电介质物理

合集下载

电介质物理.

电介质物理.

65oC 276oC
50Hz 3×106 Hz
6×10-4 3×10-4
1×1010 3.5×106
1.4×1011 4×106
结论:
① 与 基本相当;
②高频(2×106 Hz)下,介质损耗也是电导损耗。
电介质的损耗
无机玻璃——以共价键结合为主, s

,g

0, tan

0 r
如食盐Nacl晶体,石英,云母等。
只有e和a,r n2 , g 0
损耗主要来自电导
tan 1.81010 1 ( 1 )
0 r
f r

电介质的损耗
Nacl晶体的tan,与计算值
温度
f
tan ( m) ( m)
低频 高频
电介质在电场作用下的往往会发生电能转变为其 它形式的能(如热能)的情况,即发生电能的损 耗。常将电介质在电场作用下,单位时间消耗的 电能叫介质损耗。
电介质的损耗
电介质的损耗
在电压U的作用下,电介质单位时间内消耗的能量
电导损耗
产生原因
松弛极化 典型的为偶极子转向极化
电介质的损耗
在直流电压作用下,介质中存在载流子,有泄露电流 I R
偶极子取向极化(Dipolar Polarizability)
Response is still slower
空间电荷极化(Space Charge Polarizability)
Response is quite slow, τ is large
4. 材料的介电性
4.2 电介质的极化
4. 材料的介电性
①瓷——较常用 绝缘子 ②玻璃
③有机——复合的 陶瓷:不均匀结构,含三相①结晶相,②玻璃相,③气隙

高中物理竞赛讲义-电介质

高中物理竞赛讲义-电介质

电介质一、电介质(绝缘体)在外电场的作用下不易传导电流的物体叫绝缘体又叫电介质1、电介质的分类无外电场时,正负电荷等效中心不重合,叫做有极分子无外电场时,正负电荷等效中心重合,叫做无极分子2、电介质的极化对于有极分子,无外电场时,由于分子的热运动,分子的取向是杂乱无章的。

施加电场后,分子受到电场力作用排列变得规则。

在分子热运动和外电场的共同作用下,分子排列比较规则。

这种极化叫做有极分子的取向极化。

对于无极分子,无外电场时,分子内的正负电荷中心是重合的。

施加电场后,分子内的正负电荷受到电场力作用,各自的等效中心发生偏离。

这种极化叫做无极分子的位移极化。

对于有极分子,也会发生位移极化,只不过位移极化的效果远小于取向极化3、电介质极化的效果等效为电介质表面出现极化电荷(也叫束缚电荷),内部仍然为电中性。

表面的极化电荷会在电介质内产生与原电场方向相反的附加电场。

外加电场越强,附加电场也越强。

类比静电平衡中的导体0。

注意,电介质内部合场强不为0思考:附加电场的大小是否会超过外电场?答案:不会。

一般来说,物理反馈会减弱原来的变化,但不会出现反效果。

例如:勒沙特列原理(化学平衡的移动)、楞次定律(电磁感应)例1:解释:带电体能吸引轻小物体二、带电介质的平行板电容器1、带电介质对电容的影响假设电容器带电量Q 一定,电介质极化产生极化电荷,由于极化电荷会在电容内部产生附加电场E ’,会使得极板间电场E 0减小为合电场E= E 0 - E ’ ,从而使电势差U 减小,电容C 增加。

(若无特殊说明,默认为恒电量问题)假设电容器两板电势差U 一定,电介质极化产生极化电荷,由于极化电荷的感应效果,会使得极板上带电量Q 0增加为Q ,电容C 增加。

可见电介质极化使电容增大,增大的多少与极化的强弱有关。

2、介电常数介电常数ε反映了电介质极化的能力,也就反映了电容变化的程度。

真空的介电常数014kεπ= (利用这个恒等式可以将很多电学公式用ε0表示) 空气的介电常数114'4k k εππ=≈ 经常用相对介电常数εr 来表示:某物质的相对介电常数等于自身的介电常数与真空的比值(大于1)。

大学物理 电介质

大学物理 电介质
电介质的种类和状态的不同而不同
χ = εr − 1 电极化率
令 ε r = (1 + χ e ) 为相对介电常量(相对电容率)
ε = ε 0ε r ~电介质的电容率
5
四、极化电荷与自由电荷的关系
E
=
E0

E'=
E0 εr
E'=
εr − 1 εr
E0
d
σ'=
εr − εr
1
σ
0
Q' =
εr − εr
即 D⇒ E ⇒ P ⇒σ′ ⇒q′
9
物理意义
E
单位试验电荷 的受力
单位体积内的 P 电偶极矩的矢
量和 无物理意义, D 只有一个数学 上的定义 D = ε0E + P
= ε 0ε r E
特点
真空中关于电场的讨论都 适用于电介质:高斯定律、 电势的定义、环路定理等
各向同性均匀电介质中
P = ε0χe E ,表面束缚电荷 σ ′ = P ⋅ n ,电介质中P ≠ 0
D = (1+ χ )ε0E
ε r = (1 + χ )
ε = ε rε 0
相对电容率或相对介电常量
电容率或介电常量
D=ε0ε r E = εE
•注意: D 是辅助矢量,描写电场性质的物理量仍为 E ,V
对于真空 χ e = 0 ε r = 1 ε = ε 0 则 D = ε 0 E
3、有电介质时的高斯定理的应用
在垂直于电场方向的两个表面上,将产生极化电荷。
4.极化电荷
在外电场中,均匀介质内部各处仍呈电中性,但在介质表 面要出现电荷,这种电荷不能离开电介质到其它带电体,也不 能在电介质内部自由移动。我们称它为束缚电荷或极化电荷。 它不象导体中的自由电荷能用传导方法将其引走。

电介质物理知识点总结

电介质物理知识点总结

电介质物理知识点总结电介质是一类具有不良导电性能的材料,可用于电容器、绝缘体等应用中。

电介质物理是研究介质在电场作用下的电学性能的科学。

电介质物理是电磁场理论和介质物理学的重要组成部分。

下面我们将对电介质物理的相关知识点进行总结和展开。

1. 电介质的基本性质电介质是一种不良导电性能的材料,通常包括固体、液体和气体。

电介质的主要特点是在外电场作用下会发生极化现象。

极化是指介电极化,即在电场作用下使介质内部出现正负电偶极子的排列现象,从而使介质产生极化电荷。

常见的电介质包括空气、水、玻璃、塑料等。

2. 电介质的极化过程当电介质处于外电场中时,介质内部的正负电荷将发生位移,使介质被极化。

电介质的极化过程可分为定向极化和非定向极化两种类型。

其中,定向极化是指在介质中存在有定向的分子或离子,当外电场作用下,这些分子或离子会按照一定方向排列,这种极化过程被称为定向极化;非定向极化是指介质中的分子或离子并不具有固定的方向排列,当外电场作用下,这些分子或离子将发生不规则的排列,这种极化过程被称为非定向极化。

极化过程使介质产生极化电荷,从而改变了介质的电学性能。

3. 介质极化的类型根据介质极化的不同类型,可以将极化过程分为电子极化、离子极化和取向极化。

电子极化是指在电场的作用下,介质中的电子云将出现位移,从而使整个分子或原子产生极化;离子极化是指在外电场作用下,介质中的阴离子和阳离子将发生位移,产生极化现象;取向极化是指在电场作用下,具有一定取向的分子或离子将产生极化现象。

不同类型的极化过程会影响介质的电学性能。

4. 介质极化与介电常数介质的极化现象将改变介质的电学性能,其中介电常数是一个重要的参数。

介电常数是介质在外电场作用下的电极化能力的体现,介电常数越大,介质的电极化能力越强。

介电常数的大小将影响介质的导电性、电容性等电学性能。

5. 介电损耗介质在外电场作用下会产生能量损耗,这种现象被称为介电损耗。

介电损耗会导致介质内部的吸收能量和产生热量,从而影响介质的电学性能。

电介质基本物理知识

电介质基本物理知识

第一章电介质基本物理知识电介质(或称绝缘介质)在电场作用下的物理现象主要有极化、电导、损耗和击穿。

在工程上所用的电介质分为气体、液体和固体三类。

目前,对这些电介质物理过程的阐述,以气体介质居多,液体和固体介质仅有一些基本理论,还有不少问题难以给出量的分析,这样就在很大程度上要依靠试验结果和工作经验来进行解释和判断。

第一节电介质的极化一、极化的含义电介质的分子结构可分为中性、弱极性和极性的,但从宏观来看都是不呈现极性的。

当把电介质放在电场中,电介质就要极化,其极化形式大体可分为两种类型:第一种类型的极化为立即瞬态过程,极化的建立及消失都以热能的形式在介质中消耗而缓慢进行,这种方式称为松弛极化。

电子和离子极化属于第一种,为完全弹性方式,其余的属于松弛极化型。

(一)电子极化电子极化存在于一切气体,液体和固体介质中,形成极化所需的时间极短,约为1015 s。

它与频率无关,受湿度影响小,具有弹性,这种极化无能量损失。

(二)原子或离子的位移极化当无电场作用时,中性分子的正、负电荷作用中心重合,将它放在电场中时,其正负电荷作用中心就分离,形成带有正负极性的偶极子。

离子式结构的电介质(如玻璃、云母等),在电场作用下,其正负离子被拉开,从而使正负电荷作用中心分离,使分子呈现极性,形成偶极子,形成正负电荷距离。

原子中的电子和原子核之间,或正离子和负离子之间,彼此都是紧密联系的。

因此在电场作用下,电子或离子所产生的位移是有限的,且随电场强度增强而增大,电场以清失,它们立即就像弹簧以样很快复原,所以通称弹性极化,其特点是无能量损耗,极化时间约为1013-s。

(三)偶极子转向极化电介质含有固有的极性分子,它们本来就是带有极性的偶极子,它的正负电荷作用中心不重合。

当无电场作用时,它们的分布是混乱的,宏观的看,电介质不呈现极性。

在电场作用下,这些偶极子顺电场方向扭转(分子间联系比较紧密的),或顺电场排列(分子间联系比较松散的)。

物理学中的电介质物理学理论

物理学中的电介质物理学理论

物理学中的电介质物理学理论电介质物理学理论是指在电学领域中,研究非金属材料在电场中的响应性质的学科,其研究的对象是电介质。

电介质是指在外界电场作用下,会将电能转换为其他形式的非导体材料。

电介质广泛应用于电子学、通信、电力等领域,是现代电子科技中不可或缺的一部分。

1. 电介质物理学理论的基础知识电介质在外界电场下会发生极化现象,也就是说,电介质中的电子、离子、偶极子等会产生相应的分布。

这种电荷分布会影响电介质中的电场分布,从而影响电介质物质的响应。

电介质分为线性电介质和非线性电介质,线性电介质遵循线性关系,而非线性电介质不遵循线性关系。

另外,电介质的极化可以分为自发极化和强制极化。

自发极化是指电介质中存在自发极化矢量,在无外界电场的作用下也会存在极化现象。

而强制极化是指电介质在受到外界电场的作用下,会出现新的极化矢量,这种极化是强制性的,与电介质自身性质无关。

2. 电介质的电容与介电常数对于一个电介质,其电容和介电常数是两个非常重要的参数。

电容指的是电荷与电势之间的比例关系,即电容等于电荷与电势的比值。

介电常数是电介质中电场强度与电位移密度之间的比值,介电常数越大,则电介质极化相对来说就越明显。

需要注意的是,电介质的介电常数会随着温度和频率的变化而变化。

在高温下介电常数通常会降低,而在频率高于1MHz时介电常数也会下降。

3. 非线性电介质的应用非线性电介质的特点是其电极化与电场的关系不是线性的,当电场强度超过一定阈值时,电介质中会出现非线性响应。

非线性电介质具有频率倍增与和谐倍频等非线性效应,被广泛用于激光技术、雷达通信以及图像处理等领域。

例如,二极管光谱翻转技术,通过在非线性晶体中将激光脉冲和稳态激光序列合并,可以生成高质量的超短脉冲。

4. 结语在科技不断进步的今天,电介质物理学理论正作为电子学、通信、电力等领域的重要组成部分,不断发掘和发展着。

通过系统而深入地学习电介质物理学理论,人们可以更好地理解各种电介质材料的性质,并将其应用于实际生活中的各种领域。

电介质物理 孙目珍 华南理工(缩印版)

电介质物理 孙目珍 华南理工(缩印版)

电介质的极化:在外电场的作用下,电介质内部沿电场方向产生感应偶极矩,在电介质表面出现极化电荷的现象称为电介质的极化。

电介质的损耗:电介质在外电场的作用下,将一部分电能转变为热能的物理过程,称为电介质的损耗。

电介质电击穿:在电场直接作用下发生的电介质被破坏的现象称为电介质点击穿。

极化强度P:一种为了衡量电介质极化的强弱,用单位体积中电介质感应偶极矩的矢量和所表示的物理量。

单位是C/m2。

退极化电场:电介质极化以后,电介质表面的极化电荷将削弱极板上的自由电荷所形成的电场,所以由极化电荷所产生的场强被称为自发极化:在没有外电场的作用下,晶体的正、负电荷重心不重合而呈现电偶极矩的现象称为电介质的自发极化。

电介质热击穿:由于电介质内部热的不稳定过程所造成的击穿现象。

迁移率:单位电场作用下的载流子沿电场方向的平均漂移速度称为载流子的迁移率。

自持放电:在电场强度临界值E m点之后,即使将外界电离因素去掉,放电仍将继续维持的,称为自持放电。

居里温度:由顺电相向铁电相转变的温度。

以针-板电场(针极分别为正极和负极)为例分析不均匀电场中气体放电的极性效应答:当针尖为正时,正的空间电荷削弱了针尖附近的电场,加强了正空间电荷到极板之间的弱电场。

这种情况相当于高电场区从针尖移向板极,像是正电极向负电极延伸了一段距离,因此击穿电压比针尖为负时低。

当针尖为负时,正空间电荷包围了针电极,加强了针尖附近的电场,而削弱了正空间电荷到极板之间的电场,使极板附近原来就比较弱的电场更加减弱了,像是增加了针尖的曲率半径,电极间的距离虽然缩短了一些,但电场却均匀了,因此负针-板电极的击穿电压高于正针-板电极的击穿电压。

简述钛酸钡铁电晶体180°畴和90°畴极化反转特点答:180°畴特点:①畴壁生长速度约是声速1/10~1/5。

②侧向移动速度约是10-6~10-2cm/s。

③空间电荷对于畴壁移动的影响,阻碍电畴的反转。

电介质基本物理知识

电介质基本物理知识

第一章电介质基本物理知识电介质(或称绝缘介质)在电场作用下的物理现象主要有极化、电导、损耗和击穿。

在工程上所用的电介质分为气体、液体和固体三类。

目前,对这些电介质物理过程的阐述,以气体介质居多,液体和固体介质仅有一些基本理论,还有不少问题难以给出量的分析,这样就在很大程度上要依靠试验结果和工作经验来进行解释和判断。

第一节电介质的极化一、极化的含义电介质的分子结构可分为中性、弱极性和极性的,但从宏观来看都是不呈现极性的。

当把电介质放在电场中,电介质就要极化,其极化形式大体可分为两种类型:第一种类型的极化为立即瞬态过程,极化的建立及消失都以热能的形式在介质中消耗而缓慢进行,这种方式称为松弛极化。

电子和离子极化属于第一种,为完全弹性方式,其余的属于松弛极化型。

(一)电子极化电子极化存在于一切气体,液体和固体介质中,形成极化所需的时间极短,约为1015 s。

它与频率无关,受湿度影响小,具有弹性,这种极化无能量损失。

(二)原子或离子的位移极化当无电场作用时,中性分子的正、负电荷作用中心重合,将它放在电场中时,其正负电荷作用中心就分离,形成带有正负极性的偶极子。

离子式结构的电介质(如玻璃、云母等),在电场作用下,其正负离子被拉开,从而使正负电荷作用中心分离,使分子呈现极性,形成偶极子,形成正负电荷距离。

原子中的电子和原子核之间,或正离子和负离子之间,彼此都是紧密联系的。

因此在电场作用下,电子或离子所产生的位移是有限的,且随电场强度增强而增大,电场以清失,它们立即就像弹簧以样很快复原,所以通称弹性极化,其特点是无能量损耗,极化时间约为1013-s。

(三)偶极子转向极化电介质含有固有的极性分子,它们本来就是带有极性的偶极子,它的正负电荷作用中心不重合。

当无电场作用时,它们的分布是混乱的,宏观的看,电介质不呈现极性。

在电场作用下,这些偶极子顺电场方向扭转(分子间联系比较紧密的),或顺电场排列(分子间联系比较松散的)。

大学物理电介质讲义省公开课获奖课件市赛课比赛一等奖课件

大学物理电介质讲义省公开课获奖课件市赛课比赛一等奖课件

( pi 0)
无外电场
F 1
( pi 0)
有电场取向极化
E 0
E
极化旳宏观效果总是在电介质表面出 现电荷分布, 称为极化电荷或束缚电荷。 E E0 E 0
3、电极化强度 (Polarization intensity)
V
— 表征电介质极化程度 宏观描述?

pi 极化后每个分子旳电偶极矩 取宏观上无限小
dWe dq
Qq
Q2
We
dW
dq
0 40R
8 0 R
例12.5 半径为R、相对介电常数为εr 旳
Q R
球均匀带电
Q
,求其电场能量。
r
解:
D dS
S
q0i内
i
D 4r 2 4 r 3
E1 r
E2
电荷体密度:
3 Q
4 R3 3
D 0 r E
取体积元 dV 4r2dr
在无外 正负电荷中心不重叠 正负电荷中心重叠 电场时 (水、有机玻璃等) (氢、甲烷、石蜡等)
2、电介质旳极化
——在外电场作用下,介质表面感生出束缚(极化) 电荷旳现象.
微观机制:
E
无极分子
E
0
0
-+
无外电场 有电场位移极化
有极分子
E 0
E
0F
E
1
+q ( p ql ) -q
F 2
lF 2
和束缚电荷
E0和E 叠加
共同产生
0
单独产生旳场强为
E0
σ0 ε0
0 0
E0
单独产生旳场强为 E σ
E
ε0

电介质物理》课件电介质的击穿

电介质物理》课件电介质的击穿
电介质击穿的物理机制
电击穿机制
电场作用下电介质击穿
在强电场的作用下,电介质内部的自由电子被加速,与晶格原子发生碰撞,导致 电子能量降低并产生新的电子-空穴对,这些新的电子-空穴对进一步与晶格原子 发生碰撞,产生更多的电子-空穴对,最终导致电介质击穿。
隧道效应
在强电场的作用下,电子通过隧道效应穿过势垒,形成导电通道,导致电介质击 穿。
03
影响电介质击穿的因素
电场强度
总结词
电场强度是影响电介质击穿的最主 要因素之一。
详细描述
随着电场强度的增加,电介质中的 电场会变得更强,导致电子更容易 获得足够的能量来克服电介质中的
束缚力,从而引发电介质击穿。
总结词
高电场强度下,电介质更容易发生 击穿。
详细描述
在强电场的作用下,电介质内部的 电子会被加速,获得足够能量后能 够克服电介质中的束缚力,形成导 电通道,导致电介质击穿。
03
热击穿
电击穿
冲击击穿
在强电场的作用下,电介质内部的热量积 累导致温度升高,当温度达到一定程度时 ,发生热击穿。
在强电场的作用下,电子获得足够的能量 ,直接导致电介质分子中的电子跃迁,形 成导电通道。
在雷电或操作过电压的作用下,电介质内 部的电流迅速增加,产生强烈的冲击波, 导致电介质瞬间击穿。
02
电介质物理》课件电介质的 击穿
目录
• 电介质击穿的基本概念 • 电介质击穿的物理机制 • 影响电介质击穿的因素 • 电介质击穿的预防与控制 • 电介质击穿的实验研究方法
01
电介质击穿的基本概念
定义与Байду номын сангаас性
01
02
定义
特性
电介质击穿是指电介质在强电场的作用下,丧失其绝缘性能的现象。

电介质物理基础复习

电介质物理基础复习

1、电介质分类:非极性电介质、极性电介质、离子性电介质2、电介质的极化:在外电场作用下,电介质内部沿电场方向产生感应偶极矩,出现宏观偶极矩,在介质表面出现束缚电荷的现象3、电子位移极化:电子云畸变引起的负电荷中心位移产生感应电矩,称电子位移极化4、离子位移极化:正负离子中心发生相对位移,发生感应电矩,称离子位移极化5、取向极化:固有电偶极矩沿外电场方向转向称取向极化,6、热离子极化:实际电介质,由于热运动,离子脱离平衡位置发生迁移,电场使已经脱离平衡位置的弱联系离子做定向迁移,造成电介质内部电荷分布不均,形成偶极矩,称为热离子极化7、空间电荷极化或夹层极化、界面极化:电介质中的电荷在不同介质的界面上积聚,形成空间电荷局部积累,使电介质中的电荷分布不均匀,产生宏观电矩。

这种极化称为空间电荷极化或夹层极化、界面极化8、固有偶极矩的取向极化:当有外电场时,这些固有偶极矩将趋于转向沿外电场方向排列。

因固有偶极矩转向而在介质中产生宏观偶极矩,这种现象称为固有偶极矩的取向极化9、为什么宏观电场强度E 和有效电场Ei 不相等?答:1、在外电场的作用下电介质发生电极化,整个介质出现宏观电场2、电介质中的某一点的宏观电场E,是指极板上的自由电荷以及电介质中所有极化分子形成的偶极矩,共同在该点产生的电场3、作用在每个分子或原子上实质极化的有效电场(内电场)显然不包括该分子或原子自身极化所产生的电场。

4、比如:平行板电容器1011、电介质的极化包括弹性位移极化和弛豫极化。

弹性位移极化:电子弹性位移极化和离子位移极化,这两种极化的时间非常短,与温度的依赖关系不大弛豫极化:固有电矩的取向极化和热离子极化、缺陷偶极矩的取向极化(又称界面极化),固有电矩的取向极化与热平衡性质(温度)有关,缺陷偶极矩的取向极化与电荷的堆积过程有关,需要很长弛豫时间,称弛豫极化12、弛豫时间:电介质的极化是一个弛豫过程,从施加电场到极化平衡需要一定的时间,这个时间称弛豫时间13、瞬时极化:电子弹性位移极化和离子弹性位移极化达到稳态所需时间约10-16-10-12 s,在远低于光频情况下可认为是即时的,因此弹性极化也称瞬时极化或无惯性极化。

电介质四个大类物理现象

电介质四个大类物理现象

电介质四个大类物理现象
电介质是一种在电场中能够发生极化现象的物质。

电介质的四个大类物理现象包括:
1. 极化现象,当电介质置于外电场中时,其分子或原子会发生极化现象,即在电场的作用下,正负电荷分离,形成电偶极矩。

这种极化现象是电介质的基本特征之一。

2. 介质击穿,当电场强度达到一定数值时,电介质会发生击穿现象,即电介质内部的电阻突然减小,导致电流急剧增大,这种现象常常伴随着放电和火花的产生。

3. 介质损耗,在交流电场中,电介质会因为分子或原子在电场中的周期性运动而产生能量损耗,这种损耗称为介质损耗。

介质损耗会导致电介质加热,并且会影响电介质的电学性能。

4. 介质弛豫,当外电场发生变化时,电介质内部的极化现象不会立即跟随电场的变化而变化,而是有一定的滞后时间。

这种现象称为介质弛豫,其时间常数取决于电介质的性质和温度等因素。

以上是电介质的四个大类物理现象,它们展现了电介质在电场中的复杂而丰富的行为。

电介质物理_徐卓、李盛涛-第六讲(Onsager有效电场)详解

电介质物理_徐卓、李盛涛-第六讲(Onsager有效电场)详解

Onsager成功地解释了Mossotti灾难不可能出现的原因。但他的 模型过于简单,忽略了极性分子与近邻的强烈作用而引起的各种 复杂的排列规律,将理论结果用于定量计算是将会引起较大误差。
Onsager方程
方向,使其拉伸
Onsager有效电场
(0
e gE)(1 e
f)
总有效偶极矩(固有+感生)
故Onsager有效电场
Ee
gE
f 1 1e f
gE
f
1 f
0
Onsager有效电场
1e f
3(n2 2 r ) (2 r 1)(n2 2)
对于非极性液体
0 0
0
eEe
eEe
exp( 'Ec cos )sin d
0
KT
KT
Onsager方程
'L( 'Ec )
KT
为郎之万函数,当 'E0
KT

'L( 'Ec ) ' Ec
KT 3KT
' '2 Ec '2 3 r E 3KT 3KT 2 r 1
" 与
Ec
同向,其平均值, "
"
Onsager方程
E
'
"
是极极矩性在分0子方的向总的有分效量偶
极性分子相对外电场E作用 的有效感生极化偶极矩
Onsager方程
"
1E
1
3 0 r (n2 1) n0 (n2 2 r )
相当于极性分子在外电场 E作用下的有效极化率
Onsager方程
该极性分子在有效电场作用下的转矩

电介质物理_李翰如

电介质物理_李翰如
电介质物理
李波
电子科技大学 微电子与固体电子学院
第一章 电介质的极化
1.1 静电学基本定律 1.2 介电常数与介质极化 1.3 有效内电场(Ei) 1.3 克劳修斯-莫索缔方程 1.4 翁萨格有效电场 1.5 电子位移极化 1.6 离子位移极化 1.7 转向极化 1.8 热离子极化 1.9 空间电荷极化 1.10 离子晶体电介质

1 R2
⎟⎟⎠⎞
C
=
Q V
=
4πε0ε r
R1R2 R2 − R1
15
(2)电容器的电容计算
③ 柱形电容器
设单位长度带电量为 q = Q L
在两极板之间 R1 < r < R2
-Q +Q
L
R1
E= q 2πε0ε rr
R2
∫ ∫ V = R2 Edr = R2 q dr = q ln R2
R1
R1 2πε0ε r r
+
-
+
-
+
-
+
-
+
-
C0
=
Q0 V
=
σ0S V
+
⊕Θ
-
⊕Θ
+
-

+
Θ
εr

Θ
-

+
Θ
⊕ Θ-
+⊕ Θ
⊕ Θ-
Q = Q0 + Q′ σ =σ0 +σ′
C = Q = Q0 + Q′ VV
C = (σ 0 + σ ′)S
V
(σ 0 + σ ′)S
ε=C = C0

电介质物理:第4章-电介质的唯象理论

电介质物理:第4章-电介质的唯象理论

dA sdT PdV
(4.8)
dG sdT VdP
(4.9)
dH Tds VdP
(4.10)
其中
A U sdT,
G U sT PV,
H U PV.
(4.11) (4.12) (4.13)
选择不同的自变量可得到相应的热力学函数.通常,称U(s,V)为内能, A(T,V)为亥姆 霍兹自由能, G(T,P)为吉布斯自由能, H(s,P)为热焓.四个热力学函数都具有能量的 意义,只是选用的独立变量不同而已.
热力学第一定律
热力学方法的特点是根据大量实验结果,归纳成3个基本定律,在由这3个定律出发 用严格的数学方法推导出不同热力学量之间的关系.
热力学是一种唯象理论,不能采用它来根据自然常数计算出具体物质的热力学量 的数值.但是,能严格地用来定义热力学量的实验值,并预言不同实验结果之间的 关系.
热力学第一定律(实质上就是能量守恒定律)指出,在一切过程中,由外界流入系统 的热量DQ等于系统内能增量DU与系统对外界所作功DW之和, 即
(4.19)
应变和应力
固态电介质所受的外力分为两种:一种为通过固体表面施加的面积力,它将引起 固体形变;另一种为体积力,它与固体的表面无关(如重力).
通常,我们所考察的固体体积不太大,可以认为体积力是均匀的.当固体的结构 为均匀时,体积力的效果为引起物体的整体平移运动.这种运动通常与固体的介 电性质无关;我们将不考虑这种运动,即设体积力为零.
均匀变形
均匀变形时所发生的位移如图4.1所示.当a≠b时, ∂ua/∂Rb给出ab平面上的应变角,角度的方
向为顺时针为正;而∂ua/∂Ra则为a方向上的相对伸长,负值表示缩短. 9个导数中可组成一个
3x3矩阵.若令
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
back
•功能陶瓷介质
近年来 ,随着电子技术、空间技术、激光技术、计算机技 术等新技术的兴起以及基础理论和测试技术的发展 ,人们 创造各种性能的功能陶瓷介质。主要有 : (1 )电子功能陶瓷 如高温高压绝缘陶瓷、高导热绝缘陶瓷、 低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等 ; (2 )化学功能陶瓷 如各种传感器 ,化学泵等 ; (3 )电光陶瓷和光学陶瓷 如铁电、压电 ;热电陶瓷、透光 陶瓷、光色陶瓷、玻璃光纤等。
back
国际上电介质学科是在 20世纪 20年代至 30年代形成的 , 具有标志性的事件是 :电气及电子工程师学会 (IEEE)在 1920年开始召开国际绝缘介质会议 ,以后又建立了相应的 分 会 ( IEEE Dielectric andElectrical Insulation Society)。 美国 MIT建立了以 Hippel教授为首的绝缘研究室。苏联 列宁格勒工学院建立了电气绝缘与电缆技术专业 ,莫斯科 工学院建立了电介质与半导体专业。特别是德国德拜教授 在 2 0世纪 3 0年代由于研究了电介质的极化和损耗特性 与其分子结构关系获得了诺贝尔奖 ,奠定了电介质物理学 科的基础。随着电气和电子工程的发展,形成了研究电介 质极化、损耗、电导、击穿为中心内容的电介质物理学科。
back
我国电介质领域的发展是在 1952年第一个五年计划制定 和实行以来 ,电力工业和相应的电工制造业得到迅速发 展 , 这些校、院、所首先在我国开展了有关电介质特性 的研究和人才的培养 ,并开出了“电介质物理”、“电介 质化学”等关键专业课程 ,西安交大与上海交大、哈尔滨 工大等院校一道为我国培养了数千名绝缘电介质专业人 才 ,促进了我国工程电介质的发展。 80年代初中国电工 技术学会又建立了工程电介质专业委算机工业的发展 ,用电的频 率由工频提高到无线电频率 (兆赫 )到光频。 这对介质中 的极化损耗的降低提出尖锐的要求。
随着计算机的广泛使用 ,对计算机控制 ,要求必须研究 具有多种功能的执行元件。其中大量的是具有电-机械、光 电转换的介质器件 ,因而电介质研究领域就从绝缘领域扩展 到电子功能器件领域 ,如新型大屏幕彩电就应用了气体介质 放电、电致发光、电致液晶等技术。
back
•功能电介质
1 )纳米材料 纳米材料是几何尺寸介于原子、分子与块状物体之间的金 属以及各种化合物的粒子或粒子的集合体。随着粒子的粒 径的减小 ,表面原子对材料的性能的影响加剧 ,即出现表 面效应 ;粒子的体积的减小引起体积效应 ,表现了粒子的 量子尺寸效应 ,因而纳米粒子在热、光、磁等物理性能上 表现出种种异常 ,具有特殊的电学、光学特性。当前纳米 材料的研究的特点是从单相转向复相纳米材料。纳米材料 的应用涉及到人类生活的各个领域 ,如特异性导电材料、 电磁波共振器、超低温远红外材料、高活性催化剂等 ,有 的已进入实用阶段 ,有的具有诱人的研究前景。预计用纳 米超微粉改性绝缘电介质将会在绝缘技术领域形成新的突 破口。
电介质物理
邓 宏 电子科技大学 微电子与固体电子学院
•前言
电介质材料的研究与发展成为一个工业领域和学科 领域 ,是在 2 0世纪随着电气工业的发展而形成的。 “工程电介质”是随着 20世纪电气化时代的到来而发 展形成的一门学科和生产领域 ,它在 21世纪到来之际 , 将随着信息和生物等新兴技术领域的发展会有更广阔的 前景。
新型电力电子器件及电气设备中要用到许多新型功能介 质材料 ,如 ZnO压敏电阻避雷器、电力电子器件中开拓应用 的导热绝缘材料、变压器中绝缘油老化含水检测的传感器件 等。至此工程电介质不仅包括绝缘电介质 ,而且包括各种电 子功能电介质。
传统绝缘电介质的发展
在电气绝缘领域中目前研究最多的仍是塑料电缆。 随着电气设备在航天、航海、核能、矿井、电气 机车、高层建筑等领域的广泛应用 ,对于绝缘电介 质在耐高低温、抗辐射、耐油、阻燃等方面都有 更高的特殊要求 ,因此需要研究各种阻燃非燃电缆 材料、ε梯度分布均电场介质、自恢复绝缘介质、 超低温超导绝缘介质、耐核辐射绝缘介质等。这 些材料多采用有机与无机介质的复合来达到其综 合性能要求。
一、2 0世纪电介质学科的发展和贡献
1.电介质学科的起源和对电气工业发展的贡献 2.电介质学科的建立和发展
二、工程电介质发展的热点问题展望
1.传统绝缘电介质的发展 2.功能电介质 3.生物电介质 4.其它工业应用新发展
20世纪初叶的电气设备电压低、电流不很大 ,电机、 电线、电缆、开关等设备的绝缘都采用了天然材料 ,如 云母、沥青、绝缘纸、矿物油、天然橡胶、大理石板 等 ,它们的电气性能如绝缘电阻、耐压等都较低。随着 电气设备电压的上升 ,特别是大容量电机及高压输电设 备的发展 ,急需提供新型绝缘介质。在2 0世纪中叶 , 化学合成技术飞速发展 ,出现了新型合成高分子材料 , 由于它们一般绝缘性能良好、易加工 ,为新型绝缘介质 的发展和应用带来了极好的条件。经过近代的研究和发 展 ,聚合物介质已成为各种新绝缘介质的主体 ,如电机 中采用的环氧云母和合成纤维纸板作介质并浸渍硅有机 漆作主绝缘 ,电线电缆绝缘则由油纸绝缘发展为塑料绝 缘。国外塑料电缆产品已达 500 k V,国内达 220 k V, 合成的十二烷基苯二芳基烷烃等液体介质和聚丙烯薄膜 已作为电力电容器的主绝缘。
这些高分子合成材料不仅绝缘强度高、加工性能好 ,而且 经过组成、结构的改变 ,还能提高其耐热、阻燃、耐油等 特性 ,这大大促进了电气工业产品性能的提高和发展 ,如 电机绝缘由Y(0 )级、A级 [耐热 90℃- 105℃ ,天然棉丝 纸绝缘 ],发展到 C级 [耐热 200℃ ,聚酰亚胺绝缘 ],聚 乙烯塑料电缆通过采用化学交联或辐照交联 ,耐温也由 75℃提高到 90℃。我国制造电机的容量亦由 50年代的 6 千千瓦发展到自制 6 0万千瓦 ,电能原是少数大城市使用 的稀缺能源 ,目前已成为城、乡村、工、农业、人民生活 不可缺少的能源。应该说绝缘介质的发展为世界各国电气 化事业作出了重要的贡献。
相关文档
最新文档