数列高考真题(2011-2017全国卷文科)数列大题教师版

合集下载

2012-2017年高考文科数学真题汇编:数列高考题老师版

2012-2017年高考文科数学真题汇编:数列高考题老师版

学科教师辅导教案 学员姓名 年 级高三 辅导科目数 学授课老师课时数2h第 次课授课日期及时段2018年 月 日 : — :1.(2013安徽文)设nS 为等差数列{}na的前n 项和,8374,2Sa a ==-,则9a =( )(A )6- (B )4- (C)2- (D )2【答案】A 2.(2012福建理)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4 【答案】B3.(2014福建理)等差数列{}na 的前n 项和nS ,若132,12a S ==,则6a =( ).8A .10B .12C .14D【答案】C 4.(2017·全国Ⅰ理)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4 D .8【解析】设{a n }的公差为d ,由错误!得错误!解得d =4。

故选C 。

5.(2012辽宁文)在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=(A) 12 (B) 16 (C) 20 (D )24 【答案】B6.(2014新标2文) 等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和nS =( )A. (1)n n + B 。

(1)n n - C. (1)2n n + D 。

(1)2n n - 【答案】A7.(2012安徽文)公比为2的等比数列{na } 的各项都是正数,且 3a 11a =16,则5a =( )()A 1 ()B 2 ()C 4 ()D 8 【答案】A8.(2014大纲文)设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( ) A. 31 B. 32 C 。

63 D. 64历年高考试题集锦——数列【答案】C9.(2013江西理)等比数列x ,3x +3,6x +6,…的第四项等于( ) A .-24 B .0C .12D .24【答案】A10。

(完整版)近几年全国卷高考文科数列高考习题汇总

(完整版)近几年全国卷高考文科数列高考习题汇总

欢迎共阅数列高考题近几年全国高考文科数学数列部分考题统计及所占分值二.填空题7.[2015.全国I 卷.T13]在数列{}n a 中,1n 1n 2,2a a a +==,n S 为{}n a 的前n 项和。

若-n S =126,则n =. 8.[2014.全国II 卷.T14]数列{}n a 满足121,21n na a a +==-,则1a = 9.[2013.北京卷.T11]若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q =;前n 项和n S =。

10.[2012.全国卷.T14]等比数列{}n a 的前n 项和为n S ,若32S 3S 0+=,则公比q = 11.[2012.北京卷.T10]已知{}n a 为等差数列,n S 为其前n 项和,若211=a ,23S a =,则2a =,n S =_______。

12.[2011.北京卷.T12]在等比数列{}n a 中,若141,4,2a a ==则公比q =;12n a a a ++⋯+=.13.[2009.北京卷.T10]若数列{}n a 满足:111,2()n n a a a n N *+==∈,则5a =;前8项的和8S =.(用数字作答) 三.解答题14.[2016.全国II 卷.T17](本小题满分12分)等差数列{}n a 其中[]x 表示不超过x 15.[2016.全国III (I )求23,a a ;(II )求{}n a 15.[2016.北京卷已知{}n a (Ⅰ)求{}n a (Ⅱ)设n n c a =16.[2015.北京卷(Ⅰ)求{a (Ⅱ)设等比数列{}n b 满足2337,b a b a ==.问:6b 与数列{}n a 的第几项相等? 17.[2014.全国I 卷.T17](本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。

2011—2017高考全国卷Ⅰ文科数学数列汇编

2011—2017高考全国卷Ⅰ文科数学数列汇编

2011—2017高考全国卷Ⅰ文科数学数列汇编新课标全国卷Ⅰ文科数学汇编数 列一、选择题【2015,7】已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A .172B .192C .10D .12 【2013,6】设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( ).A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n【2012,12】数列{n a }满足1(1)21nn n a a n ++-=-,则{na }的前60项和为( )A .3690B .3660C .1845D .1830 二、填空题【2015,13】数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n = . 【2012,14】14.等比数列{}na 的前n 项和为nS ,若3230SS +=,则公比q =_____. 三、解答题【2017,17】记nS 为等比数列{}na 的前n 项和,已知22S =,36S =-.(1)求{}na 的通项公式;(2)求nS ,并判断1n S +,nS ,2n S +是否成等差数列.【2016,17】已知{}na 是公差为3的等差数列,数列{}nb 满足12111==3n n n nb b a b b nb +++=1,,.(1)求{}na 的通项公式;(2)求{}nb 的前n 项和.【2013,17】已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列21211n n a a-+⎧⎫⎨⎬⎩⎭的前n 项和.【2011,17】已知等比数列{}a 中,213a=,公比13q =. (1)nS 为{}na 的前n 项和,证明:12n na S-=;(2)设31323log log log nnba a a =+++L ,求数列nb 的通项公式.解 析一、选择题【2015,7】已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) BA .172B .192C .10D .12 解:依题11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922aa d =+=+=,故选B .【2015,13】数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n = . 6解:数列{a n }是首项为2,公比为2的等比数列,∴2(12)12612n n S -==-,∴ 2n =64,∴n =6.【2013,6】设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( ).A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n解析:选D .11211321113nnn n a a a q a q S q q --(-)===---=3-2a n ,故选D . 【2012,12】数列{na }满足1(1)21n n n aa n ++-=-,则{na }的前60项和为( )A .3690B .3660C .1845D .1830【解析】因为1(1)21n n n aa n ++-=-,所以211aa -=,323aa +=,435aa -=,547a a +=,659aa -=,7611aa +=,……,5857113aa -=,5958115aa +=,6059117a a -=.由211a a -=,323aa +=可得132a a+=; 由659aa -=,7611aa +=可得572aa +=;…… 由5857113a a -=,5958115aa +=可得57592aa +=;从而1357575913575759()()()21530a a a a a a a a a a a a ++++++=++++++=⨯=L L .又211aa -=,435a a -=,659a a -=,…,5857113a a -=,6059117a a -=,所以2466013559()()aa a a a a a a ++++-++++L L2143656059()()()()a a a a a a a a =-+-+-++-=L 159117++++L3011817702⨯==.从而24660a a a a ++++L 135591770a a a a =+++++L 3017701800=+=. 因此6012345960Sa a a a a a =++++++L 13592460()()a a a a a a =+++++++L L3018001830=+=.故选择D .二、填空题【2015,13】数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n = . 6解:数列{a n }是首项为2,公比为2的等比数列,∴2(12)12612n n S -==-,∴ 2n =64,∴n =6.【2012,14】14.等比数列{}na 的前n 项和为nS ,若3230SS +=,则公比q =___________. 【答案】2-. 【解析】由已知得23123111S a a a a a q a q =++=++,2121133333Sa a a a q=+=+,因为3230SS +=,所以2111440a a q a q++=而1a ≠,所以2440qq ++=,解得2q =-.三、解答题【2017,17】记nS 为等比数列{}na 的前n 项和,已知22S =,36S =-.(1)求{}na 的通项公式;(2)求nS ,并判断1n S +,nS ,2n S +是否成等差数列.【解析】(1)设首项1a ,公比q ,依题意,1q≠,由3328a S S =-=-,23122121182a a q S a a a a q ⎧==-⎪⎨=+=+=⎪⎩,解得122a q ⎧=-⎪⎨=-⎪⎩,1(2)n nn a a q ∴==-.(2)要证12,,n n n S S S ++成等差数列,只需证:122n n nSS S +++=,只需证:120n n n n S S S S ++-+-=,只需证:1120n n n aa a +++++=,只需证:212n n aa ++=-(*),由(1)知(*)式显然成立,12,,n n n S S S ++∴成等差数列.【2016,】17.(本小题满分12分)已知{}na 是公差为3的等差数列,数列{}nb 满足12111==3n n n nb b a b b nb +++=1,,.(1)求{}na 的通项公式; (2)求{}nb 的前n 项和.17. 解析 (1)由题意令11n n n na b b nb +++=中1n =,即1221a bb b +=,解得12a=,故()*31nan n =-∈N .(2)由(1)得()1131n n nn bb nb ++-+=,即113n n bb +=()*n ∈N ,故{}nb 是以11b =为首项,13q =为公比的等比数列,即()1*13n n b n -⎛⎫=∈ ⎪⎝⎭N ,所以{}nb 的前n 项和为1111313122313n n n S -⎛⎫- ⎪⎝⎭==-⋅-.【2013,17】 (本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列21211n n a a-+⎧⎫⎨⎬⎩⎭的前n 项和. 解:(1)设{a n }的公差为d ,则S n =1(1)2n n na d -+.由已知可得11330,5105,a d a d +=⎧⎨+=⎩解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n .(2)由(1)知21211n n a a -+=1111321222321n n n n ⎛⎫=- ⎪(-)(-)--⎝⎭,从而数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和为1111111211132321n n ⎛⎫-+-++- ⎪---⎝⎭L=12n n-.【2011,17】已知等比数列{}a 中,213a =,公比13q =. (1)nS 为{}n a 的前n 项和,证明:12nna S-=;(2)设31323log log log nnba a a =+++L ,求数列nb 的通项公式. 【解析】(1)因为1111333n n na -⎛⎫=⨯=⎪⎝⎭,111113332113n n n S ⎛⎫ ⎪ ⎪ ⎪⎝⎭--==-,所以12nna S-=.(2)31323log log log nn ba a a =+++L ()12n =-+++L ()12n n +=-.所以{}nb 的通项公式为()12n n n b +=-.。

2012-2017年高考文科数学真题汇编:数列高考题老师版

2012-2017年高考文科数学真题汇编:数列高考题老师版

【解析】设{an}的公差为 d,由Sa64=+4a85=,24,
a1+3d+a1+4d=24, 得6a1+6×2 5d=48,
解得 d=4.故选 C.
5.(2012 辽宁文)在等差数列{an}中,已知 a4+a8=16,则 a2+a10=
(A) 12
(B) 16 (C) 20
数是上一层灯数的 2 倍,则塔的顶层共有灯( )
A.1 盏
B.3 盏 C.5 盏 D.9 盏
4.【答案】B【解析】设塔的顶层的灯数为 a1,七层塔的总灯数为 S7,公比为 q, 则由题意知 S7=381,q=2,∴S7=a111--qq7=a111--227=381,解得 a1=3.故选 B. 18、(2017·全国Ⅲ理,9)等差数列{an}的首项为 1,公差不为 0.若 a2,a3,a6 成等比数列,则{an}的前 6
【答案】(1) an 4 2(n 1) 2n 2 ;(2) b6 与数列an 的第 63 项相等.
【解析】
试题分析:本题主要考查等差数列、等比数列的通项公式等基础知识,考查学生的分
析问题解决问题的能力、转化能力、计算能力.第一问,利用等差数列的通项公式,将
a1, a2, a3, a4 转化成 a1 和 d,解方程得到 a1 和 d 的值,直接写出等差数列的通项公式即可; 第二问,先利用第一问的结论得到 b2 和 b3 的值,再利用等比数列的通项公式,将 b2 和 b3 转化为 b1 和 q,解出 b1 和 q 的值,得到 b6 的值,再代入到上一问等差数列的通项公式中, 解出 n 的值,即项数.
(C)98
(D)97
【答案】C
14.(2014 辽宁)设等差数列{an}的公差为 d,若数列{2a1an }为递减数列,则( )

2011—2017年新课标全国卷2文科数学试题分类汇编——9.数列

2011—2017年新课标全国卷2文科数学试题分类汇编——9.数列

9.数列一、选择题(2015·5)设n S 是等差数列}{n a 的前n 项和,若3531=++a a a ,则=5S ( )A. 5B. 7C. 9D. 11 (2015·9)已知等比数列}{n a 满足411=a ,)1(4453-=a a a ,则=2a ( ) A. 2B. 1C. 21D. 81(2014·5)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项S n =( ) A .(1)n n + B .(1)n n - C .(1)2n n + D .(1)2n n -(2012·12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为( )A .3690B .3660C .1845D .1830 二、填空题(2014·16)数列}{n a 满足nn a a -=+111,2a = 2,则1a =_________.(2012·14)等比数列{n a }的前n 项和为S n ,若S 3+3S 2=0,则公比q = .三、解答题 (2017·17)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2 + b 2 = 2. (1)若a 3 + b 3 = 5,求{b n }的通项公式;(2)若T 3=21,求S 3.(2016·17)等差数列{a n }中,a 3 + a 4 = 4,a 5+ a 7 = 6.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =[lg a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.(2013·17)已知等差数列{}n a 的公差不为零,125a =,且11113,,a a a 成等比数列. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求14732+n a a a a -++⋅⋅⋅+.(2011·17)已知等比数列{a n }中,113a =,公比13q =.(I )S n 为{a n }的前n 项和,证明:12nn a S -=;(II )设31323log log log n n b a a a =+++L L ,求数列{b n }的通项公式.9.数列(解析版)一、选择题(2015·5)A 解析:13533331a a a a a ++==⇒=,()15535552a a S a +===. (2015·9)C 解析:由a 42 =a 3·a 5= 4(a 4-1),得a 4 = 2,所以34182aq q a ==⇒=,故2112a a q ==.(2014·5)A 解析:∵d =2,a 2,a 4,a 8成等比,∴a 42 = a 2·a 8, 即a 42=(a 4-4)(a 4 + 8),解得a 4=8,∴a 1=a 4-3×2=2,∴1(1)(1)22(1)22n n n n n S na d n n n --=+=+⨯=+,故选A. (2012·12)D 解析:【法1】有题设知211a a -=①,32a a +=3②,43a a -=5③,54a a +=7,65a a -=9,76a a +=11,87a a -=13,98a a +=15,109a a -=17,1110a a +=19,121121a a -=,……∴②-①得13a a +=2,③+②得42a a +=8,同理可得57a a +=2,68a a +=24,911a a +=2,1012a a +=40,…,∴13a a +,57a a +,911a a +,…,是各项均为2的常数列,24a a +,68a a +,1012a a +,…,是首项为8,公差为16的等差数列,∴{n a }的前60项和为11521581615142⨯+⨯+⨯⨯⨯=1830.【法2】14142434443424241616n n n n n n n n n n b a a a a a a a a b +++++---=+++=++++=+112341515141010151618302b a a a a S ⨯=+++=⇒=⨯+⨯=二、填空题 (2014·16)21解析:由已知得111n n a a +=-,∵82a =,∴781112a a =-=,67111a a =-=-,56112a a =-=,4321111222a a a a ==-==,,,.(2012·14)-2解析:当q =1时,3S =13a ,2S =12a ,由S 3+3S 2=0得,19a =0,∴1a =0与{n a }是等比数列矛盾,故q ≠1,由S 3+3S 2=0得,3211(1)3(1)011a q a q q q--+=--,解得q =-2.三、解答题(2017·17)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2 + b 2 = 2. (1)若a 3 + b 3 = 5,求{b n }的通项公式;(2)若T 3=21,求S 3.(2017·17)解析:(1)设{a n }的公差为d ,{b n }的公比为q ,则a n = -1+(n -1)d ,b n = q n -1 . 由a 2 + b 2 = 2得d +q =3①,由a 3 + b 3 = 5得2d +q 2=6 ②,联立①和②解得30=⎧⎨=⎩d q (舍去)12=⎧⎨=⎩d q ,因此{b n }的通项公式b n =2n +1 .(2)由b 1=1,T 1=21,得q 2+q -20=0. 解得q =-5或q =4,当q =-5时,由①得d =8,则S 3=21;当q =4时,由①得d =-1,则S 3=-6.(2016·17)等差数列{a n }中,a 3 + a 4 = 4,a 5+ a 7 = 6.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =[lg a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. (2016·17)解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有11254,53a d a d -=-=,解得121,5a d ==,所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知23[]5n n b +=,当n =1, 2, 3时,2312,15n n b +≤<=;当n =4, 5时,2323,25n n b +≤<=;当n =6, 7, 8时,2334,35n n b +≤<=;当n =9, 10时,2345,45n n b +≤<=,所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=.(2013·17)已知等差数列{}n a 的公差不为零,125a =,且11113,,a a a 成等比数列. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求14732+n a a a a -++⋅⋅⋅+.(2013·17)解析:(Ⅰ)设{a n }的公差为d . 由题意,a 112=a 1a 13,即(a 1+10d )2=a 1(a 1+12d ). 于是d (2a 1+25d )=0. 又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(Ⅱ)令S n =a 1+a 4+a 7+…+a 3n -2. 由(Ⅰ)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列.从而S n =2n (a 1+a 3n -2)=2n(-6n +56)=-3n 2+28n .(2011·17)已知等比数列{a n }中,113a =,公比13q =.(I )S n 为{a n }的前n 项和,证明:12nn a S -=;(II )设31323log log log n n b a a a =+++L L ,求数列{b n }的通项公式.(2011·17)解析:(Ⅰ)∵1111()()333n n n a -==,11(1)13331213n n n S --==-,∴12n n a S -= (Ⅱ)31323log log log n n b a a a =++⋅⋅⋅+123(1)2()=n n n =-++++-+L ,∴数列{n b }的通项公式为(1)2n n n b +=-。

2011——2017高考全国卷(Ⅰ、Ⅱ、Ⅲ)各年分类汇编(数列)

2011——2017高考全国卷(Ⅰ、Ⅱ、Ⅲ)各年分类汇编(数列)

2011………2017高考全国卷(Ⅰ、Ⅱ、Ⅲ)各年分类汇编(数列) (2017、Ⅰ卷)4.记为等差数列的前项和.若,,则的公差为A .1B .2C .4D .812.几位大学生响应国家的创业号召,开发了一款应用软件。

为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推。

求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂。

那么该款软件的激活码是 A .440B .330C .220D .110(2017、Ⅱ卷)3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A 、1盏B 、3盏C 、5盏D 、9盏 15.等差数列{}n a 的前n 项和为n S ,33=a ,104=S ,则=∑=nk kS 11. (2017、Ⅲ卷)9.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为( )A . -24 B . -3 C . 3 D . 814. 设等比数列{}n a 满足12131,3a a a a +=--=-,则4_______.a = (2016、Ⅰ卷)3、已知等差数列{}n a 前9项的和为27,810=a ,则=100a(A )100 (B )99 (C )98 (D )97 15、 设等比数列{}n a 满足1031=+a a ,542=+a a ,则n a a a ⋯21的最大值为. (2016、Ⅱ卷)17(本小题满分12分)n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a=,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=.(Ⅰ)求1b ,11b ,101b ;n S {}n a n 4524a a +=648S ={}n a(Ⅱ)求数列{}n b的前1000项和.(2016、Ⅲ卷)12、定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( ) A .18个B .16个C .14个D .12个17、已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(I )证明{}n a 是等比数列,并求其通项公式; (II )若53132S = ,求λ. (2015、Ⅰ卷)17)(本小题满分12分)n S 为数列{}n a 的前n 项和.已知20,243n n n n a a a S >+=+,(Ⅰ)求{}n a 的通项公式: (Ⅱ)设11n n n b a a += ,求数列{}n b 的前n 项和。

历年数列高考题大全答案.doc

历年数列高考题大全答案.doc

历年高考《数列》真题汇编1、(2011 年新课标卷文 )已知等比数列 { a n } 中, a 11,公比 q 1 .33 (I ) S n 为 { a n } 的前 n 项和,证明: S n 1 a n2(II )设 b nlog 3 a 1 log 3 a 2 Llog 3 a n ,求数列 { b n } 的通项公式.111解:(Ⅰ)因为 a n1(1 ) n 11 . S n 3 (13n ) 1 3n ,3 33n1 123所以 S n1 an,2(Ⅱ) b nlog 3 a 1log 3 a 2log 3 a n(1 2n(n 1)....... n)n( n 1) .2所以 { b n } 的通项公式为 b n22、 (2011 全国新课标卷理)等比数列 a n 的各项均为正数,且 2a 1 3a 2 1,a 3 2 9a 2a 6.(1)求数列 a n 的通项公式 .(2) 设 b n log 3 a 1 log 3 a 2 ...... log 3 a n , 求数列 1 的前项和 .b n解:(Ⅰ)设数列 {a n } 的公比为 q ,由 a 329a 2a 6 得 a 339a 42 所以 q 21。

有条件可知 a>0, 故1 。

9q3由 2a 1 3a 2 1得 2a 1 3a 2q 1,所以 a 11。

故数列 {a n } 的通项式为 a n =1。

33n(Ⅱ ?) b n log 1 a 1 log 1 a 1 ... log 1 a 1故1 22(11 )b nn( n 1)n n 1所以数列 { 1} 的前 n 项和为2nb nn 13、(2010 新课标卷理)数列a n足a12, a n 1a n3g22n 1(1)求数列a n的通公式;(2)令b n na n,求数列的前n 和S n解(Ⅰ)由已知,当 n≥ 1 ,a n 1 [( a n 1 a n ) (a n a n 1 ) L (a2 a1 )] a1 3(2 2n 1 22n 3 L 2) 2 22( n 1) 1 。

2012-2017年高考文科数学真题汇编:数列高考题老师版

2012-2017年高考文科数学真题汇编:数列高考题老师版

(完整word 版)2012-2017年高考文科数学真题汇编:数列高考题老师版学员姓名 年 级高三辅导科目数 学授课老师 课时数 2h 第 次课 授课日期及时段 2018年 月 日 : — :1.(2013安徽文)设n S 为等差数列{}n a 的前n 项和,8374,2S a a ==-,则9a =( ) (A )6- (B )4- (C )2- (D )2【答案】A 2.(2012福建理)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4 【答案】B 3.(2014福建理)等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).8A .10B .12C .14D【答案】C 4.(2017·全国Ⅰ理)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4 D .8【解析】设{a n }的公差为d ,由⎩⎨⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,解得d =4.故选C.5.(2012辽宁文)在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=(A) 12 (B) 16 (C) 20 (D)24 【答案】B6.(2014新标2文) 等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A. (1)n n + B. (1)n n - C. (1)2n n + D. (1)2n n - 【答案】A历年高考试题集锦——数列 亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。

历年数列高考题汇编答案

历年数列高考题汇编答案

历年数列高考题汇编答案1、(2011年新课标卷文)已知等比数列{}n a 中,113a =,公比13q =. (I )n S 为{}n a 的前n 项和,证明:12nn a S -=(II )设31323l o g l o g l o g n n b a a a =+++L ,求数列{}n b 的通项公式.解:(Ⅰ)因为.31)31(311nn n a =⨯=-,2311311)311(31n n n S -=--=所以,21nna S -- (Ⅱ)n n a a ab 32313log log log +++=Λ ).......21(n +++-=2)1(+-=n n所以}{n b 的通项公式为.2)1(+-=n n b n2、(2011全国新课标卷理)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +==(1)求数列{}n a 的通项公式.(2)设 31323l o g l o g ......l o g ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前项和.解:(Ⅰ)设数列{a n}的公比为q ,由23269a aa =得32349a a =所以219q =。

有条件可知a>0,故13q =。

由12231a a +=得12231a a q +=,所以113a =。

故数列{a n }的通项式为a n =13。

(Ⅱ )111111l o gl o g ...l o g n b a a a =+++(12...)(1)2n n n =-++++=-故12112()(1)1n b nn n n =-=--++12111111112...2((1)()...())22311n n bb b n n n +++=--+-++-=-++所以数列1{}b 的前n 项和为21nn -+3、(2010新课标卷理)设数列{}n a 满足21112,32n n n a a a -+=-=g(1) 求数列{}n a 的通项公式;(2) 令n n b na =,求数列的前n 项和n S解(Ⅰ)由已知,当n ≥1时,111211[()()()]n n nn n a a a a a a a a ++-=-+-++-+L21233(222)2n n --=++++L 2(1)12n +-=。

(完整版)全国卷高考数学真题数列

(完整版)全国卷高考数学真题数列

高考数学——数列
17年全国I卷17、设为等比数列的前项和,已知,
(1)求的通项公式
(2)求,并判断是否成等差数列
17年全国II卷17题、已知等差数列的前n项和为,等比数列的前n项和为,
(1)若,求的通项公式
(2)若求
17年全国III卷17题、设数列满足
(1)求的通项公式
(2)求数列的前n项和
16年全国I卷17题、已知是公差3为的等差数列,数列满足,
(1) 求的通项公式
(2) 求数列的前n项和
16年全国II卷17题、等差数列中,
(1) 求的通项公式
(2设,求数列的前10项和,其中表示不超过x的最大整数,如
16年全国III卷17题、已知各项都为正数的数列满足
(1)求
(2) 求的通项公式
15年全国I卷7题、已知是公差为1的等差数列,为的前n项和,若,则
12
15年全国I卷13题、在数列中,为的
前n项和.若()
15年全国II卷5题、设为等差数列的前n项和,若
,则
11
15年全国II卷9题、已知等比数列满足

14年全国I卷17题、已知是递增的等差数列,是方程的根
(1) 求的通项公式
(2) 求数列的前n项和
14年全国II卷5题、等差数列的公差为2,若成等差数列,则的前n项和
14年全国II卷16题、数列满足
13年全国I卷6题、设首项为1,公比为的等比数列的前n项和,则
13年全国I卷17题、已知等差数列的前n项和满足
(1) 求的通项公式
(2) 求数列的前n项和
13年全国II卷17题、已知等差数列的公差不为零,且成等比数列
(1) 求的通项公式
(2)求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列
一.等差数列、等比数列的基本概念与性质
全国Ⅱ卷
1.(2014.全国2卷5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的 前n 项和n S =( )
(A ) ()1n n + (B )()1n n - (C )()12
n n + (D)
()12
n n -
2.(2014.全国2卷16)数列{}n a 满足11
1n n
a a +=
-,2a =2,则1a =_________.12
3.(2015.全国2卷5)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( )
A .5
B .7
C .9
D .11
4.(201
5.全国2卷9)已知等比数列{}n a 满足11
4
a =
,()35441a a a =-,则2a =( ) .2A .1B 1.2C 1
.8
D
二.数列综合
(一)新课标卷
1.(2011.全国新课标17)(本小题满分12分)已知等比数列{}n a 中,113
a =,公比1
3q =.
(I )n S 为{}n a 的前n 项和,证明:12
n
n a S -=
(II )设31323log log log n n b a a a =+++ ,求数列{}n b 的通项公式.
解:(Ⅰ)因为.3
1
)31(311n n n a =⨯=
- ,23113
11)311(3
1n
n n S -=--= 所以,2
1n
n a S --
(Ⅱ)n n a a a b 32313log log log +++=
)21(n +++-=
2
)
1(+-
=n n 所以}{n b 的通项公式为.2
)
1(+-
=n n b n
2.(2014.全国3卷17)(本小题满分12分)已知{}n a 是递增的等差数列,2a 、4a 是方程
2560x x -+=的根。

(I )求{}n a 的通项公式; (II )求数列2n n a ⎧⎫

⎬⎩⎭
的前n 项和. 错位相减 【解析】:(I )方程2
560x x -+=的两根为2,3,由题意得22a =,43a =,设数列{}n a 的
公差为 d ,,则422a a d -=,故d=12
,从而13
2a =

所以{}n a 的通项公式为:1
12
n a n =+ …………6 分 (Ⅱ)设求数列2n n a ⎧⎫
⎨⎬⎩⎭
的前n 项和为S n ,由(Ⅰ)知1222n n n a n ++=, 则:234134512
22222n n n n n S +++=
+++++ 34512134512
222222
n n n n n S ++++=+++++ 两式相减得 341212131112311212422224422
n n n n n n n S ++++++⎛⎫⎛⎫=++++-=+-- ⎪ ⎪⎝⎭⎝⎭ 所以1
4
22
n n n S ++=- ………12分
(三)全国Ⅱ卷
1.(2013.全国2卷17)(本小题满分12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.
(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2. 解:(1)设{a n }的公差为d. 由题意,211a =a 1a 13, 即(a 1+10d)2
=a 1(a 1+12d). 于是d(2a 1+25d)=0.
又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.
(2)令S n =a 1+a 4+a 7+…+a 3n -2.
由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =
2n (a 1+a 3n -2)=2
n (-6n +56)=-3n 2
+28n. 2.(2016全国卷2.17)(本小题满分12分) 等差数列{n a }中,34574,6a a a a +=+=. (Ⅰ)求{n a }的通项公式;
(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.
试题解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有11254,53a d a d -=-=,解得
121,5
a d ==
, 所以{}n a 的通项公式为23
5
n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤
=⎢⎥⎣⎦
, 当n =1,2,3时,23
12,15n n b +≤
<=; 当n =4,5时,23
23,25n n b +≤<=; 当n =6,7,8时,23
34,35n n b +≤<=; 当n =9,10时,23
45,45
n n b +≤<=, 所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=.
(三)全国III 卷
1、(2016全国卷3.17)(本小题满分12分)
已知各项都为正数的数列{}n a 满足11a =,2
11(21)20n n n n a a a a ++---=.
(I )求23,a a ;
(II )求{}n a 的通项公式. 试题解析:(Ⅰ)由题意得4
1
,2132==
a a . .........5分
考点:1、数列的递推公式;2、等比数列的通项公式. 2、(2017新课标Ⅲ文数)
设数列{}n a 满足123(21)2n a a n a n +++-= . (1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫

⎬+⎩⎭
的前n 项和.
综合题
1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n = , (1)证明:数列{}n a 是等比数列;
(2)若数列{}n b 满足1(1,2,)n n n b a b n +=+= ,12b =,求数列{}n b 的通项公式.
1.解:(1)证:因为34-=n n a S (1,2,)n = ,则3411-=--n n a S (2,3,)n = , 所以当2n ≥时,1144n n n n n a S S a a --=-=-,
整理得14
3
n n a a -=
. 5分
由34-=n n a S ,令1n =,得3411-=a a ,解得11=a .
所以{}n a 是首项为1,公比为4
3
的等比数列. 7分
(2)解:因为14
()3
n n a -=,
由1(1,2,)n n n b a b n +=+= ,得114
()3
n n n b b -+-=. 9分
由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b
=1)34(33
41)34(1211
-=--+--n n ,
(2≥n ),
当n=1时也满足,所以1)3
4
(31-=-n n b .
2.(本小题满分12分)
等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式.
2.设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫
⎨⎬⎩⎭
的前项和.
2.解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32
34
9a a =所以21
9
q =。

有条件可知a>0,故1
3
q =。

由12231a a +=得12231a a q +=,所以113a =。

故数列{a n }的通项式为a n =1
3
n 。

(Ⅱ )111111log log ...log n b a a a =+++
(12...)
(1)
2
n n n =-++++=-

12112()(1)1
n b n n n n =-=--++
12111111112...2((1)()...())22311n n
b b b n n n +++=--+-++-=-
++ 所以数列1
{}n
b 的前n 项和为21n n -+
3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 3.解:
(Ⅰ)由已知,当n ≥1时,
111211[()()()]n n n n n a a a a a a a a ++-=-+-++-+
21233(222)2n n --=++++
2(1)12n +-=。

而 12,a =
所以数列{n a }的通项公式为212n n a -=。

(Ⅱ)由212n n n b na n -==⋅知
35211222322n n S n -=⋅+⋅+⋅++⋅ ①
从而
23572121222322n n S n +⋅=⋅+⋅+⋅++⋅ ② ①-②得
2352121(12)22222n n n S n -+-⋅=++++-⋅ 。

即 211
[(31)22]9
n n S n +=-+。

相关文档
最新文档