九数学月考试卷
北京市海淀区2023-2024学年上学期九年级9月月考数学试卷(含解析)
2023-2024学年北京市海淀区九年级(上)月考数学试卷(9月份)一、选择题(本大题共8小题,共16.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列四个图形中,为中心对称图形的是( )A. B. C. D.2.一元二次方程2x2+x−5=0的二次项系数、一次项系数、常数项分别是( )A. 2,1,5B. 2,1,−5C. 2,0,−5D. 2,0,53.把抛物线y=x2向上平移3个单位,得到的抛物线是( )A. y=(x−3)2B. y=(x+3)2C. y=x2−3D. y=x2+34.在平面直角坐标系xOy中,点A(2,3)关于原点对称的点的坐标是( )A. (2,−3)B. (−2,3)C. (3,2)D. (−2,−3)5.在平面直角坐标系xOy中,下列函数的图象经过点(0,0)的是( )A. y=x+1B. y=x2C. y=(x−4)2D. y=1x6.用配方法解方程x2+4x=1,变形后结果正确的是( )A. (x−2)2=2B. (x+2)2=2C. (x−2)2=5D. (x+2)2=57.把长为2m的绳子分成两段,使较长一段的长的平方等于较短一段的长与原绳长的积.设较长一段的长为x m,依题意,可列方程为( )A. x2=2(2−x)B. x2=2(2+x)C. (2−x)2=2xD. x2=2−x8.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=−2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是−4<x<0;其中推断正确的是( )A. ①②B. ①③C. ①③④D. ②③④二、填空题(本大题共8小题,共24.0分)9.抛物线y=−3(x−1)2+2的顶点坐标是.10.请写出一个开口向上,并且与y轴交于点(0,−2)的抛物线解析式______.11.若点A(−1,y1),B(2,y2)在抛物线.y=2x2上,则y1,y2的大小关系为:y1______y2.(选填“>”“<或“=”)12.若关于x的方程x2−2x+k=0有两个不相等的实数根,则k的取值范围为.13.如图,在平面直角坐标系xOy中,点A(−2,0),点B(0,1).将线段BA绕点B旋转180°得到线段BC,则点C的坐标为.14.如图,将△ABC绕点A顺时针旋转30°得到△ADE,点B的对应点D恰好落在边BC上,则∠ADE=______.15.如图,在边长为2的正方形ABCD中,E,F分别是边DC,CB上的动点,且始终满足DE=CF,AE,DF交于点P,则∠APD的度数为;连接CP,线段CP的最小值为.16.野兔跳跃时的空中运动路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,通过对某只野兔一次跳跃中水平距离x(单位:m)与竖直高度y(单位:m)进行的测量,得到以下数据:水平距离x/m00.41 1.42 2.4 2.8竖直高度y/m00.480.90.980.80.480根据上述数据,回答下列问题:①野兔本次跳跃的最远水平距离为______ m,最大竖直高度为______ m;②已知野兔在高速奔跑时,某次跳跃最远水平距离为3m,最大竖直高度为1m.若在野兔起跳点前方2m处有高为0.8m的篱笆,则野兔此次跳跃______ (填“能”或“不能”)跃过篱笆.三、解答题(本大题共10小题,共60.0分。
2023-2024学年天津市静海区九年级上学期数学第一次月考试卷及答案
2023-2024学年天津市静海区九年级上学期数学第一次月考试卷及答案一、选择题(共12小题,每题3分,共36分)1. 下列方程是关于x 的一元二次方程的是( )A. B. 20ax bx c ++=2112x x +=C.D. 2221x x x +=-23(1)2(1)x x +=+【答案】D【解析】【分析】根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A 、当时,不是一元二次方程,故不合题意;20ax bx c ++=0a =B 、不是整式方程,故不合题意; 2112x x+=C 、是一元一次方程,故不合题意;2221x x x +=-D 、是一元二次方程,故符合题意;23(1)2(1)x x +=+故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2. 已知x =2是一元二次方程的一个解,则m 的值是( )20x x m ++=A. 6B. -6C. 0D. 0或-6 【答案】B【解析】【分析】由2是一元二次方程x 2 +x+ m = 0的一个解,将x= 2代入方程得到关于m 的方程,求出方程的解,即可得到m 的值.【详解】解:∵2是一元二次方程x 2+x+m=0的一个解,∴将x = 2代入方程得: 4+ 2+m= 0,解得: m= -6.故选:B .【点睛】此题考查了一元二次方程的解,以及一元二次方程的解法,方程的解,即为能使方程左右两边相等的未知数的值.3. 一元二次方程,配方后可变形为( )2810x x --=A.B. ()2417x -=()2418x -=C.D. ()281x -=()241x -=【答案】A【解析】【分析】移项后,两边配上一次项系数一半的平方可得.【详解】解:移项得:x 2-8x=1,配方得x 2-8x+16=1+16,即(x-4)2=17,故选:A .【点睛】本题主要考查解一元二次方程-配方法,熟练掌握解一元二次方程的常用方法和根据不同方程灵活选择方法是解题的关键.4. 一元二次方程有实数根,则的取值范围是( )2430kx x -+=k A. B. C. 且 D.43k ≥0k ≠43k ≤0k ≠2k <【答案】C【解析】【分析】根据一元二次方程的定义及根的判别式即可判断.【详解】解:关于的一元二次方程有实数根,x 2430kx x -+=,且,2(4)430k ∴∆--⋅⋅≥=0k ≠,且,16120k ∴∆-≥=0k ≠解得且, 43k ≤0k ≠故选:.C 【点睛】此题考查了一元二次方程的定义及根的判别式,熟练掌握一元二次方程的定义及根的判别式是解题的关键.5. 某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( )A. 80(1+x )2=100B. 100(1﹣x)2=80C. 80(1+2x )=100D. 80(1+x 2)=100【答案】A【解析】【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x ,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x ,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x )吨,2018年蔬菜产量为80(1+x )(1+x )吨,预计2018年蔬菜产量达到100吨,即: 80(1+x )2=100,故选A .【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.6. 如果函数是二次函数,则m 的值是( ) ()21125my m x x +=--+A. ±1B. -1C. 2D. 1 【答案】B【解析】【分析】根据题意可知,函数中含x 的项的最高次为2次,且其项系数不为零,据此即可作答. 【详解】根据题意有:, 21210m m ⎧+=⎨-≠⎩解得m=-1,故选:B .【点睛】本题考查二次函数的定义:一般地,形如(a 、b 、c 是常数,2y ax bx c =++a≠0)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.7. 将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线22y x =为( ).A . ; B. ;22(2)3y x =++22(2)3y x =-+C. ;D. . 22(2)3y x =--22(2)3y x =+-【答案】B【解析】【分析】根据抛物线图像的平移规律“左加右减,上加下减”即可确定平移后的抛物线解析式.【详解】解:将抛物线向上平移3个单位长度,再向右平移2个单位长度,得到22y x =的抛物线的解析式为,()2223y x =-+故选B .【点睛】本题考查了二次函数的平移规律,熟练掌握其平移规律是解题的关键.8. 由二次函数可知( )22(3)1y x =-+A. 其图象的开口向下B. 其图象的对称轴为 3x =-C. 其最大值为D. 当时,随的增大而减小 13x <y x 【答案】D【解析】【分析】根据二次函数的解析式进行逐项判断即可.【详解】解:, 22(3)1y x =-+ 抛物线开口向上,对称轴为,顶点坐标为,∴3x =()3,1函数有最小值,当时,随的增大而减小,∴13x <y x 故选:D .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在中,对称轴为,顶点坐标为.2()y a x h k =-+x h =(,)h k 9. 已知点A (1,),B (2,),C (−3,)都在二次函数的图象上,1y 2y 3y 224y x =-+则( )A. B.231y y y >>123y y y >>C.D.321y y y >>132y y y >>【答案】B【解析】 【分析】先求出抛物线的对称轴和开口方向,根据二次函数的对称性和增减性判断即可.【详解】二次函数,224y x =-+∴抛物线开口向下,对称轴是y 轴,当x >0时,y 随x 的增大而减小,∵点A (1,),B (2,),C (−3,)都在二次函数的图象上, 1y 2y 3y 224y x =-+∴点C (−3,)关于对称轴的对称点是C (3,),3y 3y ∵1<2<3,∴,123y y y >>故选:B .【点睛】本题考查了二次函数图象上点的坐标特征和二次函数的性质,能熟记二次函数的性质是解此题的关键.10. 如图,的图象上可以看出,当时,的取值范围是( ) 2y ax =12x -≤≤yA.B.14x ≤≤04x <≤B. C.D. 04x ≤≤14x <<【答案】C【解析】 【分析】根据函数图形得出和时的函数值,再确定出抛物线的最低点的函数=1x -2x =值,即可.【详解】解:由图象可知时,,=1x -1y =当时,,2x =4y =而抛物线的对称轴为时,,0x =0y =04y ∴≤≤故选:.C 【点睛】此题是二次函数图象上的点的坐标特征,主要从图象上看到关键的信息,解本题的关键是自变量的范围内包括对称轴,要特别注意.0x =11. 在同一坐标系中,一次函数y=ax+b 与二次函数y=ax 2+b 的大致图象为( ) A. B. C. D.【答案】B【解析】【分析】可先根据一次函数的图象判断 a 、b 的符号,再判断二次函数图象与实际是否相符,判断正误.【详解】A 、由一次函数 y =ax+b 的图象可得:a >0,此时二次函数 y =ax 2+b 的图象应该开口向上,故 A 错误;B 、由一次函数 y =ax+b 的图象可得:a <0,b >0,此时二次函数 y =ax 2+b 的图象应该开口向下,顶点的纵坐标大于零,故 B 正确;C 、由一次函数 y =ax+b 的图象可得:a <0,b <0,此时二次函数 y =ax 2+b 的图象应该开口向下,故 C 错误;D 、由一次函数 y =ax+b 的图象可得:a <0,b >0,此时二次函数 y =ax 2+b 的图象应该开口向下,故 D 错误;故选B .【点睛】本题考查了二次函数的图象,应该熟记一次函数 y =kx+b 在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.12. 若二次函数,在时,随的增大而减小,则的取值范围2)2(y x m =-+1x <y x m ( )A.B. C. D.1m =1m >m 1≥1m £【答案】C【解析】 【分析】先利用二次函数的性质求出抛物线的对称轴为直线,则当时,的值x m =x m <y 随值的增大而减小,由于时,的值随值的增大而减小,于是得到.x 1x <y x m 1≥【详解】解:抛物线的对称轴为直线,x m =,10a => 抛物线开口向上,∴当时,的值随值的增大而减小,∴x m <y x 而时,的值随值的增大而减小,1x <y x ,1m ∴≥故选:.C 【点睛】本题考查的是二次函数的性质,熟知二次函数的增减性是解答此题的关键.二、填空题(共6小题,每题3分,共18分)13. 把一元二次方程化为一般形式为______.()212x +=【答案】2210x x +-=【解析】【分析】先展开完全平方式、再移项,变成一般形式即可.【详解】解:,()212x +=即2212x x ++=即2210x x +-=故答案为:2210x x +-=【点睛】考查了一元二次方程的一般形式.一元二次方程的一般形式为:ax 2+bx+c=0(a≠0)14. 已知的两个根为、,则的值为_________.2310x x +-=1x 2x 1212x x x x +-【答案】2-【解析】【分析】利用根与系数的关系,可得出,,将其代入123x x +=-2_1 1x x =-中,即可求出结论.1212x x x x +-【详解】解:,是方程的两个实数根,1x 2x 2310x x +-=,,123x x ∴+=-121x x =-.()1212312x x x x ∴+-=---=-故答案为:.2-【点睛】本题考查了根与系数的关系,牢记两根之和等于,两根之积等于是解题的-b ac a 关键.15. 要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,共比赛36场,设比赛组织者应邀请个队参赛,则满足的关系式为_________.x x 【答案】 1(1)362x x -=【解析】 【分析】设比赛组织者应邀请队参赛,则每个队参加场比赛,则共有场x (1)x -1(1)2x x -比赛,可以列出一个一元二次方程. 【详解】解:设比赛组织者应邀请队参赛,x 则由题意可列方程为:. 1(1)362x x -=故答案为:; 1(1)362x x -=【点睛】此题主要考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.16. 已知二次函数,当x<1时,y 随x 的增大而______;当x>1时,y 随22(1)1y x =-+x 的增大而______;当x=1时,y 有最小值等于_______.【答案】 ①. 减小 ②. 增大 ③. 1【解析】【分析】根据二次函数中,开口方向向上,对称轴为直线,即可求解.0a >1x =【详解】解:∵二次函数,,22(1)1y x =-+0a >∴抛物线的对称轴为直线,顶点坐标为,开口方向向上,1x =()1,1当x<1时,y 随x 的增大而减小;∴当x>1时,y 随x 的增大而增大;当x=1时,y 有最小值等于1.故答案为:减小;增大;1.【点睛】本题考查了二次函数的性质在自变量的所有取值中:①当a >0时,抛物线在对称轴左侧,y 随x 的增大而减少;在对称轴右侧,y 随x 的增大而增大,函数有最小值;②当a <0时,抛物线在对称轴左侧,y 随x 的增大而增大;在对称轴右侧,y 随x 的增大而减少,函数有最大值;如果在规定的取值中,要看图象和增减性来判断是解题关键.17. 已知四个二次函数的图象如图所示,那么,,,的大小关系是1a 2a 3a 4a _____________.(请用“>”连接排序)【答案】1234a a a a >>>【解析】【分析】直接利用二次函数的图象开口大小与a 的关系进而得出答案.【详解】解:如图所示:根据图像可知的图像和的图像的开口向上,且21y a x =22y a x =的图像的开口小于的图像的开口,则.21y a x =22y a x =120a a >>根据图像可知的图像和的图像的开口向下,且的图像的开口大于23y a x =24y a x =23y a x =的图像的开口,则.24y a x =340a a >>所以.1234a a a a >>>故答案为:.1234a a a a >>>【点睛】本题主要考查了二次函数图像的性质,掌握二次项系数与图像的关系是解题的关键.18. 对于实数,定义运算“*”:,例如:.若,a b 2a b a ab *=-2424428*=-⨯=是一元二次方程的两个根,则_________.12,x x 2560x x -+=12x x *=【答案】或2-3【解析】【分析】因式分解得:,进而求得,或,,接(2)(3)0x x --=12x =23x =13x =22x =下来结合新定义求解即可.【详解】解:,即,2560x x -+= (2)(3)0x x --=或, 20x ∴-=30x -=所以,或,,12x =23x =13x =22x =或,212*2*32232x x ∴==-⨯=-212*3*23323x x ==-⨯=故答案为:或.2-3【点睛】本题考查了新定义题型和因式分解法解一元二次方程,掌握因式分解法和理解新定义的运算法则是解题的关键.三、解答题(共7小题,共66分)19. 用适当的方法解方程:(1)210x x --=(2)()()3222y y y -=-【答案】(1) 1x =2x =(2), 12y =223y =【解析】【分析】(1)利用公式法解方程;(2)先移项得到,然后利用因式分解法解一元二次方程即可.3(2)2(2)0y y y ---=【小问1详解】解:; 210x x --=,2(1)41(1)5∆=--⨯⨯-=x ∴=所以; 1x =2x =【小问2详解】,3(2)2(2)y y y -=-,3(2)2(2)0y y y ---=,(2)(32)0y y --=或,20y -=320y -=所以,. 12y =223y =【点睛】本题考查了解一元二次方程公式法、因式分解法,掌握求根公式和因式分解的-方法是解题的关键.20. 为何值时,关于的二次方程.k x 2690kx x -+=(1)有两个不等的实数根?(2)有两个相等的实数根?(3)无实数根?【答案】(1)且1k <0k ≠(2)k=1 (3)1k >【解析】【分析】(1)根据一元二次方程的定义和判别式的意义得到k≠0且△=(-6)2-4k•9>0,然后解不等式可得到k 的取值范围;(2)根据一元二次方程的定义和判别式的意义得到k≠0且△=(-6)2-4k•9=0,然后解不等式和方程可得到k 的取值;(3)根据一元二次方程的定义和判别式的意义得到k≠0且△=(-6)2-4k•9<0,然后解不等式可得到k 的取值范围.【小问1详解】解:根据题意得且,0k ≠2(6)490k =--⋅>解得且;1k <0k ≠【小问2详解】解:根据题意得且,0k ≠2(6)490k =--⋅= 解得;1k =【小问3详解】解:根据题意得且,0k ≠2(6)490k =--⋅< 解得.1k >【点睛】本题考查了一元二次方程的定义以及一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac ,熟练掌握方程根与根的判别式△的关系是解题的关键.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.21. 某商店经销一批季节性小家电,每台成本元,经市场预测,定价为元时,可销4052售台,定价每增加1元,销售量将减少台.18010(1)如果每台家电定价增加2元,则商店每天可销售的台数是多少?(2)商店销售该家电获利元,同时让顾客也得到实惠,那么每台家电定价应为多少2240元?【答案】(1)160台;(2)54元【解析】【分析】(1)直接根据题意确定增加的价格与减少的数量之间的关系求解即可;(2)可设每台定价增加元,然后结合题意确定对应的数量,从而建立一元二次方程求x 解,并结合题意取适当的值即可.【详解】解:(1)若每台家电定价增加2元,则每天销量减少20台,即:180-20=160(台),∴每天销量为160台;(2)设每台定价增加为元,则每天销量为台,x ()18010x -由题意,,()()5240180102240x x +--=整理得:,2680x x -+=解得:或,2x =4x =∵要让顾客得到实惠,∴不合题意,舍去,4x =∴52+2=54(元),∴每台定价为54元.【点睛】本题考查一元二次方程的实际应用,理解题意,找准等量关系,准确建立方程并求解是解题关键.22. 已知抛物线的对称轴是轴,且该函数的最大值是3,过点,求该抛物线解析y ()1,1式.【答案】223y x =-+【解析】【分析】根据题意设,把代入求出的值,即可确定出解析式.23y ax =+(1,1)a 【详解】解:根据题意设,把代入得:,即, 23y ax =+(1,1)13a =+2a =-则抛物线解析式为.223y x =-+【点睛】此题考查了待定系数法求二次函数解析式,二次函数的最值,熟练掌握待定系数法是解决本题的关键.23. 已知抛物线.2(2)1y x =--+(1)写出这个二次函数图象的开口方向、顶点坐标、对称轴;(2)判断点是否在此抛物线上;()3,2-(3)求出此抛物线上纵坐标为的点的坐标.3-【答案】(1)开口方向向下,顶点坐标为,对称轴为直线()2,12x =(2)不在此抛物线上 (3)或()4,3-()0,3-【解析】【分析】(1)根据解析式是顶点式直接写出开口方向、顶点坐标、对称轴即可.(2)把点代入解析式,即可判断;()3,2-(3)把代入解析式,即可求解.=3y -【小问1详解】解:∵,2(2)1y x =--+∴,10a =-<∴二次函数图象的开口方向向下,顶点坐标为,对称轴为直线.()2,12x =【小问2详解】解:把代入,得3x =2(2)1y x =--+()23210y =--+=∴点不在此抛物线上;()3,2-【小问3详解】解:把代入,得 =3y -2(2)1y x =--+,()2321x -=--+解得:,,14x =20x =∴抛物线上纵坐标为的点的坐标或.3-()4,3-()0,3-【点睛】本题考查二次函数的图象性质,二次函数图象上点的坐标特征,解题关键是熟练掌握二次函数的图象性质,函数解析式与图象上的点之间的关系:点在图象上,则点的坐标满足函数解析式;反之,不在函数图象上则点的坐标不满足函数解析式.24. 如图,学校为美化环境,在靠墙的一侧设计了一块矩形花圃ABCD ,其中,墙长19m ,花圃三边外围用篱笆围起,共用篱笆30 m .(1)若花圃的面积为100 ,求花圃一边AB 的长;2m (2)花圃的面积能达到120 吗? 说明理由.2m 【答案】(1)10米 (2)不能,理由见解析【解析】【分析】(1)设的长为米,由花圃的面积为,列出方程可求解;AB x 2100m (2)设的长为米,由花圃的面积为,列出方程可求解.AB y 2120m【小问1详解】解:设的长为米,AB x 由题意可得:,(302)100x x -=解得:,,15=x 210x =,即:x≥5.5,30219x - …,10x ∴=∴的长为10米;AB 【小问2详解】花圃的面积不能达到.理由如下:2120m 设的长为米,AB y 由题意可得:,(302)120y y -=化简得,215600y y -+=△,∴225240150=-=-<方程无解,∴花圃的面积不能达到.∴2120m 【点睛】本题考查了一元二次方程的应用,找到正确的数量关系是解题的关键.25. 如图,已知抛物线与x 轴交于点A 和点B ,与y 轴交于点C .2(1)4y x =-++(1)求点A 、点B 、点C 的坐标.(2)设抛物线的顶点为M ,判断的形状.ACM △(3)在抛物线是否存在一点P ,使面积为8,若存在,直接写出点P 的坐标;不存PAB 在,说明理由.【答案】(1)(3,0),(1,0),(0,3)A B C -(2)是直角三角形ACM △(3)存在,或或(1,4)P -(14)-+-(14)---【解析】【分析】(1)根据抛物线与x 轴交于点A 和点B ,与y 轴交于点C .解方2(1)4y x =-++程即可解决问题;(2)根据题意可得抛物线的顶点为,连接,根据勾股定理可得(1,4)M -,,AC MC AM ,再根据勾股定理逆定理即可解决问题;222AM AC MC =+(3)设,根据△PAB 面积为8,,分2种情况列出2(,23)P x x x --+4AB OA OB =+=方程求解即可解决问题.【小问1详解】解:抛物线与x 轴交于点A 和点B ,与y 轴交于点C .2(1)4y x =-++∵,22(1)423y x x x =-++=--+令,则,0x =3y =∴,(0,3)C 令,0y =则,2(1)40x -++=解得,121,3x x ==-∴;(3,0),(1,0)A B -【小问2详解】解:∵抛物线的顶点为,(1,4)M -如图,连接,,,AC MC AM∵,(3,0),(1,0),(0,3)A B C -∴,3,1OA OC OB ===∴是等腰直角三角形,AOC ∴,2223318,AC =+=∵,(1,4)M -过点M 作轴于点D ,MD y ⊥∴,1,4MD OD ==∴,1CD OD OC =-=∴是等腰直角三角形,CMD △∴,222121MC =+=∵,2222420AM =+=∴,222AM AC MC =+∴是直角三角形;∆ACM 【小问3详解】解:存在.设,2(,23)P x x x --+当点P 在x 轴的上方时,∵面积为8,,PAB 4AB OA OB =+=∴, 214(23)82x x ⨯⨯--+=整理得,2210x x ++=解得,121x x ==-∴.(1,4)P -当点P 在x 轴的下方时,∵面积为8,,PAB 4AB OA OB =+=∴, 214(23)82x x ⨯⨯+-=整理得,2270x x +-=解得,,31x =-+41x =--当时,.1x =-+((212134y =--+--++=-当. 1x =--((212134y =------+=-∴或.(14)P -+-(14)P ---综上可知,P 点坐标为或或.(1,4)-(14)-+-(14)---【点睛】本题属于二次函数综合题,考查了二次函数的性质,坐标与图形的性质,勾股定理逆定理,等腰直角三角形的判定,三角形的面积,一元二次方程的解法,解决本题的关键是掌握二次函数的性质.。
江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)
江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷一、选择题(本大题共10小题,每小题3分,共计30分,在每小题给出的四个选项中恰有一项是符合题目要求的)1.下列各点中,在反比例函数的图象上的是( )4y x =A. B. C. D.(14)--,(14)-,(2)-,2(2),-22.将抛物线向右平移2 个单位长度,再向下平移5 个单位长度,平移后的抛物线的2y x =解析式为( )A. B. C. D.2(2)5y x =+-2(2)5y x =++2(2)5y x =--2(2)5y x =-+3.如图,O 的半径为10,弦AB=16,点 M 是弦 AB 上的动点且点 M 不与点A 、B 重⊙合,则OM 的长不可能是( )A.5B.6C.8D.94.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上 120° 刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数是( )A.100°B.105°C.110°D.120°5.正方形网格中,如图放置,则=( )AOB ∠sin AOB ∠C. D.1226.如图,直线,直线m 、n 分别与直线a ,b ,c 相交于点A ,B ,C 和点D ,E ,F ,a ∥b ∥c 若AB =2,AC =5,DE =3,则EF =( )A.2.5B.4C.4.5D.7.57.已知点,,都在反比例函数的图象上,则,A (−4,y 1)B (−2,y 2)C (3,y 3)(0)ky k x =>y 1,的大小关系为( )y 2y 3 A. B. C. D.y 3<y 2<y 1y 2<y 3<y 1y 3<y 1<y 2y 2<y 1<y 38.如图,点D 在△ABC 的边AC 上,添加一个条件,不能判断△ABC 与△BDC 相似的是( )A.∠CBD =∠AB.C.∠CBA =∠C DBD.BC CD AC AB =BC CD AC BC=9.如图,∠B 的平分线 BE 与 BC 边上的中线 AD 互相垂直,并且 BE =AD =4,则BC 值为()A.7B.C. 6D.10.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为,50-(,)对角线 AC 和 OB 相交于点D ,且AC OB =40.若反比例函数的图象经过 ∙(0)k y x x =<点D ,并与BC 的延长线交于点E ,则值等于()CDE S ∆A. 2 B.1.5 C.1 D.0.5二、(本大题共8小题,第11~12每小题3分,13~18每小题4分,共30分)11.抛物线y =2(x +1)2 +3的顶点坐标是.12.在Rt △ABC 中,∠C =90°,AC =5,BC =4,则tanA=.13.正八边形的中心角是 度.14.圆锥的底面半径是3,母线长为4,则圆锥的侧面积为.15.如图,△ABC 和△DEF 是以点O 为位似中心的位似图形,若 OA ∶AD =2∶3,则△ABC 与DEF 的面积比是 .16.如图,有一个测量小玻璃管口径的量具ABC ,AB 的长为18 mm ,AC 被分为60 等份.如果小玻璃管口径DE正好对应量具上20 等份处(DE ∥AB ),那么小玻璃管口径DE = mm.17. 已知,,若 m ≤n ,则实数 a 的23236m n a +=++22324m n a +=++值为.18. 线段AB =,M 为AB 的中点,动点 P 到点 M 的距离是1,连接 PB ,线段 PB绕点P 逆 时针旋转 90° 得到线段 PC ,连接 AC ,则线段 AC 长度的最小值是.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;(2)如图,在Rt △ABC 中,∠C =90°,AC ,BC ,解这个直角三角形.20.(本小题满分10分)如图,是三角形的外接圆,是的直径,AD ⊥BC 于点E .O ABC AD O (1)求证:;BAD CAD ∠=∠(2)若长为8,,求的半径长.BC 2DE =O 21.(本小题满分10分)如图,在平面直角坐标系 xOy 中,直线 y =2x +b 经过点 A (-2,0)与 y 轴交于点 B ,与反比例函数的图象交于点 C (m ,6),过 B 作 BD ⊥y 轴,交反比例函数(0)k y x x =>的图象于点D .连接AD 、CD .(0)k y x x=>(1)b =,k =,不等式 >2x +b (x >0)的解集是;k x(2)求△ACD 的面积.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥BD,交AB于点E,(1) 求证:△ADE∽△ABD;(2)若AB=10,BE=3AE,求线段AD长.23.(本小题满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,(1)求证:AC平分∠BAD;(2)若∠BAD=60°,AB=4,求图中阴影部分的面积.24.(本小题满分12分)某商品进货价为每件40 元,将该商品每件的售价定为50 元时,每星期可销售250 件.现在计划提高该商品的售价增加利润,但不超过58 元.市场调查反映:若该商品每件的售价在50元基础上每上涨1元,其每星期的销售量减少10 件.设该商品每件的售价上涨x元(x为整数且x≥0)时,每星期的销售量为y 件.(1)求y与x之间的函数解析式;(2)当该商品每件的售价定为多少元时,销售该商品每星期获得的利润最大?最大利润是多少?(3)若该商品每星期的销售利润不低于3000 元,求商品售价上涨x元的取值范围.在矩形ABCD 中,AB <BC ,AB =6,E 是射线CD 上一点,点C 关于BE 的对称点F 恰好落在射线DA 上.如图,当点 E 在CD 边上时,①若BC =10,DF 的长为;②若AF ·FD =9时,求 DF 的长;(2)作∠ABF 的平分线交射线 DA 于点M ,当 时,求 DF 的长.12MF BC =26.(本小题满分13分)在平面直角坐标系中,如果一个点的纵坐标比横坐标大k ,则称该点为“k 级差值点”.例如,(1,4)为“3级差值点” ,(﹣3,2)为“5级差值点”.(1) 点(x ,y )是“4级差值点”,则y 与x 的函数关系式是;(2) 若反比例函数的图象上只有一个“k 级差值点”(﹣3≤ k ≤2),t =4m +2k +4,求t 的取m y x=值范围;(3) 已知直线l : y =nx +3与抛物线y =a (x ﹣h )²+h +3交于A ,B 两点,且AB ≥3.若 k ≠3时,2直线 l 上无“k 级差值点”,求a 的取值范围.答案一、选择题1. A2. C3.A4.B4.B5.B6.C7.D8.B9.D 10.C二填空题、11. (-1,3)12.4 513. 4514. 12π15. 4∶2516.1218.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;解:原式= (2)分211122-⨯-…………………………………………………………………… 4分11142=--…………………………………………………………………… 5分14=(2)解:在在Rt △ABC 中,∠C =90°………………………………………………………… 7分∴∠A =60°…………………………………………………………………… 8分∠B =90°-∠A =90°-60°=30°………………………………………………… 9分 (10)分2AB AC ==20.(本小题满分10分)解:(1)∵AD 是的 ⊙O 直径∵AD ⊥BC∴弧BD =弧CD ,…………………………………… 2分∴∠BAD =∠CAD …………………………………… 4分C BAtan BC A AC ==(2) 连接OC∵AD 是的 ⊙O 直径∵AD ⊥BC∴CE =BE =BC…………………………………… 5分12∵BC =8∴CE =4…………………………… 6分在Rt △OEC 中,由勾股定理得,222OE EC OC +=设圆的半径长为r ,∵DE =2∴…………………8分222(2)4r r -+=∴5r =∴⊙O 的半径长为5…………………10分21.(本小题满分10分)(1) b =4,k =6,0<x<1…………………6分 (2)在y =2x +4中,令x =0,则y =4,∴B (0,4) ,在中,令y =4则x =1.56(0)y x x=>∴ D (1.5,4),∴BD =1.5…………………8分∴S △ACD =S △ABD +S △BCD ==…………………10分111.54 1.56422⨯⨯+⨯⨯-()9222.(本小题满分10分)(1)证明:∵BD 是∠ABC 的平分线∴∠ABD =∠DBC……………………………1分∵DE ⊥BD∴∠BDE =90°∵∠C =90°∴∠ADE + ∠BDC =90°,∠CBD +∠BDC =90°∴∠CBD = ∠ADE ……………………………………3分∴∠ADE = ∠ABD ……………………………………4分又∵∠A =∠A∴△ADE ∽△ABD ………………………………5分(2)解:∵AB =10,BE =3AE∴AE =2.5,BE =7.5………………………………6分由(1)得△ADE ∽△ABD ,∴………………………………8分AD AE AB AD∴AD 2=AB ·AE =10×2.5=25∴AD =5∴线段AD 长为5.………………………………10分23. (本小题满分12分)(1)证明:如图1,连接OC ,∵CD 为⊙O 切线,∴OC ⊥CD………………………………1分∵AD ⊥CD∴OC // AD ………………………………2分∴∠OCA =∠CAD , ………………………………3分又∵OA =OC∴∠OCA =∠OAC ………………………………4分∴∠CAD =∠OAC ,………………………………5分∴AC 平分∠DAB . ………………………………6分(2)解:如图所示,过点O 作OE ⊥AC 于点E ,则AE =EC =AC ,12∵∠BAD =60°,AC 平分∠DAB∴∠CAB =30°,∠COB =2∠CAB =60°,………………………………8分在Rt △AOE 中,AO =AB =2,12∴OE =OA =1,AE 12=∴AC =2AE =………………………………10分∴AOC BOCS S S ∆=+阴影扇形=2160212360π⨯⨯⨯+……………………………12分23π24.(本小题满分12分)解:(1)由题意可得, y =250-10x=﹣10x+250,y 与x 之间的函数解析式是y =﹣10x +250;……………………………2分(2)设当该商品每件的售价上涨x 元时,销售该商品每星期获得的利润为w 元.由题意可得:w=……………………………4分(5040)(10250)x x +--+=2101502500x x -++=210(7.5)3062.5x --+∵,0≤x ≤25且x 为整数100-<∴当x =7或8时,w 取得最大值3060,此时50+x =57或58.……………………6分答:当该商品每件的售价为57或58元时,每星期获得的利润最大,最大利润为3060元.……………………………7分(3)由题意得:……………………………8分21015025003000x x -++=解得……………………………10分12510x x ==,当x =5或10时,此时50+x =55或60又∵售价不超过58元∴5≤x ≤8且x 为整数…………………………12分25.(本小题满分13分)(1) ①DF 的长为 2 …………………………2分②解:∵四边形ABCD 是矩形∴∠BCD =∠A =∠ABC =∠D = 90°,CD =AB =6由对称可知∠BFE =∠BCD =90°, BF =BC∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°,∴∠AFB =∠DEF又:∠D =∠A =90°∴△FAB ∽△EDF . ………………………4分∴………………………5分AFBADE FD =∴AB ·DE =AF .DF =9.又∵AB =6,∴DE =……………………………………………6分32∴CE =CD -DE =6 -=………………………7分3292(2)分两种情况讨论.①当点F 在线段 AD 上时,如图(1),过点M 作 MN ⊥BF 于点N ,则∠MNF =∠A =90°.又∵∠AFB =∠NFM∴△FMN ∽△FBA∴MN MF FNAB BF AF==又∵,BF =BC12MF BC =∴12MNMFFNAB BF AF ===∴MN =3,AF =2FN …………………………………………8分∵BM 平分∠ABF ,∠BNM =∠A =90°,∴AM = MN =3.∴AM +MF =2FN∴13()22BN FN FN++=∴13(6)22FN FN++=∴FN =4…………………………………………9分∴AD =BF =BC =6+4=10∴AF =8∴DF =AD - AF =10-8=2…………………………………10分②当点F 在线段 DA 的延长线上时如图(2),过点M 作 MN ⊥BF 于点 P .同①可得AM =MN =AB =3,BN =AB =6,BC = AD =10,12MF =BC =5,12∴AF =8,∴DF =18.综上可知,DF 的长为2或18.…………………………………13分26.(本小题满分13分)26.(1)…………………………………3分4y x =+(2)解:由题意得:mx kx =+∴20x kx m +-=∵图象上只有一个“k 级差值点”∴方程 有两个相等的实数根20x kx m +-=∴△=0∴240k m +=∴…………………………………4分24m k =-∵424t m k =++∴…………………………………5分224t k k =-++=2(1)5k --+当k =1时,t 有最大值5,当t =-3时,t 有最小值-11-11≤t ≤5…………………………………7分(3)由题意得若 k =3时,直线 l 上有“k 级差值点”∴y =x +3∴n =1…………………………………8分∴x +3= a (x -h )²+h +3∴x 1=h ,x 2=…………………………………9分1h a+∵AB ≥利用两点间距离公式或根据够勾股定理得出≥3即≥3………………………………11分12x x -1a ∴或,即………………………………13分103a <≤103a >≥-11,033a a ≥≥-≠。
2024-2025学年广东省珠海市上学期9月月考九年级数学试卷(含答案)
2024-2025学年广东省珠海市上学期9月月考九年级数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列方程是一元二次方程的是( )=4A. (x2+3)2=9B. ax2+bx+c=0C. x2+3=0D. x2+1x22.已知点P(a,−1)在二次函数y=x2+2x−1的图象上,则a的值可能为( )A. –3B. –2C. –1D. 13.抛物线y=−x2+bx+3的部分图象如图所示,则一元二次方程−x2+bx+3=0的根为( )A. x1=x2=1B. x1=1,x2=−1C. x1=1,x2=−2D. x1=1,x2=−34.对于抛物线y=(x−1)2−2,下列说法正确的是( )A. 开口向下B. 对称轴是直线x=−1C. 顶点坐标(−1,−2)D. 与x轴有交点=0配方后可化为( )5.一元二次方程y2−y−34A. (y+12)2=1B. (y−12)2=1C. (y+12)2=34D. (y−12)2=346.嘉淇准备解一元二次方程4x2+7x+■=0时,发现常数项被污染,若该方程有实数根,则被污染的数可能是( )A. 3B. 5C. 6D. 87.《算法统宗》是中国古代数学名著,作者是明代数学家程大位.书中记载了一道“荡秋千”问题:“平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?”译文:“秋千静止的时候,踏板离地1尺,将它往前推送两步(两步=10尺)时,此时踏板升高离地5尺,秋千的绳索始终拉得很直,试问秋千绳索有多长?”若设秋千绳索长为x尺,则可列方程为().A. x2+102=(x+1)2B. (x+1)2+102=x2C. x2+102=(x−4)2D. (x−4)2+102=x28.已知点A(−2,a),B(12,b),C(52,c)都在二次函数y=−x2+2x+3的图象上,那么a、b、c的大小是( )A. a<b<cB. b<c<aC. a<c<bD. c<b<a9.已知三角形的三条边为a,b,c,且满足a2−10a+b2−16b+89=0,则这个三角形的最大边c的取值范围是( )A. c>8B. 5<c<8C. 8≤c<13D. 5<c<1310.如图,抛物线y=ax2+bx+c(a≠0)与轴交于点(−3,0),其对称轴为直线x=−12,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程ax2+bx+c=0的两根分别为x1=−3,x2=2;⑤若m,n(m<n)为方程a(x+3)(x−2)+3=0的两个根,则m<−3且n>2,其中正确的结论有()个.A. 2B. 3C. 4D. 5二、填空题:本题共6小题,每小题3分,共18分。
2023-2024学年天津市河东区九年级上学期数学月考试卷及答案
2023-2024学年天津市河东区九年级上学期数学月考试卷及答案一、选择题1. 下列方程属于一元二次方程的是( )A. 2x 2﹣=7B. xy =91x C. x 2=4D. x 2+y 2=0 【答案】C【解析】【分析】根据是否为整式方程对A 进行判断;根据未知数的个数对B 、D 进行判断;根据一元二次方程的定义对C 进行判断.【详解】解: A 、2x 2﹣=7不是整式方程,所以A 选项错误; 1xB 、xy =8含有两个未知数,所以B 选项错误;C 、x 2=4是一元二次方程,所以C 选项正确;D 、x 2+y 2=0含有两个未知数,所以D 选项错误.故选C .【点睛】考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的ax 2+bx+c=0(a 、b 、c 为常数,a≠0).2. 用配方法解方程时,原方程应变形为( )2250x x +-=A.B.()216x +=()216x -=C.D. ()229x +=()229x -=【答案】A【解析】【分析】先把常数项移到方程右侧,再把方程两边加上1,然后把方程左边利用完全平方公式表示即可.【详解】解:,2250x x +-=∴, 225x x +=即,2216x x ++=∴,()216x +=故选:A .【点睛】本题考查的是一元二次方程的解法,掌握配方法解一元二次方程的一般步骤是解题的关键.3. 已知是一元二次方程的一个解,则m 的值为( )=2x 220x mx ++=A. 3B. C. 0 D. 0或3 3-【答案】B【解析】【分析】将代入一元二次方程,解方程即可得到答案.=2x 【详解】解:由题意得,4220m ++=解方程得,3m =-故选:B .【点睛】本题考查一元二次方程的解,掌握能使一元二次方程左右两边相等的未知数的值就是一元二次方程的解是解答本题的关键..4. 关于x 的一元二次方程3x 2﹣4x+8=0的根的情况是( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根 【答案】D【解析】【分析】根据判别式公式,求这个一元二次方程的判别式,根据正负情况即可得到答案.【详解】解:根据题意得:△=(﹣4)2﹣4×3×8=16﹣96=﹣80<0,∴该方程没有实数根,故选D .【点睛】考查了根的判别式,正确掌握根的判别式公式是解题的关键.5. 已知函数是二次函数,则m 的值为()()22227m y m x x -=-+-A. ±2B. 2C. -2D. m 为全体实数【答案】C【解析】 【分析】根据二次函数定义列式求解即可.【详解】解:∵函数是二次函数()22227m y m x x -=-+-∴m-2≠0,,解得:m=-2.222m -=故选:C .【点睛】本题主要考查了二次函数定义,掌握形如y=ax 2+bx+c (a 、b 、c 是常数,a≠0)的函数,叫做二次函数.6. 顶点坐标为(﹣2,3),开口方向和大小与抛物线相同的抛物线为( ) 212y x =A. B. ()21232y x =-+()21232y x =--C. D. ()21232y x =++()21232y x =-++【答案】C【解析】 a 值有关,利用顶点式解析式写出即可.【详解】解:∵抛物线的顶点坐标(﹣2,3),开口方向和大小与抛物线相同, 212y x =∴这个二次函数的解析式为y =(x+2)2+3.12故选C .【点睛】考查了二次函数图象与系数的关系,熟记抛物线y=ax 2+bx+c 中,a 值确定抛物线的开口方向和抛物线的形状是解题的关键.7. 抛物线y=﹣x 2+1的顶点坐标是( )12A. (0,1)B. (,1)C. (﹣,﹣1)D. (2,1212﹣1)【答案】A【解析】【分析】将抛物线解析式写成顶点式即可.【详解】解:y=﹣x 2+1 12=, 21(x 0)12--+∴顶点坐标是(0,1).故选A.【点睛】本题考查了抛物线的顶点坐标.8. 二次函数y =3(x﹣1)2+2的最小值是( )A. 2B. 1C. ﹣1D. ﹣2 【答案】A【解析】【分析】根据完全平方式和顶点式的意义,可直接得出二次函数的最小值.【详解】解:由于(x﹣1)2≥0,所以当x =1时,函数取得最小值为2,故选A .【点睛】考查了二次函数的性质,要熟悉非负数的性质,找到完全平方式的最小值即为函数的最小值.9. 二次函数y=(x﹣1)2+2的图象可由y=x 2的图象( )1212A. 向左平移1个单位,再向下平移2个单位得到B. 向左平移1个单位,再向上平移2个单位得到C. 向右平移1个单位,再向下平移2个单位得到D. 向右平移1个单位,再向上平移2个单位得到【答案】D【解析】【详解】y=x 2向右平移1个单位得到:y=x-1)2,再向上平移2个单位得到:y=x-121(21(21)2+2.所以选D.10. 抛物线与轴的公共点是,,则这条抛物线的对称轴是2y ax bx c =++x ()1,0-()3,0直线( )A. 直线B. 直线C. 直线D. 直线1x =-0x =1x =3x =【答案】C【解析】【分析】因为点A 和B 的纵坐标都为0,所以可判定A ,B 是一对对称点,把两点的横坐标代入公式x=求解即可. 122x x +【详解】∵抛物线与x 轴的交点为(−1,0),(3,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x===1. 122x x +132-+故答案选C.【点睛】本题考查了抛物线与坐标轴的交点的相关知识点,解题的关键是熟练的掌握抛物线与坐标轴的交点的性质.11. 某商场将每件进价为20元的玩具以30元的价格出售时,每天可售出300件.经调查当单价每涨1元时,每天少售出10件.若商场每天要获得3750元利润,则每件玩具应涨多少元?这道应用题如果设每件玩具应涨x 元,则下列说法错误的是( )A. 涨价后每件玩具的售价是元;B. 涨价后每天少售出玩具的数量是(30)x +件 C. 涨价后每天销售玩具的数量是件D. 可列方10x (30010)x -程为:(30)(30010)3750x x +-=【答案】D【解析】【详解】A.涨价后每件玩具的售价是元,正确;B.涨价后每天少售出玩具的数量()30x +是件,正确;C.涨价后每天销售玩具的数量是件,正确;D.可列方程为:10x ()30010x -,错误,应为(30+x-20)(300-10x)=3750,故选D.()()30300103750x x +-=12. 二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac﹣b 2<0;②4a+c<2b ;③3b+2c<0;④m(am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】【详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系二、填空题13. 若关于x的方程(m+1)x2+2mx﹣7=0是一元二次方程,则m的取值范围是_____.【答案】m≠﹣1【解析】【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【详解】解:由题意,得m+1≠0.解得m≠﹣1.故答案是:m≠﹣1.【点睛】利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.14. 如果抛物线的对称轴是y 轴,那么m 的值是_________.2(1)2y x m x m =-+--+【答案】1【解析】【分析】根据对称轴公式可得,即可求解. 02b x a=-=10m -=【详解】解:∵抛物线的对称轴是y 轴,2(1)2y x m x m =-+--+∴, 02b x a=-=∴,10m -=∴,1m =故答案为:.1【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.15. 已知一元二次方程,则_________.22310x x -+=12x x +=【答案】#### 321.5112【解析】【分析】根据一元二次方程根与系数的关系,即可求解.【详解】解:∵中,,22310x x -+=2,3a b ==-∴, 123322b x x a -+=-=-=故答案为:. 32【点睛】本题考查了一元二次方程根与系数的关系:若是一元二次方程12,x x 的两根,,,掌握一元二次方程根与系数()200ax bx c a ++=≠12b x x a+=-12c x x a =的关系是解题的关键. 16. 若实数a 满足a 2﹣2a=3,则3a 2﹣6a﹣8的值为_____.【答案】1【解析】【分析】先对已知进行变形,所求代数式化成已知的形式,再利用整体代入法即可求解.【详解】解:∵a 2﹣2a=3,∴3a 2﹣6a﹣8=3(a 2﹣2a)﹣8=3×3﹣8=1,∴3a 2﹣6a﹣8的值为1.故答案是:1.【点睛】考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.要把a 2-2a 看作一个整体,整体代入即可求出答案.17. 有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了______个人.【答案】12【解析】【分析】设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有169人患了流感,列方程求解【详解】解:设平均一人传染了x 人,x+1+(x+1)x=169解得:x=12或x=-14(舍去).∴平均一人传染12人.故答案为:12.【点睛】本题考查理解题意的能力,关键是看到两轮传染,从而可列方程求解.18. 如图抛物线y=x 2+2x﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE+DF 的最小值【解析】【分析】连接AC,与对称轴交于点P, 此时DE+DF 最小,求解即可.【详解】连接AC,与对称轴交于点P,此时DE+DF 最小,点D 、E 、F 分别是BC 、BP 、PC 的中点,11,,22DE PC DF PB ∴==在二次函数y=x 2+2x﹣3中,当时,0x =3,y =-当时,或0y =3x =- 1.x =即()()()3,0,1,0,0,3.A B C --3,OA OC ==AC ==点P 是抛物线对称轴上任意一点,PA+PC=AC,PB+PC=DE+DF 的最小值为: ()12PB PC +=【点睛】考查二次函数图象上点的坐标特征,三角形的中位线,勾股定理等知识点,找出点P 的位置是解题的关键.三、解答题19. 用适当的方法解下列方程:(1)()2324x -=(2)212270x x ++=(3)264x x +=(4)()()22333x x -=-【答案】(1),;13x =+23x =-(2),;13x =-29x =-(3),;13x =-+23x =--(4),13x =2 4.5x =【解析】【分析】(1)方程开方即可求出解;(2)方程利用因式分解法求出解即可;(3)方程利用配方法求出解即可;(4)方程整理后,利用因式分解法求出解即可.【小问1详解】解:开方得:3x -=±解得:,; 13x =+23x =-【小问2详解】解:分解因式得:,()()390x x ++=解得:,;13x =-29x =-【小问3详解】解:配方得:,26913x x ++=即,()2313x +=开方得:,3x +=解得:,13x =-+23x =--【小问4详解】解:方程整理得:,()()223330x x ---=分解因式得:,()()3[233]0x x ---=解得:,13x =2 4.5x =【点睛】此题考查了解一元二次方程因式分解法,配方法,直接开平方法,熟练掌握各-种解法是解本题的关键.20. 已知关于x 的方程的一个根是1. 求的值和方程的另一个根.2250x x k -+=k 【答案】,方程的另一个根为3k =32【解析】【分析】将代入,即可求出k 的值,再利用因式分解法解方程即得1x =2250x x k -+=出其另一个根.【详解】将,代入,得:,1x =2250x x k -+=250k -+=解得:.3k =∴该方程为 22530x x -+=(1)(23)0x x --=∴, 12312x x ==,∴方程的另一个根为. 32【点睛】本题考查一元二次方程的解和解一元二次方程.掌握方程的解就是使等式成立的未知数的值是解题关键.21. 已知二次函数y =ax 2(a≠0)的图象经过点(﹣2,3)(1)求a 的值,并写出这个二次函数的解析式;(2)求出此抛物线上纵坐标为3的点的坐标.【答案】(1), (2)(﹣2,3),(2,3) 34234y x =【解析】【分析】(1)根据二次函数图象上点的坐标满足其解析式,把点(-2,3)代入解析式得到关于a 的方程,然后解方程即可;(2)把y=3代入解析式求出x 的值即可.【详解】解:(1)∵抛物线y =ax 2经过点(﹣2,3),∴4a=3,∴a=, 34∴二次函数的解析式为; 234y x =(2)∵抛物线上点的纵坐标为3,∴3=x 2, 34解得x =±2,∴此抛物线上纵坐标为3的点的坐标为(﹣2,3),(2,3).【点睛】考查了待定系数法求解析式,二次函数图象上点的坐标特征,函数解析式与图象上的点之间的关系,点在图象上,则满足解析式;反之,满足解析式则在函数图象上.22. 已知二次函数. 2134y x x =--(1)求出函数图象顶点坐标;(2)写出图象的对称轴;(3)写出图象的开口方向;(4)写出当自变量x 取何值时,y 随x 的增大而减小.【答案】(1) ()24-,(2)直线2x =(3)向上 (4)2x ≤【解析】【分析】(1)将解析式化成顶点式求解即可;(2)根据顶点式求解即可;(3)根据,判断作答即可; 104a =>(4)根据二次函数的图象与性质作答即可.【小问1详解】解:∵, ()221132444y x x x =--=--∴函数图象顶点坐标为; ()24-,【小问2详解】解:由(1)可知,对称轴为直线;2x =【小问3详解】解:由(1)可知,, 104a =>∴图象的开口向上;【小问4详解】解:由图象开口向上,对称轴为直线,2x =∴当时,y 随x 的增大而减小.2x ≤熟练掌握与灵活运用.23. 已知,抛物线有经过两点,顶点为,求:2y x bx c =-++()()1,05,0A B -、P (1)求,的值:b c (2)求的面积;ABP (3)写出抛物线与轴交点坐标y 【答案】(1),4b =5c =(2)27(3)()0,5【解析】【分析】(1)利用交点式得到,然后展开即可得到和的值; ()()15y x x =-+-b c(2)把(1)的解析式进行配方可得到顶点式,然后写出顶点坐标即可求得面积;(3)将代入,即可求解.0x =【小问1详解】解:设抛物线的解析式为,()()15y x x =-+-∴,245y x x =-++∴;45b c ==,【小问2详解】解:∵,2245(2)9y x x x =-++=--+则点坐标为,P ()2,9∵,()()1,05,0A B -、∴,()516AB =--=∴的面积; ABP 12=AB ⨯⨯12P y =6927⨯⨯=【小问3详解】解:∵245y x x =-++当时,0x =5y =∴抛物线与轴交点坐标为y ()0,5【点睛】本题考查了待定系数法求二次函数关系式,求抛物线与坐标轴的交点问题,面积问题,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.24. 某学校计划利用一片空地建一个花面,花面为矩形,其中一面靠墙,这堵墙的长度为米,另三面用总长米的篱笆材料围成,且计划建造花圃的面积为平方米.设垂直122880于墙的边长为x 米,根据实际情况回答以下问题(1)平行于墙的边长为____米(用含x 代数式填空)(2)这个花圃的长和宽分别应为多少米?【答案】(1)()282x -(2)这个花圃的长为米,宽为米.108【解析】【分析】(1)设垂直于墙的边长为米,则平行于墙的边长为米,x ()282x -(2)根据花圃的面积为平方米,即可得出关于的一元二次方程,解得的值,再结80x x 合墙的长度为米,即可得出结论.12【小问1详解】解:设垂直于墙的边长为米,则平行于墙的边长为米,x ()282x -故答案为:.()282x -【小问2详解】依题意,得:,()28280x x -=解得:,.14x =210x =当时,,不符合题意,舍去;4x =2822012x -=>当时,,符合题意.10x =2828x -=答:这个花圃的长为米,宽为米.108【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,抛物线与轴交于,两点.2y x bx c =-++x ()1,0A ()3,0B -(1)求该抛物线的解析式;(2)设(1)中的抛物线交轴于点,在该抛物线的对称轴上是否存在点,使得y C Q 的周长最小?若存在,求出点的坐标;若不存在,请说明理由;QAC △Q (3)在(1)中的抛物线上的第二象限上是否存在一点,使的面积最大?若存P PBC 在,求出点的坐标及的面积最大值;若没有,请说明理由.P PBC 【答案】(1)223y x x =--+(2)存在,(1,2)Q -(3)存在,,, 3(2-15)4278【解析】【分析】(1)根据题意可知,将点、代入函数解析式,列得方程组即可求得、的A B b c 值,求得函数解析式;(2)根据题意可知,边的长是定值,要想的周长最小,即是最AC QAC △AQ CQ +小,所以此题的关键是确定点的位置,找到点的对称点,求得直线的解析式,Q A B BC 求得与对称轴的交点即是所求;(3)存在,设点的坐标,将的面积表示成二次函数,根据二次函数最值的方法P BCP 即可求得点的坐标.P 【小问1详解】解:将,代入中得(1,0)A (3,0)B -2y x bx c =-++, 10930b c b c -++=⎧⎨--+=⎩. ∴23b c =-⎧⎨=⎩抛物线解析式为:;∴223y x x =--+【小问2详解】存在.理由如下:由题知、两点关于抛物线的对称轴对称,A B =1x -直线与的交点即为点,此时周长最小,∴BC =1x -Q AQC ,223y x x =--+ 的坐标为:,C ∴(0,3)直线解析式为:,BC 3y x =+点坐标即为, Q 13x y x =-⎧⎨=+⎩解得, 12x y =-⎧⎨=⎩;(1,2)Q ∴-【小问3详解】存在.理由如下:设点,,P (x 223)(30)x x x --+-<<, 92BPC BOC BPCO BPCO S S S S =-=- △△四边形四边形若有最大值,则就最大,BPCO S 四边形BPC S △,BPE BPCO PEOC S S S ∴=+△四边形直角梯形 11()22BE PE OE PE OC =⋅++ 2211(3)(23)()(233)22x x x x x x =+--++---++, 233927(2228x =-+++当时,最大值, 32x =-BPCO S 四边形92728=+最大, BPC S ∴△9279272828=+-=当时,, 32x =-215234x x --+=点坐标为,. ∴P 3(2-15)4【点睛】此题考查了二次函数的综合应用,要注意距离最短问题的求解关键是点的确定,还要注意面积的求解可以借助于图形的分割与拼凑,特别是要注意数形结合思想的应用.。
九年级上册第二次月考数学试卷
20 -20 学年九年级第一学期第二次月考数学学科试卷学校: 班级: 姓名: 考号:一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的。
1.抛物线2(2020)2021y x =-+的顶点坐标是( )A .(2020,2021)-B .(2020,2021)C .(2020,2021)-D .(2020,2021)-- 2.已知是方程x 2﹣3x +c =0的一个根,则c 的值是( )A .﹣6B .6C .D .23.为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是( )A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°; 4.抛物线y =2x 2与y =﹣2x 2相同的性质是( ) A .开口向下 B .对称轴是y 轴C .有最低点D .对称轴是x 轴5.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是( ) A .B .C .D .6.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =48°,则∠OAB 的度数为( ) A .24°B .30°C .50°D .60°7.如图,△COD 是△AOB 绕点O 顺时针方向旋转30°后所得的图形,点C 恰好在AB 上,则∠A 的度数为( ) A .30°B .60°C .70°D .75° 8.若二次函数y =x 2+mx 的对称轴是x =4,则关于x 的方程x 2+mx =9的根为( ) A .x 1=0,x 2=8B .x 1=1,x 2=9C .x 1=1,x 2=﹣9D .x 1=﹣1,x 2=99.已知等腰三角形的两边长分别是一元二次方程x 2﹣6x +8=0的两根,则该等腰三角形的底边长为( ) A .2B .4C .8D .2或410.如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为(,1),下列结论:①abc <0;②b 2﹣4ac >0;③a +b <0;④2a +c <0,其中正确的个数是( ) A .1个B .2个C .3个D .4个二、填空题(本大题共4小题,每小题5分,满分20分) 11.点M (1,2)关于原点的对称点的坐标为 .12.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点H ,若AB =10,CD =8,则BH 的长度为 . 13.若一个圆锥的母线长为4,底面半径是1,则它的侧面展开图的面积是______. 14.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率.某圆的半径为R ,其内接正十二边形的周长为C .若R =,则C = ,≈ (结果精确到0.01,参考数据:≈2.449,≈1.414).三、(本大题共2小题,每小题8分,满分16分)15.解方程: 3x (x +1)=3x +316.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆. (1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价. 四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,ΔABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,5)。
九年级数学第一次月考试卷
九年级数学第一次月考试卷一、选择题(每题3分,共30分)1. 一元二次方程x^2 - 2x = 0的根是()A. x_1=0,x_2=-2B. x_1=1,x_2=2C. x_1=1,x_2=-2D. x_1=0,x_2=22. 二次函数y = x^2+2x - 3的顶点坐标是()A. ( - 1,-4)B. (1,-4)C. ( - 1,4)D. (1,4)3. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 正五边形D. 圆。
4. 关于x的一元二次方程(m - 1)x^2+5x + m^2-3m + 2 = 0的常数项为0,则m等于()A. 1B. 2C. 1或2D. 05. 抛物线y=(x - 1)^2+2的对称轴是()A. 直线x=-1B. 直线x = 1C. 直线x=-2D. 直线x = 26. 把二次函数y = 3x^2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是()A. y = 3(x - 2)^2+1B. y = 3(x + 2)^2-1C. y = 3(x - 2)^2-1D. y = 3(x + 2)^2+17. 若关于x的一元二次方程x^2-kx - 6 = 0的一个根为x = 3,则实数k的值为()A. 1B. -1C. 2D. -28. 二次函数y = ax^2+bx + c(a≠0)的图象如图所示,则下列结论正确的是()(此处可插入一个二次函数图象,顶点在第二象限,开口向下,与x轴有两个交点)A. a < 0,b < 0,c > 0,b^2-4ac > 0B. a < 0,b < 0,c < 0,b^2-4ac > 0C. a < 0,b > 0,c > 0,b^2-4ac < 0D. a < 0,b > 0,c > 0,b^2-4ac > 09. 已知二次函数y = kx^2-7x - 7的图象和x轴有交点,则k的取值范围是()A. k>-(7)/(4)B. k≥slant-(7)/(4)且k≠0C. k≥slant-(7)/(4)D. k > -(7)/(4)且k≠010. 某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A. 200(1 + a%)^2=148B. 200(1 - a%)^2=148C. 200(1 - 2a%) = 148D. 200(1 - a^2%)=148二、填空题(每题3分,共18分)11. 方程(x - 1)^2=4的解为___。
九年级数学月考试卷【含答案】
九年级数学月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 若a、b为实数,且a≠0,那么下列哪个式子是正确的?()A. a² = b²B. a² + b² = (a + b)²C. (a + b)² = a² + 2ab + b²D. a² b² = (a b)²4. 下列哪个式子是等边三角形的面积公式?()A. 面积 = 1/2 底高B. 面积 = 1/2 边长高C. 面积= √3/4 边长²D. 面积 = 1/4 边长²5. 若一个圆的半径为r,则它的周长为()。
A. 2πrB. πr²C. 2rD. r²二、判断题(每题1分,共5分)1. 若a、b为实数,且a≠b,则a²≠b²。
()2. 任何一个正整数都可以表示为两个质数的和。
()3. 两个等腰三角形的面积相等,则它们的周长也相等。
()4. 任何一个偶数都可以表示为两个奇数的和。
()5. 任何一个正整数都可以表示为三个连续整数的和。
()三、填空题(每题1分,共5分)1. 若一个正方形的边长为4,则它的面积为______。
2. 若一个圆的半径为3,则它的面积为______。
3. 若一个等腰三角形的底边长为8,腰长为5,则它的高为______。
4. 若一个等差数列的首项为2,公差为3,第5项为______。
5. 若一个等比数列的首项为3,公比为2,第4项为______。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 简述等差数列的定义。
3. 简述等比数列的定义。
2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷(含解析)
2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.一元二次方程4x2+x−3=0中一次项系数、常数项分别是( )A. 2,−3B. 0,−3C. 1,−3D. 1,02.解方程(x+1)2=3(1+x)的最佳方法是( )A. 直接开平方法B. 配方法C. 公式法D. 因式分解法3.抛物线y=−3x2+2x−1与y轴的交点为( )A. (0,1)B. (0,−1)C. (−1,0)D. (1,0)4.若关于x的一元二次方程(k−1)x2+x+1=0有实数根,则k的取值范围是( )A. k≥54B. k>54C. k>54且k≠1 D. k≤54且k≠15.若关于x的方程x2−kx−3=0的一个根是x=3,则k的值是( )A. −2B. 2C. −12D. 126.关于x的方程|x2−2x−3|=a有且仅有两个实数根,则实数a的取值范围是( )A. a=0B. a=0或a=4C. a>4D. a=0或a>47.在手拉手学校联谊活动中,参加活动的每个同学都要给其他同学发一条励志短信,总共发了110条,设参加活动的同学有x个,根据题意,下面列出的方程正确的是( )A. 12x(x+1)=110 B. 12x(x−1)=110 C. x(x+1)=110 D. x(x−1)=1108.已知函数y=ax2+bx+c的图象如图,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A. 无实数根B. 有两个相等实数根C. 有两个同号不等实数根D. 有两个异号实数根9.二次函数y=ax2+bx+c,若ab<0,a−b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则( )A. y1=−y2B. y1>y2C. y1<y2D. y1、y2的大小无法确定10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc<0;②b>a+c;③2a−b=0;④b2−4ac<0.其中正确的结论个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。
初三数学月考试卷真题
一、选择题(每题3分,共30分)1. 下列各数中,是正有理数的是()A. -2B. 0C. 1/2D. -3/42. 下列图形中,不是轴对称图形的是()A. 等腰三角形B. 矩形C. 平行四边形D. 正方形3. 若方程2x - 3 = 5的解为x,则x + 1的值为()A. 2B. 3C. 4D. 54. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x + 3C. y = 3/xD. y = 2x - 55. 在直角坐标系中,点A(-2,3)关于x轴的对称点为()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)6. 若等腰三角形底边长为6cm,腰长为8cm,则其高为()A. 4cmB. 5cmC. 6cmD. 7cm7. 下列式子中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^28. 若a、b、c是等差数列,且a + b + c = 18,a + c = 12,则b的值为()A. 3B. 6C. 9D. 129. 下列命题中,正确的是()A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直C. 等腰三角形的底角相等D. 直角三角形的两个锐角互余10. 若二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(-1,2),则a的值为()A. 1B. -1C. 2D. -2二、填空题(每题3分,共30分)11. 3x - 5 = 11的解为x = ________。
12. 若等腰三角形的底边长为8cm,腰长为10cm,则其面积为________ cm²。
13. 若y = 2x - 3,当x = 4时,y的值为 ________。
14. 在直角坐标系中,点B(2,3)关于原点的对称点为 ________。
九年级数学月考试卷(含答案)
九年级第一次月考数学试卷1一、选择题(每小题4分,共40分) 1.下列运算正确的是( ).A. 22232x x x -= B .22(2)2a a -=- C .222()a b a b +=+D .()2121a a --=--2.二次根式中,x 的取值范围是( )A .x=3B . x≥3C . x >3D .一切实数 3.若点 P (a ,a -3)在第四象限,则a 的取值范围是 ( ). A .-3<a <0 B .0<a <3 C .a >3 D .a <04.二次函数y=﹣(x+2)2﹣3的顶点坐标为( )A .(﹣2,3)B . (2,3)C . (﹣2,﹣3)D . (2,﹣3)5.芜湖市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是 ( ). A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x += 6.下列方程没有实数根的是( )A .x 2+4x=10B .3x 2+8x ﹣3=0C .x 2﹣2x+3=0 D .(x ﹣2)(x ﹣3)=12 7.方程(x ﹣1)(x+2)=2(x+2)的根是( ) A .1,﹣2 B . 3,﹣2 C . 0,﹣2 D .18.若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2的值为( ) A .5 B .7 C .8 D .109.如图,是一组按照某种规律摆放成的图案,则图6中三角形的个数是( )A .18B .19C . 20D .2110.已知k 为实数,且方程223x x k --=恰有4个实数根,则k 的范围是A .任意实数B .0k >C .04k <<D .不存在 二、填空题(每题5分,共20分)11.关于x 的方程(a ﹣5)x 2﹣4x ﹣1=0有实数根,则a 满足 12.汽车刹车后行驶的距离s (单位:米)与行驶的时间t (单位:秒)的函数关系式是s=15t﹣6t 2,那么汽车刹车后 秒停下来。
数学月考9年级上册试卷【含答案】
数学月考9年级上册试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. 1B. 2C. 3D. 42. 在三角形ABC中,若∠A = 90°,AB = 3,AC = 4,则BC的长度为:A. 5B. 6C. 7D. 83. 下列哪个数是无理数?A. √9B. √16C. √25D. √264. 若sinθ = 1/2,且θ是锐角,则cosθ的值为:A. √3/2B. √2/2C. 1/2D. 1/√25. 二项式展开式(a + b)⁵的系数和为:A. 1B. 2C. 3D. 4二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式Δ = b² 4ac。
()3. 若一组数据的方差为0,则这组数据中的每个数都相等。
()4. 在平面直角坐标系中,点(3, -4)在第四象限。
()5. 两个函数若它们的定义域和值域都相同,则这两个函数是同一函数。
()三、填空题(每题1分,共5分)1. 若函数f(x) = 2x + 3,则f(-1) = _______。
2. 若一组数据的平均数为10,则这组数据的总和为_______。
3. 在直角坐标系中,点(2, 3)关于y轴的对称点坐标为_______。
4. 若sinθ = 3/5,且θ在第二象限,则cosθ = _______。
5. 若一个等差数列的首项为3,公差为2,则该数列的第5项为_______。
四、简答题(每题2分,共10分)1. 解释什么是函数的单调性。
2. 简述勾股定理的内容。
3. 什么是绝对值?如何计算一个数的绝对值?4. 解释直角坐标系中,第一象限的特点。
5. 简述等差数列的通项公式。
五、应用题(每题2分,共10分)1. 解一元二次方程x² 5x + 6 = 0。
2024-2025学年初中九年级上学期第一次月考数学试题及答案(苏科版)
2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x+= 2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x += 4. 若关于x 一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上的三点,则123,,y y y 为的大小关系为( )A 123y y y >> B. 132y y y >> C. 321y y y >> D. 312y y y >> 7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >的.二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.14. 抛物线()232y x =−−−的顶点坐标是________ .15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 取值范围为__________16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.18. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子的正方形的最大边长为______米.三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 20. 解方程:(1)2(2x 1)9+=;(2)2x 2﹣4x =1(配方法);(3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−= 21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少?22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由.23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,____________.(2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点____________,与y 轴交于点____________.(写坐标)(5)在下面的坐标系中画出该抛物线的图象.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 25. 已知:二次函数()221y x m x m =−++−. (1)求证:该抛物线与x(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;是的2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x += 【答案】B【解析】【分析】本题主要考查了一元二次方程的识别.本题根据一元二次方程的定义解答.【详解】解:A 、当0a ≠时,20ax bx c ++=是一元二次方程,故本选项不符合题意; B 、22x x −=是一元二次方程,故本选项符合题意;C 、变形为22x =不是一元二次方程,故本选项不符合题意;D 、11x x+=含有分式,不是一元二次方程,故本选项不符合题意; 故选:B2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根【答案】D【解析】【分析】本题考查一元二次方程根的情况,涉及一元二次方程根的判别式,由题中一元二次方程得到判别式,即可判断答案,熟记一元二次方程根的情况与判别式符号关系是解决问题的关键.【详解】解:一元二次方程2310x x −−=, 3,1,1a b c ==−=−,()()21431∴∆−−××−112=+130=>,∴一元二次方程2310x x −−=的根的情况为有两个不相等的实数根,故选:D .3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x +=【答案】B【解析】【分析】本题考查了解一元二次方程—配方法,掌握配方法是解题的关键.先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方形式即可.【详解】解:2430x x −+=,∴243x x −=−,∴24434x x −+=−+,即()221x −=.故选:B4. 若关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 【答案】D【解析】【分析】本题考查了一元二次方程的定义和一元二次方程根的判别式.根据一元二次方程根的判别式,即可求解.【详解】解:∵关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,∴()26490k ∆=−−×>,且0k ≠,解得:1k <且0k ≠,即k 的取值范围是1k <且0k ≠.故选:D5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 【答案】B【解析】【分析】本题考查函数图象的平移,解题的关键是要熟练掌握函数的平移规律:“左加右减,上加下减”,根据函数图象平移规律即可得到答案.【详解】解:将抛物线2y x =先向上平移2个单位长度,得到22y x =+,再向右平移3个单位长度,得到()232y x =−+, 故选:B .6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上三点,则123,,y y y 为的大小关系为( )A. 123y y y >>B. 132y y y >>C. 321y y y >>D. 312y y y >>【答案】B【解析】【分析】本题主要考查了二次函数的性质,掌握当抛物线开口方向向上时,离对称轴越远,函数值越大成为解题的关键.先确定抛物线的对称轴,再确定抛物线开口向上,此时离对称轴越远,函数值越大,据此即可解答.【详解】解:∵()221y x a =−+,∴抛物线的对称轴为直线1x =,开口向上,∴离对称轴越远,函数值越大,∵点()12,A y −离对称轴最远,点()21,B y 在对称轴上,∴132y y y >>.故选:B .7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 【答案】C【解析】【分析】本题主要考查了二次函数与一元二次方程之间的关系,二次函数的定义,二次函数与x 轴有两个交点,则与之对应的一元二次方程有两个不相等的实数根,据此利用判别式求出k 的取值范围,再结合二次项系数不为0即可得到答案.【详解】解:∵抛物线242y kx x =−−与x 轴有两个交点, 的∴()()2Δ44200k k =−−×−⋅> ≠ , ∴2k >−且0k ≠,故选:C .8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >【答案】C【解析】 【分析】本题主要考查了二次函数的性质,先求出二次函数的表达式,再根据与x 轴的交点即可求出0y <的x 的取值范围,解题的关键是求出二次函数2y ax bx c ++的表达式.【详解】解:由表格可知2y ax bx c ++经过()2,0−,()3,0,()0,6−,设解析式为()()23y a x x =+−∴()()02036a +−=−, 解得:1a =,∴抛物线解析式为()()2236y x x x x =+−=−−,∴抛物线图象开口向上,与x 轴的交点为()2,0−,()3,0,∴0y <时x 的取值范围是23x −<<,故选:C .二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 【答案】3【解析】【分析】本题考查一元二次方程的根的定义、代数式求值,根据一元二次方程的根的定义,将m 代入2520x x −−=,求出252m m −=,即可求出22101m m −−的值.【详解】解:∵m 是方程2520x x −−=的一个根,∴252m m −=,∴()2221012512213,m m m m −−=−−=×−=故答案为:3. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 【答案】1或3−【解析】【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()2Δ1410k =+−×=,然后解关于k 的方程即可. 【详解】解:由题意得:()2Δ1410k =+−×=,即:()214k +=,解得:1k =或3−,故答案为:1或3−. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 【答案】2−【解析】【分析】此题考查了一元二次方程的定义及方程的解的定义,将0x =代入方程求出2m =±,再根据一元二次方程的定义求出2m ≠,由此得到答案,正确理解一元二次方程的定义及方程的解的定义是解题的关键.【详解】解:将0x =代入()22240m x mx m −++−=,得240m −=, 解得2m =±,∵20m −≠,∴2m ≠,∴2m =−,故答案为2−.12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________ 【答案】22=302x x −【解析】【分析】本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S ab =来解题的方法.本题可根据长方形的周长可以用x 表示另一边长的值,然后根据面积公式即可列出方程.【详解】解:一边长为 c m x ,则另一边长为22cm 2x −, 得22=302x x −. 故答案为:22=302x x −. 13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.【答案】30x −≤≤【解析】【分析】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图象的理解,题目中的不等式的含义为:二次函数的图象在一次函数图象上方时,自变量x 的取值范围.根据图象,写出抛物线在直线上方部分的x 的取值范围即可.【详解】∵抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点, ∴由函数图象可得,不等式2ax bx c kx m ++≥+的解集是30x ≤≤﹣,故答案为:30x −≤≤.14. 抛物线()232y x =−−−的顶点坐标是________ . 【答案】()3,2− 【解析】【分析】本题考查了二次函数2()y a x h k =−+(a ,h ,k 为常数,0a ≠)性质,2()y a x h k =−+是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(,)h k ,对称轴是直线x h =. 【详解】解:物线()232y x =−−−的顶点坐标是()3,2−.故答案为:()3,2−.15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 的取值范围为__________ 【答案】35y −≤≤##53x ≥≥− 【解析】【分析】本题考查二次函数的图象与性质,根据题意得当1x >−时,y 随x 的增大而增大,求得当0x =时,=3y −;2x =时,5y =,即可求解.【详解】解:由题意得,10a =>,对称轴1x =−, ∴当1x >−时,y 随x 增大而增大, ∵当0x =时,=3y −;2x =时,5y =,∴当02x ≤≤时,函数值y 的取值范围为35y −≤≤, 故答案为:35y −≤≤.16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来. 【答案】20 【解析】【分析】本题主要考查二次函数的应用,飞机停下时,也就是滑行距离最远时,即在本题中需求出s 最大时对应的t 值,根据顶点坐标的实际意义可得答案. 【详解】∵()2260 1.5 1.520600s t t t =−=−−+, ∴当20t =时,s 取得最大值600, ∴飞机着陆后滑行20秒才停下来.的的故答案:20.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.【答案】1 【解析】【分析】本题主要考查二次函数图象的对称性,能够熟练运用对称轴求点的横坐标是解题关键.求出对称轴后根据对称性求点B 横坐标,再代入解析式即可解答. 【详解】解:∵()2221y x =−−, ∴抛物线对称轴为直线2x =, ∵2AB =,∴点B 横坐标为213+=,将3x =代入()2221y x =−−得1y =, ∴点B 的纵坐标为1. 故答案为:118. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子正方形的最大边长为______米.【解析】为【分析】本题主要考查了二次函数的实际应用,先建立解析中坐标系,则()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,,利用待定系数法求出抛物线解析式为211633y x =−+,再把B 、C 坐标代入求解即可.【详解】解:建立如下平面直角坐标系,则点()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,、设抛物线的表达式为:()21603y ax a =+≠, 将点A 的坐标代入上式得:160163a =+,解得13a =−,∴抛物线的表达式为:213y x =− 将点B 、C 的坐标代入上式得:()2211623311633m m n m n =−+ =−++①②,由①得1228m m ==−,(舍去),解得:2m n = = 或2m n = =(舍去),米.. 三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 【答案】(1)()40x −,2x(2)每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; (3)不能,理由见解析 【解析】【分析】此题考查了一元二次方程的实际应用,解题的关键是正确分析题目中的等量关系. (1)设每套拖把降价x 元,根据题意列出代数式即可;(2)设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,根据题意列出一元二次方程求解即可;(3)设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,根据题意列出一元二次方程,然后依据判别式求解即可. 【小问1详解】解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套, 每套拖把盈利()1208040x x −−=−元.故答案为:()40x −,()202x +; 【小问2详解】解:设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,依题意得:()()402021242x x −+=, 整理得:2302210x x −+=,解得:121317x x ==,. 又∵需要尽快减少库存,∴17x =.答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; 【小问3详解】解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y −−+=, 整理得:2303000y y −+=. ∵()22Δ43041300300<0b ac =−=−−××=−, ∴此方程无实数解, 即不可能每天盈利1400元. 20. 解方程:(1)2(2x 1)9+=; (2)2x 2﹣4x =1(配方法); (3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−=【答案】(1)121,2x x ==−;(2)1211x x ;(3)12x x ;(4)1233,5x x == 【解析】【分析】(1)直接开平方法解方程即可;(2)先方程两边除以2,将二次项系数化为1,再在方程两边同时加上1,配方开平方即可解答; (3)确定a 、b 、c ,求出△值,当判断方程有解时,带入公式求解即可; (4)整理方程,利用因式分解法解方程即可. 【详解】(1)2(2x 1)9+= 开平方,得:2x 13+=±, 解得:121,2x x ==−; (2)22x 41x −=,二次项系数化为1,得:21x 22x −=, 配方,得:21x 2112x −+=+, 即23(x 1)2−=,开方,得:1x −=解得:1211x x (3)22x 5x 10−+= ∵a=2,b=﹣5,c=1,∴△=224(5)42117b ac −=−−××=﹥0,∴x =,解得:12x x =(4)()2(x 3)4x 3x 0−−−= ()2(x 3)4x 30x +−−=(3)(53)0x x −−=∴30x −=或530x −=,解得:1233,5x x ==. 【点睛】本题考查解一元二次方程的方法,熟练掌握一元二次方程的各种解法的步骤和注意点,灵活选用解法是解答的关键.21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少? 【答案】(1)6万座 (2)70% 【解析】【分析】本题考查有理数乘法的应用,一元二次方程的实际应用:(1)根据计划到今年底,全省5G 基站数是目前的4倍,列出算式计算即可;(2)设全省5G 基站数量的年平均增长率为x ,根据题意,列出一元二次方程,进行求解即可 【小问1详解】解:由题意得:1.546×=(万座); 答:计划在今年底,全省5G 基站数量是6万座. 【小问2详解】解:设全省5G 基站数量的年平均增长率为x ,由题意得:()26117.34x +=,解得:120.7, 2.7x x ==−(不符合题意,舍去); 答:全省5G 基站数量的年平均增长率为70%.22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由. 【答案】(1)当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈 (2)羊圈的面积不能达到2650m ,理由见解析 【解析】【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键. (1)设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解. 【小问1详解】解:设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -,根据题意,得()722640x x −=,化简,得2363200x x −+=,解方程,得116x =,220x =,当116x =时,72240x −=, 当220x =时,72232x −=.答:当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈. 【小问2详解】不能,理由如下:根据题意,得()722650x x −=, 化简,得2363250x x −+=,()22436432540b ac −=−×=−−< , ∴该方程没有实数根. ∴羊圈的面积不能达到2650m 23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,是____________. (2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点,与y 轴交于点____________.(写坐标) (5)在下面的坐标系中画出该抛物线的图象.【答案】(1)1;4 (2)1<(3)见解析 (4)(1,0)−和(3,0);(0,3) (5)见解析 【解析】【分析】本题考查了二次函数的性质、抛物线与x 轴的交点坐标、二次函数图象与几何变换以及二次函数的最值,熟练掌握二次函数的性质是解题的关键.(1)根据二次函数的顶点式找出抛物线的顶点坐标,再根据二次项系数为1−得出抛物线开口向下,由此即可得出结论;(2)根据抛物线开口方向结合抛物线的对称轴,即可找出单增区间;(3)找出函数2y x =−的顶点坐标,结合函数2(1)4y x =−−+的顶点坐标,即可找出平移的方法; (4)令0y =可得出关于x 的一元二次方程,解方程求出x 值,由此得出抛物线与x 轴的交点坐标;令0x =求出y 值,由此即可得出抛物线与y 轴的交点坐标;(5)列表,描点,连线即可画出该抛物线的图象. 【小问1详解】解: 函数解析式为2(1)4y x =−−+,∴抛物线的开口向下,顶点坐标为(1,4). ∴当1x =时,抛物线有最大值,是4.故答案为:1;4; 【小问2详解】解: 抛物线的开口向下,对称轴为1x =,∴当1x <时,y 随x 的增大而增大.故答案为:1<; 【小问3详解】解: 函数2y x =−的顶点坐标为(0,0),∴将函数2y x =−的图象先向右平移1个单位长度,再向上平移4个单位长度即可得出函数2(1)4y x =−−+的图象.【小问4详解】解:令0y =,则有2(1)40x −−+=, 解得:11x =−,23x =,∴该抛物线与x 轴的交点坐标为(1,0)−和(3,0).当0x =时,2(01)43y =−−+=, ∴该抛物线与y 轴的交点坐标为(0,3).故答案为:(1,0)−和(3,0);(0,3). 【小问5详解】 解:列表:x 1−0 1 2 3 y343描点,连线,该抛物线的图象如图:.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 【答案】()221y x =−−+ 【解析】【分析】本题主要考查了求二次函数解析式,先把解析式设顶点式,再利用待定系数法求解即可. 【详解】解:设此二次函数解析式为()()2210y a x a =−+≠,把()3,0代入()()2210y a x a =−+≠中得:()20321a =−+,解得1a =−,∴此二次函数解析式为()221y x =−−+. 25. 已知:二次函数()221y x m x m =−++−.(1)求证:该抛物线与x 轴一定有两个交点;(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.【答案】(1)见解析 (2)2y x x 2−− 【解析】【分析】(1)根据()()22Δ2418m m m =+−−=+的符号,即可求解,为(2)由根与系数关系,列出()()2224A B A B A B AB x x x x x x =−=+−⋅,即可求解,本题考查了根的判别式,根据系数关系,解题的关键是:熟练掌握根的判别式,根据系数关系.【小问1详解】证明:()()22Δ2418m m m =+−−=+,20m ≥ ,2Δ880m ∴=+≥>,故抛物线与x 轴一定有两个交点,【小问2详解】解:令0y =,得()2210x m x m −++−=, 由(1)知Δ0>,2A B x x m ∴+=+,1A B x x m ⋅=−,()()()()22224241A B A B A B AB x x x x x x m m =−=+−⋅=+−−, ()()22419m m ∴+−−=,解得1m =±,A 在原点左边,B 在原点右边,10A B x x m ∴⋅=−<,1m ∴<,1m ∴=−,故抛物线的表达式为:2y x x 2−−.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数的解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;【答案】(1)245y x x =−−(2)当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − 【解析】【分析】本题考查二次函数的综合应用,熟练掌握的图像和性质是解题的关键. (1)利用待定系数法求函数解析式即可;(2)过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −,则25PQ x x =−+,然后根据ABPS PQ OB =⋅ 计算即可. 【小问1详解】解:当xx =0时,5y =−,∴点A 的坐标为()0,5−, 当0y =时,50x −=,解得5x =,∴点B 的坐标为()5,0,设抛物线的解析式为()()51y a x x =−+,代入()0,5−得:55a −=−,解得:1a =,∴二次函数的解析式为()()25145y x x x x =−+=−−; 【小问2详解】解:过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −, ∴225(45)5PQ x x x x x =−−−−=−+, ∴()2211551255522228ABP S PQ OB x x x =⋅=×−+×==−−+ , 当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − .。
2024-2025学年湖北省孝感市汉川外国语学校九年级(上)第一次月考数学试卷+答案解析
2024-2025学年湖北省孝感市汉川外国语学校九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列方程是一元二次方程的是()A. B.C.D.2.用配方法解方程,则配方正确的是()A. B.C.D.3.抛物线的顶点坐标是()A.B.C. D.4.关于x 的一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5.将抛物线向下平移5个单位长度,再向左平移2个单位长度,所得的抛物线为()A. B. C.D.6.2020年年无锡居民人均可支配收入由万元增长至万元,设人均可支配收入的平均增长率为x ,下列方程正确的是()A. B.C.D.7.已知关于x 的一元二次方程有两个不相等的实数根,则实数k 的取值范围是()A.B.C.且D.且8.二次函数的图象与一次函数在同一平面直角坐标系中的图象可能是()A. B.C. D.9.抛物线上有两点,,若,则下列结论正确的是()A. B.C.或D.以上都不对10.如图,已知开口向下的抛物线与x轴交于点,对称轴为直线则下列结论正确的有()①;②;③函数的最大值为;④若关于x的方程无实数根,则A.1个B.2个C.3个D.4个二、填空题:本题共5小题,每小题3分,共15分。
11.将二次函数化成的形式,结果为______.12.已知关于x的一元二次方程没有实数根,那么a的取值范围是______.13.一次会议上,每两个参加会议的人都相互握了一次手,经统计所有人一共握了10次手,则这次会议到会的人数是______人.14.若是关x的方程的解,则的值为______.15.已知二次函数,当时,函数值y的最小值为1,则a的值为______.三、解答题:本题共9小题,共75分。
解答应写出文字说明,证明过程或演算步骤。
16.本小题6分解方程配方法;公式法17.本小题6分已知二次函数的图象经过,两点.求b和c的值;试判断点是否在此函数图象上?18.本小题6分2021年7月1日是建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数如图所示,若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数请用方程知识解答19.本小题8分已知关于x的一元二次方程有两个不等实数根,求k的取值范围;若,求k的值.20.本小题8分有一个人患了流感,经过两轮传染后,共有121人患了流感.每轮传染中平均一个人传染几个人?如果按照这样的传染速度,经过三轮传染后共有______个人患流感.21.本小题8分已知函数是关于x 的二次函数.求m 的值;函数图象的两点,,若满足,则此时m 的值是多少?22.本小题10分某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙墙的长度为,另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m ,设较小矩形的宽为如图若矩形养殖场的总面积为,求此时x 的值;当x为多少时,矩形养殖场的总面积最大?最大值为多少?23.本小题11分2022北京冬奥会期间,某网店直接从工厂购进A 、B 两款冰墩墩钥匙扣,进货价和销售价如下表:注:利润=销售价-进货价类别价格A 款钥匙扣B 款钥匙扣进货价元/件3025销售价元/件4537网店第一次用850元购进A 、B 两款钥匙扣共30件,求两款钥匙扣分别购进的件数;第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A 、B 两款冰墩墩钥匙扣共80件进货价和销售价都不变,且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?24.本小题12分如图,在平面直角坐标系中,直线l与x轴交于点,与y轴交于点,抛物线经过点A,B,且对称轴是直线求直线l的解析式;求抛物线的解析式;点P是直线l下方抛物线上的一动点,过点P作轴,垂足为C,交直线1于点D,过点P作,垂足为求PM的最大值及此时P点的坐标.答案和解析1.【答案】B【解析】解:A、当时,方程为是一元一次方程,该选项不合题意;B、方程是一元二次方程,该选项符合题意;C、方程的左边不是整式,方程不是一元二次方程,该选项不合题意;D、方程整理为,是一元一次方程,该选项不合题意;故选:据此即可判定求解.本题考查了一元二次方程的定义,掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解题的关键.2.【答案】B【解析】解:,,,故选:先移项、然后再给等式两边同时加上16,然后再化简即可解答.本题考查运用配方法解一元二次方程,掌握配方法是解题的关键.3.【答案】A【解析】【分析】本题主要考查了求抛物线的顶点坐标.熟记二次函数的顶点式的形式是解题的关键.直接利用顶点式的特点可写出顶点坐标.【解答】解:顶点式,顶点坐标是,抛物线的顶点坐标是故选4.【答案】A【解析】解:,方程有两个不相等的实数根.故选:根据一元二次方程根的判别式解答即可.本题考查的是一元二次方程根的判别式,熟知一元二次方程中,当时,方程有两个不相等的实数根是解题的关键.5.【答案】C【解析】解:抛物线向下平移5个单位长度,再向左平移2个单位长度,所得的抛物线为故选:根据图象的平移规律,可得答案.本题主要考查了二次函数与几何变换问题,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.6.【答案】A【解析】解:由题意得:故选:根据2020年的人均可支配收入年平均增长率年的人均可支配收入,列出一元二次方程即可.此题主要考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.【答案】C【解析】【分析】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.利用一元二次方程的定义和判别式的意义得到且,然后求出两个不等式的公共部分即可.【解答】解:根据题意得且,解得且故选8.【答案】A【解析】解:一次函数经过点,二次函数图象的对称轴是直线,一次函数经过二次函数对称轴与x轴的交点,故选:由二次函数的图象得到对称轴与x轴的交点,由一次函数的图象得到与x轴的交点,对比即可得到答案.本题考查二次函数和一次函数的图象,解题的关键是明确一次函数和二次函数性质.9.【答案】D【解析】解:抛物线上有两点,,且,,,或或,故选:根据二次函数的性质判断即可.本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.10.【答案】C【解析】【分析】①根据抛物线的开口方向与位置分别判断出a,b,c的正负,即可得结论;②根据抛物线的对称轴判断即可;③设抛物线的解析式为,可知当时,y的值最大,最大值为;④根据③中的最大值以及二次函数与方程的关系即可得出答案.本题考查二次函数的性质,二次函数与方程的关系,二次函数的最值等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【解答】解:抛物线开口向下,,抛物线交y轴于正半轴,,,,,故①错误;抛物线的对称轴是直线,,,故②正确;抛物线交x轴于点,由对称性可知抛物线与x轴的另一交点为,可设抛物线的解析式为,当时,y的值最大,最大值为,故③正确;关于x的方程无实数根,由③可知,函数最大值为,,解得,又,,故④正确.综上,正确的结论有②③④共3个.故选:11.【答案】【解析】解:,故答案为:直接利用配方法确定答案即可.本题考查了二次函数的解析式之一般式化为顶点式,利用配方法整理求解即可.解题的关键在于利用配方法先提出二次项的系数,凑成完全平方式.12.【答案】【解析】解:关于x的一元二次方程没有实数根,,即,解得:,故答案为:由方程根的情况,根据判别式可得到关于a的不等式,则可求得a的取值范围.本题主要考查根的判别式,掌握方程根的情况和根的判别式的关系是解题的关键.13.【答案】5【解析】解:设这次会议到会的人数是x人,根据题意得:,整理得:,解得:,不符合题意,舍去,这次会议到会的人数是5人.故答案为:设这次会议到会的人数是x人,利用握手总次数=参会人数参会人数,可得出关于x的一元二次方程,解之取其符合题意的值,即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】2019【解析】解:把代入方程得:,即,则原式故答案为:把代入方程求出的值,代入原式计算即可求出值.此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.【答案】【解析】解:,二次函数的顶点坐标为,且二次函数的图象开口向下,当时,,,当时,,解得或舍去,故答案为:根据二次函数的解析式求出顶点坐标,再根据二次函数的性质求出a的值即可.本题主要考查二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.16.【答案】解:,,,,;这里,,,,,则,【解析】利用平方根的定义开方转化为两个一元一次方程来求解;找出a,b及c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.此题考查了解一元二次方程-公式法,以及配方法,熟练掌握解法是解本题的关键.17.【答案】解:把,两点代入二次函数得,解得,;由得,把代入,得,点P在不在此函数图象上.【解析】已知了抛物线上两点的坐标,可将其代入抛物线中,通过联立方程组求得b、c的值;将P点坐标代入抛物线的解析式中,即可判断出P点是否在抛物线的图象上.本题考查了用待定系数法求函数表达式的方法,掌握待定系数法求函数解析式的方法与步骤是解决问题的关键.18.【答案】解:设这个最小数为x,则最大数为,依题意得:,整理得:,解得:,不合题意,舍去答:这个最小数为【解析】设这个最小数为x,则最大数为,根据最小数与最大数的乘积为65,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.【答案】解:根据题意得,整理得,解得;根据根与系数的关系得,,,解得,,,【解析】本题考查了一元二次方程根与系数的关系,根的判别式,解一元一次不等式,解一元二次方程等知识,熟练掌握相关知识是解题关键.根据判别式的意义得到,然后解不等式即可;根据根与系数的关系得到,再利用得到,然后解关于k的方程,最后利用k的范围确定k的值.20.【答案】1331【解析】解:设每轮传染中平均一个人传染x个人,由题意得:,解得:,,,不合题意,舍去,,答:每轮传染中平均一个人传染10个人.则第三轮的患病人数为:故答案为:设第一个人传染了x人,根据两轮传染后共有121人患了流感;列出方程,求解,然后求出三轮之后患流感的人数.本题考查了一元二次方程的应用,解答本题的关键在于读懂题意,设出合适的未知数,找出等量关系,列方程求解.21.【答案】解:由题意得,,,解得,或,的值为1或二次函数的对称轴为y轴,数图象的两点,,若满足,时,y随x的增大而减小,,,此时m的值是【解析】根据二次函数的定义列式计算,得到答案;根据二次函数的性质即可判断,从而得出此时m的值是本题考查了二次函数的定义,二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.22.【答案】解:如图:,矩形CDEF的面积是矩形BCFA面积的2倍,,,,依题意得:,解得:,不合题意,舍去,答:此时x的值为设矩形养殖场的总面积为S,由得:,墙的长度为10,,,,时,S随着x的增大而增大,当时,S有最大值,最大值为答:当时,矩形养殖场的总面积最大,最大值为【解析】根据题意知:较大矩形的宽为2xm,长为,可得,解方程取符合题意的解,即可得x的值为2;设矩形养殖场的总面积是,根据墙的长度为10,可得,而,由二次函数性质即得当时,矩形养殖场的总面积最大,最大值为本题考查了二次函数的应用,解题的关键是读懂题意,列出方程及函数关系式.23.【答案】解:设购进A款钥匙扣x件,B款钥匙扣y件,依题意得:,解得:答:购进A款钥匙扣20件,B款钥匙扣10件.设购进m件A款钥匙扣,则购进件B款钥匙扣,依题意得:,解得:设再次购进的A、B两款冰墩墩钥匙扣全部售出后获得的总利润为w元,则,随m的增大而增大,当时,w取得最大值,最大值,此时答:当购进40件A款钥匙扣,40件B款钥匙扣时,才能获得最大销售利润,最大销售利润是1080元.设B款钥匙扣的售价定为a元,则每件的销售利润为元,平均每天可售出件,依题意得:,整理得:,解得:,答:将销售价定为每件30元或34元时,才能使B 款钥匙扣平均每天销售利润为90元.【解析】设购进A 款钥匙扣x 件,B 款钥匙扣y 件,利用总价=单价数量,结合该网店第一次用850元购进A 、B 两款钥匙扣共30件,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;设购进m 件A 款钥匙扣,则购进件B 款钥匙扣,利用总价=单价数量,结合总价不超过2200元,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,设再次购进的A 、B 两款冰墩墩钥匙扣全部售出后获得的总利润为w 元,利用总利润=每件的销售利润销售数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质,即可解决最值问题;设B 款钥匙扣的售价定为a 元,则每件的销售利润为元,平均每天可售出件,利用平均每天销售B 款钥匙扣获得的总利润=每件的销售利润平均每天的销售量,即可得出关于a 的一元二次方程,解之即可得出结论.本题考查了二元一次方程组的应用、一元一次不等式的应用、一元二次方程的应用以及一次函数的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,找出w 关于m 的函数关系式;找准等量关系,正确列出一元二次方程.24.【答案】解:设直线l 的解析式为,直线l 与x 轴交于点,与y 轴交于点,,解得:,直线l 的解析式为;设抛物线的解析式为,抛物线的对称轴是直线,,抛物线经过点A ,B ,,解得:,抛物线的解析式为;,,,在中,,,轴,,,在中,,,,,在中,,,,,,设点,,,,当时,PD有最大值是,此时PM最大,,当时,,,的最大值是,此时点【解析】运用待定系数法即可求得答案;根据抛物线的对称轴是直线,可设,利用待定系数法即可求得答案;由,,可得,利用解直角三角形可得,设点,则,可得,利用二次函数的性质即可求得答案.本题是二次函数综合题,考查了待定系数法,二次函数的图象和性质,解直角三角形等,本题难度适中,熟练掌握待定系数法和二次函数的图象和性质是解题关键.。
江苏南通启秀中学2024年九年级上学期上学期数学月考试卷(原卷版)
江苏省南通市启秀中学2024~2025学年九年级第一学期数学月考试卷一.选择(共10小题,满分30分,每小题3分)1. 下列函数中,y 关于x 的二次函数是( )A. 2y ax bx c =++B. ()1y x x =−C. 21y x = D. ()221y x x =−− 2. 二次函数261y x x =−−的二次项系数、一次项系数和常数项分别是( )A. 1,6−,1−B. 1,6,1C. 0,6−,1D. 0,6,1− 3. 抛物线23(1)2y x =−−的顶点坐标是( )A. (1,2)−B. (1,2)−C. (1,2)D. (1,2)−− 4. 已知某二次函数图象如图所示,则这个二次函数的解析式为( )A. y =﹣3(x ﹣1)2+3B. y =3x ﹣1)2+3C. y =﹣3(x +1)2+3D. y =3(x +1)2+3 5. 把抛物线y =﹣2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为( )A. y =﹣2(x +1)2+2B. y =﹣2(x +1)2﹣2C. y =﹣2(x ﹣1)2+2D. y =﹣2(x ﹣1)2﹣26. 抛物线y=x 2﹣2x ﹣3与x 轴的交点个数是( )A. 0个B. 1个C. 2个D. 3个 7. 若二次函数 23y x bx =−−配方后为 ()21y x k =++,则b 、k 的值分别为( )A 2−,4−B. 2−,5C. 4,4−D. 4−,2− 8. 已知抛物线()2230y ax ax a =−+>,()11,A y −,()22,B y ,()34,C y 是抛物线上三点,则1y ,2y ,3y 由小到大序排列是( )的.A. 123y y y <<B. 213y y y <<C. 312y y y <<D. 231y y y << 9. 如图,在等边三角形ABC 中,BC =4,在Rt △DEF 中,∠EDF =90°,∠F =30°,DE =4,点B ,C ,D ,E 在一条直线上,点C ,D 重合,△ABC 沿射线DE 方向运动,当点B 与点E 重合时停止运动.设△ABC 运动的路程为x ,△ABC 与Rt △DEF 重叠部分的面积为S ,则能反映S 与x 之间函数关系的图象是( )A B.C. D.10. 抛物线y =−x 2+bx +3的对称轴为直线x =−1.若关于x 的一元二次方程−x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( )A. −12<t ≤3B. −12<t <4C. −12<t ≤4D. −12<t <3二.填空题(11~12每题3分)(共8小题,满分30分)11. 如图所示,在同一平面直角坐标系中,作出①y=﹣3x 2,②y=﹣212x ,③y=﹣x 2的图象,则从里到外的三条抛物线对应的函数依次是______(填序号).12. 如图,抛物线2y ax bx =+与直线y mx n =+相交于点(3,6)A −−,(1,2)B −,则关于x 的方程2ax bx mx n +=+的解为_______________ .13. 如图,抛物线()20y ax bx c a ++>的对称轴是直线1x =,且经过点()3,0P ,则a b c −+的值为_____.14. 如图是一座截面为抛物线的拱形桥,当拱顶离水面3米高时,水面宽l 为6米,则当水面下降______米时,水面宽度为15. 已知二次函数()2131y m x x =−+−与x 轴有交点,则m 的取值范围是________. 16. 已知二次函数()21y x m =−−,当3x ≤时,y 随x 的增大而减小,则m 的取值范围是___________________. 17. 如图,在平面直角坐标系中,抛物线()240y ax ax a =−>与x 轴正半轴交于点C ,这条抛物线对称轴与x 轴交于点D ,以CD 为边作菱形ABCD ,若菱形ABCD 的顶点A ,B 在这条抛物线上,则菱形ABCD 的面积为___________.的18. 已知实数a ,b 满足1b a −=且4b ≥,则代数式2411a b −+的最小值是______.三.解答题(共9小题,满分90分,每小题10分)19. 已知函数 ()221m m ym x +=+是关于x 的二次函数. 求:(1)满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点,这时当x 为何值时,y 随x 的增大而增大? 20. 二次函数图象上部分点的横坐标x ,纵坐标y 的对应值如下表: x… 4− 3− 2− 1− 0 1 2 … y… 5 0 3− 4− 3− 05 …(1)求这个二次函数的表达式;(2)在图中画出这个二次函数的图象;(3)当30x −<<时,直接写出y 的取值范围.21. 如图,学校打算用长为16m 的篱笆围成一个长方形的生物园饲养小兔,生物园一面靠墙(篱笆只需围三面,AB 为宽).(1)写出长方形的面积y (单位: 2m )与宽x (单位:m )之间的函数解析式;(2)当x 为何值时,长方形的面积最大?最大面积为多少?22. 已知二次函数y=a (x+m )2的顶点坐标为(﹣1,0),且过点A (﹣2,﹣12). (1)求这个二次函数的解析式;(2)点B (2,﹣2)在这个函数图象上吗?(3)你能通过左,右平移函数图象,使它过点B 吗?若能,请写出平移方案.23. 某商店销售某种商品的进价为每件20元,这种商品在近30天中的日销售价与日销量的相关信息如表: 时间:第x (天)(1≤x ≤30,x 为整数)122x ≤≤2330x ≤≤ 日销售价(元/件)0.525x + 36 日销售量(件)1202x −设该商品的日销售利润为w 元.(1)求出w 与x 的函数关系式; (2)该商品在第几天的日销售利润最大?最大日销售利润是多少?24. 已知二次函数2112y x bx =++. (1)若1b =−,求该二次函数图象的对称轴及最小值;(2)若对于任意02x ≤≤,都有1y ≥−,求b 的取值范围.25. 如图,抛物线212y x mx n =−++与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知()1,0A −,()0,2C .的(1)求抛物线的解析式;(2)点E 是线段BC 上的一个动点(不与B ,C 重合),过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时点E 的坐标. 26. 如图1,抛物线2y x bx =−+与x 轴交于点A ,与直线y x =−交于点(4,4)B −,点(0,4)C −在y 轴上.点P 从点B 出发,沿线段BO 方向匀速运动,运动到点O 时停止.(1)求抛物线2y x bx =−+的表达式;(2)当BP =时,请在图1中过点P 作PD OA ⊥交抛物线于点D ,连接PC ,OD ,判断四边形OCPD 的形状,并说明理由;(3)如图2,点P 从点B 开始运动时,点Q 从点O 同时出发,以与点P 相同的速度沿x 轴正方向匀速运动,点P 停止运动时点Q 也停止运动.连接BQ ,PC ,求CP BQ +的最小值.。
山西省大同市大同一中南校2024-2025学年上学期第一次月考九年级数学试卷
山西省大同市大同一中南校2024-2025学年上学期第一次月考九年级数学试卷一、单选题1.方程()()3240x x −−=的根是( ) A .13x =−,22x =− B .13x =,22x = C .13x =,22x =−D .13x =−,22x =2.抛物线2(3)5y x =−+的开口方向、顶点坐标分别是( ) A .开口向上;()3,5− B .开口向下;()3,5−− C .开口向上;()3,5D .开口向下;()3,5−3.解方程()()2513510x x x −−−=最适当的方法是( ) A .直接开平方法 B .配方法C .公式法D .因式分解法4.拋物线243y x x =−++的对称轴是( ) A .x =2B .2x =−C .4x =D .4x =−5.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.我校为响应全民阅读活动,打造书香校园,在校园里建立了图书角。
据统计,八(10)班第一周阅读128人次,阅读人次每周增加,到第三周累计阅读608人次,若阅读人次的周平均增长率为x 可得方程( ) A .128(1+x)=608B .128(1+x )2=608C .128(1+x)+128(1+x)2=608D .128+128(1+x)+128(1+x)2=6086.关于x 的一元二次方程22210x ax a ++−=的根的情况是( ) A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .实数根的个数与实数a 的取值有关7.下表给出了二次函数()20y ax bx c a =++≠的自变量x 与函数值y 的部分对应值,则方程20ax bx c ++=的一个根的近似值可能是( )A .1.09B .1.19C .1.29D .1.398.若点()14A y −,,()21B y −,,3(1)C y ,在抛物线21(2)12y x =−+−上,则( ) A .132<y y y <B .213<<y y yC .321<y y y <D .312y y y <<9.二次函数y =ax 2+bx +c 的自变量x 与函数y 的对应值如下表:下列说法正确的是( ) A .抛物线的开口向下 B .当x >-3时,y 随x 的增大而增大C .二次函数的最小值是-2D .抛物线的对称轴是直线x =-5210.如图,抛物线()210:+=+L y ax bx c a ≠与x 轴只有一个公共点A (1,0),与y 轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为( )A .1B .2C .3D .4二、填空题11.方程32=2x x x ++()()的解为 .12.二次函数2=23y x x −−的顶点坐标是 ,与y 轴的交点坐标是 .13.汽车刹车后行驶的距离y (单位:m )关于行驶的时间x (单位:s )的函数解析式是:2156s x x =−,汽车刹车后前进了 米才能停下来.14.三角形的两边长分别是3和4,第三边长是方程x 2﹣13x+40=0的根,则该三角形的周长为 .15.如图,抛物线2824277y x x =−++与x 轴交于A 、B 两点,与y 轴交于C 点,P 为抛物线对称轴上动点,则PA PC +取最小值时,点P 坐标是 .三、解答题 16.解下列方程: (1)22480x x +−=; (2)262−+=−x ; (3)22530x x +−=17.已知关于x 的一元二次方程22240x mx m ++−=. (1)求证:无论m 为何值,该方程总有两个不相等的实数根. (2)若该方程的两个根为p 和q ,且满足0pq p q −−=,求m 的值.18.如图,直线12y x =−−交x 轴于点A ,交y 轴于点B ,抛物线22y ax bx c =++顶点为A ,且经过点B .(1)求该抛物线的解析式; (2)求当12y y ≥时,x 的取值范围.19.平安路上,多“盔”有你,在“交通安全宣传月”期间,某商店销售一批头盔,进价为每顶40元,售价为每顶68元,平均每周可售出100顶.商店计划将头盔降价销售,每顶售价不高于58元,经调查发现:每降价2元,平均每周可多售出40顶.设每顶头盔降价x 元,平均每周的销售量为y 顶.(1)每顶头盔降价x 元后,每顶头盔的利润是 元(用含x 的代数式表示); (2)平均每周的销售量y (顶)与降价x (元)之间的函数关系式是 ; (3)若该商店希望平均每周获得4000元的销售利润,则每顶头盔应降价多少?20.如图,利用一面墙(墙的长度不超过45m ),用79m 长的篱笆围成一个矩形场地,并且与墙平行的边留有1m 宽建造一扇门方便出入(用其他材料),设m AB x =,矩形ABCD 的面积为2m y .(1)请求出y 与x 之间的函数关系式,并写出x 的取值范围; (2)怎样围才能使矩形场地的面积为2750m ?(3)当x 为何值时,矩形场地的面积最大?最大值为多少平方米? 21.阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务:用函数观点认识一元二次方程根的情况,我们知道,一元二次方程()200ax bx c a ++=≠的根就是相应的二次函数()20y ax bx c a =++≠的图象与x 轴交点的横坐标.抛物线与x 轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x 轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标24,24b ac b aa ⎛⎫−− ⎪⎝⎭和一元二次方程根的判别式24Δb ac =−分别分0a >和0a <两种情况进行分析:(i )0a >时,拋物线开口向上:①当2Δ40b ac =−>时,有240ac b −<.0a >,∴顶点纵坐标2404ac b a−<.∴顶点在x 轴的下方,犹物线与x 轴有两个交点(如图①).∴—元二次方程()200ax bx c a ++=≠有两个不相等的实数根.②当2Δ40b ac =−=时,有240.−=ac b 0a >,∴顶点纵坐标2404ac b a−=.∴顶点在x 轴上,抛物线与x 轴有一个交点(如图②).∴—元二次方程()200ax bx c a ++=≠有两个相等的实数根.③当2Δ40b ac =−<时,L (ii )0a <时,抛物线开口向下:… 任务:(1)请参照小论文中当0a >时①②的分析过程,写出(ii )中当0a <,Δ0>时,一元二次方程根的情况的分析过程,并画出相应的示意图;(2)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识,例如:可用函数观点来认识一元一次方程的解,请你再举出一例22.如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12m ,宽是4m .按照图中所示的直角坐标系,抛物线可以用y =16−x 2+bx +c 表示,且抛物线上的点C 到OB 的水平距离为3m ,到地面OA 的距离为172m .(1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?23.如图,已知二次函数23y ax bx =++的图象交x 轴于点()1,0A ,()3,0B ,交y 轴于点C .(1)求这个二次函数的解析式:(2)点P 是直线BC 下方抛物线上的一动点,求BCP 面积的最大值,并求出此时点P 的坐标.。
吉林省吉林九中2023-2024学年九年级(上)9月月考数学试卷(含解析)
2023-2024学年吉林省吉林九中九年级(上)月考数学试卷(9月份)一、单项选择题(每小题2分,共12分)1.(2分)下列方程中属于一元二次方程的是( )A.y=x2B.C.x+2=x2D.ax2+bx+c=02.(2分)抛物线y=﹣(x+1)2﹣2的对称轴是( )A.直线x=1B.直线x=﹣1C.直线x=2D.直线x=﹣2 3.(2分)一元二次方程x2﹣5x+2=0根的判别式的值是( )A.33B.23C.17D.4.(2分)用配方法解方程x2﹣8x+9=0,变形后的结果正确的是( )A.(x﹣4)2=7B.(x﹣4)2=﹣7C.(x﹣4)2=25D.(x﹣4)2=﹣255.(2分)已知,二次函数y=ax2+bx+c的图象如图所示,则点P(a,b)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是( )A.(m,n+1)B.(m+1,n)C.(m,n﹣1)D.(m﹣1,n)二、填空题(每小题3分,共24分)7.(3分)一元二次方程x2+4x﹣3=0的一次项系数、二次项系数、常数项的和是 .8.(3分)一元二次方程x2﹣x=0的解是 .9.(3分)二次函数y=(k+1)x2的图象如图所示,则k的取值范围为 .10.(3分)抛物线在y轴的右侧呈 趋势(填“上升”或者“下降”).11.(3分)已知点A(x1,y1),B(x2,y2)在抛物线y=x2﹣3上,且0<x1<x2,则y1 y2.(填“<”或“>”或“=”)12.(3分)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为,则两个水柱的最高点M,N之间的距离为 m.13.(3分)如图,在平面直角坐标系中,点A是抛物线y=a(x+)2+7与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的正方形ABCD的周长为 .14.(3分)如图,有一张长方形桌子的桌面长130cm,宽60cm.有一块长方形台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相等.若设台布垂下的长度为xcm,则可列出x满足的方程为 .(不必化简)三、解答题(每小题5分,共20分)15.(5分)解方程:2(x﹣1)2=8.16.(5分)解方程:x2+x﹣1=0.17.(5分)解方程:2x(x﹣2)﹣3(x﹣2)=0.18.(5分)已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).(1)求a的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.四、解答题(每小题7分,共28分)19.(7分)(1)计算:sin45°+tan45°﹣2cos60°.(2)下面是小明同学解方程的过程,请认真阅读并完成相应的任务.解:x2﹣2x=1 第一步x2﹣2x+1=1,即(x﹣1)2=1 第二步x﹣1=±1 第三步x1=0,x2=2 第四步任务一:填空:上述材料中小明同学解一元二次方程的数学方法是 ,依据的一个数学公式是 ;第 步开始出现错误;任务二:请你直接写出该方程的正确解.20.(7分)设一元二次方程x2+bx+c=0.在下面的四组条件中选择其中一组b,c的值,使这个方程有两个不相等的实数根,并解这个方程.①b=2,c=1;②b=3,c=1;③b=3,c=﹣1;④b=2,c=2.注:如果选择多组条件分别作答,按第一个解答计分.21.(7分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.22.(7分)已知二次函数y=2x2﹣4x﹣6.(1)用配方法将y=2x2﹣4x﹣6化成y=a(x﹣h)2+k的形式;并写出对称轴和顶点坐标;(2)在平面直角坐标系中,画出这个二次函数的草图.五、解答题(每小题8分,共16分)23.(8分)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.24.(8分)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.(1)求这两个月中该景区游客人数的月平均增长率;(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?六、解答题(每小题10分,共20分)25.(10分)为美化市容,某广场要在人行雨道上用10×20的灰、白两色的广场砖铺设图案,设计人员画出的一些备选图案如图所示.[观察思考]图1灰砖有1块,白砖有8块;图2灰砖有4块,白砖有12块;以此类推.[规律总结](1)图4灰砖有 块,白砖有 块;图n灰砖有 块时,白砖有 块;[问题解决](2)是否存在白砖数恰好比灰砖数少1的情形,请通过计算说明你的理由.26.(10分)如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿AB向点B以1cm/s的速度移动,同时点Q从点B沿BC边向点C以2cm/s的速度移动.当其中一点达到终点时,另一点也随之停止.设P,Q两点移动的时间为x s,求:(1)当x为何值时,△PBQ为等腰三角形;(2)当x为何值时,△PBQ的面积为5cm2;(3)当x为何值时,△PDQ为等腰三角形.2023-2024学年吉林省吉林九中九年级(上)月考数学试卷(9月份)参考答案与试题解析一、单项选择题(每小题2分,共12分)1.(2分)下列方程中属于一元二次方程的是( )A.y=x2B.C.x+2=x2D.ax2+bx+c=0【解答】解:A.方程y=x2是二元二次方程,选项A不符合题意;B.方程x2﹣﹣1=0是分式方程,选项B不符合题意;C.方程x+2=x2是一元二次方程,选项C符合题意;D.当a=0时,方程ax2+bx+c=0是一元一次方程,选项D不符合题意.故选:C.2.(2分)抛物线y=﹣(x+1)2﹣2的对称轴是( )A.直线x=1B.直线x=﹣1C.直线x=2D.直线x=﹣2【解答】解:∵y=﹣(x+1)2﹣2,∴函数的对称轴为直线x=﹣1,故选:B.3.(2分)一元二次方程x2﹣5x+2=0根的判别式的值是( )A.33B.23C.17D.【解答】解:x2﹣5x+2=0,∵a=1,b=﹣5,c=2,∴Δ=b2﹣4ac=(﹣5)2﹣4×1×2=25﹣8=17.故选:C.4.(2分)用配方法解方程x2﹣8x+9=0,变形后的结果正确的是( )A.(x﹣4)2=7B.(x﹣4)2=﹣7C.(x﹣4)2=25D.(x﹣4)2=﹣25【解答】解:方程移项得:x2﹣8x=﹣9,配方得:x2﹣8x+16=7,即(x﹣4)2=7,故选:A.5.(2分)已知,二次函数y=ax2+bx+c的图象如图所示,则点P(a,b)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由二次函数的图象的开口方向向上,对称轴在y轴的右侧,∴a>0,x=﹣>0,∴b<0,∴P(a,b)在第四象限.故选:D.6.(2分)若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是( )A.(m,n+1)B.(m+1,n)C.(m,n﹣1)D.(m﹣1,n)【解答】解:∵点P(m,n)在抛物线y=ax2(a≠0)上,∴n=am2,把x=m代入y=a(x+1)2得a(m+1)2≠n+1,故点(m,n+1)不在抛物线y=a (x+1)2上,故A不合题意;把x=m+1代入y=a(x+1)2得a(m+2)2≠n,故点(m+1,n)不在抛物线y=a (x+1)2上,故B不合题意;把x=m代入y=a(x+1)2得a(m+1)2≠n﹣1,故点(m,n﹣1)不在抛物线y=a (x+1)2上,故C不合题意;把x=m﹣1代入y=a(x+1)2得a(m﹣1+1)2=am2=n,故点(m﹣1,n)在抛物线y =a(x+1)2上,D符合题意;故选:D.二、填空题(每小题3分,共24分)7.(3分)一元二次方程x2+4x﹣3=0的一次项系数、二次项系数、常数项的和是 2 .【解答】解:一元二次方程x2+4x﹣3=0的一次项系数、二次项系数、常数项分别为:1、4、﹣3,故其和为:1+4﹣3=2.故答案为:2.8.(3分)一元二次方程x2﹣x=0的解是 x1=0,x2=1 .【解答】解:x2﹣x=0,x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1,故答案为:x1=0,x2=1.9.(3分)二次函数y=(k+1)x2的图象如图所示,则k的取值范围为 k>﹣1 .【解答】解:如图,抛物线的开口方向向上,则k+1>0,解得k>﹣1.故答案为:k>﹣1.10.(3分)抛物线在y轴的右侧呈 下降 趋势(填“上升”或者“下降”).【解答】解:∵中的a=﹣<0,b=0,∴抛物线开口向下,对称轴为y轴,∴y轴右侧部分下降,故答案为:下降.11.(3分)已知点A(x1,y1),B(x2,y2)在抛物线y=x2﹣3上,且0<x1<x2,则y1 < y2.(填“<”或“>”或“=”)【解答】解:由题意得抛物线y=x2﹣3的对称轴x=0,又a=1>0,∴抛物线y=x2﹣3开口向上.∴当x>0时y随x的增大而增大.∴对于A、B当0<x1<x2时,y1<y2.故答案为:<.12.(3分)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A 在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为,则两个水柱的最高点M,N之间的距离为 10 m.【解答】解:由二次函数y=﹣(x﹣5)2+6的图象可知,当x=5时,y=6,故N点的坐标为(5,6);∵从A点向四周喷水,喷出的水柱为抛物线,且形状相同,∴M点的坐标为(﹣5,6),∴MN之间的距离为5+5=10(m).故答案为:10.13.(3分)如图,在平面直角坐标系中,点A是抛物线y=a(x+)2+7与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的正方形ABCD的周长为 12 .【解答】解:∵点A是抛物线y=a(x+)2+7与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,∴A、B关于对称轴x=﹣对称,∴+=3,∴B点的横坐标是﹣3,即正方形ABCD的边长是3,所以正方形ABCD的周长是3+3+3+3=12,故答案为:12.14.(3分)如图,有一张长方形桌子的桌面长130cm,宽60cm.有一块长方形台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相等.若设台布垂下的长度为x cm,则可列出x满足的方程为 (130+2x)(60+2x)=2×130×60 .(不必化简)【解答】解:设各边垂下的长度为x cm,则台布的长为(130+2x)cm,宽为(60+2x)cm,依题意,得:(130+2x)(60+2x)=2×130×60,故答案为:(130+2x)(60+2x)=2×130×60.三、解答题(每小题5分,共20分)15.(5分)解方程:2(x﹣1)2=8.【解答】解:∵2(x﹣1)2=8,∴(x﹣1)2=4,∴x﹣1=2或x﹣1=﹣2,∴x=3或x=﹣1.16.(5分)解方程:x2+x﹣1=0.【解答】解:a=1,b=1,c=﹣1,b2﹣4ac=1+4=5>0,x=;∴x1=,x2=.17.(5分)解方程:2x(x﹣2)﹣3(x﹣2)=0.【解答】解:∵2x(x﹣2)﹣3(x﹣2)=0,∴(x﹣2)(2x﹣3)=0,则x﹣2=0或2x﹣3=0,所以x1=2,.18.(5分)已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).(1)求a的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.【解答】解:(1)∵抛物线y=a(x﹣3)2+2经过点(1,﹣2),∴﹣2=a(1﹣3)2+2,解得a=﹣1;(2)∵函数y=﹣(x﹣3)2+2的对称轴为x=3,∴A(m,y1)、B(n,y2)(m<n<3)在对称轴左侧,又∵抛物线开口向下,∴对称轴左侧y随x的增大而增大,∵m<n<3,∴y1<y2.四、解答题(每小题7分,共28分)19.(7分)(1)计算:sin45°+tan45°﹣2cos60°.(2)下面是小明同学解方程的过程,请认真阅读并完成相应的任务.解:x2﹣2x=1 第一步x2﹣2x+1=1,即(x﹣1)2=1 第二步x﹣1=±1 第三步x1=0,x2=2 第四步任务一:填空:上述材料中小明同学解一元二次方程的数学方法是 配方法 ,依据的一个数学公式是 完全平方公式 ;第 二 步开始出现错误;任务二:请你直接写出该方程的正确解.【解答】解:(1)原式=+1﹣2×=+1﹣1=;(2)任务一:上述材料中小明同学解一元二次方程的数学方法是配方法,依据的一个数学公式是完全平方公式;第二步开始出现错误;任务二:正确的解法为:x2﹣2x=1,x2﹣2x+1=2,即(x﹣1)2=2,x﹣1=±所以x1=1+,x2=1﹣.故答案为:配方法,完全平方公式,二,x1=1+,x2=1﹣.20.(7分)设一元二次方程x2+bx+c=0.在下面的四组条件中选择其中一组b,c的值,使这个方程有两个不相等的实数根,并解这个方程.①b=2,c=1;②b=3,c=1;③b=3,c=﹣1;④b=2,c=2.注:如果选择多组条件分别作答,按第一个解答计分.【解答】解:∵使这个方程有两个不相等的实数根,∴b2﹣4ac>0,即b2>4c,∴②③均可,选②解方程,则这个方程为:x2+3x+1=0,∴x==,∴x1=,x2=;选③解方程,则这个方程为:x2+3x﹣1=0,∴x1=,x2=.21.(7分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴原方程可化为x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.22.(7分)已知二次函数y=2x2﹣4x﹣6.(1)用配方法将y=2x2﹣4x﹣6化成y=a(x﹣h)2+k的形式;并写出对称轴和顶点坐标;(2)在平面直角坐标系中,画出这个二次函数的草图.【解答】解:(1)由题知,y=2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x2﹣2x+1)﹣2﹣6=2(x﹣1)2﹣8,根据函数表达式可知,对称轴为直线x=1,顶点坐标是(1,﹣8).(2)二次函数y=2x2﹣4x﹣6的图象如图所示,五、解答题(每小题8分,共16分)23.(8分)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.【解答】解:(1)设矩形ABCD的边AB=xm,则边BC=70﹣2x+2=(72﹣2x)m.根据题意,得x(72﹣2x)=640,化简,得x2﹣36x+320=0,解得x1=16,x2=20,当x=16时,72﹣2x=72﹣32=40(m),当x=20时,72﹣2x=72﹣40=32(m).答:当羊圈的长为40m,宽为16m或长为32m,宽为20m时,能围成一个面积为640m2的羊圈;(2)答:不能,理由:由题意,得x(72﹣2x)=650,化简,得x2﹣36x+325=0,Δ=(﹣36)2﹣4×325=﹣4<0,∴一元二次方程没有实数根.∴羊圈的面积不能达到650m2.24.(8分)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.(1)求这两个月中该景区游客人数的月平均增长率;(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?【解答】解:(1)设这两个月中该景区游客人数的月平均增长率为x,由题意可得:1.6(1+x)2=2.5,解得:x=25%,x=﹣(不合题意舍去),答:这两个月中该景区游客人数的月平均增长率为25%;(2)设5月份后10天日均接待游客人数是a万人,由题意可得:2.125+10a≤2.5(1+25%),解得:a≤0.1,答:5月份后10天日均接待游客人数最多是0.1万人.六、解答题(每小题10分,共20分)25.(10分)为美化市容,某广场要在人行雨道上用10×20的灰、白两色的广场砖铺设图案,设计人员画出的一些备选图案如图所示.[观察思考]图1灰砖有1块,白砖有8块;图2灰砖有4块,白砖有12块;以此类推.[规律总结](1)图4灰砖有 16 块,白砖有 20 块;图n灰砖有 n2 块时,白砖有 (4n+4) 块;[问题解决](2)是否存在白砖数恰好比灰砖数少1的情形,请通过计算说明你的理由.【解答】解:(1)根据图形分别得出各个图形中白色瓷砖的个数分别为8、12、16、20…,即:12﹣8=4、16﹣12=4、20﹣16=4,由此可得出规律:每一个图案均比前一个图案多4块白色瓷砖,所以第n个图案中,白色瓷砖的个数为8+4(n﹣1)=4n+4,灰色瓷砖的块数等于n2;∴图4中灰砖有16快,白砖有4×(4+1)=20,故答案为:16;20;n2;(4n+4);(2)存在,理由如下:根据题意得:n2﹣(4n+4)=1,解得:n=﹣1(舍去)或n=5.26.(10分)如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿AB向点B以1cm/s的速度移动,同时点Q从点B沿BC边向点C以2cm/s的速度移动.当其中一点达到终点时,另一点也随之停止.设P,Q两点移动的时间为x s,求:(1)当x为何值时,△PBQ为等腰三角形;(2)当x为何值时,△PBQ的面积为5cm2;(3)当x为何值时,△PDQ为等腰三角形.【解答】解:(1)∵四边形ABCD是矩形,∴CD=AB=6cm,AD=BC=12cm,∠A=∠B=∠C=90°,根据题意得:AP=x cm,BQ=2x cm∴BP=(6﹣x)cm,CQ=(12﹣2x)cm,当△PBQ为等腰三角形时,BP=BQ,∴6﹣x=2x,解得:x=2,即当x=2时,△PBQ是等腰三角形;(2)由题意得:(6﹣x)•2x=5,整理得:x2﹣6x+5=0,解得:x1=1,x2=5,答:当x为1或5时,△PBQ的面积为5cm2;(3)根据题意,分两种情况:①当DP=DQ时,如图1所示:在Rt△APD和Rt△CDQ中,由勾股定理得:DP2=x2+122,DQ2=62+(12﹣2x)2,∴x2+122=62+(12﹣2x)2,解得:x=8﹣2或x=8+2(不合题意舍去),∴x=8﹣2;②当QP=DQ时,如图2所示:在Rt△BPQ和Rt△CDQ中,PQ2=(6﹣x)2+(2x)2,DQ2=62+(12﹣2x)2,∴(6﹣x)2+(2x)2=62+(12﹣2x)2,解得:x=6﹣18或x=﹣6﹣18(不合题意舍去),∴x=6﹣18.综上所述,当x为(8﹣2)或(6﹣18)时,△PDQ是等腰三角形.。
山西省太原市2023-2024学年九年级上学期月考数学试题(含解析)
2023-2024学年第一学期九年级教学质量检测考试(10月月考)数学(北师)注意事项:1.本试卷考查范围:第1、2章完。
本试卷共8页,满分120分,考试时间为120分钟。
2.本试卷采用网阅形式阅卷,请将答题信息与答题过程在配套的答题卡上完成。
试卷上答题无效。
3.答卷前,考生务必将自己的姓名、准考证号等相关信息填写在本试卷配套答题卡的相应的位置里.4.考试结束后,将本试卷和答题卡一并交回.第I 卷 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分。
在每小题的四个选项中,只有一项最符合题意,请选出并在答题卡上将该项涂黑。
)1.下列方程中,属于一元二次方程的是( )A .B .C .D .2.一元二次方程配方后可变形为( )A .B .C .D .3.方程的解是( )A .B .C .D .4.用求根公式解一元二次方程时a ,b ,c 的值是( )A .B .C .D .5.如图,在中,,D 是AB 的中点,,则CD 的长为()A .4B .5C .6D .86.如图,两张等宽的纸条交叉叠放在一起,重合部分构成四边形ABCD .测得A 、B 的距离为6,A 、C 的距离为4,则B 、D 的距离是()21x y -=223x x+=2240x y -+=2210x x -+=2810x x --=2(4)17x +=2(4)15x +=2(4)17x -=2(4)15x -=25x x =5x =0x =125;0x x =-=125;0x x ==2324x x -=3,2,4a b c ==-=3,4,2a b c ==-=3,4,2a b c ==-=-3,4,2a b c ===-Rt ABC △90ACB ∠=︒8AB =A .B .8C .D .7.电影《满江红》于2023年1月22日在中国大陆上映,某地第一天票房约2亿元,以后每天票房按相同的增长率增长,三天后票房收入累计达7亿元,若把增长率记作x ,则方程可以列为()A .B .C .D .8.若关于x 的一元二次方程有实数根,则k 的取值范围是( )A .B .C .且D .且9.如图,中,,点D 是AB 边上的动点,过点D 作边AC ,BC 的垂线,垂足分别为E 、F 连接EF ,则EF 的最小值为()A .3B .2.4C .4D .2.510.如图、正方形ABCD 的边长为4,G 是对角线BD 上一动点,于点E ,于点F ,连接EF ,给出四种情况:①若G 为BD 的中点,则四边形CEGF 是正方形;②若G 为BD 上任意一点,则;2(1)7x +=22(1)7x +=222(1)7x ++=222(1)2(1)7x x ++++=2690kx x -+=1k <1k ≤1k <0k≠1k ≤0k ≠Rt ABC △9034ACB AC BC ∠=︒==,,GE CD ⊥GF BC ⊥AG EF =③点G 在运动过程中,的值为定值4;④点G 在运动过程中,线段EF 的最小值为正确的有( )A ①②③④B .①②③C .①②④D .①③④第Ⅱ卷 非选择题(共90分)二、填空题(本题共5个小题,每小题3分,共15分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第2题图)
九年级数学月考试题 一.选择题(36分) 1.如果y=(m-2)x
2m m
-是关于x 的二次函数,则m=( )
A .-1
B .2
C .-1或2
D .m 不存在
2.已知一次函数y=ax+c 与二次函数y=ax 2+bx+c ,它们在同一坐标系内的大致图象是( )
3.下列图形一定相似的是--------------------------------------------------------------------------( ) (A )有一个锐角相等的两个直角三角形 (B )有一个角相等的两个等腰三角形 (C )有两边成比例的两个直角三角形 (D )有两边成比例的两个等腰三角形
4.如图,在⊿ABC 中,DF ∥EG ∥BC ,且AD =DE =EB ,则DF ,EG 分⊿ABC 成三部份的面积比为------------------------------------( )
(A )1∶1∶1 (B )1∶2∶3 (C )1∶4∶9 (D )1∶3∶5
5.如图,点C 是线段AB 的黄金分割点,且AC >CB , 则下列说法正确的是…( )
A .=2
AC AB ·BC ; B .=2
BC AB ·AC ;
C .AB :BC = BC :AC ;
D . AC :BC = AB :BC .
6.如果抛物线y=x 2
-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于( ) (A )8 (B )14 (C )8或14 (D )-8或-14
7.二次函数y=x 2
-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取( )
(A )12 (B )11 (C )10 (D )9
8.若0<b ,则二次函数12
-+=bx x y 的图象的顶点在 ( ) (A )第一象限(B )第二象限 (C )第三象限(D )第四象限
9.不论x 为何值,函数y=ax 2
+bx+c(a ≠0)的值恒大于0的条件是( )
A.a>0,△>0
B.a>0, △<0
C.a<0, △<0
D.a<0, △<0
10.若),4
1(),,45(),,413(321y C y B y A --为二次函数245y x x =+-的图象上的三点,则1y ,2y ,3
y 的大小关系是( )
A .
123y y y << B .
213y y y << C .312y y y
<< D .1
32y y y
<< 11、如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( ) A.5:3 B.3:5 C.4:3 D.3:4
12、在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( ) A 、b a c =+ B 、b ac =
C 、2
2
2
b a
c =+ D 、22b a c == 二、填空题 (15分)
13.已知二次函数)1(3)1(2-++-=a a x x a y 的图象过原点则a 的值为
14.二次函数432--=x x y 关于Y 轴的对称图象的解析式为 关于X 轴的对称图象的解析式为 关于顶点旋转180度的图象的解析式为 15、已知二次函数1)1(2-+-+=m x m mx y 有最小值为0,则m =
16.两个相似三角形的相似比为3∶2,如果它们的面积之差为10,那么这两个相似三角形的面积分
别是 .
17、△ABC 中,AB =8,AC =6,点D 在AC 上且AD =2,如果要在AB 上找一点E ,使△ADE 与原三角形
相似,那么AE = 。
三、解答题(69分)
18、已知抛物线y=ax 2
+bx+c (a ≠0)与x 轴的两交点的横坐标分别是-1和3,与y 轴交点
的纵坐标是-
3
2
; (1)确定抛物线的解析式;
(2)用配方法确定抛物线的开口方向,对称轴和顶点坐标。
(8分)
C
A
B
C
19、如图,□ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点
F ,
CD DE 2
1
=。
⑴求证:△ABF ∽△CEB;
⑵若△DEF 的面积为2,求□ABCD 的面积。
(9分)
20、有两个可以自由转动的均匀转盘A ,B 。
转盘A 被平均分成4等份,分别标上2-,2,6,8四个数字;转盘B 被平均分成3等份,分别标上1-,2-,3三个数字。
自由转动转盘A 与B ,转盘停止后,指针各指向一个数字,把A 转盘指针指向的数字作为被除数,B 转盘指针指向的数字作为除数,计算这两个数的商。
(1)请你用画树状图或列别的方法,求这两数的商为分数的概率;
(2)小贝和小晶想用以上两个转盘做游戏,规则是:若这两数的商为负整数,则小贝赢;若这两个数的商为正数,则小晶赢,你认为该游戏公平吗?请说明理由,如果不公平,请你修改游戏规则,使游戏公平。
(10分)
21.如图,已知半径为1的○O 1与x 轴交于A B ,两点,OM 为○O 1的切线,切点为M ,圆心1O 的
坐标为(20),,二次函数2y x bx c =-++的图象经过A B ,两点.
(1)求二次函数的解析式;
(2)求切线OM 的函数解析式;
(3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(10分)
22、如图,在等边三角形ABC 中,AB=2,点D 、E 分别在线段BC 、AC 上(点D 与点B 、C 不重合),
且∠ADE=600
. 设BD=x,CE=y. (1)求y 与x 的函数表达式;
(2)当x 为何值时,y 有最大值,最大值是多少?(10分)
C
E
D
B
A
第19题图
F
A
D
E
B
C
23 、红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天
未来40天内,前20天每天的价格y 1
(元/件)与时间t (天)的函数关系式为25t 41
y 1+=(20t 1≤≤且t 为整数),后20天每天的价格y 2
(元/件)与时间t (天)的函数关系式为40t 2
1
y 2+-=(40t 21≤≤且t 为整数)。
下面我们就来研究销售这种商品的有关问题:
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m (件)与t (天)之间的关系式;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a 元利润(a<4)给希望工程。
公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求a 的取值范围。
24、如图,已知直线128
:33
l y x =
+与直线2:216l y x =-+相交于点C l l 12,
、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合. (1)求ABC △的面积;
(2)求矩形DEFG 的边DE 与EF 的长;
(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为
(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出
相应的t 的取值范围.(12分)。