中考数学复习指导:例谈中考数学中动点运动路径求解

合集下载

“动”的规律——发现规律巧解中考数学压轴题中动点、动线问题

“动”的规律——发现规律巧解中考数学压轴题中动点、动线问题

“动”的规律——发现规律巧解中考数学压轴题中动点、动线问题中考数学压轴题中有一种类型的问题,令很多学生望而生畏,那就是关于动点和动线的问题。

所谓动点问题:就是题设图形中存在一个动点,该点在一定的轨迹上(通常为直线,射线,线段或弧线)运动,从而设计成的一种开放型难题。

它不仅考察了学生剖析问题,处理问题的才能,更考察了学生的空间想象,和逻辑推理能力。

这种类型的试题是对学生综合能力的考察。

下面就举例说明怎么快速突破这类难题例题一这个题的第一问不是很难,可以根据三角形BDE面积为10/3,代入三角形面积公式求解。

因此关键问题是设好D和E两点的坐标。

(1)设D(K/5,5),E(3,K/3),则BD=3-K/5 ,BE=5-K/3∵S△BDE =10/3 ,∴×( 3-K/5 )( 5-K/3 )=10/3解得k=5或k=25(舍去)∴k=5有了第一问的铺垫,第二问也就有了思路,可以用△BDE∽△BCA就可以正平行。

解法如图。

难点是第三个问,但是运用严谨的逻辑推理也不难发现解题方法:假设存在这样的动点,那么就应该能解出这个点的坐标,而D点的坐标y是定值5,坐标x是变量,要想解出这个变量一定得找到一个恒等式,哪里存在这个恒等式呢?比如三角形全等、三角形相似就能导出恒等式。

所以为了构造相似三角形,建立一条辅助线:过E作EG⊥OC于G,这样就不难得解了。

详细解答见图。

详细解答再看一例:例题二解题思路分析:第一问:先通过解方程求出A,B两点的坐标,然后根据A,B,C 三点的坐标,用待定系数法求出抛物线的解析式。

第二问:本题要通过求△CPE的面积与P点横坐标的函数关系式而后根据函数的性质来求△CPE的面积的最大值以及对应的P的坐标.△CPE的面积无法直接表示出,可用△CPB和△BEP 的面积差来求,设出P点的坐标,即可表示出BP的长,可通过相似三角形△BEP和△BAC求出.△BEP中BP边上的高,然后根据三角形面积计算方法即可得出△CEP的面积,然后根据上面分析的步骤即可求出所求的值.第三问:三种情况分别如下进行讨论:①QC=BC,那么Q点的纵坐标就是C点的纵坐标减去或加上BC的长.由此可得出Q点的坐标.②QB=BC,此时Q,C关于x轴对称,据此可求出Q点的坐标.③QB=QC,Q点在BC的垂直平分线上,可通过相似三角形来求出QC的长,进而求出Q点的坐标.详细解答如下图:答案总结:动点的问题虽然难,但并不是完全没有思路。

中考动点问题的解题技巧

中考动点问题的解题技巧

在中考数学中,动点问题是一个比较常见的题型。

这类问题通常需要学生结合图形的运动和变化,利用函数、方程等知识解决。

以下是一些解题技巧:
1.建立模型:首先需要明确题目中的已知条件和未知条件,并建立相应的数学模型。

对于动点问题,可以通过建立坐标系来描述点的位置和运动轨迹。

2.转化问题:动点问题往往涉及到数量关系和位置关系的变化,因此需要将问题转化为数学问题。

比如,可以建立方程或不等式来描述点的位置和运动轨迹。

3.寻找规律:动点问题中往往有一些规律性的东西,比如点的运动轨迹是按照一定规律变化的。

因此,需要认真观察、分析,找到这些规律,以便更好地解决问题。

4.分类讨论:在解决动点问题时,有时需要考虑到不同的情况,比如点的位置、运动速度、运动方向等。

因此,需要进行分类讨论,逐一解决不同情况下的数学问题。

5.综合分析:动点问题往往涉及到多个知识点,比如函数、方程、不等式等。

因此,在解决问题时,需要综合分析各个知识点之间的关系,以便更好地解决问题。

6.熟练掌握相关知识点:解决动点问题需要熟练掌握相关知识点,比如函数的性质、方程的解法、不等式的解法等。

因此,在平时的学习中,需要加强这些知识点的学习和训练。

7.注意细节:在解决动点问题时,需要注意细节,比如点的坐标、单位等。

如果这些细节处理不当,可能会导致解题错误。

总之,解决动点问题需要学生熟练掌握相关知识点,建立正确的数学模型,通过转化问题、寻找规律、分类讨论、综合分析等方法来解决。

同时,也需要注意细节处理。

你知道初中动点问题的公式和答题思路以及过程吗

你知道初中动点问题的公式和答题思路以及过程吗

你知道初中动点问题的公式和答题思路以及过程吗
动点问题一直是近几年中考的高频考点,也是中考试题中的难点。

图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

现在数学测试卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.
常见方法
1.特殊探究,一般推证。

2.动手实践,操作确认。

3.建立联系,计算说明。

解题关键:动中求静。

中考动点题解题思路

中考动点题解题思路

中考动点题解题思路中考动点题是数学中的一种题型,主要考察学生对于动点运动轨迹和运动规律的理解和应用能力。

这类题目通常会给出一个动点在二维平面上的运动过程或条件,并要求学生回答有关该动点运动的问题,如到达某一位置的时间、速度、加速度等。

下面将结合具体的例题,从问题的分析、解题思路和方法、以及注意事项三个方面详细探讨中考动点题的解题思路。

一、问题的分析在解动点题之前,学生首先要对问题进行分析,确定动点的运动过程或条件。

通常可以从题目中找到以下几点信息:1.动点的运动方式:动点是直线运动还是曲线运动,是匀速运动还是变速运动;2.动点的起始条件:动点开始的位置、速度或其他相关条件;3.动点的运动过程:动点在规定的时间内或规定的条件下的运动情况。

二、解题思路和方法1.画图辅助分析:将问题中的相关信息用图形表示出来,有助于更好地理解问题和分析解题思路。

可以根据问题的要求,画出动点在平面上的运动轨迹图或示意图,标注出起始位置、终止位置、运动方向等信息。

2.分析运动过程:根据问题中给出的动点运动过程或条件,分析动点在不同时间或条件下的运动状况,如位置的变化、速度的变化、加速度的变化等。

通过对运动过程的分析,可以找到解题的关键点。

3.应用运动公式求解:根据动点的运动方式和相关条件,利用数学中的运动公式来求解问题。

常用的运动公式有:物体在匀速直线运动中的位移公式、速度公式和时间公式;物体在匀变速直线运动中的位移公式、速度公式和加速度公式等。

根据题目所给的条件和要求,选择合适的公式进行计算,得到问题所求的答案。

4.根据图像和运动规律推理解答:有时候,问题中给出的信息比较复杂,难以直接利用运动公式来求解。

这时候可以通过观察图像和分析运动规律来得到解题的思路。

可以利用图像中的形状、对称性、周期性等特点,运用数学推理和逻辑推理的方法,得到问题所求的答案。

三、注意事项1.注意运动方式和条件的特殊性:有些题目中给出的动点运动方式或条件比较特殊,需要特别注意。

中考数学:点动产生路径长问题

中考数学:点动产生路径长问题

点动产生的路径长问题近几年中考,和我们同学做的中考模拟试卷中,不断的出现了因动点计算路径长问题,这种题型因为隐藏的比较深,从而难以发现,计算比较繁琐。

在填空题选择题中比较多。

只要同学们在做题的过程中发现是这种题型,那么点所经过的路径一般就是就是两种结果。

一是线段。

二是圆弧。

为什么呢?因为只有这两图形是可以计算路径长的。

其它图形我们目前能计算路径长吗。

哈哈,这样解释印象有没有很深。

下面我们来看看我们会碰到的几种题型。

题型1:简单的图形翻转问题。

解法:这种题型比较简单。

只要找出旋转圆心,旋转时圆的半径,还有圆心角就可以了,然后利用扇形的弧长计算公式来计算。

注意,如果是圆弧旋转的话,圆心的路径是直线。

例题1:一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为___________试题分析:现将木板沿水平线翻滚, B点从开始至结束走过了4条弧,每条弧是一等边三角形的边为半径的扇形,圆心角为等边三角形的内角,所以 B点从开始至结束所走过的路程长度=4l=点评:本题考查扇形的弧长公式,关键是找出扇形的圆心角和半径,考查学生的空间想象能力例题2:矩形ABCD的边AB=8,AD=6,现将矩形ABCD放在直线l上且沿着l向右作无滑动地翻滚,当它翻滚至类似开始的位置A1B1C1D1时(如图所示),则顶点A所经过的路线长是例题3:将半径为1、圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A’O’B’处,则顶点O经过的路线长为。

例题4:如图,一个圆心角为270°,半径为2m的扇形工件,未搬动前如图所示,A,B两点触地放置,搬动时,先将扇形以B为圆心,作如图所示的无滑动翻转,再使它紧贴地面滚动,当A,B两点再次触地时停止,则圆心O所经过的路线长是m.(结果保留π)例题5:已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m,半圆的直径为4m,则圆心O所经过的路线长是 m。

中考数学复习专题讲:动点型问题(含答案)

中考数学复习专题讲:动点型问题(含答案)

中考数学复习专题讲座:动点型问题(建立动点问题的函数解析式(或函数图像)、动态几何型压轴题)一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.“动点型问题” 题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。

二、解题策略和解法精讲解决动点问题的关键是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

三、中考考点精讲考点一:建立动点问题的函数解析式(或函数图像)函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.(一)应用勾股定理建立函数解析式(或函数图像)例1 (2012•嘉兴)如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为长为x,AP 长为y,则y关于x的函数图象大致是()A.B.C.D.思路分析:根据题意设出点P运动的路程x与点P到点A的距离y的函数关系式,然后对x从0到2a+2a时分别进行分析,并写出分段函数,结合图象得出答案.解:设动点P按沿折线A→B→D→C→A的路径运动,∵正方形ABCD的边长为a,∴BD=a,则当0≤x<a时,y=x,当a≤x<(1+)a时,y=,当a(1+)≤x<a(2+)时,y=,当a(2+)≤x≤a(2+2)时,y=a(2+2)﹣x,结合函数解析式可以得出第2,3段函数解析式不同,得出A选项一定错误,根据当a≤x<(1+)a时,函数图象被P在BD中点时,分为对称的两部分,故B选项错误,再利用第4段函数为一次函数得出,故C选项一定错误,故只有D符合要求,故选:D.点评:此题主要考查了动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.对应训练1.(2012•内江)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.(二)应用比例式建立函数解析式(或函数图像)例2 (2012•攀枝花)如图,直角梯形AOCD的边OC在x轴上,O为坐标原点,CD垂直于x轴,D(5,4),AD=2.若动点E、F同时从点O出发,E点沿折线OA→AD→DC 运动,到达C点时停止;F点沿OC运动,到达C点是停止,它们运动的速度都是每秒1个单位长度.设E 运动秒x 时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为( )A .B .C .D .思路分析: 首先根据点D 的坐标求得点A 的坐标,从而求得线段OA 和线段OC 的长,然后根据运动时间即可判断三角形EOF 的面积的变化情况. 解:∵D (5,4),AD=2. ∴OC=5,CD=4 OA=5 ∴运动x 秒(x <5)时,OE=OF=x , 作EH ⊥OC 于H ,AG ⊥OC 于点G , ∴EH ∥AG ∴△EHO ∽△AGO即:∴EH=x∴S △EOF =OF •EH=×x ×x=x 2,故A 、B 选项错误;当点F 运动到点C 时,点E 运动到点A ,此时点F 停止运动,点E 在AD 上运动,△EOF 的面积不变,点在DC 上运动时,如右图, EF=11﹣x ,OC=5∴S △EOF =OC •CE=×(11﹣x )×5=﹣x+是一次函数,故C 正确,故选C .点评:本题考查了动点问题的函数图象,解题的关键是根据动点确定分段函数的图象.对应训练2.(2012•贵港)如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P在射线AC上运动,过点P作PH⊥AB,垂足为H.(1)直接写出线段AC、AD及⊙O半径的长;(2)设PH=x,PC=y,求y关于x的函数关系式;(3)当PH与⊙O相切时,求相应的y值.(三)应用求图形面积的方法建立函数关系式例3 (2012•桂林)如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.思路分析:(1)利用等腰直角三角形的性质得到∠BAD=∠DAC=∠B=∠C=45°,进而得到AD=BD=DC,为证明△AED≌△CFD提供了重要的条件;(2)利用S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9 即可得到y与x之间的函数关系式;(3)依题意有:AF=BE=x﹣6,AD=DB,∠ABD=∠DAC=45°得到∠DAF=∠DBE=135°,从而得到△ADF≌△BDE,利用全等三角形面积相等得到S△ADF=S△BDE从而得到S△EDF=S△EAF+S△ADB即可确定两个变量之间的函数关系式.解:(1)证明:∵∠BAC=90° AB=AC=6,D为BC中点∴∠BAD=∠DAC=∠B=∠C=45°∴AD=BD=DC (2分)∵AE=CF∴△AED≌△CFD(2)解:依题意有:FC=AE=x,∵△AED≌△CFD∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=9∴∴;(3)解:依题意有:AF=BE=x﹣6,AD=DB,∠ABD=∠DAC=45°∴∠DAF=∠DBE=135°∴△ADF≌△BDE∴S△ADF=S△BDE∴S△EDF=S△EAF+S△ADB=∴.点评:本题考查了等腰直角三角形的性质及全等三角形的判定与性质,考查的知识点虽然不是很多但难度较大.对应训练3.(2012•桂林)如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()A.B.C.D.考点二:动态几何型压轴题点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

中考数学复习指导:例说动点运动路径问题

中考数学复习指导:例说动点运动路径问题

例说动点运动路径问题动态几何题是近几年中考试题的一大热点题型,求动点所经过的路径这类试题能全面考查通过数学思考解决问题的综合应用能力,近年来它常存在于压轴题的最后一问,倍受各地中考命题者的青睐.解决动点所经过的路径,方法可以归纳为:先确定运动的路径是直线形,还是弧线形,然后确定下列两个类型中的一个:(1)如果是动点到定直线的距离相等,即是线段形,只需要取起始点和终止点的两个定点:问题即可解决;(2)如果是运点到某一定点距离相等,即是弧线形,亦只需确定始点和终止点的两个定点,再围绕弧长的计算公式寻找半径和圆心角问题即可解决.以下分类举例说明.类型1例1 已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点C 移动到点D时,G点移动的路径长度为_______.分析此类问题是上述第(1)种情形.(1)设AE=t,试写出△EFG的面积S关于t的函数关系式,并写出自变量t的取值范围;(2)若P是MG的中点,在E点运动的整个过程中,点P到直线CB的距离是否为定值?请说明理由;(3)请直接写出E点运动的整个过程中点P的运动路线的长.分析(1)(2)略;(3)由(2)知,在E点运动的整个过程中,点P到x轴的距离是定值3,所以点P的运动路径是一条平行于BG的线段.如图3,分别作出E与A重合,E与B重合时P点的位置P1,P2,则P1P2即为点P运动的路径的长,即可求出P的运动路线长为G1G2的一半,P1P2=9.类型2例3 △ABC中,BC=AC=5,AB=8,CD为AB边上的高,如图4.A在原点处,点B在y轴正半轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面上滑动.如图5,设运动时间表为t秒,当B到达原点时停止运动.(1)当t=0时,求点C的坐标;(2)当t=4时,求OD的长及∠BAO的大小;(3)求从t=0到t=4这一时段,点D运动路线的长;(4)当以点C为圆心,CA为半径的圆与坐标轴相切时,求t的值.分析(1)、(2)、(4)略.(3)根据(2),动点D到定点O距离始终相等,等于AB的一半.因此动点D的运动路线是弧线段,只需确定始点(t=0)OB的中点和终止点(t=4)的两个定点,如图5.从t=0到t=4这一时段点D运动路线是弧DD1,其中,OD=OD1=4.总之,求解动点运动问题的关键是把握运动规律,寻求运动中的特殊位置,在“动”中求“静”,在“静”中探求“动”.首先要分清运动的轨迹是线段还是弧,然后确定起始点和终止点,再作出相应的草图就能解决问题.。

初中数学动点问题解题技巧,动点题解题三步骤,初三数学动点解题思路

初中数学动点问题解题技巧,动点题解题三步骤,初三数学动点解题思路

双动点问题动点问题是初中数学中的热门问题,也是让人欢喜让人忧的一类问题.其中的数学模型隐藏在变化的运动背后,很多同学容易被这类问题的已知条件迷惑,虽练习很多仍然“闻动色变”,实在爱不起来.但如果会透过现象看本质,找到运动过程中不变的规律,这一类问题又会让人感觉精彩绝伦,回味无穷。

本文就动点问题中如何找到双动点类型中的运动轨迹与大家分享.动点题有时不止一个点在动,如果有两个动点,其中一个随着另一个的运动而运动,题目往往研究第二个动点的一些规律,比如最大最小值,经过的路径长等.解决问题的关键是找到第二个动点的运动轨迹.一、直线型运动1.如图,等边△ABC的边长为4cm,动点D从点B出发,沿射线BC方向移动,以AD为边作等边△ADE。

如图①,在点D从点B开始移动至点C的过程中,求点E移动的路径长.分析:要求点E移动的路径长,首先要确定点E的运动轨迹。

连结CE,如图②,易证△ABD≌△ACE,得∠B=∠ACE=60°,因为∠ACB=60°,所以∠ECF=60°=∠B,所以EC∥AB,故在点D从点B开始移动至点C的过程中,点E的运动轨迹是过点C且平行于AB的一条线段,确定了轨迹,再确定起始与终止位置就可求出路径长.答案:42.已知AB=10,P是线段AB上的动点,分别以AP、PB为边在线段AB的同侧作等边△ACP和△PDB,连接CD,设CD的中点为G,当点P从点A运动到点B时,点G移动的路径长是_____.分析:延长AC、BD相交于点E,因为∠A=∠DPB=60°,所以PD∥EA,同理PC∥EB,所以四边形CPDE是平行四边形,连结EP,所以EP、CD互相平分,因为点G为CD的中点,所以EG=PG,所以点G是EP的中点,当点P从点A运动到点B时,点G的运动轨迹是△EAB的中位线MN.答案:5双动点的运动问题中,第二动点的运动轨迹如果是直线型,通常可以找到第二动点所在直线与已知直线的位置关系如平行、垂直等,或者是某一条特殊的直线(或直线上的一部分)如中位线、角平分线等.试一试:1.如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB-BC向终点C 运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).设点E 运动的速度为每秒1个单位,运动的时间为x秒.(1)如图,当点E在AB上时,求证:点G在直线BC上;(2)直接写出整个运动过程中,点F经过的路径长.答案:C在数学中,静中找动,实现从特殊到一般的转化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例谈中考数学中动点运动路径求解
运动型问题是近年来中考的热点,探索在运动过程中动点的运动路径是运动型问题的考查重点.由于动点运动路径往往不明晰,故有一定的解题难度,本文举例说明采取动中取静的方法解决这类路径问题.
一、运动路径是线段
例l 已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边△APE和等边△PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为______.
解析要求点G所经过的路径长,先要确定点G的运动路径.由题意可知,点P的运动决定了点C的运动路径.因为点P从点C沿CD向点D运动,所以点P运动的临界点是C、D(能与C、D重合).
当点P运动至C处时(静态1),点G运动至G1;
在CD上任取2个点P(静态2、静态3),点G运动至G2、G3;
当点P运动至D处时(静态4),点G运动至G4(如图2).
由图形的直观性可猜想:点G的运动路径是线段,
如图3,分别延长AE、BF交于点H
∵A=∠FPB=60°∴AH//PF.
又∵∠B=∠EPA=60°,∴BH∥PE,
∴四边形EPFH为平行四边形,
∴EF与HP互相平分,
∵G为EF的中点,
∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,
∴G的运行路径为△HCD的中位线G1G4.
∵CD=6-1-1=4.
∴G1G4=2,即G的移动路径长为2.
二、运动路径是圆弧
例2 如图4,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m,)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.
(1)求点D的坐标(用含m的代数式表示);
(2)当△APD是等腰三角形时,求m的值;
(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图5),当点P从点O向点C运动时,点H也随之运动.请直接写出点H所经过的路径长.
解析(1)、(2)略;
(3)要求点H所经过的路径长,先要确定点H的运动路径.
由题意可知,点P的运动路径决定了点H的运动路径.
因为点P从点O沿OC向点C运动,所以点P运动的临界点是O、C(能与O重合,不能与C重合).
当点P运动至O处时(静态l),点H运动至H1(如图6);
在OC上任取3个点P(静态2、3、4),点H运动至H2、H3、H4.
至此,由图形的直观性知:当点P不断向点C运动时,点H也不断向点C运动(如图7),可猜想点H的运动路径是圆弧.
∵OH ⊥ME ,MO 的长度不变,
∴点H 应在以MO 为直径的圆上.
又∵点P 从点O 沿OC 向点C 运动,
∴点日的运动路径是△ 1
H MC H1MC(如图7). 当点P 与点O 重合时,根据抛物线的对称性可得点E 的坐标为(3,0)(如图8). ∵M 的坐标为(1,2),
∴MN =NE ,∴MEN =45°,
∴∠H 1OE =45°,∴∠COH 1=45°,
∴∠CIH 1=90°.
在Rt △CMO 中,由勾股定理,易得
MO CI ==
90
2180l π∙∴==,
∴点H .
评注 求动点运动路径长的前提是确定动点的运动路径,故求解这类试题时,可从动点的特殊位置(动中取静)入手,由特殊到一般,通过操作、观察、猜想得出运动路径,
然后用数学推理进行证明,进而求出运动路径的长.。

相关文档
最新文档