空间点、直线、平面之间的位置关系(人教A版)
人教A版高中数学二同步学习讲义:第二章 点、直线、平面之间的位置关系2.1.3~2.1.4 含答案
2。
1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系学习目标 1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系.2.学会用图形语言、符号语言表示三种位置关系.3。
掌握空间中平面与平面的位置关系.知识点一直线和平面的位置关系思考如图所示,在长方体ABCD—A1B1C1D1中线段BC1所在的直线与长方体的六个面所在的平面有几种位置关系?答案三种位置关系:(1)直线在平面内;(2)直线与平面相交;(3)直线与平面平行.梳理直线l与平面α的位置关系(1)直线l在平面α内(l⊂α).(2)直线l在平面α外l⊄α错误!知识点二两个平面的位置关系思考观察前面问题中的长方体,平面A1C1与长方体的其余各个面,两两之间有几种位置关系?答案两种位置关系:两个平面相交或两个平面平行.梳理平面α与平面β的位置关系位置关系图示表示法公共点个数两平面平行α∥β0个两平面相交α∩β=l无数个点(共线)类型一直线与平面的位置关系例1下列四个命题中正确命题的个数是()①如果a,b是两条直线,a∥b,那么a平行于经过b的任何一个平面;②如果直线a和平面α满足a∥α,那么a与平面α内的任何一条直线平行;③如果直线a,b和平面α满足a∥b,a∥α,b⊄α,那么b∥α;④如果a与平面α上的无数条直线平行,那么直线a必平行于平面α.A.0 B.1 C.2 D.3答案B解析如图,在正方体ABCD-A′B′C′D′中,AA′∥BB′,AA′在过BB′的平面ABB′A′内,故命题①不正确;AA′∥平面BCC′B′,BC⊂平面BCC′B′,但AA′不平行于BC,故命题②不正确;③中,假设b与α相交,因为a∥b,所以a与α相交,这与a∥α矛盾,故b∥α,即③正确;④显然不正确,故答案为B。
反思与感悟空间中直线与平面只有三种位置关系:直线在平面内,直线与平面相交,直线与平面平行.本题借助几何模型判断,通过特例排除错误命题.对于正确命题,根据线、面位置关系的定义或反证法进行判断,要注意多种可能情形.跟踪训练1下列命题(其中a,b表示直线,α表示平面):①若a∥b,b⊂α,则a∥α;②若a∥α,b∥α,则a∥b;③若a∥b,b∥α,则a∥α;④若a∥α,b⊂α,则a∥b.其中正确命题的个数是()A.0 B.1 C.2 D.3答案A解析如图所示,在长方体ABCD—A′B′C′D′中,AB∥CD,AB⊂平面ABCD,但CD⊂平面ABCD,故①错误;A′B′∥平面ABCD,B′C′∥平面ABCD,但A′B′与B′C′相交,故②错误;AB∥A′B′,A′B′∥平面ABCD,但AB⊂平面ABCD,故③错误;A′B′∥平面ABCD,BC⊂平面ABCD,但A′B′与BC异面,故④错误.类型二平面与平面之间的位置关系错误!例2α、β是两个不重合的平面,下面说法中,正确的是() A.平面α内有两条直线a、b都与平面β平行,那么α∥βB.平面α内有无数条直线平行于平面β,那么α∥βC.若直线a与平面α和平面β都平行,那么α∥βD.平面α内所有的直线都与平面β平行,那么α∥β答案D解析A、B都不能保证α、β无公共点,如图1所示;C中当a∥α,a∥β时,α与β可能相交,如图2所示;只有D说明α、β一定无公共点.反思与感悟判断线线、线面、面面的位置关系,要牢牢地抓住其特征与定义、要有画图的意识,结合空间想象能力全方位、多角度地去考虑问题,作出判断.跟踪训练2已知两平面α、β平行,且a⊂α,下列四个命题:①a与β内的所有直线平行;②a与β内无数条直线平行;③直线a与β内任何一条直线都不垂直;④a与β无公共点.其中正确命题的个数是()A.1 B.2 C.3 D.4答案B解析①中a不能与β内的所有直线平行而是与无数条直线平行,有一些是异面;②正确;③中直线a与β内的无数条直线垂直;④根据定义a与β无公共点,正确.命题角度2两平面位置关系的作图例3(1)画出两平行平面;(2)画出两相交平面.解两个平行平面的画法:画两个平行平面时,要注意把表示平面的平行四边形画成对应边平行,如图a所示.两个相交平面的画法:第一步,先画表示平面的平行四边形的相交两边,如图b所示;第二步,再画出表示两个平面交线的线段,如图c所示;第三步,过b中线段的端点分别引线段,使它们平行且等于图c中表示交线的线段,如图d所示;第四步,画出表示平面的平行四边形的第四边(被遮住部分线段可画成虚线,也可不画),如图e 所示.引申探究在图中画出一个平面与两个平行平面相交.解跟踪训练3试画出相交于一点的三个平面.解如图所示(不唯一).1.下列图形所表示的直线与平面的位置关系,分别用符号表示正确的一组是()A.a⊄α,a∩α=A,a∥αB.a∉α,a∩α=A,a∥αC.a⊂α,a∩α=A,a∥αD.a∈α,a∩α=A,a∥α答案C解析直线在平面内用“⊂”,故选C.2.如图所示,用符号语言可表示为()A.α∩β=l B.α∥β,l∈αC.l∥β,l⊄αD.α∥β,l⊂α答案D3.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交答案B解析由题意知,直线l与平面α相交,则直线l与平面α内的直线只有相交和异面两种位置关系,因而只有选项B是正确的.4.经过平面外两点可作该平面的平行平面的个数是________.答案0或1解析若平面外两点所在直线与平面相交时,经过这两点与已知平面平行的平面不存在.若平面外两点所在直线与已知平面平行时,此时,经过这两点有且只有一个平面与已知平面平行.5.如图,在正方体ABCD-A1B1C1D1中,分别指出直线B1C,D1B 与正方体六个面所在平面的关系.解根据图形,直线B1C⊂平面B1C,直线B1C∥平面A1D,与其余四个面相交,直线D1B与正方体六个面均相交.1.弄清直线与平面各种位置关系的特征,利用其定义作出判断,要有画图意识,并借助于空间想象能力进行细致的分析.2.长方体是一个特殊的图形,当点、线、面关系比较复杂时,可以寻找长方体作为载体,将它们置于其中,立体几何的直线与平面的位置关系都可以在这个模型中得到反映.因而人们给它以“百宝箱"之称.课时作业一、选择题1.已知直线a在平面α外,则()A.a∥αB.直线a与平面α至少有一个公共点C.a∩α=AD.直线a与平面α至多有一个公共点答案D解析因已知直线a在平面α外,所以a与平面α的位置关系为平行或相交,因此断定a∥α或断定a与α相交都是错误的,但无论是平行还是相交,直线a与平面α至多有一个公共点是正确的,故选D。
空间点、直线、平面之间的位置关系-高一数学同步精讲课件(人教A版2019必修第二册)
应用新知
题型三:异面直线的判定(逻辑推理)
例5.如图, ∩ = , ∉ , ⊂ , ∉ .直线与具有怎样的位置关系?
为什么?
解:直线与是异面直线.理由如下.
若直线与直线不是异面直线,则它们相交或平行.
设它们确定的平面为,则 ∈ , ⊂ .
思考:分别在两个平面内的两条直线是否一定异面?
b
a
a
a
b
b
总结新知
空间中直线与直线的位置关系
共面直线
相交直线:在同一平面内,有且只有一个公共点;
平行直线:在同一平面内,没有公共点;
异面直线:不同在任何一个平面内,没有公共点.
平行直线
//
相交直线
∩=
异面直线
与异面
探究新知
A.平行
B.相交
C.异面
解:因为∥,所以与没有公共点,
又 ⊂ , ⊂ ,所以与没有公共点,
则与的关系为平行或异面.
选D
D.平行或异面
)
应用新知
题型二:空间位置关系的判断(直观想象)
关于点、直线、平面位置关系的判断
(1)根据位置关系的分类,利用直观想象判断;
(2)借助熟悉的几何体,如长方体进行判断;
活动. ①一个平面把空间分为几部分?
②二个平面把空间分为几部分?
③三个平面把空间分为几部分?
02
典 型 例 题 分 析
应用新知
题型一:用符号语言描述位置关系(数学抽象)
例1.如图,用符号表示下列图形中直线、平面之间的位置关系.
解:在(1)中, ∩ = , ∩ = , ∩ = .
2020-2021学年高中新教材人教A版数学第二册 8.4空间点、直线、平面之间的位置关系
三、直线与平面的位置关系
位置关系
表示方法 符号表示
公共点
直线a与平面α相交 a∩ =O
直线a与平面α平行 a∥
有且只有一个公共点
没有公共点
四、两个平面的位置关系
平面α与平面β的位置关系
位置关系
图示
两平面平行
两平面相交
表示法 _α__∥_β__
公共点个数 0个
_α__∩_β__=__l_
无__数__个__点___(共___线_ )
常考题型
一、两直线位置关系的判定
例 如图所示,在长方体ABCD-A1B1C1D1中,判断下列直线的位置关系: ①直线A1B与直线D1C的位置关系是_______; ②直线A1B与直线B1C的位置关系是_______; ③直线D1D与直线D1C的位置关系是_______; ④直线AB与直线B1C的位置关系是_________.
三 平面与平面的位置关系
例 [2019·山东临沂高一检测]一个平面内有无数条直线平行于另一个平
二 直线与平面的位置关系
例[2019·河南郑州高一检测]下列说法中正确的个数是( )
①若直线l上有无数个点不在平面α内,则l∥α;
②若直线l与平面α平行,则l与平面α内的任意一条直线都平行;
③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平
面平行;
④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点.
A.0
B.1
C.2
D.3
【解析】如图,借助长方体模型来判断说法是否正确, 说法①不正确,相交时也符合;说法②不正确,图中, A′B与平面DCC′D′平行,但它与CD不平行;说法③不 正确,另一条直线有可能在平面内,如AB∥CD,AB 与平面DCC′D′平行,但直线CD在平面DCC′D′内;说 法④正确,l与平面α平行,则l与平面α无公共点,l与 平面α内所有直线都没有公共点.
人教新课标A版高中数学必修二 可编辑课件 第二章 点、直线、平面之间的位置关系 222 平面与平面平行的判定
.
2.推论:如果一个平面内有两条 相交 直线,分别平
人 教
A
行于另一个平面内的两条直线,则这两个平面平行.
版
数
用符号表示为a∥c,b∥d,a∩b=A,a⊂α,b⊂α , 学
c⊂β,d⊂β⇒α∥β
.
3.α∥β,a⊂α⇒ a∥β .
第二章 点、直线、平面之间的位置关系
人 教 A 版 数 学
第二章 点、直线、平面之间的位置关系
第二章 点、直线、平面之间的位置关系
人
2.2.2 平面与平面平行的判定
教 A 版
数
学
第二章 点、直线、平面之间的位置关系
人 教 A 版 数 学
第二章 点、直线、平面之间的位置关系
1.判定定理:如果一个平面内有两条 相交 直 线 分
别 平行 于另一个平面,那么这两个平面平行.用数学符
号表示 a∥α,b∥α,a⊂β,b⊂β,a∩b=A⇒α∥β
一、选择题
1.若两个平面内分别有一条直线,这两条直线互相平 行,则这两个平面的公共点个数
A.有限个 B.无限个
C.没有
D.没有或无限个
[答案] D
[解析] 两平面相交或平行,故选D.
(
)
人 教
A
版
数
学
第二章 点、直线、平面之间的位置关系
二、填空题
2.直线a⊂平面α,直线b⊂平面β,且α∥β,则a、b的
证明如下:在正方体ABCD-A1B1C1D1中连接PQ.
∵P,Q分别为DD1,CC1的中点,
∴PQ綊CD,CD綊AB.
人
教
∴PQ綊AB,∴四边形ABQP是平行四边形,
A 版
数
∴PA∥QB.
人教A版高中数学必修2第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系课件
C D
B A
C1 D1
B1 A1
知识小结
实例引 入平面
平面的画 法和表示
点和平面的 位置关系
平面三 个公理
空间图形
文字叙述
符号表示
2.1.2空间中两直线的位置 关系
平面有知识(复习 )
判断下列命题对错: 1、如果一条直线上有一个点在一个平面上,则这条直线上
的所有点都在这个平面内。( )
2、将书的一角接触课桌面,这时书所在平面和课桌所在平
直线。(既不相交也不平行的两条直线) 判断:
(1)
m
β
m
l
α
l
直线m和l是异面直线吗?
(2)
,则 与 是异面直线
(3)a,b不同在平面 内,则a与b异面
异面直线的画法:
通常用一个或两个平面来衬托,异面直线
不同在任何一个平面的特点
a
b
b
a
b
a
2、空间中两直线的三种位置关系
1、相交
m P
l
2、平行
m l
b′
平
a′ θ O
移
若两条异面直线所成角为90°,则称它们互相垂直。 异面直线a与b垂直也记作a⊥b 异面直线所成角θ的取值范围:
例 3 在正方体ABCD—A1B1C1D1中指出下列各对线段所
成的角:
D1
C1
1)AB与CC1; 2)A1 B1与AC; A1
B1
3)A1B与D1B1。
1)AB与CC1所成的角 = 9 0°
4、平面的基本性质
公理3 如果两个不重合的平面有一个公共点,
那么它们有且只有一条过该点的公共直线.
符号表示为:
P l, Pl.
数学:第二章《点、直线、平面之间的位置关系》教案(新人教A版必修2)
点、直线、平面之间的位置关系复习(一)课型:复习课一、教学目标1、知识与技能(1)使学生掌握知识结构与联系,进一步巩固、深化所学知识;(2)通过对知识的梳理,提高学生的归纳知识和综合运用知识的能力。
2、过程与方法利用框图对本章知识进行系统的小结,直观、简明再现所学知识,化抽象学习为直观学习,易于识记;同时凸现数学知识的发展和联系。
3情态与价值学生通过知识的整合、梳理,理会空间点、线面间的位置关系及其互相联系,进一步培养学生的空间想象能力和解决问题能力。
二、教学重点、难点重点:各知识点间的网络关系;难点:在空间如何实现平行关系、垂直关系、垂直与平行关系之间的转化。
三、教学设计(一)知识回顾,整体认识1、本章知识回顾(1)空间点、线、面间的位置关系;(2)直线、平面平行的判定及性质;(3)直线、平面垂直的判定及性质。
2、本章知识结构框图(二)整合知识,发展思维1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础。
公理1——判定直线是否在平面内的依据;公理2——提供确定平面最基本的依据;公理3——判定两个平面交线位置的依据;公理4——判定空间直线之间平行的依据。
2、空间问题解决的重要思想方法:化空间问题为平面问题;3、空间平行、垂直之间的转化与联系:4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。
(三)应用举例,深化巩固1、P.73 A 组第1题2、P.74 A 组第6、8题(四)、课堂练习:1.选择题 (1)如图BC 是R t ⊿ABC 的斜边,过A 作⊿ABC 所在平面α垂线AP ,连PB 、PC ,过A 作AD ⊥BC 于D ,连PD ,那么图中直角三角形的个数是( ) (A )4个 (B )6个 (C )7个 (D )8个(2)直线a 与平面α斜交,则在平面α内与直线a 垂直的直线( ) (A )没有 (B )有一条 (C )有无数条 (D )α内所有直线 答案:(1)D (2) C2.填空题(1)边长为a 的正六边形ABCDEF 在平面α内,PA ⊥α,PA =a ,则P 到CD 的距离为 ,P 到BC 的距离为 .(2)AC 是平面α的斜线,且AO =a ,AO 与α成60º角,OC ⊂α,AA '⊥α于A ',∠A 'OC =45º,则A 到直线OC 的距离是 , ∠AOC 的余弦值是 . 答案:(1)a a27,2; (2)42,414a 3.在正方体ABCD -A 1B 1C 1D 1中,求证:A 1C ⊥平面BC 1D .分析:A 1C 在上底面ABCD 的射影AC ⊥BD, A 1C 在右侧面的射影D 1C ⊥C 1D,所以A 1C ⊥BD, A 1C ⊥C 1D,从而有A 1C ⊥平面BC 1D .A A ′ CαOC1课后作业1、阅读本章知识内容,从中体会知识的发展过程,理会问题解决的思想方法;2、P.76 B组第2题。
人教A版高中数学必修第二册教学课件8.4.2 空间点、直线、平面之间的位置关系
目标检测设计
2.如图是正方体的平面展开图,在这个正方体中,①BM与ED 平行;②CN与BE是异面直线;③DM与BN是异面直线.以 上几个结论中,正确结论的序号是( ).
3.已知:α∥β,a⊂α.求证:a∥β.
再见
空间点、直线、平面的 位置关系
一、探究、归纳空间中直线与直线的位置关系
空间中的基本要素有点、直线、平面, 它们之 间有些位置关系非常简单,比如点与直线之间有点 在直线上,点不在直线上;点与平面之间有点在面 内,点不在面内等.我们也知道在同一平面中,直线 与直线之间的位置关系有平行与相交两种位置关系.
二、探究、归纳空间中直线与平面之间的关系
直线AB与平面ABBA,ABCD 有无数个交点,此时, 直线在平面内.
直线AB与平面ADDA,BCCB分别有唯一交点, 此时,直线与平面相交.
直线AB与平面 ABCD , CDDC 没有任何交点,此时, 直线与平面平行.
直线与平面相交,直线与平 面平行,统称为直线在平面外.
a b P
四、直线、平面位置关系的应用 例2 如图,AB B,A,a ,Ba,
直线AB与α具有怎样的位置关系?为什么?
正难则反 反证法 不异面则共面, AB在面内,矛盾.
五、反思总结,提炼收获
(1)本节课你学到哪些知识?又是用怎样的方法学 到这些知识的?
(2)空间中直线与直线、直线与平面、平面与平面 有哪些位置关系?
三、探究归纳空间中平面与平面的位置关系
平面ABCD与平面ABBA,BCCB,CDDC,DAAD 有无数个交点,此时平面与平面相交.
平面ABCD与平面ABCD 没有交点,此时平面与 平面平行.
三、探究归纳空间中平面与平面的位置关系
如何用图形和符号分别表示平面与平面相交, 平面与平面平行?
必修二2.1.空间点、直线、平面之间的位置关系(教案)
人教版新课标普通高中◎数学 2 必修(A 版)第二章点、直线、平面之间的位置关系2. 1空间点、直线、平面之间的位置关系教案 A第 1 课时教学内容: 2. 1. 1平面教学目标一、知识与技能1.利用生活中的实物对平面进行描述,掌握平面的表示法及水平放置的直观图;2.掌握平面的基本性质及作用,提高学生的空间想象能力.二、过程与方法在师生的共同讨论中,形成对平面的感性认识.三、情感、态度与价值观通过实例认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣.教学重点、难点教学重点:1.平面的概念及表示;2.平面的基本性质,注意它们的条件、结论、作用、图形语言及符号语言.教学难点:平面基本性质的掌握与运用.教学关键:让学生理解平面的概念,熟记平面的性质及性质的应用,使学生对平面的概念及其性质由感性认识上升到理性认识.教学突破方法:对三个公理要结合图形进行理解,清楚其用途.教法与学法导航教学方法:探究讨论,讲练结合法.学习方法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标.教学准备教师准备:投影仪、投影片、正(长)方形模型、三角板.学生准备:直尺、三角板.教学过程教学教学内容师生互动设计过程意图创设什么是平面?师:生活中常见的如黑板、情境一些能看得见的平面实桌面等,给我们以平面的印象,形成平导入例 .你们能举出更多例子吗?那么面的概新课平面的含义是什么呢?这就是念我们这节课所要学习的内容 .1教师备课系统──多媒体教案续上表1.平面含义随堂练习判定下列命题是否正确:主题① 书桌面是平面;探究② 8 个平面重叠起来要比合作 6 个平面重叠起来厚;交流③ 有一个平面的长是50m,宽是 20m;④平面是绝对的平,无厚度,可以无限延展的抽象的数学概念 .师:以上实物都给我们以平面的印象,几何里所说加强对知的平面,就是从这样的一些识的理解物体中抽象出来的,但是,培养,自几何里的平面是无限延展觉钻研的的 .学习习惯 . 数形结合,加深理解 .2.平面的画法及表示师:在平面几何中,怎(1)平面的画法:水平放样画直线?(一学生上黑板置的平面通常画成一个平行四画)边形,锐角画成 45°,且横边之后教师加以肯定,解说、画成邻边的 2 倍长(如图).类比,将知识迁移,得出平面的画法:D CαA B如果几个平面画在一起,主题当一个平面的一部分被另一个探究平面遮住时,应画成虚线或不合作画(打出投影片).交流(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面 AC 、平面 ABCD等.(3)平面内有无数个点,平面可以看成点的集合 .点 A 在平面α内,记作:A ∈ α ; 点B 在平面α外,记作: Bα.β通过类比α探索,培养学生知识迁移能β力,加强知识的系统性 .α·B·Aα2续上表人教版新课标普通高中◎数学 2 必修(A 版)3.平面的基本性质公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.A Bα· C··教师引导学生思考教材P41 的思考题,让学生充分发表自己的见解 .师:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引导学生归纳出公理主题探究合作交流符号表示为A ∈ LB∈ L? L ? α.A ∈ αB∈ α公理 1:判断直线是否在平面内.公理 2:过不在一条直线上的三点,有且只有一个平面 .A· Bα·L符号表示为: A 、B、C 三点不共线 ? 有且只有一个平面α,使A ∈ α、 B∈ α、 C∈ α.公理 2 作用:确定一个平面的依据 .公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 .βPα·L符号表示为: P∈ α∩β? α∩β =L,且P∈ L .公理 3 作用:判定两个平面是否相交的依据 .1.教师引导学生阅读教材P42 前几行相关内容,并加以解析.师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等.通过类比引导学生归纳出公理探索,培2.养学生知教师用正(长)方形识迁移能模型,让学生理解两个平力,加强面的交线的含义.知识的系注意:( 1)公理中“有统性 .且只有一个”的含义是:“有”,是说图形存在,“只有一个”,是说图形唯一,“有且只有一个平面”的意思是说“经过不在同一直线上的三个点的平面是有的,而且只有一个”,也即不共线的三点确定一个平面.“ 有且只有一个平面”也可以说成“确定一个平面 . ”引导学生阅读P42 的思考题,从而归纳出公理3.3教师备课系统──多媒体教案续上表拓展 4. 教材 P43 例 1教师及时评价和纠正同创新通过例子,让学生掌握图形学的表达方法,规范画图和巩固应用中点、线、面的位置关系及符号符号表示 .提高.提高的正确使用 .1.平面的概念,画法及表示方法 .培养学2.平面的性质及其作用.生归纳3.符号表示.整合知4.注意事项.学生归纳总结、教师给识能小结力,以予点拨、完善并板书 .及思维的灵活性与严谨性 .课堂作业1.下列说法中,(1)铺得很平的一张白纸是一个平面;( 2)一个平面的面积可以等于 6cm 2;( 3)平面是矩形或平行四边形的形状. 其中说法正确的个数为().A . 0 B . 1 C. 2 D . 32.若点 A 在直线 b 上,在平面内,则 A, b,之间的关系可以记作().A . A b B. A b C. A b D . A b3.图中表示两个相交平面,其中画法正确的是().A B C D4.空间中两个不重合的平面可以把空间分成()部分.答案: 1. A 2. B 3. D 4. 3 或 4第 2 课时教学内容2.1. 2 空间中直线与直线之间的位置关系教学目标一、知识与技能1.了解空间中两条直线的位置关系;4人教版新课标普通高中◎数学 2 必修(A 版)2.理解异面直线的概念、画法,提高空间想象能力;3.理解并掌握公理 4 和等角定理;4.理解异面直线所成角的定义、范围及应用.二、过程与方法1.经历两条直线位置关系的讨论过程,掌握异面直线所成角的基本求法.2.体会平移不改变两条直线所成角的基本思想和方法.三、情感、态度与价值观感受到掌握空间两直线关系的必要性,提高学习兴趣.教学重点、难点教学重点1.异面直线的概念 .2.公理 4 及等角定理 .教学难点异面直线所成角的计算.教学关键提高学生空间想象能力,结合图形来判断空间直线的位置关系,使学生掌握两异面直线所成角的步骤及求法 .教学突破方法结合图形,利用不同的分类标准给出空间直线的位置关系,由两异面直线所成角的定义求其大小,注意两异面直线所成角的范围.教法与学法导航教学方法探究讨论法.学习方法学生通过阅读教材、思考与教师交流、概括,从而较好地完成教学目标.教学准备教师准备投影仪、投影片、长方体模型、三角板.学生准备三角板 .教学过程详见下表 .教学教学内容师生互动设计环节意图创设通过身边实物,相互设疑激情境异面直线的概念:不同在任何一个交流异面直线的概念.趣点出导入平面内的两条直线叫做异面直线.师:空间两条直线有主题.新课多少种位置关系?1. 空间的两条直线的位置关系教师给出长方体模多媒体5教师备课系统──多媒体教案相交直线:同一平面内,有且只有型,引导学生得出空间的演示提一个公共点;两条直线有如下三种关高上课平行直线:同一平面内,没有公共系.效率 .探索点;异面直线:不同在任何一个平面内,教师再次强调异面直新知没有公共点 .线不共面的特点.师生互异面直线作图时通常用一个或两个动,突平面衬托,如下图:破重点 .2. 平行公理师:在同一平面内,例 2 的思考:长方体ABCD-A'B'C'D' 中,如果两条直线都与第三条讲解让BB' ∥AA', DD' ∥AA',那么 BB' 与直线平行,那么这两条直学生掌DD' 平行吗?线互相平行 . 在空间中,是握了公否有类似的规律?理 4 的运用.生:是.强调:公理 4 实质上探索是说平行具有传递性,在新知公理 4:平行于同一条直线的两条平面、空间这个性质都适直线互相平行 .用.符号表示为:设a、b、c 是三条直线如果 a//b, b//c,那么 a//c.例 2 空间四边形ABCD 中, E、 F、G、 H 分别是AB 、BC 、 CD 、 DA 的中点.求证:四边形 EFGH 是平行四边形 .续上表3. 思考:在平面上,我们容易证明让学生观察、思考:等角定“如果一个角的两边与另一个角的两边理为异探索分别平行,那么这两个角相等或互补”.面直线新知空间中,结论是否仍然成立呢?所成的等角定理:空间中如果两个角的两角的概边分别对应平行,那么这两个角相等或念作准6人教版新课标普通高中◎数学 2 必修(A 版)互补 .∠ ADC与A'D'C' 、备.∠ ADC与∠ A'B'C'的两边分别对应平行,这两组角的大小关系如何?生:∠ ADC = A'D'C' ,∠ ADC +∠ A'B'C' = 180°4.异面直线所成的角如图,已知异面直线 a、b,经过空探索间中任一点 O 作直线 a'∥ a、b'∥ b,我新知们把 a'与 b'所成的锐角(或直角)叫异面直线 a 与 b 所成的角(夹角).教师画出更具一般性的图形,师生共同归纳出如下等角定理.师:① a'与 b'所成的角的以教师大小只由 a、b 的相互位置讲授为来确定,与 O 的选择无关,主,师为了简便,点 O 一般取在生共同两直线中的一条上;交流,② 两条异面直线所成的导出异角θ∈( 0,π);面直线2所成的③ 当两条异面直线所成角的概探索的角是直角时,我们就说念 .新知这两条异面直线互相垂例 3 让直,记作 a⊥ b;学生掌④ 两条直线互相垂直,有握了如共面垂直与异面垂直两种何求异情形;面直线⑤ 计算中,通常把两条异所成的例 3(投影)面直线所成的角转化为两角,从条相交直线所成的角 .而巩固了所学知识 .续上表充分调动学拓展生动手创新教材 P49 练习 1、 2.生完成练习,教师当的积极应用堂评价 .性,教提高师适时7教师备课系统──多媒体教案给予肯定 .本节课学习了哪些知识内容?小结知2.计算异面直线所成的角应注意什学生归纳,然后老师补识,形小结么?充、完善.成整体思维.课堂作业1. 异面直线是指().A.空间中两条不相交的直线B.分别位于两不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线2.如右图所示,在三棱锥 P-ABC 的六条棱所在的直线中,异面直线共有().A. 2 对 B . 3 对 C. 4 对 D. 6 对3.正方体 ABCD-A 1B1C1D1中与棱AA1平行的棱共有().A. 1 条 B . 2 条 C. 3 条 D. 4 条4.空间两个角、,且与的两边对应平行,若=60 °,则的大小为()..答案: 1. D 2.B 3. C 4. 60 °或 120°第 3 课时教学内容8人教版新课标普通高中◎数学 2 必修(A 版)2. 1. 3 空间中直线与平面之间的位置关系 2. 1. 4 平面与平面之间的位置关系教学目标一、知识与技能1.了解空间中直线与平面的位置关系,了解空间中平面与平面的位置关系;2.提高空间想象能力 .二、过程与方法1.通过观察与类比加深了对这些位置关系的理解、掌握;2.利用已有的知识与经验归纳整理本节所学知识.三、情感、态度与价值观感受空间中图形的基本位置关系,形成严谨的思维品质.教学重点、难点教学重点空间直线与平面、平面与平面之间的位置关系.教学难点用图形表达直线与平面、平面与平面的位置关系.教学关键借助图形,使学生清楚直线与平面,平面与平面的分类标准,并能依据这些标准对直线与平面、平面与平面的位置关系进行分类及判定.教学突破方法恰当地利用图形,用符号语言表述直线与平面、平面与平面的位置关系.教法与学法导航教学方法借助实物,让学生观察事物、思考关系,讲练结合,较好地完成本节课的教学目标.学习方法探究讨论,自主学习法.教学准备教师准备多媒体课件,投影仪,三角板,直尺.学生准备三角板,直尺.教学过程详见下表 .教学教学内容师生互动设计过程意图创设问题1:空间中直线和直线有几生 1:平行、相交、异复习9教师备课系统──多媒体教案情境种位置关系?面;回顾,导入问题 2:一支笔所在的直线和一生 2:有三种位置关系:激发新课个作业本所在平面有几种位置关(1)直线在平面内;学习系?(2)直线与平面相交;兴趣 .(3)直线与平面平行.师肯定并板书,点出主题 .1.直线与平面的位置关系 .师:有谁能讲出这三种( 1)直线在平面内——有无数位置有什么特点吗?个公共点 .生:直线在平面内时二( 2)直线与平面相交——有且者有无数个公共点 .仅有一个公共点 .直线与平面相交时,二( 3)直线在平面平行——没有者有且仅有一个公共点 .公共点 .直线与平面平行时,三其中直线与平面相交或平行的者没有公共点(师板书).情况,统称为直线在平面外,记作师:我们把直线与平面加强a.相交或直线与平面平行的对知直线 a 在面内的符号语言是情况统称为直线在平面外 .识的a. 图形语言是:师:直线与平面的三种理解位置关系的图形语言、符号培养,主题语言各是怎样的?谁来画自觉探究图表示一个和书写一下 .钻研合作学生上台画图表示 .的学交流直线 a 与面相交的 a∩ = A.师;好 . 应该注意:画习习图形语言是符号语言是:直线在平面内时,要把直线惯,数画在表示平面的平行四边形结形内;画直线在平面外时,合,加应把直线或它的一部分画深理在表示平面的平行四边形解 .外 .直线 a 与面平行的符号语言是a∥. 图形语言是:10人教版新课标普通高中◎数学 2 必修(A 版)续上表2.平面与平面的位置关系师:下面请同学们思考以( 1)问题 1:拿出两本书,看下两个问题(投影).作两个平面,上下、左右移动和翻生:平行、相交 .转,它们之间的位置关系有几种?师:它们有什么特点?( 2)问题 2:如图所示,围成生:两个平面平行时二者长方体 ABCD –没有公共点,两个平面相交A′B′C′D′的六个时,二者有且仅有一条公共直通过面,两两之间的线(师板书).类比位置关系有几师:下面请同学们用图形探索,种?和符号把平面和平面的位置培养主题关系表示出来⋯⋯学生( 3)平面与平面的位置关系探究——没有公师:下面我们来看几个例知识平面与平面平行合作子(投影例 1).迁移共点 .交流能力 .平面与平面相交——有且只有一条公共直线 .加强平面与平面平行的符号语言知识是∥ . 图形语言是:的系统性 .11教师备课系统──多媒体教案续上表拓展创新应用提高例 1 下列命题中正确的个数是( B ).①若直线 l 上有无数个点不在平面内,则 l∥ .②若直线l 与平面平行,则l与平面内的任意一条直线都平行 .③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行 .④若直线 l 与平面平行,则 l 与平面内的任意一条直线没有公共点 .A . 0B . 1 C. 2 D. 3例 2 已知平面∥,直线a,求证 a∥ .证明:假设 a 不平行,则 a在内或 a 与相交 .∴ a 与有公共点 .又 a.∴ a与有公共点,与面∥面矛盾 .∴∥ .学生先独立完成,然后讨例 1 通论、共同研究,得出答案. 教师过示范利用投影仪给出示范 .传授学师:如图,我们借助长方体生一个模型,棱 AA 1所在直线有无数点通过模在平型来研面究问题ABCD的方外,但法,加棱 AA 1深对概所在直线与平面ABCD 相交,所念的理以命题①不正确; A1B1所在直线解. 例 2平行于平面 ABCD ,A1B1显然不目标训平行于 BD,所以命题②不正确;练学生A1 B1∥AB,A1B1所在直线平行于思维的平面 ABCD ,但直线 AB平灵活,面 ABCD ,所以命题③不正确;并加深l 与平面平行,则 l 与无公对面面共点, l与平面内所有直线都平行、没有公共点,所以命题④正确,线面平应选 B .行的理师:投影例2,并读题,先解.让学生尝试证明,发现正面证明并不容易,然后教师给予引导,共同完成,并归纳反证法步骤和线面平行、面面平行的理解 .1.直线与平面、平面与平培养学面的位置关系 .生整合2.“正难到反”数学思想知识能与反证法解题步骤 .学生归纳总结、教师给予点力,以小结拨、完善并板书 .及思维3. “分类讨论”数学思想.的灵活性与严谨性 . 12人教版新课标普通高中◎数学 2 必修(A 版)课堂作业1.直线与平面平行的充要条件是这条直线与平面内的().A .一条直线不相交B.两条直线不相交C.任意一条直线都不相交 D .无数条直线都不相交【解析】直线与平面平行,则直线与平面内的任意直线都不相交,反之亦然;故应选C.2. “平面内有无穷条直线都和直线l 平行”是“l //”的().A.充分而不必要条件 B .必要而不充分条件C.充分必要条件 D .即不充分也不必要条件【解析】如果直线在平面内,直线可能与平面内的无穷条直线都平行,但直线不与平面平行,应选 B.3.如图,试根据下列要求,把被遮挡的部分改为虚线:( 1)AB 没有被平面遮挡;( 2)AB 被平面遮挡.答案:略4.已知,,直线a,b,且∥,a,b,则直线 a 与直线 b 具有怎样的位置关系?【解析】平行或异面.5.如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论.【解析】三个平面两两相交,它们的交线有一条或三条.6.求证:如果过一个平面内一点的直线平行于与该平面平行的一条直线,则这条直线在这个平面内 .已知: l ∥,点P∈,P∈ m,m∥ l,求证: m.证明:设 l 与 P 确定的平面为,且= m′,则 l ∥ m′.又知 l ∥ m, m m P ,由平行公理可知,m 与 m′重合 .所以 m.13教师备课系统──多媒体教案教案 B第 1 课时教学内容: 2. 1. 1 平面教学目标1.了解平面的概念,掌握平面的画法、表示法及两个平面相交的画法;2.理解公理一、二、三,并能运用它们解决一些简单的问题;3.通过实践活动,感知数学图形及符号的作用,从而由感性认识提升为理性认识,注意区别空间几何与平面几何的不同,多方面培养学生的空间想象力.教学重点:公理一、二、三,实践活动感知空间图形.教学难点:公理三,由抽象图形认识空间模型.学法指导:动手实践操作,由模型到图形,由图形到模型不断感知.教学过程一、引入在平面几何中,我们已经了解了平面图形都是由点和线构成的,我们所做的一切都是在一个无形的平面中进行,请同学谈谈到底平面是什么样子的?可以举实例说明.在平面几何中,我们也知道直线是无限延伸的,我们是怎样表示这种无限延伸的?那么你认为平面是否有边界?你又认为如何去表示平面呢?二、新课以上问题经过学生分小组充分讨论,由各小组代表陈述你这样表示的理由?教师暂不作评判,继续往下进行 .实践活动:1.仔细观察教室,举出空间的点、线、面的实例.2.只准切三刀,请你把一块长方体形状的豆腐切成形状、大小都相同的八块.3.请你准备六根游戏棒,以每根游戏棒为一边,设法搭出四个正三角形.以上这些问题已经走出了平面的限制,是空间问题. 今后我们将研究空间中的点、线、面之间的关系.图 1问题:指出上述活动中几何体的面,并想想如何在一张纸上画出这个几何体?至此我们应感受到画几何体与我们的视角有一定的关系.练习一:试画出下列各种位置的平面.1.水平放置的平面2.竖直放置的平面14人教版新课标普通高中◎数学 2 必修(A 版)图 2( 1)图2(2)3.倾斜放置的平面图 34.请将以下四图中,看得见的部分用实线描出.图 4(1)图4(2)图4(3)图4(4)小结:平面的画法和表示法.我们常常把水平的平面画成一个平行四边形,用平行四边形表示一个平面,如图 5.平行四边形的锐角通常画成45o,且横边长等于其邻边长的 2 倍.如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把被遮挡部分用虚线画出来,如图 6.βFA DA DααB E CB C图 5图 6图 7平面常用希腊字母, ,等表示(写在代表平面的平行四边形的一个角上),如平面、平面;也可以用代表平面的平行四边形的四个顶点,或相对的两个顶点的大写英文字母作为平面的名称,图 5 的平面,也可表示为平面ABCD ,平面 AC 或平面BD .前面我们感受了空间中面与面的关系及画法,现在让我们研究一下点、线与一个平面会有怎样的关系?15教师备课系统──多媒体教案显然,一个点与一个平面有两种位置关系:点在平面内和点在平面外.我们知道平面内有无数个点,可以认为平面是由它内部的所有的点组成的点集,因此点和平面的位置关系可以引用集合与元素之间关系.从集合的角度,点 A 在平面内,记为A;点B在平面外,记为B (如图 7).再来研究一下直线与平面的位置关系.将学生分成小组,并动手实践操作后讨论:把一把直尺边缘上的任意两点放在桌面上,直尺的整个边缘就落在桌面上吗?请同学们再试着想一下,如何用图形表示直线与平面的这些空间关系?由“两点确定一条直线”这一公理,我们不难理解如下结论:公理 1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内 .A l ,B l , 且 A, B,l.A l Bα图8例1 分别用符号语言、文字语言描述下列图形.AA aa图 9( 1)图 9( 2)图 9( 3)例 2 识图填空(在空格内分别填上, , ,).A____ a;A____ α,B____ a; B____ α,Aa____ α;a____ α = B,B bb____ α;B____ b.a图 10图 11问题情景:制作一张桌子,至少需要多少条腿?为什么?公理 2 经过不在同一条直线上的三点,有且只有一个平A面 .CB实践活动:取出两张纸演示两个平面会有怎样的位置关α图 12系,并试着用图画出来 .图 12试问:如图13 是两个平面的另一种关系吗?(相对于同学们得出的关系)由平面的无限延展性,不难理解如下结论:公理 3如果两个不重合平面有一个公共点,那么它们有且只有一条过这个公共点16人教版新课标普通高中◎数学 2 必修(A 版)的直线 .βP l 且P l.αP l图 13例 3如图14用符号表示下列图形中点、直线、平面之间的位置关系.l【分析】根据图形,先判断点、直线、平面之间的位置关系,然后用符号表示出来.【解析】在(1)中,l , a A , a B .l , a, b, a l P , B l P .在( 2)中,三、巩固练习教材 P43 练习 1— 4.四、课堂小结(1)本节课我们学习了哪些知识内容?(2)三个公理的内容及作用是什么?(3)判断共面的方法 .五、布置作业P51 习题 A 组 1, 2.第 2 课时教学内容: 2. 1. 2 空间中直线与直线之间的位置关系教学目标:一、知识目标1.了解空间中两条直线的位置关系;2.理解异面直线的概念、画法,培养学生的空间想象能力;3.理解并掌握公理 4.二、能力目标1.让学生在观察中培养自主思考的能力;17教师备课系统──多媒体教案2.通过师生的共同讨论培养合作学习的能力.三、情感、态度与价值观让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣.教学重点、难点教学重点: 1.异面直线的概念; 2.公理 4.教学难点:异面直线的概念.学法与教学用具1.学法:学生通过观察、思考与教师交流、概括,从而较好地完成本节课的教学目标;2.教学用具:多媒体、长方体模型、三角板.教学过程一、复习引入1.平面内两条直线的位置关系有(相交直线、平行直线).相交直线(有一个公共点);平行直线(无公共点).2.实例 . 十字路口——立交桥.立交桥中,两条路线 AB , CD 既不平行,又不相交(非平面问题).六角螺母DCA B二、新课讲解1.异面直线的定义不同在任何一个平面内的两条直线叫做异面直线.练习:在教室里找出几对异面直线的例子.注1:两直线异面的判别一 : 两条直线既不相交、又不平行.两直线异面的判别二 : 两条直线不同在任何一个平面内.合作探究一:分别在两个平面内的两条直线是否一定异面?答:不一定,它们可能异面,可能相交,也可能平行.空间两直线的位置关系:按平面基本性质分(1)同在一个平面内:相交直线、平行直线;( 2)不同在任何一个平面内:异面直线.按公共点个数分( 1)有一个公共点 : 相交直线;( 2)无公共点:平行直线、异面直线.2.异面直线的画法说明:画异面直线时,为了体现它们不共面的特点,常借助一个或两个平面来衬托. 18。
高中数学 2.1空间点、直线、平面之间的位置关系 新人教A版必修2
公理 3 作用:判定两个平面是否相交的依据。
精品课件
例1、用符号表示下列图形中点、直线、平 面之间的关系。
解 :左边的图中, α∩β=l,a∩α=A,a∩β=B。 右边的图中, α∩β=l,a α,b β, a∩l=P,b∩l=P。
精品课件
新疆 王新敞
奎屯
求证: P 在直线 BD 上新疆 王新敞 奎屯
A
P EH
D
G
B
C
F
精品课件
证明:∵ EH FG P ,∴ PEH , P FG , ∵ E, H 分别属于直线 AB, AD , ∴ EH 平面 ABD,∴ P 平面 ABD, 同理: P 平面 CBD , 又∵平面 ABD 平面 CBD BD ,
集合中“∈”的符号只能用于点与直线,点与平面的关系,“ ”和“∩”的符号只能
用于直线与直线、直线与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用
几何语言.(平面α外的直线 a)表示 a (平面α外的直线 a)表示 a 或 a A.
精品课件
问题4:如果直线l与平面α有一个公共点P,直线l是否在平面α内? 直线l不一定在平面α内。
答案:(1)×(2)√(3)×(4)√
精品课件
2.①一条直线与一个平面会有几种位置关系
.
②如图所示,两个平面、,若相交于一点,则会发生什么现象.
③几位同学的一次野炊活动,带去一张折叠方桌,不小心弄坏了桌脚,
有一生提议可将几根一样长的木棍,在等高处用绳捆扎一下作桌脚(如图
所示),问至少要几根木棍,才可能使桌面稳定?
(5)
直线在平面内
aα
直线与平面相交
(2019新教材)人教A版高中数学必修第二册:空间点、直线、平面之间的位置关系
■名师点拨 (1)异面直线的定义表明异面直线不具备确定平面的条件.异面直线 既不相交,也不平行. (2)不能把异面直线误认为分别在不同平面 内的两条直线,如图中,虽然有 a⊂α,b⊂β, 即 a,b 分别在两个不同的平面内,但是因 为 a∩b=O,所以 a 与 b 不是异面直线.
2.空间中直线与平面的位置关系
2.[变条件]在本例中,若将条件改为平面 α 内有无数条直线与 平面 β 平行,那么平面 α 与平面 β 的关系是什么? 解:如图,α 内都有无数条直线与平面 β 平行.
由图知,平面 α 与平面 β 可能平行或相交.
3.[变条件]在本例中,若将条件改为平面 α 内的任意一条直线 与平面 β 平行,那么平面 α 与平面 β 的关系是什么? 解:因为平面 α 内的任意一条直线与平面 β 平行,所以只有这 两个平面平行才能做到,所以平面 α 与平面 β 平行.
平行.( × ) (10)若两个平面都平行于同一条直线,则这两个平面平行.( × )
异面直线是指( ) A.空间中两条不相交的直线 B.分别位于两个不同平面内的两条直线 C.平面内的一条直线与平面外的一条直线 D.不同在任何一个平面内的两条直线
解析:选 D.对于 A,空间两条不相交的直线有两 种可能,一是平行(共面),另一个是异面,所以 A 应排除.对于 B,分别位于两个平面内的直线, 既可能平行也可能相交也可能异面,如图,就是 相交的情况,所以 B 应排除.对于 C,如图中的 a,b 可看作是平 面 α 内的一条直线 a 与平面 α 外的一条直线 b,显然它们是相交直 线,所以 C 应排除.只有 D 符合定义.
位置关系
直线 a 在 平面 α 内
直线 a 在平面 α 外
直线 a 与平
直线 a 与
新教材人教A版高中数学必修第二册8.4 空间点、直线、
【知识巩固】
1.下列说法正确的画“√”,错误的画“×”.
(1)两个不重合的平面只能把空间分成四个部分.( × ) (2)两个平面α,β有一个公共点A,就说α,β相交于A点,记作α∩β=A.( × ) (3)已知a,b是异面直线,直线c平行于直线a,则c与b不可能平行.( √ ) (4)如果两个不重合的平面α,β有一条公共直线a,那么平面α,β相交,并记作 α∩β=a.( √ ) (5)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面B1C1D1中,E,F分别为BC,BB1的中点,则下列直线 中与直线EF相交的是( D )
A.直线AA1
B.直线A1B1
C.直线A1D1
D.直线B1C1
只有B1C1与EF在同一平面内,且相交,选项A,B,C中直线与EF都是异面直线,
故选D.
4.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个结论: ①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③a∥b,a⊂α,P∈b,P∈α⇒b⊂α;④ α∩β=b,P∈α,P∈β⇒P∈b. 其中正确的结论是 ③④ .(填序号)
符号表示 a⊂α
a∩α=A
直线 a 与平面 α 平行 没有公共点 a∥α
图形 表示
5.空间中平面与平面的位置关系
位置关系 公共点 符号表示
两个平面平行 没有公共点 α∥β
两个平面相交 有无数个公共点(在一条直线上) α∩β=l
图形 表示
温馨提示平面与平面之间无特别说明,一般不讲“重合”.
6.基本事实4与等角定理
8.4 空间点、直线、平面之间的位置关系
课标要求 1.借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象 出空间点、直线、平面的位置关系的定义. 2.了解基本事实1—4和等角定理.
新课标人教A高中数学必修点直线平面之间的位置关系PPT课件
B A
C
第17页/共30页
2、过空间一点可以做几条直线?两点呢? 过空间中一点可以做几个平面?两点呢?
不共线的三点呢?
第18页/共30页
公理2
存在性
文字语言 过不在一条直线上的三点,有且只有
一个平面. 图形语言
唯一性
B
A
C
不在一条直线上的三个点A、B、C所确定的 平面,可以记成“平面ABC”.
• 平面的三个特征:平面是平的;平面无厚薄之分;平面是无限延展的.
第4页/共30页
随堂练习
一、判断下列各题的说法正确与否:
1、一个平面长 4 米,宽 2 米; ( )
2、平面有边界;
()
3、一个平面的面积是 25 cm 2; ( )
4、菱形的面积是 4 cm 2;
()
5、一个平面可以把空间分成R SITE HERE
小结
1,平面的概念,画法及表示
2,点、直线、平面间的基本关系
3,三条平面公理
新疆 王新敞
奎屯
公理1
A B
AB
公理2 A, B,C不共线 A, B,C确定一平面
公理3 P , P , l P l
第28页/共30页
YOUR SITE HERE
第5页/共30页
YOUR SITE HERE
2、平面的画法
平面通常画成一个平行四边形,锐角通常 画成45°,且横边等于其邻边长的2倍 .
D
C
3、记法
A
B
①平面α 、平面β 、平面γ (标记在锐角上)
②平面ABCD
③平面AC 或平面BD
第6页/共30页
4、相交平面画法:
高中数学新人教A版必修2 第2章 2-1空间点、直线、平面的位置关系
A B
AB
B
A
作用:用于判定线在面内
小结:公理2及其推论 A,B,C不共线
A,B,C确定一平面.
A∈ a
A和a确定一平面.
aIb=P
a和b确定一平面.
ab
a和b确定一平面.
作用:用于确定一个平面.
A
B C
Aa
aP
b
a
b
公理3:若两个不重合平面有一个公共点, 则它们有且只有一条过该点的公共直线。
空间中基本图形:点、线、面
一、平面的表示方法
1.特点:平面是无限延展,没有厚度的.
(但常用平面的一部分表示平面)
2.画法:水平或竖直的平面常用平行四边形表示.
D
D
C
C
A
B
A
3.记法:
B
①平面α、平面β、平面γ(标记在边上)
②平面ABCD、平面AC或平面BD
巩固:判断下列各题的说法正确与否,在正 确的说法的题号后打 ,否则打 .
CA
C (G)
A
G
E
H
DB
HE F
D
B(F)
空间两条不重合直线的位图关系有且只有三种:
若从有没有公共点的角度来看,可分为两类 :
(1) 有且仅有一个公共点相交直线
(
2)
没有公共点
平行直线 异面直线
若从有没有共面的角度来看,也可分为两类:
(1)
在同一个平面内
相交直线 平行直线
( 2)不同在任何一个平面内异面直线
A1
B1
(2) 直线MB1与CC1异面直线关系
主要特征:既不平行,也不相交
异面直线的定义:
D A
高一数学人教A版必修二课件:2.1.1 平面
一二三四
知识精要 思考探究 典题例解 迁移应用
空间两两相交的三条直线,可以确定的平面数是 ( ) A.1 B.2 C.3 D.1或3 答案:D
解析:两两相交不共点的三条直线,可确定一个平面;两两相 交且共点的三条直线若在一个平面内,可确定一个平面;若三 条直线不在一个平面内,每两条可确定一个平面,共确定3个平
一二三四
知识精要 典题例解 迁移应用
如图,已知△ABC在平面α外,它的三边所在的直线分别交平 面α于点P,Q,R,求证:P,Q,R三点共线.
证明:∵AB∩α=P,AB⊂平面ABC, ∴P∈平面ABC,P∈α.
∴点P在平面ABC与平面α的交线上.
同理可证,点Q和R均在这条交线上.
一二三四
知识精要 典题例解 迁移应用
【例2】 过直线l外一点P引两条直线PA,PB和直线l分别相 交于A,B两点,求证:三条直线PA,PB,l共面.
思路分析:根据条件P,A,B确定一个平面,再证直线l,PA,PB在 这个平面内.
证明:如图,∵点P,A,B不共线,
∴点P,A,B确定一个平面α.
一二三四
知识精要 思考探究 典题例解 迁移应用
一二三四
知识精要 思考探究 典题例解 迁移应用
二、点线共面问题 解决点线共面问题的基本方法
一 二三四
知识精要 思考探究 典题例解 迁移应用
怎样证明多点或多线共面? 提示:要证明多点或多线共面,首先根据确定平面的条件找 到平面,再结合公理1证明其余的点或线也在这个平面内.
一二三四
知识精要 思考探究 典题例解 迁移应用
案例探究 误区警示 思悟升华
易错考点:共面问题判断中的解题误区 下列说法中正确的是( )
A.空间不同的三点确定一个平面 B.空间两两相交的三条直线确定一个平面 C.空间有三个角为直角的四边形一定是平面图形 D.和同一条直线相交的三条平行直线一定在同一平面内
空间点、直线、平面之间的位置关系(人教A版2019必修二)
(二)空间点、直线、平面的位置关系
知识点二 空间两条直线的位置关系
【探究2】分别在两个平面内的两条直线是否一定异面?
位置关系
特点
相交
同一平面内,有且只有 一个 公 共点
第八章 立体几何初步
8.4.2 空间点、直线、平面之间的位置关系
教材分析
本小节内容选自《普通高中数学必修第二册》人教A版(2019)第八章《立体几何初步》的第四节《空间点、 直线、平面之间的位置关系》。以下是本节的课时安排:
课时内容 所在位置 新教材内 容分析
核心素养 培养
教学主线
8.4 空间点、直线、平面之间的位置关系
答案:(1)× (2)× (3)√ (4)× (5)×
(三)典型例题
1.空间直线与直线的位置关系
例1.如图,已知正方体ABCDA1B1C1D1,判断下列直线的位置关系:
①直线A1B与直线D1C的位置关系是 ②直线A1B与直线B1C的位置关系是 ③直线D1D与直线D1C的位置关系是 ④直线AB与直线B1C的位置关系是
重点、难点
1.重点:了解直线与平面的三种位置关系,并会用图形语言和符号语言表示 2.难点:了解空间中两条直线的三种位置关系, 理解两异面直线的定义,会用平面衬托来画异面直线。
(一)新知导入
观察你所在的教室.
【问题】 (1)教室内同一列的灯管所在的直线是什么位置关系? (2)教室内某灯管所在的直线和地面是什么位置关系? (3)教室内某灯管所在的直线和黑板左右两侧所在的直线是什么位置关系? (4)教室内黑板面和教室的后墙面是什么位置关系? 提示 (1)平行. (2)平行. (3)二者是异面直线. (4)平行.
空间点、直线、平面之间的位置关系(2个课时)(课件)(人教A版2019 必修第二册)
作用:证明点共线、线共点.
证:P,Q,R三点共线 证:AB,CD,l三线共点
点共线的证明
课本P132-8.已知△ABC在平面α外,AB∩α=P,
AC∩α=R,BC∩α=Q,求证:P,Q,R三点共线.
证明:∵ AB P,P 且P AB,
又∵ AB 平面ABC,P 平面ABC.
设平面ABC 平面 l,P l.
l
A
①直线l在平面α内:直线l上的所有点都在平面α上. 记为l
l ②直线l与平面α相交:直线l与平面α只有一个公共点A. 记为l A ③直线l与平面α平行:直线l与平面α没有公共点.记为l //.
3.点、直线、平面的关系
a
(4)直线与直线的位置关系:
o
b
共面直线平 相行 交::
a a
// b b
D
αβ
C
空间四边形
例.三个平面最多能把空间分成____部分,最少能把空 间分成____部分。 [考]三个平面能把空间分成4或6或7或8部分.
面与面的交线
例.正方体中,平面ACC1与平面BDC1的交线是_____.
D1C1基本Fra bibliotek实2.若一条直线
A1
B1
上的两点在一个平面内,
那么这条直线在此平面
内.
(√) P131-4.直线a⊂α,b⊂β,α//β,判断直线a,b的位置关系. 平行或异面
[考]若a⊂α,b⊂β,α//β,则a与b平行或异面.
P131-132习题8.4
2.若直线a不平行于平面α,且a⊂α,则下列结论成立的是( B ) a
A.α内的所有直线与a是异面直线 B.α内不存在与a平行的直线
O
(a
b)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间点、直线、平面之间的位置关系(人教A版)
一、单选题(共12道,每道8分)
1.如果一条直线上有一个点在平面外,那么( )
A.直线与平面平行
B.直线与平面相交
C.直线上有无数点都在平面外
D.直线上所有点都在平面外
2.下列命题中,正确的有( )
①若直线上有无数个点不在平面α内,则∥α;
②如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行;
③若直线∥平面α,则直线与平面α内的任意一条直线都没有公共点;
④若两条直线都与第三条直线垂直,则这两条直线互相平行.
A.3个
B.2个
C.1个
D.0个
3.如图,点A,B、直线、平面α的位置关系可以表示为( )
A. B.
C. D.
4.已知a,b,c为三条不重合的直线,α,β为两个不重合的平面,有下列命题:
①若a∥c,b∥c,则a∥b;②若a∥β,b∥β,则a∥b;
③若a∥c,c∥α,则a∥α;④若a∥β,a∥α,则α∥β.
其中正确的是( )
A.①②
B.①
C.②④
D.③④
5.如图所示是正方体和正四面体,P,Q,R,S分别是所在棱的中点,则四个点共面的图形
是( )
A.①②③
B.①④
C.②③④
D.②④
6.给出下列正方体的侧面展开图,其中A,B,C,D分别是正方体的棱的中点,则在原正方体中,AB与CD所在直线为异面直线的是( )
A. B.
C. D.
7.如图,已知长方体中,,,,则和
所成的角的度数为( )
A.30°
B.45°
C.60°
D.90°
8.(上接试题7)和所成的角的度数为( )
A.30°
B.45°
C.60°
D.90°
9.在空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,EF=,则AD与BC所成角的大小为( )
A.30°
B.45°
C.60°
D.90°
10.空间四边形ABCD中,AB=CD且AB与CD(异面直线)所成角为40°,E,F分别是BC,AD的中点,则EF与AB所成的角是( )
A.70°
B.20°
C.70°或20°
D.以上均不对
11.如图,已知四棱锥P-ABCD的底面是边长为6的正方形,侧棱PA的长为8,且垂直于底面,点M,N分别是DC,AB的中点,则异面直线PM与CN所成角的正切值为( )
A. B.
C. D.
12.(上接第11题)四棱锥P-ABCD的表面积为( )
A.108
B.136
C.144
D.180。