩形AOBC中,OB=6,OA=4,分别以OB,OA所在的直线为轴和轴建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数(k >0)的图象与AC边交于点E.(1)求证:AE×AO=BF×BO;(2)若点E的坐标为(2,4),求经过点O,E,F三点的抛物线的解析式.一、选择题1.【答案】D;【解析】设抛物线的解析式为(a≠0),将A、B、C三点代入解得,,c=0.2.【答案】C;【解析】首先将一般式通过配方化成顶点式,即,∵a=1>0,∴x=-1时,.3.【答案】A;4.【答案】D;【解析】∵点A,B均在抛物线上,且AB与x轴平行,∴点A与点B关于对称轴x=2对称,又∵A(0,3),∴AB=4,y B=y A=3,∴点B的坐标为(4,3).5.【答案】B;【解析】抛物线的平移可看成顶点坐标的平移,的顶点坐标是,的顶点坐标是,∴移动的距离.6.【答案】D;【解析】此题如果先用待定系数法求出二次函数解析式,再将x=1代入求函数值,显然太繁,而由二次函数的对称性可迅速地解决此问题.观察表格中的函数值,可发现,当x=-4和x=-2时,函数值均为3,由此可知对称轴为x=-3,再由对称性可知x=1的函数值必和x=-7的函数值相等,而x=-7时y=-27.∴x=1时,y=-27.二、填空题7.【答案】;【解析】由图象知抛物线与x轴两交点为(3,0),(-1,0),则.8.【答案】;【解析】设顶点式,再把点(0,0)代入所设的顶点式里即可.9.【答案】(1)x=1;(1,3);【解析】代入对称轴公式和顶点公式即可.10.【答案】;【解析】将(-1,0),(1,-2)代入中得b=-1,∴对称轴为,在对称轴的右侧,即时,y随x的增大而增大.11.【答案】;【解析】此题以表格的形式给出x、y的一些对应值.要认真分析表格中的每一对x、y值,从中选出较简单的三对x、y的值即为(-1,-2),(0,-2),(1,0),再设一般式,用待定系数法求解.设二次函数解析式为(a≠0)由表知解得∴二次函数解析式为.12.【答案】【解析】由题意知抛物线过点(1,0)和(5,0).三、解答题13.【答案与解析】(1)∵顶点是(1,2),∴设(a≠0).又∵过点(2,3),∴,∴a=1.∴,即.(2)设二次函数解析式为(a≠0).由函数图象过三点(1,-1),(0,1),(-1,13)得解得故所求的函数解析式为.(3)由抛物线与x轴交于点(1,0),(3,0),∴设y=a(x-1)(x-3)(a≠0),又∵过点(0,-3),∴a(0-1)(0-3)=-3,∴a=-1,∴y=-(x-1)(x-3),即.14.【答案与解析】过C点作CD⊥x轴于D.在y=-2x+2中,分别令y=0,x=0,得点A的坐标为(1,0),点B的坐标为(0,2).由AB=AC,∠BAC=90°,得△BAO≌△ACD,∴AD=OB=2,CD=AO=1,∴C点的坐标为(3,1).设所求抛物线的解析式为,则有,解得,∴所求抛物线的解析式为.15.【答案与解析】(1)证明:由题意知,点E、F均在反比例函数图象上,且在第一象限,所以AE×AO=k,BF×BO=k,从而AE×AO=BF×BO.(2)将点E的坐标为(2,4)代入反比例函数得k=8,所以反比例函数的解析式为.∵OB=6,∴当x=6时,点F的坐标为.设过点O、E、F三点的二次函数表达式为(a≠0),将点0(0,0),E(2,4),三点的坐标代入表达式得:解得∴经过O、E、F 三点的抛物线的解析式为:.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴) (0,0)(轴) (0,)(,0)(,)() 2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用:(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.类型一、二次函数y=ax2(a≠0)的图象与性质1.二次函数y=x2的图象对称轴左侧上有两点A(a,15),B(b,),则a-b_______0(填“>”、“<”或“=”号).【解析】将A(a,15),分别代入y=x2中得:∴;,又A、B在抛物线对称轴左侧,∴a<0,b<0,即,∴【变式1】二次函数与的形状相同,开口大小一样,开口方向相反,则______.【答案】2.【变式2】不计算比较大小:函数的图象右侧上有两点A(a,15),B(b,0.5),则a______b.答案】>.2.已知y=(m+1)x是二次函数且其图象开口向上,求m的值和函数解析式.【答案与解析】由题意,,解得m=1,∴二次函数的解析式为:y=.3.求下列抛物线的解析式:(1)与抛物线形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线;(2)顶点为(0,1),经过点(3,-2)并且关于y轴对称的抛物线.【答案与解析】(1)由于待求抛物线形状相同,开口方向相反,可知二次项系数为,又顶点坐标是(0,-5),故常数项,所以所求抛物线为.(2)因为抛物线的顶点为(0,1),所以其解析式可设为,又∵该抛物线过点(3,-2),∴,解得.∴所求抛物线为.4.在同一直角坐标系中,画出和的图象,并根据图象回答下列问题.(1)抛物线向________平移________个单位得到抛物线;(2)抛物线开口方向是________,对称轴为________,顶点坐标为________;(3)抛物线,当x____时,随x的增大而减小;当x____时,函数y有最____值,其最____值是____.【答案与解析】函数与的图象如图所示:(1)下;l ;(2)向下;y轴;(0,1);(3)>0;=0;大;大;1.课堂练习一、选择题1. 关于函数y=的图象,则下列判断中正确的是()A. 若a、b互为相反数,则x=a与x=b的函数值相等;B. 对于同一个自变量x,有两个函数值与它对应;C. 对任一个实数y,有两个x和它对应;D. 对任意实数x,都有y>0.2. 下列函数中,开口向上的是()A. B. C. D.3. 把抛物线向上平移1个单位,所得到抛物线的函数表达式为().A.B.C.D.4. 下列函数中,当x<0时,y值随x值的增大而增大的是()A. B. C. D.5. 在同一坐标系中,作出,,的图象,它们的共同点是().A.关于y轴对称,抛物线的开口向上B.关于y轴对称,抛物线的开口向下C.关于y轴对称,抛物线的顶点都是原点D.关于原点对称,抛物线的顶点都是原点6. 晴天时,汽车的刹车距离s (m)与开始刹车时的速度v(m/s)之间满足二次函数,若汽车某次的刹车距离为2.25m,则开始刹车时的速度为( ).A. 10m/sB. 15m/sC. 20m/sD. 25m/s二、填空题7. 已知抛物线的解析式为y=-3x2,它的开口向______,对称轴为______,顶点坐标是________,当x>0时,y随x的增大而________.8. 若函数y=ax2过点(2,9),则a=________.9. 已知抛物线y=x2上有一点A,A点的横坐标是-1,过点A作AB∥x轴,交抛物线于另一点B,则△AOB的面积为________.10. 写出一个过点(1,2)的函数解析式_________________.11. 函数,、的图象大致如图所示,则图中从里向外的三条抛物线对应的函数关系式是_____________________.12. 若对于任意实数x,二次函数的值总是非负数,则a的取值范围是____________.三、解答题13.已知是二次函数,且当x>0时,y随x的增大而增大.(1)求m的值;(2)画出函数的图象.14. 已知抛物线经过A(-2,-8).(1)求此抛物线的函数解析式;(2)判断B(-1,-4)是否在此抛物线上?(3)求此抛物线上纵坐标为-6的点的坐标.15.函数y=ax2 (a≠0)的图象与直线y=2x-3交于点(1,b).(1)求a和b的值;(2)求抛物线y=ax2的解析式,并求顶点坐标和对称轴;(3)x取何值时,y随x的增大而增大?(4)求抛物线与直线y=-2的两个交点及其顶点所构成的三角形的面积.一、选择题1.【答案】A.2.【答案】D;【解析】开口方向由二次项系数a决定,a>0,抛物线开口向上;a<0,抛物线开口向下.3.【答案】A;【解析】由抛物线的图象知其顶点坐标为(0,0),将它向上平移1个单位后,抛物线的顶点坐标为(0,1),因此所得抛物线的解析式为.4.【答案】B;【解析】根据抛物线的图象的性质,当a<0时,在对称轴(x=0)的左侧,y值随x值的增大而增大,所以答案为B.5. 【答案】C;【解析】y=2x2,y=-2x2,的图象都是关于y轴对称的,其顶点坐标都是(0,0).6. 【答案】B;【解析】当s=2.25时,,v=15.二、填空题7.【答案】下;y轴;(0,0);减小;8.【答案】;【解析】将点(2,9)代入解析式中求a.9.【答案】1 ;【解析】由抛物线的对称性可知A(-1,1),B(1,1),则.10.【答案】【解析】答案不唯一.11.【答案】,,.【解析】先比较,|1|,|3|的大小关系,由|a|越大开口越小,可确定从里向外的三条抛物线所对应的函数依次是y=3x2,y=x2,.12.【答案】a>-1;【解析】二次函数的值总是非负数,则抛物线必然开口向上,所以a+1>0.三、解答题13. 【解析】解:(1)∵为二次函数,且当x>0时,y随x的增大而增大,∴,∴,∴m=1.(2)由(1)得这个二次函数解析式为,自变量x的取值范围是全体实数,可以用描点法画出这个函数的图象.如图所示.14. 【解析】解:(1)∵抛物线经过A(-2,-8),∴-8=4a,∴a=-2,抛物线的解析式为:.(2)当x=-1时,y=-2=-2≠-4,∴点B(-1,-4)不在此抛物线上.(3)当y=-6时,即,得,∴此抛物线上纵坐标为-6的点的坐标是(,-6)和(,-6).15. 【解析】解:(1)将x=1,y=b代入y=2x-3,得b=-1,所以交点坐标是(1,-1).将x=1,y=-1代入y=ax2,得a=-1,所以a=-1,b=-1.(2)抛物线的解析式为y=-x2,顶点坐标为(0,0),对称轴为直线x=0(即y轴).(3)当x<0时,y随x的增大而增大.(4)设直线y=- 2与抛物线y=-x2相交于A、B两点,抛物线顶点为O(0,0).由,,得∴A(,-2),B(,-2).∴AB=|-(-)|=2,高=|-2|=2.∴.类型二、二次函数y=a(x-h)^2+k(a≠0)的图象与性质1.将抛物线作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;(2)顶点不动,将原抛物线开口方向反向;(3)以x轴为对称轴,将原抛物线开口方向反向.【答案与解析】抛物线的顶点为(1,3).(1)将抛物线向左平移2个单位,再向下平移3个单位后,顶点为(-1,0),而开口方向和形状不变,所以a=2,得到抛物线解析式为.(2)顶点不动为(1,3),开口方向反向,则,所得抛物线解析式为.(3)因为新顶点与原顶点(1,3)关于x轴对称,故新顶点应为(1,-3).又∵抛物线开口反向,∴.故所得抛物线解析式为.2.把抛物线向上平移2个单位,再向左平移4个单位,得到抛物线,求b,c的值.【答案与解析】根据题意得,y=(x-4)2-2=x2-8x+14, 所以【变式】二次函数的图象可以看作是二次函数的图象向平移4个单位,再向平移3个单位得到的.【答案】上;右.3.已知与的图象交于A、B两点,其中A(0,-1),B(1,0).(1)确定此二次函数和直线的解析式;(2)当时,写出自变量x的取值范围.【答案与解析】(1)∵,的图象交于A、B两点,∴且解得且∴二次函数的解析式为,直线方程为.(2)画出它们的图象如图所示,由图象知当x<0或x>1时,.4.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)求△AOB的面积;(3)若点P(m,-m)(m≠0)为抛物线上一点,求与P关于抛物线对称轴对称的点Q 的坐标.(注:抛物线y=ax2+bx+c的对称轴是x=-).【答案与解析】解:(1)设二次函数的解析式为y=a(x-2)2+1,将点O(0,0)的坐标代入得:4a+1=0,解得a=-.所以二次函数的解析式为y=-(x-2)2+1;(2)∵抛物线y=-(x-2)2+1的对称轴为直线x=2,且经过原点O(0,0),∴与x轴的另一个交点B的坐标为(4,0),∴S△AOB =×4×1=2;(3)∵点P(m,-m)(m≠0)为抛物线y=-(x-2)2+1上一点,∴-m=-(m-2)2+1,解得m1=0(舍去),m2=8,∴P点坐标为(8,-8),∵抛物线对称轴为直线x=2,∴P关于抛物线对称轴对称的点Q的坐标为(-4,-8).如下图.课堂巩固一、选择题1.抛物线的顶点坐标是()A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)2.函数y=x2+2x+1写成y=a(x-h)2+k的形式是()A.y=(x-1)2+2 B.y=(x-1)2+C.y=(x-1)2-3D.y=(x+2)2-13.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是( )A.y=(x+3)2-2B.y=(x-3)2+2C.y=(x-3)2-2 D.y=(x+3)2+2 4.把二次函数配方成顶点式为()A. B.C.D.5.由二次函数,可知()A.其图象的开口向下B.其图象的对称轴为直线C.其最小值为1D.当时,y随x的增大而增大6.在同一坐标系中,一次函数与二次函数的图象可能是()二、填空题7. 抛物线y=-(•x+•3)2•-•5•的开口向_______,•对称轴是________,•顶点坐标是_______.8.已知抛物线y=-2(x+1)2-3,如果y随x的增大而减小,那么x的取值范围是_ _____.9.抛物线y=-3(2x2-1)的开口方向是_____,对称轴是_____.10.顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为.11.将抛物线向上平移3个单位,再向右平移4个单位得到的抛物线是__ _____.12.抛物线的顶点为C,已知的图象经过点C,则这个一次函数的图象与两坐标轴所围成的三角形面积为________.三、解答题13.已知抛物线的顶点(-1,-2),且图象经过(1,10),求抛物线的解析式.14. 已知抛物线向上平移2个单位长度,再向右平移1个单位长度得到抛物线;(1)求出a,h,k的值;(2)在同一直角坐标系中,画出与的图象;(3)观察的图象,当________时,y随x的增大而增大;当________时,函数y有最________值,最________值是________;(4)观察的图象,你能说出对于一切的值,函数y的取值范围吗?15.已知抛物线的顶点为A,原点为O,该抛物线交y轴正半轴于点B,且,求:(1)此抛物线所对应的函数关系式;(2)x为何值时,y随x增大而减小?一、选择题1.【答案】D;【解析】由顶点式可求顶点,由得,此时,.2.【答案】D;【解析】通过配方即可得到结论.3.【答案】A;【解析】抛物线y=x2向左平移3个单位得到y=(x+3)2,再向下平移2个单位后,所得的抛物线表达式是y=(x+3)2-2.4.【答案】B【解析】通过配方即可得到结论.5.【答案】C;【解析】可画草图进行判断.6.【答案】C;【解析】A中的符号不吻合,B中抛物线开口不正确.D中直线与y轴交点不正确.二、填空题7.【答案】下;直线x=-3 ;(-3,-5);【解析】由二次函数的图象性质可得结论.8.【答案】x≥-1;【解析】由解析式可得抛物线的开口向下,对称轴是x=-1,对称轴的右边是y随x的增大而减小,故x≥-1.9.【答案】向下,y轴;10.【答案】;【解析】设过点(1,-14)得,所以.11.【答案】;【解析】先化一般式为顶点式,再根据平移规律求解.12.【答案】1;【解析】C(2,-6),可求与x轴交于,与y轴交于(0,3),∴.三、解答题13.【答案与解析】∵抛物线的顶点为(-1,-2)∴设其解析式为,又图象经过点(1,10),∴,∴,∴解析式为.14.【答案与解析】(1)由向上平移2个单位,再向右平移1个单位所得到的抛物线是.∴,,.(2)函数与的图象如图所示.(3)观察的图象,当时,随x的增大而增大;当时,函数有最大值,最大值是.(4)由图象知,对于一切的值,总有函数值.15.【答案与解析】(1)由题意知A(2,1),令,则,所以.由得,所以,因此抛物线的解析式为.(2)当时,y随x增大而减小.类型三:二次函数y=ax^2+bx+c(a≠0)的图象与性质类型一、二次函数的图象与性质1.求抛物线的对称轴和顶点坐标.【变式】把一般式化为顶点式.(1)写出其开口方向、对称轴和顶点D的坐标;(2)分别求出它与y轴的交点C,与x轴的交点A、B的坐标.2.如图所示,抛物线的对称轴是x=1,与x轴交于A、B两点,点B的坐标为(,0),则点A的坐标是_______.类型二、二次函数的最值3.求二次函数的最小值.类型三、二次函数性质的综合应用4.已知二次函数的图象过点P(2,1).(1)求证:;(2)求bc的最大值.【答案与解析】(1)∵的图象过点P(2,1),∴1=4+2b+c+1,∴c=-2b-4.(2).∴当时,bc有最大值.最大值为2.课堂巩固一、选择题1. 将二次函数化为的形式,结果为().A.B.C.D.2.已知二次函数的图象,如图所示,则下列结论正确的是().A.B.C.D.3.若二次函数配方后为,则b、k的值分别为().A.0,5B.0,1 C.-4,5D.-4,14.抛物线的图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为,则b、c的值为().A.b=2,c=2B.b=2,c=0C.b= -2,c= -1 D.b= -3,c=25.已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(3,0),则a+b+c的值()A. 等于0B.等于1C. 等于-1D. 不能确定6.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是( )二、填空题7.二次函数的最小值是________.8.已知二次函数,当x=-1时,函数y的值为4,那么当x=3时,函数y的值为________.9.二次函数的图象经过A(-1,0)、B(3,0)两点,其顶点坐标是________.10.二次函数的图象与x轴的交点如图所示.根据图中信息可得到m 的值是________.第10题第11题11.如图二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0)且与y轴交于负半轴第①问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0其中正确的结论的序号是___;第②问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1,其中正确的结论的序号是___ __.12.已知二次函数y=x2-2x-3的图象与x轴交于点A、B两点,在x轴上方的抛物线上有一点C,且△ABC的面积等于10,则C点的坐标为__ __.三、解答题13.(1)用配方法把二次函数变成的形式;(2)在直角坐标系中画出的图象;(3)若,是函数图象上的两点,且,请比较、的大小关系.14.如图所示,抛物线与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.15.已知抛物线:(1)求抛物线的开口方向、对称轴和顶点坐标;(2)画函数图象,并根据图象说出x取何值时,y随x的增大而增大?x取何值时,y随x 的增大而减小?函数y有最大值还是最小值?最值为多少?一、选择题1.【答案】D;【解析】根据配方法的方法及步骤,将化成含的完全平方式为,所以.【解析】由图象的开口方向向下知;图象与y轴交于正半轴,所以;2.【答案】D;又抛物线与x轴有两个交点,所以;当时,所对应的值大于零,所以.3.【答案】D;【解析】因为,所以,,.4.【答案】B;【解析】,把抛物线向左平移2个单位长度,再向上平移3个单位长度后得抛物线,∴,∴,.5.【答案】A;【解析】因为抛物线y=ax2+bx+c的对称轴为x=2,且经过点(3,0),所以过点(1,0)代入解析式得a+b+c=0.6.【答案】A;【解析】分类讨论,当a>0,a<0时分别进行分析.二、填空题7.【答案】-3;【解析】∵,∴函数有最小值.当时,.8.【答案】4【解析】由对称轴,∴x=3与x=-1关于x=1对称,∴x=3时,y=4.9.【答案】(1,-4) ;【解析】求出解析式.10.【答案】4;【解析】由图象发现抛物线经过点(1,0),把,代入,得,解得.11.【答案】①④,②③④;12.【答案】(-2,5)或(4,5);【解析】先通过且△ABC的面积等于10,求出C点的纵坐标为5,点C在抛物线y=x2-2x-3上,所以x2-2x-3=5,解得x=-2或x=5,则C点的坐标为(-2,5)或(4,5).三、解答题13.【答案与解析】(1).(2)略.(3)∵,∴当时,y随x增大而减小,又,∴.14.【答案与解析】(1)把点C(5,4)代入抛物线得,,解得.∴该二次函数的解析式为.∵,∴顶点坐标为.(2)(答案不唯一,合理即正确)如先向左平移3个单位,再向上平移4个单位,得到二次函数解析式为,即.15.【答案与解析】(1)∵,b=-3,∴,把x=-3代入解析式得,.∴抛物线的开口向下,对称轴是直线x=-3,顶点坐标是(-3,2).(2)由于抛物线的顶点坐标为A(-3,2),对称轴为x=-3.抛物线与x轴两交点为B(-5,0)和C(-1,0),与y轴的交点为,取D关于对称轴的对称点,用平滑曲线顺次连结,便得到二次函数的图象,如图所示.从图象可以看出:在对称轴左侧,即当x<-3时,y随x的增大而增大;在对称轴右侧,即当x >-3时,y 随x 的增大而减小.因为抛物线的开口向下,顶点A 是抛物线的最高点,所以函数有最大值,当x =-3时,.要点三、二次函数与一元二次方程的关系函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况. (1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解 方程有两个相等实数解方程没有实数解类型一、函数与方程4.已知抛物线与x 轴没有交点.①求c 的取值范围; ②试确定直线经过的象限,并说明理由.【变式1】无论x为何实数,二次函数的图象永远在x轴的下方的条件是( )A.B.C.D.【变式2】对于二次函数,我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数(m为实数)的零点的个数是( )A.1 B.2 C.0 D.不能确定要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.类型一、利用二次函数求实际问题中的最大(小)值1.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.(1)写出商场卖出这种商品每天的销售利润y与每件的销售价x之间的函数关系;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?【答案与解析】(1)∵每件商品利润为(x-30)元.∴销售m件商品利润为m(x-30)元,又∵m=162-3x,∴每天利润y=(162-3x)(x-30).即y=-3x2+252x-4860.(2)∵y=-3x2+252x-4860=-3(x-42)2+432,又∵a=-3<0,∴当x=42时,=432(元).。

二次函数讲义

二次函数讲义

二次函数1.二次函数:当≠a 0时,y =ax 2+bx +c 或f (x )=ax 2+bx +c 称为关于x 的二次函数,其对称轴为直线x =-a b 2,另外配方可得f (x )=a (x -x 0)2+f (x 0),其中x 0=-ab 2,下同。

2.二次函数的性质:当a >0时,f (x )的图象开口向上,在区间(-∞,x 0]上随自变量x 增大函数值减小(简称递减),在[x 0, -∞)上随自变量增大函数值增大(简称递增)。

当a <0时,情况相反3.当a >0时,方程f (x )=0即ax 2+bx +c =0…①和不等式ax 2+bx +c >0…②及ax 2+bx +c <0…③与函数f (x )的关系如下(记△=b 2-4ac )。

1)当△>0时,方程①有两个不等实根,设x 1,x 2(x 1<x 2),不等式②和不等式③的解集分别是{x |x <x 1或x >x 2}和{x |x 1<x <x 2},二次函数f (x )图象与x 轴有两个不同的交点,f (x )还可写成f (x )=a (x -x 1)(x -x 2).2)当△=0时,方程①有两个相等的实根x 1=x 2=x 0=ab2-,不等式②和不等式③的解集分别是{x |x ab2-≠}和空集∅,f (x )的图象与x 轴有唯一公共点。

3)当△<0时,方程①无解,不等式②和不等式③的解集分别是R 和∅.f (x )图象与x 轴无公共点。

当a <0时,请读者自己分析。

4.二次函数的最值:若a >0,当x =x 0时,f (x )取最小值f (x 0)=ab ac 442-,若a <0,则当x =x 0=a b 2-时,f (x )取最大值f (x 0)=ab ac 442-.对于给定区间[m,n ]上的二次函数f (x )=ax 2+bx +c (a >0),当x 0∈[m, n ]时,f (x )在[m, n ]上的最小值为f (x 0); 当x 0<m 时。

二次函数讲义

二次函数讲义

二次函数考点考点一 二次函数的概念1、定义:一般地,如果y =ax 2+bx +c (a 、b 、c 为常数且a ≠0),那么y 叫x 的二次函数。

2.二次函数判断标准:(1)关于自变量x 的整式 (2)自变量x 的最高次数是2 (3)二次项的系数不等于0例1.下列函数(x ,t 是自变量)是二次函数的有______.例2.已知关于x 的函数为是二次函数,则m = .考点二 二次函数的图像例1、抛物线y=4(x-3)2的开口方向 ,对称轴是 ,顶点坐标是 , 抛物线是最 点,当x= 时,y 有最 值,其值为 。

抛物线与x 轴交点 坐标,与y 轴交点坐标 。

例2.通过配方把 写成的形式( )考点三 二次函数的性质①当a >0时,开口向上,函数在x <a 2b-, 上递减,在x >a2b -,上递增, 当x=a2b- 时,y min =a 4b -ac 42.b b1)3(72++=-m x m y 221213y x x =-+2()y a x h k =-+当x =a2b-时,y max =a 4b -ac 42.例1.由二次函数 ,可知( )A .其图象的开口向下B .当x<3时,y 随x 的增大而减小C .图象与y 轴的交点为(0,1)D .当x =-3时,y 有最小值1例2.已知二次函数,设自变量的值分别为x 1=-1,x 2=1,x 3=4,且,则对应的函数值y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2>y 3>y 1D .y 2<y 3<y 1例3、若A (1134y -,),B (254y -,),C (314y ,)为二次函数y =x 2+4x -5的图象上的三点,则1y ,2y ,3y 的大小关系是( ) A .123y y y << B .213y y y << C .312y yy << D .132y y y <<考点四 二次函数的平移——方法:上加下减,左加右减例1.将抛物线y=x ²-2x 向上平移3个单位,再向右平移4个单位得到的抛物线是________________.例2:把抛物线y =x ²+bx+c 的图象向右平移3个单位,再向下平移2个单位,所得 图象的解析式是y=x ² -3x+5,则有 ( )A.b=3,c=7B.b=-9, c =-15C.b=3,c =3D.b=-9,c=21考点五 图象的对称变换与翻转变换1.若y=ax ²+bx+c 关于x 轴对称,则可变为y=-ax ²-bx-c2.若y=ax ²+bx+c 关于y 轴对称,则可变为y=ax ²-bx+c3.若y=ax ²+bx+c 关于原点中心对称,则可变为y=-ax ²+bx-c例1、二次函数y=x ²-2x-3的图象关于原点O (0,0)对称的图象的解析式是 .例2、已知抛物线C 1的解析式是y=2x ²-4x+5,抛物线C 2与抛物线C 1关于x 轴对称, 22(3)1y x =++215322y x x =---考点六 a 、b 、c 的作用例1、已知二次函数y =ax 2+bx +c 的图象如图所示,则a ,b ,c 满足( )A .a <0,b <0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >0例2.函数y =ax+1与y =ax 2+bx+1(a ≠0)的图象可能是( )例3.图中各图是在同一直角坐标系内,一次函数y=ax+c 与二次函数y=ax 2+(a+c)x+c 的大致图象,有且只有一个是正确的,正确的是( )考点七 a 、b 、c 与函数值的关系 x = 0 时,y = c ;x = 1 时,y = a + b + c ; x =-1 时,y = a – b + c ; x = 2 时,y = 4a + 2b + c ;x =-2 时,y = 4a – 2b + c ;例1.已知函数y=ax 2+bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc<0 ②a +c<b ③ a+b+c>0 ④ 2c<3b A.1 B.2 C.3 D.4例2.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列5个结论: ① abc>0;②b<a+c ;③4a+2b+c>0;④2c<3b ;⑤ (m ≠1). 其中正确结论的序号是___________________.)(b am m b a +>+考点八二次函数的三种表达形式例1、完成下列表格:考点九待定系数法求二次函数的解析式1、运用一般式求解析式:y=ax2+bx+c(a≠0);已知抛物线上任意三点求解析式,一般采用设一般式方法求解析式。

二次函数专题全解教学讲义

二次函数专题全解教学讲义

二次函数专题全解教学讲义第一讲:二次函数基础知识讲解知识网络二次函数⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧→二次函数的应用程的关系二次函数与一元二次方二次函数的平移图象及性质解析式的求法两点式顶点式一般式分类解析式数含义二次函数一般式中的系定义(或判定)考点解读考点1:二次函数的概念:y=ax 2+bx+c(a ≠0,a 、b 、c 为常数)的函数叫做二次函数.判断二次函数的三要素,缺一不可:①函数关系式是整数;②化简后自变量的最高次数是2;③二次项的系数不为0.考点2.抛物线y=ax 2+bx+c 中系数a 、b 、c 的作用(1)a 的作用:a 的符号决定抛物线的开口方向.a>0时,抛物线开口向上;a<0时,抛物线开口向下.a 的绝对值决定抛物线的开口大小.|a|越大,抛物线开口越小.(2)b 与a 共同决定对称轴的位置:若a 、b 同号,则对称轴位于y 轴左侧;若a 、b 异号,则对称轴位于y 轴右侧;若b=0,则对称轴是y 轴.(可简单记忆为“左同右异”,一定要自己推导一篇,不但要把对称轴的横坐标和0作比较,还要联想到可以吧对称轴的横坐标和1,-1做比较)(3)c 的作用:c 的符号决定抛物线与y 轴的交点位置.若c>0,则抛物线交y 轴于正半轴;若c<0,则抛物线交y 轴于负半轴;若c=0,则抛物线过原点.c 的值就是抛物线与y 轴交点的纵坐标.(4)b 2-4ac 决定抛物线与x 轴交点的个数(5)a+b+c ,a-b+c 是分别横坐标为1,-1是y 的取值. 考点3 二次函数的解析式1.二次函数的解析式的三种设法:(1)一般式:y=ax2+bx+c (a≠0,a、b、c为常数);(2)顶点式: y=a(x-h) 2+k(a≠0,a、h、k为常数);(3)两点式:y=a(x-x1)(x-x2)(a≠0,a、x1、x2为常数).2.二次函数解析式的求法(1)若已知抛物线上三点坐标,可利用待定系数法求得y=ax2+bx+c;(2)若已知抛物线的顶点坐标或对称轴,则可采用顶点式;(3)若已知抛物线与x轴的交点坐标或交点的横坐标,则可采用两根式:y=a(x-x1)(x-x2),其中与x轴的交点坐标为(x1,0),(x2,0).考点4 二次函数的图象和性质考点5 二次函数图象的画法y=ax2+bx+c的步骤:①把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式;②确定抛物线的开口方向、对称轴和顶点坐标;③在对称轴两侧,以顶点为中心,左右对称描点画图.考点6 二次函数图象的平移:“上加下减,左加右减”(1)将y=ax2的图象向上(c>0)或向下(c<0)平移|c|个单位,即可得到y=ax2+c的图象.其顶点是(0,c).形状、对称轴、开口方向与抛物线y=ax2相同.(2)将y=ax2的图象向左(h<0)或向右(h>0)平移|h|个单位,即可得到y=a(x-h) 2的图象.其顶点是(h,0),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同.(3)将y=ax2的图象向左(h<0)或向右(h>0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x-h)2+k的图象,其顶点是(h,k),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同.考点7 二次函数与一元二次方程的关系(1)一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当函数y的值为0时的情况.(2)当二次函数y=ax2+bx+c的图象与x轴有两个交点时,则一元二次方程ax2+bx+c=0有两个不相等的实数根;当二次函数y=ax2+bx+c的图象与x轴有一个交点时,则一元二次方程ax2+bx+c=0有两个相等的实数根;当二次函数y=ax2+bx+c的图象与x轴没有交点时,则一元二次方程ax2+bx+c=0没有实数根.考点8 二次函数的应用函数的应用指的是运用函数概念建立函数模型,研究、解决某些实际问题的过程和方法,它包括两个方面:(1)用二次函数表示实际问题中变量之间的关系;(2)用二次函数解决实际问题中的最优化问题,其实质就是求函数的最大(小)值.课后测验一、填空题1、已知函数y=(m+2)xm(m+1)是二次函数,则m=______________.2、二次函数y=-x2-2x的对称轴是x=_____________3、函数s=2t-t2,当t=___________时有最大值,最大值是__________.4、已知抛物线y=ax2+x+c与x轴交点的横坐标为-1,则a+c=__________.5、抛物线y=-3(x+2)2的顶点坐标是_____,若将它旋转180º后得新的抛物线,其解析式为_________.6、抛物线y=5x-5x2+m的顶点在x轴上,则m=_____________________.7已知抛物线y=ax2+bx+c的图象与x轴有两个交点,那么一元二次方程ax2+bx+c=0的根的情况是___________________.8、已知二次函数y=x2-2x-3的图象与x轴交于A,B两点,在x轴上方的抛物线上有一点C,且△ABC的面积等于10,则点C的坐标为________.9、把抛物线y=2(x+1)2向下平移____单位后,所得抛物线在x轴上截得的线段长为5.10、如果二次函数y=x2-3x-2k,不论x取任何实数,都有y>0,则k的取值范围是________11、已知二次函数y=kx2+(2k-1)x-1与x轴交点的横坐标为x1,x2(x1<x2),则对于下列结论:(1) 当x= -2时,y=1;(2) 当x> x2时,y>0;(3)方程kx2+(2k-1)x-1=0有两个不相等的实数根x1,x2;(4) x1<-1,x2>-1;(5) x2 -x1=,其中正确的结论有:_ __ _(只需填写序号)12、已知二次函数y=x2-2(m-1)x-1-m的图象与x轴交于A(x1,0),B(x2,0), x1<0<x2,与y轴交于点C, 且满足OC(OB-OA)=2OA·OB,则该二次函数的解析式为______ _ ___二.选择题13.抛物线y=(x-1)2+1的顶点坐标是( )(A) (1,1) (B) (-1,1) (C) (1,-1) (D) (-1,-1)14.抛物线y=-x2+x+7与坐标轴的交点个数为( )(A) 3个(B) 2个(C) 1个(D) 0个15.把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2-3x+5,则有( )(A) b=3,c=7 (B) b=-9,c=-15 (C) b=3,c=3 (D) b=-9,c=2116.若二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为()(A) a+c (B) a-c (C) -c (D) c17.当a,b为实数,二次函数y=a(x-1)2+b的最小值为-1时有( )(A) a<b (B) a=b (C) a>b (D) a≥b18.已知函数y=3x2-6x+k(k为常数)的图象经过点A(0.85,y1),B(1.1,y2),C(2,y3),则有( )(A) y1<y2<y3(B) y1>y2>y3(C) y3>y1>y2(D) y1>y3>y219如果二次函数y=ax2+bx+c的顶点在y=2x2-x-1的图象的对称轴上,那么一定有( ) (A) a=2或-2 (B) a=2b (C) a=-2b (D) a=2,b= -1,c=-120抛物线y=ax2+bx+c(a<0)经过点(-1,0),且满足4a+2b+c>0.以下结论(1)a+b>0;(2)a+c>0;(3)-a+b+c>0;(4)b2-2ac>5a2其中正确的个数有( )(A) 1个(B) 2个(C) 3个(D) 4个三解答题:21.已知函数的图象经过点(3,2)(1)求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x的取值范围。

二次函数讲义

二次函数讲义

二次函数考查二次函数c bx ax y ++=2中,a 、b 、c 符号的确定1、已知二次函数c bx ax y ++=2的图象如图所示,则a 、b 、c 满足( ) A 、0,0,0><<c b a B 、0,0,0<<<c b a C 、0,0,0>><c b a D 、0,0,0><>c b a2、二次函数c x a y +-=2)1(的图象如图2所示,则直线c ax y --=不经过( ) A 、 第一象限 B 、第二象限 C 、第三象限 D 、第四象限3、小明从二次函数c bx ax y ++=2图象(图3)中,观察得出了下面的五条信息: ①0<a ,②c=0,③函数的最小值为—3,④当0<x 时0>y ,⑤当2021<<<x x 时,21y y >;你认为其中正确的个数为( ) A 、2 B 、3 C 、4 D 、54、已知二次函数c bx ax y ++=2的图象如图4所示,则在“①0<a ,②b>0,③c<0,④042>-ac b ”中正确的判断是( )A 、① ② ③ ④B 、④C 、① ② ③D 、① ④5、二次函数c bx ax y ++=2的图象如图5所示,若c b a M ++=24,c b a N +-=,c b a P +-=24,则( )A 、0,0,0>>>P N MB 、0,0,0><>P N MC 、0,0,0>><P N MD 、0,0,0><<P N M6、已知二次函数c bx ax y ++=2,且0<a ,0>+-c b a ,则一定有( )A 、042>-ac bB 、042=-ac bC 、042<-ac bD 、042≤-ac b7、关于二次函数c bx ax y ++=2的图象有下列命题:①当c=0时,函数的图象经过原点; ②当 c>0且函数的图象开口向下时,方程02=++c bx ax 必有两个不相等的实数根;③函数图象有最高点; ④当b=0时,函数的图象关于y 轴对称.其中正确命题的个数是( )A 、1个B 、2个C 、3个D 、4个8、若二次函数c x x y +-=42的图象与x 轴没有交点,其中c 为整数,则c= (只要求写出一个)。

九年级二次函数讲义

九年级二次函数讲义

二次函数 【2 】一.常识梳理1.界说:只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方.一元二次方程的标准式:ax 2+bx+c=0 (a ≠0) 个中: ax 2叫做二次项, bx 叫做一次项 , c 叫做常数项 a 是二次项系数,b 是一次项系数2.一元二次方程根的判别式(二次项系数不为0):“△”读作德尔塔,在一元二次方程ax 2+bx+c=0 (a ≠0)中△=b 2-4ac △=b 2-4ac>0 <====> 方程有两个不相等的实数根,即:x 1,x 2△=b 2-4ac=0 <====> 方程有两个相等的实数根,即:x 1=x 2△=b 2-4ac<0 <====> 方程没有实数根. 注:“<====>” 是双向推导,也就是说上面的纪律反过来也成立,如:告知我们方程没有实数根,我们便可以得出△<03.一元二次方程根与系数的关系(二次项系数不为0;△≥0),韦达定理.ax 2+bx+c=0 (a ≠0)中,设两根为x 1,x 2,那么有:因为:ax 2+bx+c=0 (a ≠0)化二次项系数为1可得, 所以:韦达定理也描写为:两根之和等于一次项系数的相反数,两根之积等于常数项.留意:(1)在一元二次方程运用题中,假如解出来得到的是两个根,那么我们要依据现实情形断定是否应舍去一个跟.5.一元二次方程的求根公式:注:任何一元二次方程都能用求根公式来求根,固然运用起来较为庞杂,但异常有用.一.求二次函数的三种情势:1. 一般式:y=ax 2+bx+c,(已知三个点)极点坐标(-2b a,244ac b a )2.极点式:y=a (x -h )2+k,(已知极点坐标对称轴) 极点坐标(h,k )3.交点式:y=a(x- x 1)(x- x 2),(有交点的情形) 与x 轴的两个交点坐标x 1,x 2对称轴为221x x h +=二.a b c 感化剖析│a │的大小决议了启齿的宽窄,│a │越大,启齿越小,│a │越小,启齿越大,a ,b 的符号配合决议了对称轴的地位,当b=0时,对称轴x=0,即对称轴为y 轴,当a,b 同号时,对称轴x=-2b a <0,即对称轴在y 轴左侧,当a,b•异号时,对称轴x=-2b a>0,即对称轴在y 轴右侧,c•的符号决议了抛物线与y 轴交点的地位,c=0时,抛物线经由原点,c>0时,与y 轴交于正半轴;c<0时,与y•轴交于负半轴,以上a,b,c 的符号与图像的地位是配合感化的,也可以互相推出.二.专题精练专题一:二次函数与一元二次方程的关系本专题重要涉及依据二次函数的图象求一元二次方程的近似根,由图象断定一元二次方抛物线 极点坐标 对称轴 地位 启齿偏向 增减性 最值y=ax2+bx+c(a>0)y=ax2+bx+c (a<0)由a,b 和c 的符号肯定由a,b 和c 的符号肯定 a>0,启齿向上a<0,启齿向下在对称轴的左侧,y 跟着x 的增大而减小. .在对称轴的左侧,y 跟着x 的增大而增大⎪⎪⎭⎫⎝⎛--a b ac a b 44,22⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=直线abx 2-=直线程根的情形,由一元二次方程根的情形断定抛物线与x 轴的交点个数等,题型重要填空题.选择题息争答题.考点1.依据二次函数的自变量与函数值的对应值,肯定方程根的规模一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情形. 例1 依据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,断定方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的规模是( )A.6 6.17x << B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x << 考点2.依据二次函数的图象肯定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情形:有两个交点.一个交点.没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.考点3.抛物线的交点个数与一元二次方程的根的情形当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3 B.2 C.1 D.0专项演习31.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值规模是________.图2图12.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为.3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情形是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,依据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值规模.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值规模.专题二.探讨几何图形中的二次函数关系【例11】在梯形ABCD 中,AD BC ∥,6AB DC AD ===,60ABC ∠=,点E F ,分离在线段AD DC ,上(点E 与点AD ,不重合),且120BEF ∠=,设AE x =,DF y =.(1)求y 与x 的函数表达式;(2)当x 为何值时,y 有最大值,最大值是若干? 教室检测1.二次函数342++=x x y 的图像可以由二次函数2x y =的图像平移而得到,下列平移准确的是( )A .先向左平移2个单位,再向上平移1个单位B .先向左平移2个单位,再向下平移1个单位;A EDFCBC .先向右平移2个单位,再向上平移1个单位D .先向右平移2个单位,再向下平移1个单位2.在平面直角坐标系中,假如抛物线y =2x 2不动,而把x 轴.y 轴分离向上.向右平移2个单位,那么在新坐标系下抛物线的解析式是( )A .y =2(x -2)2 + 2B .y =2(x + 2)2-2C .y =2(x -2)2-2D .y =2(x + 2)2 + 23.二次函数21(4)52y x =-+的启齿偏向.对称轴.极点坐标分离是( )A .向上.直线x=4.(4,5)B .向上.直线x=-4.(-4,5)C .向上.直线x=4.(4,-5)D .向下.直线x=-4.(-4,5)4.二次函数c bx ax y ++=2的图象如图所示,则下列关系式不准确的是( )A.a <0B.abc >0C.c b a ++>0D.ac b 42->05.函数2y ax b y ax bx c =+=++和在统一向角坐标系内的图象大致是 ( )6.二次函数2(0)y ax bx c a =++≠的图象如图4所示, 则下列说法不准确的是( ) A .240b ac ->B .0a >C .0c >D .02ba -<7.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b.个中准确结论是( ).A .②④B .①④C .②③D .①③ 8.已知关于x 的函数同时知足下列三个前提:..O xy1-1 BA ①函数的图象不经由第二象限;②当2<x 时,对应的函数值0<y ;③当2<x 时,函数值y 随x 的增大而增大.你以为相符请求的函数的解析式可所以:(写出一个即可).9.如右图,抛物线n x x y ++-=52经由点)0,1(A ,与y 轴交于点B.(1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△PAB 是等腰三角形,试求点P 的坐标.《专题五.形积问题》 形积专题1.(中考变式)如图,抛物线c bx x y ++-=2与x 轴交与A(1,0),B(-3,0)两点,极点为D.交Y 轴于C求该抛物线的解析式与△ABC 的面积.2.(08湛江)如图所示,已知抛物线21y x =-与x 轴交于A .B 两点,与y 轴交于点C . 求A .B .C 三点的坐标.过A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积.三.教室检测1.已知函数y =ax 2+bx +c ,当x =3时,函数的最大值为4,当x =0时,y =-14,则函数关系式____. 2.请写出一个启齿向上,对称轴为直线x =2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .3.函数42-=x y 的图象与y 轴的交点坐标是________. 4.抛物线y = ( x – 1)2 – 7的对称轴是直线 ..5.二次函数y =2x 2-x -3的启齿偏向_____,对称轴_______,极点坐标________.6.已知抛物线y =ax 2+bx +c (a ≠0)与x 轴的两个交点的坐标是(5,0),(-2,0),则方程ax 2+bx +c =0(a ≠0)的解是_______.7.用配办法把二次函数y =2x 2+2x -5化成y =a (x -h )2+k 的情势为___________. 8.抛物线y =(m -4)x 2-2mx -m -6的极点在x 轴上,则m =______.9.若函数y =a (x -h )2+k 的图象经由原点,最小值为8,且外形与抛物线y =-2x 2-2x +3雷同,则此函数关系式______.快活功课1.抛物线y =-2(x -1)2-3与y 轴的交点纵坐标为( ) (A )-3 (B )-4 (C )-5 (D)-12.将抛物线y =3x 2向右平移两个单位,再向下平移4个单位,所得抛物线是( ) (A) y =3(x +2)2+4 (B) y =3(x -2)2+4 (C) y =3(x -2)2-4 (D)y =3(x +2)2-43.抛物线y =21x 2,y =-3x 2,y =x 2的图象启齿最大的是( ) (A) y =21x 2 (B)y =-3x 2 (C)y =x 2 (D)无法肯定4.二次函数y =x 2-8x +c 的最小值是0,那么c 的值等于( ) (A)4 (B)8 (C)-4 (D)165已知抛物线2y ax bx c =++ 经由(-1,0),(0,-3),(2,-3)三点.⑴求这条抛物线的表达式;⑵写出抛物线的启齿偏向.对称轴和极点坐标. 6.如图,△OAB 是边长为2的等边三角形,过点A 的直线。

九年级数学二次函数同步讲义

九年级数学二次函数同步讲义

九年级数学培优班第二周课程表第五节 二次函2ax y =的图象【知识要点】1.二次函数2x y =的图象.用描点法画出二次函数2x y =的图象,如图, 它是一条关于y 轴对称的曲线,这样的曲线叫做抛物线. 2.二次函数2x y =的有关性质.因为抛物线2x y =关于y 轴对称,所以y 轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的顶点,从图上看,抛物线2x y =的顶点是图象的最低点,因为抛物线2x y =有最低点,所以函数2x y =有最小值,它的最小值就是最低点的纵坐标. 3.二次函数2ax y =的图象画法.用描点画二次函数2ax y =的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值,这样的对应值选取越密集,描出的图象越准确。

4.二次函数2ax y =的性质.(1)二次函数()02≠=a ax y 的性质,见下表:(2)抛物线2ax y =的对称轴是y 轴,顶点是原点,当0>a 时,抛物线开口向上,在对称轴左侧部分,y 随x 的增大而减小;在对称轴右侧部分,y 随x 的增大而增大.当0<a 时,抛物线开口向下,在对称轴左侧部分,y 随x 的增大而增大;在对称轴右侧部分,y 随x 的增大而减小;a 的大小决定抛物线2ax y =的开口大小,a 越大,抛物线开口越小;a 越小,抛物线开口越大.月 日同学们, 加油!!【典型例题】例1.在同一坐标系内,画出下列函数的图象(1)y=2x 2(2)y=-2x 2例2.填空 1.函数y=31x 2的图象开口 ,顶点坐标为 ,对称轴为 ,当x= 时,y 有最 值。

2.函数y=-31x 2的图象开口 顶点坐标为 ,对称轴为 ,当x= 时,y 有最 值。

例3.已知抛物线2ax y =经过点()8,2--A .(1)判断点()4,1--B 是否在此抛物线上;(2)求出此抛物线上纵坐标为-6的点的坐标.例4.如图所示,已知直线AB 经过x 轴上的点()0,2A ,且与抛物线2ax y =相交于C B ,两点.已知B 点坐标为()1,1.(1)求直线和抛物线的解析式;(2)如果D 为抛物线上一点,使得OBC AOD ∆∆与的面积相等,求D 点坐标.例5.已知函数()422-++=m mx m y 是关于x 的二次函数,求:(1)满足条件的m 值;(2)m 为何值时,抛物线有最低点?求出这个最低点,这时当x 为何值时,y 随x 的增大而增大? (3)m 为何值时,函数有最大值?最大值是多少?这时当x 为何值时,y 随x 的增大而减小?例6.函数2kx y =和函数k kx y +=的图象,在同一坐标系中的图象大致如图中的( ).例7.设直线()0≠+=k b kx y 与抛物线2ax y =的两个交点的横坐标分别为1x 和2x ,且直线与x 轴的交点的横坐标为3x .求证:321111x x x =+.例8.函数()02≠=a ax y 的图象与直线32-=x y 交于点()b ,1,求:(1)a 和b 的值;(2)求抛物线2ax y =的解析式,并求顶点坐标和对称轴; (3)x 取何值时,二次函数2ax y =中的y 随x 的增大而增大; (4)求抛物线与直线2-=y 的两交点及顶点所构成的三角形面积.随堂练习一.选择题:1.下列说法错误的是( ).A 、二次函数22x y -=,当0=x 时,y 有最大值0B 、二次函数24x y =,当0>x 时,y 随x 的增大而增大C 、在三条抛物线22222,,5.0,2x y x y x y x y =-=-==中的开口最小,2x y -=的开口最大D 、不论a 是正数还是负数,抛物线()02≠=a ax y 的顶点一定是坐标原点2.直线ax y =与抛物线()02≠=a ax y ( ). A 、只相交于一点()a ,1 B 、只相交于一点()0,0 C 、没有交点 D 、相交于两点()0,0、()a ,13.下列抛物线中,开口方向向下且开口最大的是( ). A 、2x y -=B 、232x y -= C 、231x y = D 、23x y -=4.已知二次函数2ax y =当0,0<<y a 时,那么自变量x 的取值范围是( ).A 、0>xB 、0≠xC 、0<xD 、x 取任意实数5.已知点()8,a 在抛物线2ax y =上,则a 的值为( ).A 、2B 、-2C 、2±D 、22±6.二次函数2ax y =与一次函数a x y -=2的图象只有一个交点,则a 的值为( ).A 、1B 、-1C 、1±D 、以上答案都不对7.函数()323--=m x m y 为x 的二次函数,且图象的开口向下,则m 的取值为( ).A 、5,5-==m mB 、5=mC 、5-=mD 、以上答案都不对8.已知二次函数()02≠=m mx y ,则( ). A 、当0,00=>=最小值时且y m xB 、当m y x 4,2=-=最小值时C 、当m y m x 4,02=<=最小值时且D 、当m y m x =>=最大值时且,019.抛物线()()662->+=m x m y 的顶点坐标是( ).‘ A 、()6,1+m B 、()6,1---m C 、()0,0 D 、()()6,14,4+m10.已知常数2>k ,在二次函数①2kx y =;②21x k y =;③21x kk y +=中,图象在同一水平线上的开口大小的顺序用题号来表示应是( ). A 、③>①>②B 、②>③>①C 、①>②>③D 、①>③>②二、填空题:1.已知点()81,-n H 在抛物线227x y -=上,(1)n 的值为 ;(2)点()81,--n K抛物线227x y -=上吗?答: .2.当k = 时,抛物线kkkx y -=2的开口向下;若把此函数图象顶点旋转︒180,则二次项系数是 .3.已知二次函数2ax y =的图象经过()()k ,43,2与-,则(1)=k ;(2)()210x k y -=的图象在其对称轴的左侧y 随x 增大的变化情况是 .三、解答题:1.如图,点P 是抛物线2x y =上在第一象限内的一个点,点A 的坐标是(30,).(1)若点P 的坐标为(y x ,),求OPA ∆的面积S 与y 的关系式; (2)S 是y 的什么函数?S 是x 的什么函数?2.已知一次函数b kx y +=与二次函数2ax y =的图象如图,其中b kx y +=与x 轴、y 轴的交点分别为()0,2A 、()2,0B ,与二次函数图象的交点为P 、Q ,P 、Q 的纵坐标之比为1:4,求这两个函数的解析式.x姓名: 成绩:3.某河上有抛物线形拱桥,当水面距拱顶5m 时,水面宽8m4m ,高2m ,载货后,木船露出水面的部分为m 43拱顶相距多少米时,木船开始不能通航?独立训练1.当=x 时,函数2x y -=有最大值 .2.若函数()()23211xm x m y ++-=的图象是抛物线,则m = .3.如果二次函数2ax y =的图象经过()1,3,则这个函数是=y .4.若点()2,-m A 是抛物线221x y -=上的一点,则m = .5.直线12+=x y 与抛物线23x y =的交点坐标是 .6.当2x y 与成正比例,且当3=x 时,18-=y ,则x y 与之间的函数关系是 .姓名: 日期:7.如果抛物线2ax y =和直线b x y +=都经过点()4,2P ,则a ,b ,直线不经过第 象限,抛物线不经过第 象限.8.直线32+=x y 与抛物线2ax y =交于B A ,两点,已知A 点的横坐标是3,求B A ,两点的坐标及抛物线的解析式.9.如图所示,B A ,为抛物线2x y =上两点.AB ∥x 轴,A 点横坐标为1+a ,C 也是抛物线上一点(不与B A ,重合),C 点横坐标为a .若ABC a ∆>,0面积为28,求a 值;第六节 二次函数c ax y +=2的图象【知识要点】1.二次函数()02≠+=a c ax y 的图象画法. 方法一:用“列表、描点、连线”方法来画; 方法二:将二次函数()20y axa =≠的图象向上或向下平移c 个单位.当0>c 时,向上平移c 个单位;当0<c 时,向下平移-c 个单位.2.探索二次函数()02≠+=a c ax y 的性质3.利用二次函数()02≠+=a c ax y 的性质解有关简单的实际问题.(1)根据题意建立二次函数关系式,并注意其定义域;(2)应用二次函数()02≠+=a c ax y 的性质解决相关的实际问题.【经典例题】例1.在同一直角坐标系中,分别画出下列函数的图象.221x y -=,2212+-=x y ,1212--=x y ;例2.如图,一次函数b ax y +=与二次函数b ax y -=2在同一坐标系中的图象是( ).例3.已知二次函数22-=ax y 的图象经过点(1,-1),求这个二次函数的解析式,并判断该函数图象与x 轴的交点个数.例4.已知二次函数12+=ax y 与正比例函数kx y =的图象有一个公共点是()1,1--.(1)求二次函数及正比例函数的解析式;(2)能否找到一个自变量x 的最大取值范围,使得二次函数与正比例函数值都随x 的增大而增大?若能,写出这个取值范围;若不能,说明理由.OAOBOCOD例5.如图,二次函数m mx y 42+-=的顶点坐标为()2,0,矩形的顶点C B ,在x 轴上,D A ,在抛物线上,矩形ABCD 在抛物线与x 围成的图形内.(1)求二次函数的解析式;(2)设点A 的坐标为()y x ,,试求矩形ABCD 的周长P 关于自变量的函数解析式,并求出自变量x 的取值范围;例6.如图是抛物线拱桥,已知水位在AB 位置时,水面宽64米,水位上升3米就达到警戒线CD ,这时水面宽34米.若洪水到来时,水位以每小时0.25米速度上升,求水过警戒线后几小时淹到拱顶?【归纳小结与学法指导】本节主要内容是二次函数()02≠+=a c ax y 的图象及其性质;利用二次函数()02≠+=a c ax y 的图象及性质解决一些简单的实际问题.学习二次函数()02≠+=a c ax y 的图象及性质要与二次函数()02≠=a ax y 的图象及性质进行类比,这样便于理解和掌握,实际上二次函数()02≠+=a c ax y 的图象可由二次函数()02≠=a ax y 的图象向上或向下平移而得到.它们的性质除顶点以外,其他性质都相同.用二次函数()02≠+=a c ax y 的图象及性质来解决一些简单实际问题,一般来说,首先用待定系数法,根据已知条件确定二次函数()02≠+=a c ax y 的解析式,然后再用其性质解决有关实际问题.随堂练习一、选择题:1.函数2x y =具有的性质有( ).A 、当x 为任意实数时,y 值总为正B 、当x 值增加时,y 值也增加C 、它的图象关于y 轴对称D 、它的图象在第一、三象限内2.在平面直角坐标系中,抛物线2ax y =与直线32+=x y 相交于B A ,两点,已知点A 的坐标是()m ,1-,则B 点坐标是( ).A 、()5,1B 、()9,3C 、()3,3--D 、()1,1-3.下列四个函数:①x y 2=;②x y 23-=;③()0122≥-=x x y ;④252x y -=.其中,在自变量x 的取值范围内,y 随x 增大而增大的函数的个数为( )个.A 、1B 、2C 、3D 、44.在半径4cm 的圆中,挖去一个半径为x cm 的圆面,剩下圆环的面积为2ycm ,则y 与x 的函数关系为( ).A 、42-=x y π B 、()22x y -=πC 、()42+-=x y D 、ππ162+-=x y5.下列不是二次函数是( ).A 、质量为m 的物体运动时的能量E 与它的运动速度v 之间的关系B 、电阻为R 的导线,当导线中有电流通过时单位时间所产生的热量Q 与电流强度I 之间的关系C 、圆的面积S 与圆的半径R 之间的关系D 、路程s 与匀速行走的时间t 之间的关系6.已知h 关于t 的函数关系式为221gt h =(g 为正常数,t 为时间),则函数图象为( ).二、解答题:1.已知()n m ,是抛物线c ax y +=2上的点,求证:点()n m ,-在抛物线c ax y +=2上.ABCD2.函数()042≠+=a ax y 与直线23+=x y 的图象交于点()b ,2,求: (1)a 和b 的值;(2)求抛物线的开口方向、对称轴、顶点坐标.3.如图,这是某市一处十字路口立交桥横断面在平面直角坐标系中的示意图,横断面的地平线为x 轴,横断面的对称轴为y 轴,桥拱的D DG '部分为一段抛物线,顶点G 的高度为8m ,AD 和D A ''是两侧高为5.5m 的支柱,OA 和A O '为两个方向的汽车通行区,宽都为15m ,线段CD 和线段D C ''为两段对称的上桥斜坡,其坡度为1∶4.(1)求桥拱D DG '所在抛物线的解析式及C C '和长;(2)E B BE ''和为支撑斜坡的立柱,其高都为4m ,相应的B A AB ''和为两个方向的行人及非机动车的通行区,试求B A AB ''和的宽;(3)按规定汽车通过该桥时,载货最高处和桥拱之间的距离不得小于0.4m ,今天有一大型运货汽车,装载某大型设备后,其宽为4m ,车载大型设备的顶部与地面的距离为7m ,它能否从()A O OA '或区域安全通过?请说明理由.姓名: 成绩:独立训练1.若抛物线a ax y a +=-222开口向下,则a = .2.若抛物线()12144-+=-k kx y k顶点位于x 轴上方,则=k .3.已知二次函数()212x y -=,自变量x ,一定有0>y 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数讲义§2.1 二次函数所描述的关系知识点归纳:二次函数的定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数具备三个条件,缺一不可:(1)是整式方程;(2)是一个自变量的二次式;(3)二次项系数不为0典型例题:例1、 函数y=(m +2)x22-m +2x -1是二次函数,则m= .例2、 下列函数中是二次函数的有( )①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=21x+x .A .1个B .2个C .3个D .4个例3、某商场将进价为40元的某种服装按50元售出时,每天可以售出300套.据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场将售价定为x ,请你得出每天销售利润y 与售价的函数表达式.例4 、如图,正方形ABCD 的边长为4,P 是BC 边上一点,QP ⊥AP 交DC 于Q ,如果BP=x ,△ADQ 的面积为y ,用含x 的代数式表示y .训练题:1.已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数. 2.当m 时,y=(m -2)x22-m 是二次函数.3.已知菱形的一条对角线长为a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线a 的关系.4.在物理学内容中,如果某一物体质量为m ,它运动时的能量E 与它的运动速度v 之间的关系是E=21mv 2(m 为定值).(1)若物体质量为1,填表表示物体在v 取下列值时,E 的取值:v 1 2 3 4 5 6 7 8 E(2)若物体的运动速度变为原来的2倍,则它运动时的能量E 扩大为原来的多少倍? 5、请你分别给a ,b ,c 一个值,让c bx ax y ++=2为二次函数,且让一次函数y=ax+b 的图像经过一、二、三象限6.下列不是二次函数的是( )A .y=3x 2+4B .y=-31x 2 C .y=52-xD .y=(x +1)(x -2)7.函数y=(m -n )x 2+mx +n 是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数8.如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135°的两面墙,另外两边是总长为30米的铁栅栏.(1)求梯形的面积y 与高x 的表达式;(2)求x 的取值范围.9.如图,在矩形ABCD中,AB=6cm,BC=12cm.点P从点A开始沿AB方向向点B以1cm/s 的速度移动,同时,点Q从点B开始沿BC边向C以2cm/s的速度移动.如果P、Q两点分别到达B、C两点停止移动,设运动开始后第t秒钟时,五边形APQCD的面积为Scm2,写出S与t的函数表达式,并指出自变量t的取值范围.10.已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8.点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF.设DE=x,DF=y.(1)AE用含y的代数式表示为:AE= ;(2)求y与x之间的函数表达式,并求出x的取值范围;(3)设四边形DECF的面积为S,求S与x之间的函数表达式.§2.2 结识抛物线知识点归纳:1、作图“三步取”:一般地,二次函数图像的作法和一次函数及反比例函数图像的作法过程相同,都是三步:列表、描点、连线。

规律技巧:列表时注意以0为中心,对称取值(一般取3-4组值)。

观察图像,可得抛物线的开口方向、对称轴。

学习过程:一、作二次函数y=x2的图象。

二、议一议:1.你能描述图象的形状吗?与同伴交流。

2.图象与x轴有交点吗?如果有,交点的坐标是什么?3.当x<0时,y随着x的增大,y的值如何变化?当x>0时呢?4.当x取什么值时,y的值最小?5.图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流。

三、y=x2的图象的性质:典型例题:例1、求出函数y=x+2与函数y=x2的图象的交点坐标.例2、在同一直角坐标系中画出y=3x2、y=- 3x2 的图像例3、已知a<-1,点(a-1,y1)、(a,y2)、(a+1,y3)都在函数y=x2的图象上,则()A.y1<y2<y3 B.y1<y3<y2 C.y3<y2<y1 D.y2<y1<y3训练题:1.函数y=x 2的顶点坐标为 .若点(a ,4)在其图象上,则a 的值是 . 2.若点A (3,m )是抛物线y=-x 2上一点,则m= .3.函数y=x 2与y=-x 2的图象关于 对称,也可以认为y=-x 2,是函数y=x 2的图象绕 旋转得到.4.若二次函数y=ax 2(a ≠0),图象过点P (2,-8),则函数表达式为 .5.点A (21,b )是抛物线y=x 2上的一点,则b= ;点A 关于y 轴的对称点B是 ,它在函数 上;点A 关于原点的对称点C 是 ,它在函数 上.6.若a >1,点(-a -1,y 1)、(a ,y 2)、(a +1,y 3)都在函数y=x 2的图象上,判断y 1、y 2、y 3的大小关系?7.如图,A 、B 分别为y=x 2上两点,且线段AB ⊥y 轴,若AB=6,则直线AB 的表达式为( )A .y=3B .y=6C .y=9D .y=368、函数y=ax 2 (a ≠0)的图像与直线y=-2x-3交于点(1,b ) (1)求a 和b 的值(2)求抛物线y=ax 2 的解析式,并求出顶点坐标和对称轴; (3)x 取何值时,二次函数y=ax 2 中的y 随x 的增大而增大? (4)求抛物线与直线y=-2的两个交点及顶点所构成的三角形的面积。

9、如图,把抛物线2y x=与直线1y=围成的图形OABC绕原点O顺时针旋转90°后,再沿x轴向右平移1个单位得到图形1111O A B C,则下列结论错误..的是()A.点1O的坐标是(10),B.点1C的坐标是(21)-,C.四边形111O BA B是矩形D.若连接OC,则梯形11OCA B的面积是310、有一座抛物线形拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米。

(1)在如图3所示的直角坐标系中,求出该抛物线的解析式;(2)在正常水位的基础上,当水位上升h(米)时,桥下水面的宽度为d(米)。

试求出将d表示为h的函数解析式;(3)设正常水位时,桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,求水深超过多少米时就会影响过往船只在桥下顺利航行。

§2.3 刹车距离与二次函数学习目标:1.经历探索二次函数y=ax2和y=ax2+c的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验.2.会作出y=ax2和y=ax2+c的图象,并能比较它们与y=x2的异同,理解a与c对二次函数图象的影响.3.能说出y=ax2+c与y=ax2图象的开口方向、对称轴和顶点坐标.4.体会二次函数是某些实际问题的数学模型.学习重点:二次函数y=ax2、y=ax2+c的图象和性质,因为它们的图象和性质是研究二次函数y=ax2+bx+c的图象和性质的基础.我们在学习时结合图象分别从开口方向、对称轴、顶点坐标、最大(小值)、函数的增减性几个方面记忆分析.Oyx1OB1B1C1A11A-(,)11C(,)学习难点:由函数图象概括出y=ax 2、y=ax 2+c 的性质.函数图象都由(1)列表,(2)描点、连线三步完成.我们可根据函数图象来联想函数性质,由性质来分析函数图象的形状和位置. 学习过程: 一、复习:二次函数y=x 2 与y=-x 2的性质:抛物线 y=x 2 y=-x 2 对称轴 顶点坐标 开口方向 位置 增减性 最值你知道两辆汽车在行驶时为什么要保持一定距离吗? 刹车距离与什么因素有关?有研究表明:汽车在某段公路上行驶时,速度为v(km/h)汽车的刹车距离s(m)可以由公式: 晴天时:21001v s =;雨天时:2501v s =,请分别画出这两个函数的图像:三、动手操作、探究:1.在同一平面内画出函数y=2x 2与y=2x 2+1的图象。

2.在同一平面内画出函数y=3x 2与y=3x 2-1的图象。

比较它们的性质,你可以得到什么结论?典型例题:例1 、已知抛物线y=(m +1)x mm +2开口向下,求m 的值.例2 、k 为何值时,y=(k +2)x 622--k k 是关于x 的二次函数?例3、在同一坐标系中,作出函数①y=-3x 2,②y=3x 2,③y=21x 2,④y=-21x 2的图象,并根据图象回答问题:(1)当x=2时,y=21x 2比y=3x 2大(或小)多少?(2)当x=-2时,y=-21x 2比y=-3x 2大(或小)多少?例4、已知直线y=-2x +3与抛物线y=ax 2相交于A 、B 两点,且A 点坐标为(-3,m ).(1)求a 、m 的值;(2)求抛物线的表达式及其对称轴和顶点坐标;(3)x 取何值时,二次函数y=ax 2中的y 随x 的增大而减小; (4)求A 、B 两点及二次函数y=ax 2的顶点构成的三角形的面积.例5、如图,已知一抛物线形大门,其地面宽度AB =18m.一同学站在门内,在离门脚B 点1m 远的D 处,垂直地面立起一根1.7m 长的木杆,其顶端恰好顶在抛物线形门上C 处.根据这些条件,请你求出该大门的高度h.训练题:1.抛物线y=-4x 2-4的开口向 ,当x= 时,y 有最 值,y= . 2.当m= 时,y=(m -1)xmm +2-3m 是关于x 的二次函数.3.抛物线y=-3x 2上两点A (x ,-27),B (2,y ),则x= ,y= .4.当m= 时,抛物线y=(m +1)xmm 2+9开口向下,对称轴是 .在对称轴左侧,y 随x 的增大而 ;在对称轴右侧,y 随x 的增大而 .5.抛物线y=3x 2与直线y=kx +3的交点为(2,b ),则k= ,b= . 6.已知抛物线的顶点在原点,对称轴为y 轴,且经过点(-1,-2),则抛物线的表达式为.7.在同一坐标系中,图象与y=2x 2的图象关于x 轴对称的是( )A .y=21x 2B .y=-21x 2C .y=-2x 2D .y=-x 28.抛物线,y=4x 2,y=-2x 2的图象,开口最大的是( )A .y=41x 2B .y=4x 2C .y=-2x 2D .无法确定9.对于抛物线y=31x 2和y=-31x 2在同一坐标系里的位置,下列说法错误的是( ) A .两条抛物线关于x 轴对称 B .两条抛物线关于原点对称C .两条抛物线关于y 轴对称D .两条抛物线的交点为原点10.二次函数y=ax 2与一次函数y=ax +a 在同一坐标系中的图象大致为( )11.已知函数y=ax 2的图象与直线y=-x +4在第一象限内的交点和它与直线y=x 在第一象限内的交点相同,则a 的值为( )A .4B .2C .21D .4112.求符合下列条件的抛物线y=ax 2的表达式:(1)y=ax 2经过(1,2); (2)y=ax 2与y=21x 2的开口大小相等,开口方向相反; (3)y=ax 2与直线y=21x +3交于点(2,m ). 13.如图,直线ι经过A (3,0),B (0,3)两点,且与二次函数y=x 2+1的图象,在第一象限内相交于点C .求:(1)△AOC 的面积;(2)二次函数图象顶点与点A 、B 组成的三角形的面积.14.有一座抛物线型拱桥,桥下面在正常水位AB时宽20m.水位上升3m,就达到警戒线CD,这时,水面宽度为10m.(1)在如图2-3-9所示的坐标系中求抛物线的表达式;(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?15、(2008兰州)一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.(共10分)§2.4 二次函数cbxaxy++=2的图象知识点归纳:1、求抛物线的顶点、对称轴的方法(1)公式法:abacabxacbxaxy442222-+⎪⎭⎫⎝⎛+=++=,∴顶点是),(abacab4422--,对称轴是直线abx2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()khxay+-=2的形式,得到顶yxO BAC20m10mEF图16m点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.2、二次函数的图象及性质:(1)二次函数y=ax 2 (a ≠0)的图象是一条抛物线,其顶点是原点,对称轴是y 轴;当a >0时,抛物线开口向上,顶点是最低点;当a <0时,抛物线开口向下,顶点是最高点;a 越小,抛物线开口越大.(2)二次函数c bx ax y ++=2的图象是一条对称轴平行y 轴或者与y 轴重合的抛物线.顶点为(-2b a ,244ac b a -),对称轴x=-2ba;当a >0时,抛物线开口向上,图象有最低点,且x>-2b a ,y 随x 的增大而增大,x <-2ba,y 随x 的增大而减小;当a <0时,抛物线开口向下,图象有最高点,且x >-2b a ,y 随x 的增大而减小,x <-2ba,y 随x 的增大而增大.(3)当a >0时,当x=-2b a 时,函数有最小值244ac b a -;当a <0时,当x x=-2ba 时,函数有最大值244ac b a-3、图象的平移:将二次函数y=ax 2 (a ≠0)的图象进行平移,可得到y=ax 2+c ,y=a(x -h)2,y=a(x -h)2+k 的图象.⑴ 将y=ax 2的图象向上(c >0)或向下(c< 0)平移|c|个单位,即可得到y=ax 2+c 的图象.其顶点是(0,c )形状、对称轴、开口方向与抛物线y=ax 2相同. ⑵ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,即可得到y=a(x -h)2的图象.其顶点是(h ,0),对称轴是直线x=h ,形状、开口方向与抛物线 y=ax 2相同.⑶ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x -h)2 +k 的图象,其顶点是(h ,k ),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同. 记住规律:左加右减,上加下减典型例题:例1、二次函数y=ax 2+bx 2+c 的图象如图所示,则a 0,b 0,c 0(填“>”或“<”=.)例2、二次函数y=ax 2+bx +c 与一次函数y=ax +c 在同一坐标系中的图象大致是图中的( )例3、在同一坐标系中,函数y=ax 2+bx 与y=xb的图象大致是图中的( )例4、如图所示的是桥梁的两条钢缆具有相同的抛物线形状.按照图中建立的直角坐标系,左面的一条抛物线可以用y=0.0225x 2+0.9x +10表示,而且左右两条抛物线关于y 轴对称,你能写出右面钢缆的表达式吗?例5、图中各图是在同一直角坐标系内,二次函数y=ax 2+(a +c )x +c 与一次函数y=ax +c 的大致图象,有且只有一个是正确的,正确的是( )例6、抛物线y=ax 2+bx +c 如图所示,则它关于y 轴对称的抛物线的表达式是 .例7、已知二次函数y=(m-2)x2+(m+3)x+m+2的图象过点(0,5)(1)求m的值,并写出二次函数的表达式;(2)求出二次函数图象的顶点坐标、对称轴.例8、已知抛物线y=a(x-t-1)2+t2(a,t是常数,a≠0,t≠0)的顶点是A,抛物线y=x2-2x+1的顶点是B(如图).(1)判断点A是否在抛物线y=x2-2x+1上,为什么?(2)如果抛物线y=a(x-t-1)2+t2经过点B.①求a的值;②这条抛物线与x轴的两个交点和它的顶点A能否成直角三角形?若能,求出t的值;若不能,请说明理由.例9、如图所示,有一边长为5cm的正方形ABCD和等腰三角形PQR,PQ=PR=5cm,PR=8cm,点B、C、Q、R在同一直线ι上.当CQ两点重合时,等腰△PQR以1cm/秒的速度沿直线ι按箭头所示方向开始匀速运动,t秒后,正方形ABCD与等腰△PQR重合部分的面积为Scm2.解答下列问题:(1)当t=3秒时,求S的值;(2)当t=5秒时,求S的值;例10、某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日生产的产品全部售出.已知生产x只玩具熊猫的成本为R(元),每只售价为P(元),且R,P与x的表达式分别为R=500+30x,P=170-2x.(1)当日产量为多少时,每日获利为1750元?(2)当日产量为多少时,可获得最大利润?最大利润是多少?训练题:1.抛物线y=-2x 2+6x -1的顶点坐标为 ,对称轴为 .2.如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx +c 的大致图象为( )3.已知二次函数y=41x 2-25x +6,当x= 时,y 最小= ;当x 时,y 随x 的增大而减小.4.抛物线y=2x 2向左平移1个单位,再向下平移3个单位,得到的抛物线表达式为.5.二次函数y=ax 2+bx +c 的图象如图所示,则ac 0.(填“>”、“<”或“=”=)。

相关文档
最新文档