多元函数微积分期末练习题及答案
(完整版)多元函数微分学复习题及答案
第八章 多元函数微分法及其应用 复习题及解答一、选择题1. 极限lim x y x yx y→→+00242= (提示:令22y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0或12 2、设函数f x y x y y xxy xy (,)sin sin=+≠=⎧⎨⎪⎩⎪1100,则极限lim (,)x y f x y →→0= ( C )(提示:有界函数与无穷小的乘积仍为无穷小)(A) 不存在 (B) 等于1 (C) 等于0 (D) 等于23、设函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000,则(,)f x y ( A )(提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =,200(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以,(,)f x y 在整个定义域内处处连续.)(A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件5、设u y x =arctan ,则∂∂u x = ( B )(A)xx y 22+(B) -+y x y 22 (C) yx y 22+(D)-+xx y 226、设f x y yx(,)arcsin=,则f x '(,)21= ( A ) (A )-14(B )14 (C )-12 (D )127、设yxz arctan=,v u x +=,v u y -=,则=+v u z z ( C )(A )22v u v u -- (B )22v u u v -- (C )22v u v u +- (D )22v u uv +-8、若f x x x x f x x x x (,),(,)'232612=+=+,则f x x y '(,)2= ( D ) (A) x +32(B) x -32(C) 21x + (D) -+21x 9、设z y x =,则()(,)∂∂∂∂z x zy+=21 ( A ) (A) 2 (B) 1+ln2 (C) 0 (D) 110、设z xye xy =-,则z x x x'(,)-= ( D ) (A)-+2122x x e x () (B)2122x x e x ()- (C)--x x e x ()122 (D)-+x x e x ()12211、曲线x t y t z t ===24sin ,cos ,在点(,,)202π处的法平面方程是 (C )(A) 242x z -=-π (B) 224x z -=-π (C) 42y z -=-π (D) 42y z -=π12、曲线45x y y z ==,,在点(,,)824处的切线方程是 (A )(A)842204x z y --=-= (B)x y z +==+122044 (C) x y z -=-=-85244 (D)x y z -=-=351413、曲面x z y x z cos cos +-=ππ22在点ππ2120,,-⎛⎝ ⎫⎭⎪处的切平面方程为 (D )(A )x z -=-π1 (B )x y -=-π1 (C )x y -=π2 (D )x z -=π214、曲面x yz xy z 2236-=在点(,,)321处的法线方程为 (A ) (A )x y z +=--=--58531918 (B )x y z -=-=--3823118(C )83180x y z --= (D )831812x y z +-=15、设函数z x y =-+122,则点 (,)00是函数 z 的 ( B ) (A )极大值点但非最大值点 (B )极大值点且是最大值点 (C )极小值点但非最小值点 (D )极小值点且是最小值点 16、设函数z f x y =(,)具有二阶连续偏导数,在P x y 000(,)处,有2)()(,0)()(,0)(,0)(000000======P f P f P f P f P f P f yx xy yy xx y x ,则( C )(A )点P 0是函数z 的极大值点 (B )点P 0是函数z 的极小值点 (C )点P 0非函数z 的极值点 (D )条件不够,无法判定 17、函数f x y z z (,,)=-2在222421x y z ++=条件下的极大值是 ( C )(A) 1 (B) 0 (C)-1 (D) -2 二、填空题 1、极限limsin()x y xy x→→0π= ⎽⎽⎽⎽⎽⎽⎽ .答:π 2、极限limln()x y x y e x y→→++01222=⎽⎽⎽⎽⎽⎽⎽ .答:ln23、函数z x y =+ln()的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:x y +≥14、函数z xy=arcsin 的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:-≤≤11x ,y ≠0 5、设函数f x y x y xy y x (,)ln =++⎛⎝ ⎫⎭⎪22,则f kx ky (,)= ⎽⎽⎽⎽⎽⎽⎽ .答:k f x y 2⋅(,)6、设函数f x y xy x y (,)=+,则f x y x y (,)+-= ⎽⎽⎽⎽⎽⎽⎽ .答:222x y x-(22()()(,)()()2x y x y x y f x y x y x y x y x+--+-==++-Q )7、设f x y x y x y A x y (,)ln()//=-⋅+<+≥⎧⎨⎩11212222222,要使f x y (,)处处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:-ln28、设f x y x y x y x y Ax y (,)tan()(,)(,)(,)(,)=++≠=⎧⎨⎪⎩⎪22220000,要使f x y (,)在(0,0)处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:1 9、函数221x y z x +=-的间断点是 .答:直线10x -=上的所有点10、函数f x y x y yx (,)cos =-122的间断点为 ⎽⎽⎽⎽⎽⎽⎽ .答:直线y x =±及x =011、设z x y y =-+sin()3,则∂∂z xx y ===21_________ .答:3cos512、设f x y x y (,)=+22,则f y (,)01= _________ .答:113、设u x y z x y z(,,)=⎛⎝ ⎫⎭⎪,则)3,2,1(d u =_________ .答:38316182d d ln d x y z --14、设u x x y =+22,则在极坐标系下,∂∂ur= _________ .答:0 15、设u xy y x =+,则∂∂22u x = _________.答:23yx16、设u x xy =ln ,则∂∂∂2u x y = ___________ .答:1y17、函数y y x =()由12+=x y e y 所确定,则d d y x = ___________ .答:22xye xy - 18、设函数z z x y =(,)由方程xy z x y z 2=++所确定,则∂∂zy= _______ .答:2112xyz xy --19、由方程xyz x y z +++=2222所确定的函数z z x y =(,)在点(1,0,-1)处的全微分d z = _________ .答:d d x y -220、曲线x t y t z t ===23213,,在点(,,)1213处的切线方程是_________.答:x y z -=-=-12221321、曲线x te y e z t e t t t ===232222,,在对应于 t =-1点处的法平面方程是___________. 答:01132=+--e y x 22、曲面xe y e z e ey z x ++=+223321在点(,,)210-处的法线方程为_________ . 答:e ze y x 22212=-+=- 23、曲面arctan y xz 14+=π在点(,,)-210处的切平面方程是_________.答:y z +=2124、设函数z z x y =(,)由方程123552422x xy y x y e z z +--+++=确定,则函数z的驻点是_________ .答:(-1,2) 27、函数z x y x y =----2346122的驻点是_________.答:(1,1)25、若函数f x y x xy y ax by (,)=+++++22236在点 (,)11-处取得极值,则常数a =_________, b =_________.答:a =0,b =426、函数f x y z x (,,)=-22在x y z 22222--=条件下的极大值是_______答:-4 三、计算题1、求下列二元函数的定义域,并绘出定义域的图形.(1) z = (2)ln()z x y =+ (3)1ln()z x y =+ (4)ln(1)z xy =-解:(1)要使函数z =有意义,必须有2210x y --≥,即有221x y +≤.故所求函数的定义域为22{(,)|1}D x y x y =+≤,图形为图3.1(2)要使函数ln()z x y =+有意义,必须有0x y +>.故所有函数的定义域为{}(,)|0D x y x y =+>,图形为图3.2(3)要使函数1ln()z x y =+有意义,必须有ln()0x y +≠,即0x y +>且1x y +≠.故该函数的定义域为{}(,)|01D x y x y x y =+>+≠,,图形为图3.3(4)要使函数ln(1)z xy =-有意义,必须有10xy ->.故该函数的定义域为{(,)|1}D x y xy =>,图形为图3.4图3.1 图3.2图3.3 图3.42、求极限limsin x y y xxy →→+-0211.解:lim sin x y y xxy →→+-0211=⋅++→→lim sin ()x y y x xy xy 00211= 43、求极限lim sin()x y x y x yxy →→-+0023211. 解:原式=lim ()sin()x y x y x y x y xy →→-++0232211=-++⋅→→limsin()x y x y xy xy 002111=-124、求极限lim x y xxye xy→→-+0416 . 解:lim x y xxye xy→→-+00416=++-→→lim ()x y x xye xy xy 00416= -85、设u x y y x =+sin cos ,求 u u x y ,. 解:u y y x x =-sin sinu x y x y =+cos cos6、设z xe ye y x =+-,求z z x y ,. 解:z e ye x y x =--z xe e y y x =+-7、设函数z z x y =(,)由yz zx xy ++=3所确定,试求∂∂∂∂z x zy,(其中x y +≠0). 解一:原式两边对x 求导得yz x x zxz y ∂∂∂∂+++=0,则∂∂z x z y y x =-++同理可得:∂∂z y z x y x =-++ 解二:xy xz F F y z xy y z F F x z x y y x ++-=-=++-=-=∂∂∂∂, 8、求函数z x xy y x y =-++-+23243122的极值.解:由z x y z x y x y=-+==-+-=⎧⎨⎩43403430,得驻点(,)-10074334>=--==yy yxxy xx z z z z D z xx =>40,函数z 在点(,)-10处取极小值z (,)-=-101.9、设z e x y =+32,而x t y t ==cos ,2,求d d z t. 解:d d (sin )()zte t e t x y x y =-+++3223232=-++(sin )3432t t e x y10、设z y xy x =ln(),求∂∂∂∂z x z y,. 解:z y y xy xy x x x =⋅+ln ln 1 z xy xy yy y x x =+-11ln() 11、设u a x a x yz a =->+ln ()0,求d u . 解:∂∂u x a a ax x yz =-+-ln 1,∂∂u y a z a x yz =⋅+ln ,∂∂u zya a x yz =+ln d (ln )d ln (d d )u a a ax x a a z y y z x yz x yz =-+++-+112、求函数z x y e xy =++ln()22的全微分.解:∂∂∂∂z x x ye x y e z y y xe x y e xyxyxyxy=+++=+++222222,[]d ()d ()d z x y ex ye x y xe y xyxy xy =+++++12222 四、应用题1、要造一容积为128立方米的长方体敞口水池,已知水池侧壁的单位造价是底部的2倍,问水池的尺寸应如何选择,方能使其造价最低? 解:设水池的长、宽、高分别为x y z ,,米.水池底部的单位造价为a .则水池造价()S xy xz yz a =++44 且 xyz =128令 ()L xy xz yz xyz =+++-44128λ由 ⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=01280440404xyz L xy y x L xz z x L yz z y L z y x λλλλ得 x y z ===82由于实际问题必定存在最小值,因此当水池的长、宽、高分别为8米、8米、2米时,其造价最低.2、某工厂生产两种商品的日产量分别为x 和y (件),总成本函数22128),(y xy x y x C +-=(元).商品的限额为42=+y x ,求最小成本. 解:约束条件为042),(=-+=y x y x ϕ,构造拉格朗日函数22(,,)812(42)F x y x xy y x y λλ=-+++-,解方程组160240420x y F x y F x y F x y λλλ'⎧=-+=⎪'=-++=⎨⎪'=+-=⎩,得唯一驻点)17,25(),(=y x ,由实际情况知,)17,25(),(=y x 就是使总成本最小的点,最小成本为8043)17,25(=C (元).3、某工厂生产两种产品甲和乙,出售单价分别为10元与9元,生产x 单位的产品甲与生产y 单位的产品乙的总费用是)33(01.03240022y xy x y x +++++元, 求取得最大利润时,两种产品的产量各为多少?解:),(y x L 表示获得的总利润,则总利润等于总收益与总费用之差,即有利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=)0,0(,400)33(01.06822>>-++-+=y x y xy x y x ,令⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx,解得唯一驻点(120,80).又因06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A ,得0105.332>⨯=--B AC .得极大值320)80,120(=L . 根据实际情况,此极大值就是最大值.故生产120单位产品甲与80单位产品乙时所得利润最大320元. 五、证明题 1、设)11(yx e z +-=, 求证z yz y x z x 222=∂∂+∂∂.证明: 因为2)11(1x e xzy x ⋅=∂∂+-, 2)11(1ye y z y x ⋅=∂∂+-, 所以 z e e yz y x z x y x y x 2)11()11(22=+=∂∂+∂∂+-+-2、证明函数nx ey tkn sin 2-=满足关系式22x y k t y ∂∂=∂∂ 证明:因为nx e kn kn nx e ty tkn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx nex y tkn cos 2-=∂∂, nx e n xy t kn sin 2222--=∂∂, nx e kn xyk t kn sin 2222--=∂∂,所以22x y k t y ∂∂=∂∂.3、设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅.证明:y z y x z x ∂∂⋅+∂∂⋅])([])()([yu u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .。
《多元函数微分学》练习题参考答案
解:在 L 上任取一点 P ( x, y ),
f (x , y ) = 0
考虑 d = ( x − x0 ) + ( y − y0 ) 在条件 f ( x, y ) = 0 下的极值问题 作 F = ( x − x 0 ) + ( y − y 0 ) + λ f ( x , y ) ,则
' ⎧ ⎪ F x = 2(x − x 0 ) + λ f 'x ( x , y ) = 0 , ⎨ ' ⎪ ⎩F y = 2( y − y 0 ) + λ f 'y (x , y ) = 0 2 2 2 2 2
P87-练习 4 设 z = f ( xy,
x y ) + g ( ) ,其中 f 有二阶连续偏导数, g 有二阶导数,求 y x
∂2z . (2000) ∂x∂y
解: 根据复合函数求偏导公式
∂z 1 y = f1′ ⋅ y + f 2′ ⋅ + g ′ ⋅ (− 2 ) , ∂x y x
24
∂2 z ∂ ⎛ ∂z ⎞ ∂ ⎛ 1 y ⎞ = ⎜ ⎟ = ⎜ f1′ ⋅ y + f 2′ ⋅ + g ′ ⋅ ( − 2 ) ⎟ ∂x∂y ∂y ⎝ ∂x ⎠ ∂y ⎝ y x ⎠ x 1 1 x y 1 = f1′ + y[ f11′′ x + f12′′ ⋅ (− 2 )] − 2 f 2′ + [ f 21′′ x + f 22′′ ⋅ (− 2 )] − g ′′ ⋅ 3 − g ′ ⋅ 2 y y y y x x 1 x y 1 = f1′ + xyf11′′ − 2 f 2′ − 3 f 22′′ − 3 g ′′ − 2 g ′ y y x x
《多元函数积分学》练习题参考答案
∫ ∫
2 1 2
dx ∫ dy ∫
2
4− x 1 4− y 1
f ( x, y ) dy f ( x, y ) dx
2 4− y 1
(B) (D)
∫
2 1 2 1
dx ∫
4− x
x
2
f ( x, y ) dy
1
∫
dy ∫ f ( x, y ) dx
y
2 4− y 1 1
∫
2
1
dx ∫ f ( x, y ) dy + ∫ dy ∫
0 < r < R, 顺时针 ,沿 L 与 L1 围成 D ,
I =� ∫=
L
L + L1
− ⎟ dσ − � � ∫ −� ∫ = =∫∫ ⎜ ∫ ⎝ ∂x ∂y ⎠
L1 D
⎛ ∂Q
∂P ⎞
L1
y dx − x dy y dx − x dy = ∫∫ 0dσ − � 2 2 ∫ L1 x + 4y r2 D
) . ( D) I 4
( A) I 1 解:由对称性 I 2 =
(B) I 2
(C) I 3
∫∫ y cos xdxdy = 0 ,
D2 D1
I 4 = ∫∫ y cos xdxdy = 0 ,
D4
在 D1 上, y cos x > 0 ,所以 I1 = 在 D3 上 y cos x < 0 , 所 以 I 3 =
则 f ( x, y ) = xy +
1 8
P105-练习 3 计算 I = 解
2 2
∫∫ x
D
2
+ y 2 − 1 dσ ,其中 D : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 .
多元函数微分学练习题及答案
三. 设Lx, y, z, ln x ln y 3ln z (x2 y2 z2 5R2 )
求得此函数定义域内唯一的稳定点R,,R 3R , 也是所 求函数的最大值点, 所求最大值为f R, R, 3R ln 3 3R5 .
ln x ln y 3ln z ln 3 3R5
u y xf2 ( xz xyz y ) f 3
.
3、f x ( x, y)
(
x
2 xy 3 2 y2
)2
,
x
2
0, x 2 y 2 0
y2
0 ,
f y (x,
y)
x2(x2 (x2
y2 y2 )2
)
,
x2
o, x 2 y 2 0
y2
0
五、(
f1
f2 )dx
y (z) 1
f2 (z) dy. y (z) 1
六、 xe2 y fuu e y fuy xe y f xu f xy e y fu.
4、1; 5、必要条件,但不是充分条件; 6、可微;
7、 2 f (v )2 f 2v ; v 2 y v y 2
8、
9 2
a
3
;
9、(1,2);10、 1 ; 8
二、(1)当 x y 0时,在点( x, y)函数连续;
(2)当 x y 0时,而( x, y)不是原点时,
则( x, y)为可去间断点,(0,0)为无穷间断点.
4、lim( x 2 y )2 x2 y2 ( ). x0 y0
5、函数 f ( x, y)在点( x0 , y0 )处连续,且两个偏导数 f x ( x0 , y0 ), f y ( x0 , y0 )存在是 f ( x, y)在该点可微
(完整版)多元函数微积分复习试题
多元函数微积分复习题一、单项选择题1.函数()y x f ,在点()00,y x 处连续是函数在该点可微分的 ( B )(A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件.2.设函数()y x f ,在点()00,y x 处连续是函数在该点可偏导的 ( D )(A) 充分而不必要条件; (B) 必要而不充分条件;(C) 必要而且充分条件; (D) 既不必要也不充分条件.3.函数()y x f ,在点()00,y x 处偏导数存在是函数在该点可微分的 ( B ).(A) 充分而不必要条件; (B) 必要而不充分条件;(C) 必要而且充分条件; (D) 既不必要也不充分条件. 4.对于二元函数(,)z f x y =, 下列结论正确的是 ( C ).A. 若0lim x xy y A →→=, 则必有0lim (,)x x f x y A →=且有0lim (,)y y f x y A →=; B. 若在00(,)x y 处zx∂∂和z y ∂∂都存在, 则在点00(,)x y 处(,)z f x y =可微; C. 若在00(,)x y 处zx∂∂和z y ∂∂存在且连续, 则在点00(,)x y 处(,)z f x y =可微; D. 若22z x ∂∂和22z y ∂∂都存在, 则. 22z x ∂∂=22zy ∂∂.5.二元函数(,)z f x y =在点00(,)x y 处满足关系( C ).A. 可微(指全微分存在)⇔可导(指偏导数存在)⇒连续;B. 可微⇒可导⇒连续;C. 可微⇒可导, 或可微⇒连续, 但可导不一定连续;D. 可导⇒连续, 但可导不一定可微.6.向量()()3,1,2,1,2,1a b =--=-,则a b = ( A ) (A) 3 (B) 3- (C) 2- (D) 25.已知三点M (1,2,1),A (2,1,1),B (2,1,2) ,则→→•AB MA = ( C ) (A) -1; (B) 1; (C) 0 ; (D) 2;6.已知三点M (0,1,1),A (2,2,1),B (2,1,3) ,则||→→+AB MA =( B )(A);2-(B) (C)2; (D)-2;7.设D 为园域222x y ax +≤ (0)a >, 化积分(,)DF x y d σ⎰⎰为二次积分的正确方法是_____D____.A. 20(,)aa adx f x y dy -⎰⎰B. 202(,)adx f x y dy ⎰C. 2cos 0(cos ,sin )a a ad f d θθρθρθρρ-⎰⎰D. 2cos 202(cos ,sin )a d f d πθπθρθρθρρ-⎰⎰8.设3ln 1(,)x Idx f x y dy =⎰⎰, 改变积分次序, 则______.I= BA. ln30(,)y e dy f x y dx ⎰⎰B. ln330(,)y edy f x y dx ⎰⎰C. ln33(,)dy f x y dx ⎰⎰ D. 3ln 1(,)x dy f x y dx ⎰⎰9. 二次积分cos 20(cos ,sin )d f d πθθρθρθρρ⎰⎰可以写成___________. DA. 1(,)dy f x y dx ⎰⎰B. 100(,)dy f x y dx ⎰C. 11(,)dx f x y dy ⎰⎰ D. 10(,)dx f x y dy ⎰10. 设Ω是由曲面222x y z +=及2z =所围成的空间区域,在柱面坐标系下将三重积分(,,)I f x y z dx dy dz Ω=⎰⎰⎰表示为三次积分,________.I = CA . 22120(cos ,sin ,)d d f z dz ρπθρρθρθ⎰⎰⎰B. 22220(cos ,sin ,)d d f z dz ρπθρρθρθρ⎰⎰⎰C . 22222(cos ,sin ,)d d f z dz πρθρρθρθρ⎰⎰⎰D . 222(cos ,sin ,)d d f z dz πθρρθρθρ⎰⎰⎰11.设L 为y x 0面内直线段,其方程为d y c a x L ≤≤=,:,则()=⎰Ldx y x P , ( C )(A ) a (B ) c(C ) 0 (D ) d12.设L 为y x 0面内直线段,其方程为d x c a y L ≤≤=,:,则()=⎰Ldy y x P , ( C )(A ) a (B ) c (C ) 0 (D ) d13.设有级数∑∞=1n n u ,则0lim =∞→n n u 是级数收敛的 ( D )(A) 充分条件; (B) 充分必要条件; (C) 既不充分也不必要条件; (D) 必要条件;14.幂级数∑∞=1n n nx 的收径半径R = ( D )(A) 3 (B) 0 (C) 2 (D) 115.幂级数∑∞=11n n x n的收敛半径=R ( A )(A) 1 (B) 0 (C) 2 (D) 316.若幂级数∑∞=0n nn x a 的收敛半径为R ,则∑∞=+02n n n x a 的收敛半径为 ( A )(A) R (B) 2R(C) R (D) 无法求得17. 若lim 0n n u →∞=, 则级数1n n u ∞=∑( ) DA. 收敛且和为B. 收敛但和不一定为C. 发散D. 可能收敛也可能发散18. 若1n n u ∞=∑为正项级数, 则( B )A. 若lim 0n n u →∞=, 则1n n u ∞=∑收敛 B. 若1n n u ∞=∑收敛, 则21n n u ∞=∑收敛C. 若21n n u ∞=∑, 则1n n u ∞=∑也收敛 D. 若1n n u ∞=∑发散, 则lim 0n n u →∞≠19. 设幂级数1n n n C x ∞=∑在点3x =处收敛, 则该级数在点1x =-处( A )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不定 20. 级数1sin (0)!n nx x n ∞=≠∑, 则该级数( B )A. 是发散级数B. 是绝对收敛级数C. 是条件收敛级数D. 可能收敛也可能发散二、填空题1.设22(,)sin (1)ln()f x y x y x y =+-+,则 =')1,0(x f ___1___.2.设()()()22ln 1cos ,y x y x y x f +-+=,则)1,0('x f =____0______.3.二重积分的变量从直角坐标变换为极坐标的公式是()()⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρsin ,cos ,4.三重积分的变量从直角坐标变换为柱面坐标的公式是()()⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z f dxdydz z y x f ϕρρϕρϕρ,sin ,cos ,,5.柱面坐标下的体积元素 z d d d dv θρρ=6.设积分区域222:D x y a +≤, 且9Ddxdy π=⎰⎰, 则a = 3 。
《微积分》课程期末考试试卷(A)及参考答案
3、若函数
f (x, y)
x y ,则
x y
f
(
1 x
,
y)
(
)
A、 x y
x y
B、 1 xy
1 xy
C、 1 xy
1 xy
4、设 D 由 y x, y 2x, y 1围成,则 dxdy ( )
D
A、 1
2
B、 1
4
C、1
5、( )是一阶微分方程
3x 2
3y2
(6
分)。
2、
z y
xy
ln
x (3
分);
2z y 2
xy
ln 2
x
(6
分)。
3、
f
1 x
(
x,
y)
1
x x2
y2
(5
分);
f
1 x
(3,4)
2 (6
5
分)。
4、
z x
y
1 y
,
z y
x
x y2
(4
分);
dz
(y
1 )dx y
(x
x y2
六、求方程 yy' x 的通解。(6 分)
七、判别级数 n1
2n n3n
的敛散性。(6
分)
《微积分》课程期末考试试卷(A)参考答案
一、 填空题(每题 3 分,共 36 分)。
1、
x3 y3
2x
xy y
3xy
2、 1
多元微积分A(下)-期末复习题解答
复习题2一、填空题(每小题4分,共20分) 1. 设曲线L :422=+y x ,则曲线积分=++-⎰Lds y x y x 22)1(π8.2.若在全平面上曲线积分dy y x dx x axy L)cos ()sin 2-++⎰(与路径无关,则常数=a 2 .3.向量场{}zxy y e y e F x x ln ,cos ,sin =的散度 =F divzxy .4.设球面∑:2222R z y x =++的质量面密度222),,(z y x z y x ++=ρ,则球面构件的质量为34R π.5. 幂级数∑∞=+014n n nx 在收敛区间)(4,4-上的和函数=)(x s x-41 .二、单项选择题(每小题3分,共18分)1.设有向曲线L 为xy =,从点)1,1(到点)0,0(,则⎰=L dx y x f ),(( B ).A . dx x x f ⎰10),(; B. dx x x f ⎰01),(; C. dy y y f ⎰012),(; D. dy y y f y ⎰102),(2.2.设曲面∑质量分布均匀,且曲面∑的面积3=A ,曲面∑的质心是)0,1,2(-,则=⎰⎰∑dS y ( A ).A . 3-; B. 2-; C. 0;D. 1.3.设曲面∑为1-=z (10,10≤≤≤≤y x )的上侧,则( D ). A . ⎰⎰∑=1zdxdy ; B. ⎰⎰∑=1zdydz ;C. ⎰⎰∑-=1zdzdx ; D. ⎰⎰∑-=1zdxdy .4. 下列正项级数中收敛的是( B ).A. ∑∞=-1435n nnn ; B. ∑∞=02n n n;C. ∑∞=11n n; D. ∑∞=+121n nn . 5. 幂级数nn n x n∑∞=-1)1(( C ). A. 在1-=x ,1=x 处均发散; B. 在1-=x 处收敛,在1=x 处发散;C. 在1-=x 处发散,在1=x 处收敛;D. 在1-=x ,1=x 处均收敛.6. 设()f x 是以2π为周期的函数,在一个周期内⎩⎨⎧<<+≤≤--=ππx x x x x f 0,10,1)( ,则()f x 的傅里叶级数在点0=x 处收敛于( B ).A. 2;B. 1;C. 0;D. 1-.三、(6分)设曲线L :12+=x y (10≤≤x )上任意一点处的质量密度为xy y x =),(ρ,求该曲线构件的质量M . 解: 2='y ,dx ds 5=, (1分)⎰=Lds xy M(3分)⎰+=105)12(dx x x(5分)657=(6分)四、(6分)求质点在平面力场j x i y y x F2),(+=作用下沿抛物线L :21x y -=从点)0,1(移动到点()1,0所做的功W 的值.解: ⎰+=L dy x dx y W 2 (2分)[]⎰-+-=012)2(21dx x x x(4分)⎰-=012)51dx x ((5分)32=(6分)五、(7分)利用格林公式计算曲线积分⎰++++Ldy x x y dx y x y )13sin 2()cos (2,其中曲线L 为122=+y x 的右半部分,从)1,0(-A 到)1,0(B .解: 0:1=x L ,y 从1到1-, (1分),1cos 2,cos 2+=∂∂+=x y y P y x y P ,3cos 2,13sin 2+=∂∂++=x y xQ x x y Q (2分)π==∂∂-∂∂=+⎰⎰⎰⎰⎰+dxdy dxdy y Px Q Qdy Pdx DDL L 2)1(, (5分)又 ⎰⎰--==+1121dy Qdy Pdx L(6分)所以2)13sin 2()cos (2+=++++⎰πL dy x x y dx y x y (7分)六、 (6分)利用对面积的曲面积分计算旋转抛物面∑:221y x z --=在xoy 面上方部分的面积.解: 221y x z --=,,2,2y z x z y x-='-='dxdy y x dS 22441++=, (1分)⎰⎰∑=dS A(2分)dxdy y x D⎰⎰++=22441(4分)ρρρθπd d ⎰⎰+=1022041 (5分) π6155-=(6分)七、(6分)利用高斯公式计算曲面积分yzdxdy dzdx yz dydz xy -+⎰⎰∑,∑其中为圆锥面22y x z +=及平面0=z ,1=z 所围成的圆锥体Ω的整个边界曲面的外侧.解: yz R yz Q xy P -===,,,dv z R y Q x P yzdxdy dzdx yz dydz xy )(∂∂+∂∂+∂∂=-+⎰⎰⎰⎰⎰Ω∑dv z ⎰⎰⎰Ω= (3分)dz z d d ⎰⎰⎰=11020ρπρρθ (5分)4π=(6分)八、(6分)求幂级数∑∞=⋅+-05)1()3(n nnn x 的收敛区间.解: nn n a 5)1(1⋅+=,51)2(51lim lim1=++==∞→+∞→n n a a n n n n ρ, (2分)51==ρR(4分)收敛区间为53<-x ,即(2-,8)(6分)九、(7分)判别交错级数∑∞=-11sin )1(n n n是否收敛? 如果收敛,通过推导,指出是绝对收敛还是条件收敛. 解: 01sin>=nu n,0lim =∞→n n u ,n u 单调递减,由莱布尼茨申敛法知,交错级数∑∞=-11sin )1(n n n收敛。
多元函数微分学复习习题及答案
欢迎阅读第八章 多元函数微分法及其应用复习题及解答一、选择题1.极限=( B )lim x y x yx y →→+00242(A)等于0;(B)不存在; (C)等于 ;(D)存在且不等于0或121223 0x y →→4、函数在点处具有偏导数是它在该点存在全微分的( A )z f x y =(,)(,)x y 00(A)必要而非充分条件; (B)充分而非必要条件;(C)充分必要条件;(D)既非充分又非必要条件5、设,则= ( B )u y x =arctan∂∂ux(A); (B) ; (C);(D)x x y 22+-+yx y 22yx y 22+-+x x y 226、设,则 ( A )f x y yx(,)arcsin=f x '(,)21=(A );(B ); (C ); (D )-1414-12127、若,则 ( C ))ln(y x z -==∂∂+∂∂yz y x z x 8、设9、若1011((12f (A )点是函数的极大值点; (B )点是函数的极小值点;P 0z P 0z (C )点非函数的极值点;(D )条件不够,无法判定。
P 0z 二、填空题1、极限= ??????? 。
答:limsin()x y xy x→→0ππ2、极限=??????? 。
答:limln()x y x y e x y→→++01222ln 23、函数的定义域为 ??????? 。
答:z x y =+ln()x y +≥14、函数的定义域为 ??????? 。
答:,z xy=arcsin -≤≤11x y ≠05、设函数,则= ??????? 。
答:f x y x y xy y x (,)ln =++⎛⎝ ⎫⎭⎪22f kx ky (,)k f x y 2⋅(,)678,x xy =ln 91解:(1)要使函数有意义,必须有,即有.z =2210x y --≥221x y +≤故所求函数的定义域为,图形为图3.122{(,)|1}D x y x y =+≤(2)要使函数有意义,必须有.故所有函数的定义域为,ln()z x y =+0x y +>{}(,)|0D x y x y =+>图形为图3.2(3)要使函数有意义,必须有,即且.1ln()z x y =+ln()0x y +≠0x y +>1x y +≠欢迎阅读故该函数的定义域为,图形为图3.3{}(,)|01D x y x y x y =+>+≠,(4)要使函数有意义,必须有.故该函数的定义域为,ln(1)z xy =-10xy ->{(,)|1}D x y xy =>图形为图3.4图3.1 图3.2图3.3 图3.42解:x y 34、设解:z 1单y 解:L 利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=,)0,0(,400)33(01.06822>>-++-+=y x y xy x y x 令,解得唯一驻点(120,80).⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx又因,得06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A .0105.332>⨯=--B ACe n d欢迎阅读得极大值. 根据实际情况,此极大值就是最大值.故生产120单位产品甲与320)80,120(=L 80单位产品乙时所得利润最大320元.五、证明题1、设? 求证? )11(y x e z +-=z yz y x z x 222=∂∂+∂∂2? 3?? ? ? x y F y x -=∂∂y z F z -=∂∂zx F x z -=∂∂所以 ?1)()((-=-⋅-⋅-=∂∂⋅∂∂∂∂zx y z x y F F F F F F x z z yy x。
微积分期末试卷附详细标准答案2
一、填空题(每小题3分,共15分)1、已知 f(x)=e x , f N(x)] =1—x ,且中(x)之0,则9(x) = v'ln(1—x)…2c解 f(u)=e =1-x ,u =ln(1-x) ,u = .J 〕n(1 - x).2、已知 a 为常数,lim (--2— ax +1) =1,则 a =1.i : x一-ax 1) = lim (1 4 - a —) = 1 - a .x'二 x x3、已知 f ⑴=2,则 limf(1 3x)-f(1 x)=4.x )Dx解:lim[f(1 3x)-f(1)]-[f(1 x)-f(1)]=4x—0x4、函数 f(x)=(x —1)(x —2)(x —3)(x —4)地拐点数为 2.解:f (x)有 3 个零点 £,焦二:1 <彳 <2<^<3<^3<4, f "(x)有 2 个零点 %尸2:1<。
<2 <之2 <”2 <4,f "(x) =12(x —1)(x —”2),显然 f*(x)符号是:+「,+,故有 2 个拐点. dx-5、 -2 ------ - = tan x -cot x C .sin xcos x,2. 2 , ,dx cos x sin x , dx dx 斛: -- —2 --------------- 2- = 2 2-dx = ------- 2- ------------- -2- = tan x - cot x C .sin xcos x sin xcos x cos x sin x二、选择题(每小题3分,共15分)1、设f(x)为偶函数,甲(x)为奇函数,且f /(x)]有意义,则f [邛(x)]是A(A)偶函数; (B)奇函数;(C)非奇非偶函数;(D)可能奇函数也可能偶函数.1 - cosx C2—, x : 0,,,2、x=0 是函数 f (x) = { x 地 D0, x = 0.2「 1 1 x 1 斛:0 = lim — = lim ( ----(A)跳跃间断点; (B)连续点;(C)振荡间断点;(D)可去间断点.3、若函数f(x)在X0处不可导,则下列说法正确地是 B(A)f(x)在%处一定不连续;(B) f (x)在X o处一定不可微;(C)f(x)在X o处地左极限与右极限必有一个不存在;(D) f (x)在x0处地左导数与右导数必有一个不存在^4、仅考虑收益与成本地情况下,获得最大利润地必'要条件是: D(A) R"(Q)>C"(Q) ; (B) R"(Q) <C"(Q);(C) R"(Q) =C“(Q) ;(D) R'(Q) =C'(Q).5、若函数f '(x)存在原函数,下列错误地等式是: Bd(A) 一ff(x)dx=f (x) ;(B)』f (x)dx=f(x);dx(C) d f f (x)dx =f (x)dx;(D) f df (x) =f (x) +C .三、计算题(每小题6分,共60分)1、设f (x —2) =2x2"x— x,求f(x +2).答案:f(x + 2) =2x244x—x—4解:令t =x - 2,则f ⑴=2(t均24t物_(t+2) =2「*七54 T+2=2t2/_t_2,(3 分)于是f(x+2) =2(x阳2u — (x+2) -2 =2x2 七、七“ 一x —4 = 2x2 七x— x —4. (6 分)2、计算1吧m05( J n十1 一J n).答案:1n mc 0sin有-«户n m8s舄十二(3 分)解:1=lim cos —^n— n1二 11-1 nsin 11nx解:y' = (e x )'(2 分)6、求曲线xln y + y —2x=1在点(1,1)处地法线方程.答案:x+y —2 = 0解:方程两边对x 求导得:ln y + xy + y '- 2 = 0 , y_ Cos 「0 一 -1 .(6分) cos,1 0 - 13、求极限lim ( 2 n——n 2n +… 2 n 2).答案: 解:由于— nn n 21n n 22 +…2n八-7, (3分)而 lim 一=lim—=1 1 lim 一=limn —i彳二1,2 n所以lim(+…+)=1. (6 分)4、求极限lim 2ln(1 x )x —0 secx - cos x,〃2、解:lim1n(1 x)x—0secx - cosx x 02ln(1 x ) 二 lim cosxlim ——2-- x 0sin x=lim 2x1+ x 2(4 分)x 0 2sinxcosx =limx —02、 (1 x )cosx.. x lim --- x 「° sin x =1. (6 分) sin 15、求函数y = x x 地导数.答案:.1 sin —x y = xcos'nx 1sin 1)x.1 , sin - ln x 11 1 1 =e x [cos-( --2) ln x sin ] .1 , , , ,sin — 1 1 1 1 =x x ( 2cos — ln x sin ) .(6 分)1将(x, y) = (1,1)代入得法线斜率k = 一—― = _1, (3分) y⑴从而法线方程为:y_1=_1,(x—1),即:* + 丫—2 = 0.(6分),一八 1 4 3 r 一、7、求曲线y= x —x +1地凹凸区间和拐点.24答案:曲线在区间(―吗0]和[1,+“)是凹地,在区间[Q1]是凸地拐点为(0,1), (1;).31 x _ 1 x _ 1 x _ 1x_ 1x_ e cos2x e d sin 2x e cos2x e sin 2x - e sin 2xdx ,2 4 2 4 4 x 一 . 4 x.1 .一 一 、一 … , J e cos2xdx =^e (asin 2x-cos2x)+C .(6 分)10、设某商品地需求函数为 Q =100 -5P 淇中P,Q 分别表示需求量和价格,试求当总收益达到最大时,此时地需求弹性,并解释其经济意义.b5E2RGbCAP解:⑴ f (x) C(-::, ::),(2)3 2 _ .. 2f (x) =2x -3x , f (x) =6x -6x =6x(x -1),4f "(x)=0,得 x 1 =0, x 2 =1. f(0) = 1, f (1) =43 (3分)(4).... ... 4 曲线地拐点为(0,1)、(1,-).(6) 曲线在区间(―g,0]和[1,+比)是凹地,在区间[0,1]是凸地. (6分)8、计算dx.答案:66G - 6 arctan 6x + Cdx dx解 (1 3 x) x -(6x)3[1 (6x)2]56t 5dt八----- 了(3分)2A (1 t )-1 6 2dtdt =6 ! dt - = 6 । 1 t=6t -6arctant +C =66/x -6arctan6/x +C .(6分)9、计算 [exsin 2xdx 答案• —e x(-sin 2x -cos2x) +C1021 V斛: e sin 2xdx e d cos2x =一 21e xcos2x 1 2 2fe xcos2xdx (3 分)列表如答案:。
(完整版)多元函数微分学复习题及答案
第八章 多元函数微分法及其应用 复习题及解答一、选择题1. 极限lim x y x yx y→→+00242= (提示:令22y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0或12 2、设函数f x y x y y xxy xy (,)sin sin=+≠=⎧⎨⎪⎩⎪1100,则极限lim (,)x y f x y →→0= ( C )(提示:有界函数与无穷小的乘积仍为无穷小)(A) 不存在 (B) 等于1 (C) 等于0 (D) 等于23、设函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000,则(,)f x y ( A )(提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =,200(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以,(,)f x y 在整个定义域内处处连续.)(A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件5、设u y x =arctan ,则∂∂u x = ( B )(A)xx y 22+(B) -+y x y 22 (C) yx y 22+(D)-+xx y 226、设f x y yx(,)arcsin=,则f x '(,)21= ( A ) (A )-14(B )14 (C )-12 (D )127、设yxz arctan=,v u x +=,v u y -=,则=+v u z z ( C )(A )22v u v u -- (B )22v u u v -- (C )22v u v u +- (D )22v u uv +-8、若f x x x x f x x x x (,),(,)'232612=+=+,则f x x y '(,)2= ( D ) (A) x +32(B) x -32(C) 21x + (D) -+21x 9、设z y x =,则()(,)∂∂∂∂z x zy+=21 ( A ) (A) 2 (B) 1+ln2 (C) 0 (D) 110、设z xye xy =-,则z x x x'(,)-= ( D ) (A)-+2122x x e x () (B)2122x x e x ()- (C)--x x e x ()122 (D)-+x x e x ()12211、曲线x t y t z t ===24sin ,cos ,在点(,,)202π处的法平面方程是 (C )(A) 242x z -=-π (B) 224x z -=-π (C) 42y z -=-π (D) 42y z -=π12、曲线45x y y z ==,,在点(,,)824处的切线方程是 (A )(A)842204x z y --=-= (B)x y z +==+122044 (C) x y z -=-=-85244 (D)x y z -=-=351413、曲面x z y x z cos cos +-=ππ22在点ππ2120,,-⎛⎝ ⎫⎭⎪处的切平面方程为 (D )(A )x z -=-π1 (B )x y -=-π1 (C )x y -=π2 (D )x z -=π214、曲面x yz xy z 2236-=在点(,,)321处的法线方程为 (A ) (A )x y z +=--=--58531918 (B )x y z -=-=--3823118(C )83180x y z --= (D )831812x y z +-=15、设函数z x y =-+122,则点 (,)00是函数 z 的 ( B ) (A )极大值点但非最大值点 (B )极大值点且是最大值点 (C )极小值点但非最小值点 (D )极小值点且是最小值点 16、设函数z f x y =(,)具有二阶连续偏导数,在P x y 000(,)处,有2)()(,0)()(,0)(,0)(000000======P f P f P f P f P f P f yx xy yy xx y x ,则( C )(A )点P 0是函数z 的极大值点 (B )点P 0是函数z 的极小值点 (C )点P 0非函数z 的极值点 (D )条件不够,无法判定 17、函数f x y z z (,,)=-2在222421x y z ++=条件下的极大值是 ( C )(A) 1 (B) 0 (C)-1 (D) -2 二、填空题 1、极限limsin()x y xy x→→0π= ⎽⎽⎽⎽⎽⎽⎽ .答:π 2、极限limln()x y x y e x y→→++01222=⎽⎽⎽⎽⎽⎽⎽ .答:ln23、函数z x y =+ln()的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:x y +≥14、函数z xy=arcsin 的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:-≤≤11x ,y ≠0 5、设函数f x y x y xy y x (,)ln =++⎛⎝ ⎫⎭⎪22,则f kx ky (,)= ⎽⎽⎽⎽⎽⎽⎽ .答:k f x y 2⋅(,)6、设函数f x y xy x y (,)=+,则f x y x y (,)+-= ⎽⎽⎽⎽⎽⎽⎽ .答:222x y x-(22()()(,)()()2x y x y x y f x y x y x y x y x+--+-==++-Q )7、设f x y x y x y A x y (,)ln()//=-⋅+<+≥⎧⎨⎩11212222222,要使f x y (,)处处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:-ln28、设f x y x y x y x y Ax y (,)tan()(,)(,)(,)(,)=++≠=⎧⎨⎪⎩⎪22220000,要使f x y (,)在(0,0)处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:1 9、函数221x y z x +=-的间断点是 .答:直线10x -=上的所有点10、函数f x y x y yx (,)cos =-122的间断点为 ⎽⎽⎽⎽⎽⎽⎽ .答:直线y x =±及x =011、设z x y y =-+sin()3,则∂∂z xx y ===21_________ .答:3cos512、设f x y x y (,)=+22,则f y (,)01= _________ .答:113、设u x y z x y z(,,)=⎛⎝ ⎫⎭⎪,则)3,2,1(d u =_________ .答:38316182d d ln d x y z --14、设u x x y =+22,则在极坐标系下,∂∂ur= _________ .答:0 15、设u xy y x =+,则∂∂22u x = _________.答:23yx16、设u x xy =ln ,则∂∂∂2u x y = ___________ .答:1y17、函数y y x =()由12+=x y e y 所确定,则d d y x = ___________ .答:22xye xy - 18、设函数z z x y =(,)由方程xy z x y z 2=++所确定,则∂∂zy= _______ .答:2112xyz xy --19、由方程xyz x y z +++=2222所确定的函数z z x y =(,)在点(1,0,-1)处的全微分d z = _________ .答:d d x y -220、曲线x t y t z t ===23213,,在点(,,)1213处的切线方程是_________.答:x y z -=-=-12221321、曲线x te y e z t e t t t ===232222,,在对应于 t =-1点处的法平面方程是___________. 答:01132=+--e y x 22、曲面xe y e z e ey z x ++=+223321在点(,,)210-处的法线方程为_________ . 答:e ze y x 22212=-+=- 23、曲面arctan y xz 14+=π在点(,,)-210处的切平面方程是_________.答:y z +=2124、设函数z z x y =(,)由方程123552422x xy y x y e z z +--+++=确定,则函数z的驻点是_________ .答:(-1,2) 27、函数z x y x y =----2346122的驻点是_________.答:(1,1)25、若函数f x y x xy y ax by (,)=+++++22236在点 (,)11-处取得极值,则常数a =_________, b =_________.答:a =0,b =426、函数f x y z x (,,)=-22在x y z 22222--=条件下的极大值是_______答:-4 三、计算题1、求下列二元函数的定义域,并绘出定义域的图形.(1) z = (2)ln()z x y =+ (3)1ln()z x y =+ (4)ln(1)z xy =-解:(1)要使函数z =有意义,必须有2210x y --≥,即有221x y +≤.故所求函数的定义域为22{(,)|1}D x y x y =+≤,图形为图3.1(2)要使函数ln()z x y =+有意义,必须有0x y +>.故所有函数的定义域为{}(,)|0D x y x y =+>,图形为图3.2(3)要使函数1ln()z x y =+有意义,必须有ln()0x y +≠,即0x y +>且1x y +≠.故该函数的定义域为{}(,)|01D x y x y x y =+>+≠,,图形为图3.3(4)要使函数ln(1)z xy =-有意义,必须有10xy ->.故该函数的定义域为{(,)|1}D x y xy =>,图形为图3.4图3.1 图3.2图3.3 图3.42、求极限limsin x y y xxy →→+-0211.解:lim sin x y y xxy →→+-0211=⋅++→→lim sin ()x y y x xy xy 00211= 43、求极限lim sin()x y x y x yxy →→-+0023211. 解:原式=lim ()sin()x y x y x y x y xy →→-++0232211=-++⋅→→limsin()x y x y xy xy 002111=-124、求极限lim x y xxye xy→→-+0416 . 解:lim x y xxye xy→→-+00416=++-→→lim ()x y x xye xy xy 00416= -85、设u x y y x =+sin cos ,求 u u x y ,. 解:u y y x x =-sin sinu x y x y =+cos cos6、设z xe ye y x =+-,求z z x y ,. 解:z e ye x y x =--z xe e y y x =+-7、设函数z z x y =(,)由yz zx xy ++=3所确定,试求∂∂∂∂z x zy,(其中x y +≠0). 解一:原式两边对x 求导得yz x x zxz y ∂∂∂∂+++=0,则∂∂z x z y y x =-++同理可得:∂∂z y z x y x =-++ 解二:xy xz F F y z xy y z F F x z x y y x ++-=-=++-=-=∂∂∂∂, 8、求函数z x xy y x y =-++-+23243122的极值.解:由z x y z x y x y=-+==-+-=⎧⎨⎩43403430,得驻点(,)-10074334>=--==yy yxxy xx z z z z D z xx =>40,函数z 在点(,)-10处取极小值z (,)-=-101.9、设z e x y =+32,而x t y t ==cos ,2,求d d z t. 解:d d (sin )()zte t e t x y x y =-+++3223232=-++(sin )3432t t e x y10、设z y xy x =ln(),求∂∂∂∂z x z y,. 解:z y y xy xy x x x =⋅+ln ln 1 z xy xy yy y x x =+-11ln() 11、设u a x a x yz a =->+ln ()0,求d u . 解:∂∂u x a a ax x yz =-+-ln 1,∂∂u y a z a x yz =⋅+ln ,∂∂u zya a x yz =+ln d (ln )d ln (d d )u a a ax x a a z y y z x yz x yz =-+++-+112、求函数z x y e xy =++ln()22的全微分.解:∂∂∂∂z x x ye x y e z y y xe x y e xyxyxyxy=+++=+++222222,[]d ()d ()d z x y ex ye x y xe y xyxy xy =+++++12222 四、应用题1、要造一容积为128立方米的长方体敞口水池,已知水池侧壁的单位造价是底部的2倍,问水池的尺寸应如何选择,方能使其造价最低? 解:设水池的长、宽、高分别为x y z ,,米.水池底部的单位造价为a .则水池造价()S xy xz yz a =++44 且 xyz =128令 ()L xy xz yz xyz =+++-44128λ由 ⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=01280440404xyz L xy y x L xz z x L yz z y L z y x λλλλ得 x y z ===82由于实际问题必定存在最小值,因此当水池的长、宽、高分别为8米、8米、2米时,其造价最低.2、某工厂生产两种商品的日产量分别为x 和y (件),总成本函数22128),(y xy x y x C +-=(元).商品的限额为42=+y x ,求最小成本. 解:约束条件为042),(=-+=y x y x ϕ,构造拉格朗日函数22(,,)812(42)F x y x xy y x y λλ=-+++-,解方程组160240420x y F x y F x y F x y λλλ'⎧=-+=⎪'=-++=⎨⎪'=+-=⎩,得唯一驻点)17,25(),(=y x ,由实际情况知,)17,25(),(=y x 就是使总成本最小的点,最小成本为8043)17,25(=C (元).3、某工厂生产两种产品甲和乙,出售单价分别为10元与9元,生产x 单位的产品甲与生产y 单位的产品乙的总费用是)33(01.03240022y xy x y x +++++元, 求取得最大利润时,两种产品的产量各为多少?解:),(y x L 表示获得的总利润,则总利润等于总收益与总费用之差,即有利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=)0,0(,400)33(01.06822>>-++-+=y x y xy x y x ,令⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx,解得唯一驻点(120,80).又因06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A ,得0105.332>⨯=--B AC .得极大值320)80,120(=L . 根据实际情况,此极大值就是最大值.故生产120单位产品甲与80单位产品乙时所得利润最大320元. 五、证明题 1、设)11(yx e z +-=, 求证z yz y x z x 222=∂∂+∂∂.证明: 因为2)11(1x e xzy x ⋅=∂∂+-, 2)11(1ye y z y x ⋅=∂∂+-, 所以 z e e yz y x z x y x y x 2)11()11(22=+=∂∂+∂∂+-+-2、证明函数nx ey tkn sin 2-=满足关系式22x y k t y ∂∂=∂∂ 证明:因为nx e kn kn nx e ty tkn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx nex y tkn cos 2-=∂∂, nx e n xy t kn sin 2222--=∂∂, nx e kn xyk t kn sin 2222--=∂∂,所以22x y k t y ∂∂=∂∂.3、设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅.证明:y z y x z x ∂∂⋅+∂∂⋅])([])()([yu u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .。
多元函数微积分期末练习题及答案
多元函数微积分期末练习题及答案(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--多元函数微积分期末练习题及答案一.填空:1.空间直角坐标系中,点P(2,3,4)Q(2,4,-1)距离∣PQ∣=2.过点P(1,2,3)且与xoy平面平行的平面方程为3.函数z =x2-y2 + 2x - 4y的驻点为4.已知z =f(x,y)的二阶偏导数连续且fxy (x,y) = 4xy+ x 则fyx(x,y)=5.已知在平面区域D内f (x,y)>O,则由D为底 z = f (x,y)为顶的曲顶柱体体积可表示为二.单项选择填空1.点P(0,2,-1)在A 第V卦限B 第 VIII 卦限C x轴上D yoz平面2.方程x2+y2=1在空间直角坐标系中表示A 单位圆B 单位圆包围的平面区域C 圆柱面D 平面3.z =f (x,y) 在(x0, y)点偏导数存在,则在该点A 全微存在B 偏导数连续C 函数连续D A,B,C均不对4.z = f(x,y)在驻点(x0, y)处存在二阶偏导数,且fxy(x。
,y。
) 2-f xx (x。
,y。
)-fyy(x。
,y。
)>O fxx(x。
,y。
) >O 则 (x。
,y。
) 点为函数z = f(x,y)的A 极大值点B 极小值点C 不是极值点D 不能确定25.则等式成立的是A =B =C =D =三.计算题1.求2.z=求全微分dz3.设cos(x+y)+y=0,求4.设x+y2+z2=xy+2z,求5.求 z=2x-4y-x2-y2+5的极值6.改变二次积分积分次序7. D y=x2 y=x围成答案:一、填空:1 2 3 (-1,-2) 435二、单项选择:D C D C A三、计算题:12 34 56 74。
《微积分(下)》第2章多元函数微分学练习题--参考答案
第2章 多元函数微分学一、二元函数的极限专题练习:1.求下列二元函数的极限: (1)()11(,)2,2lim2;y xy x y xy +⎛⎫→- ⎪⎝⎭+ (2)()()2222(,),3limsin;x y x y x y →∞∞++(3) ()(,)0,1sin lim;x y xyx →(4)((,)0,0limx y →解: (1) 当1(,)2,2x y ⎛⎫→- ⎪⎝⎭时,10xy +→,因此()[]1112(1)11(,)2,(,)2,22lim2lim1(1)e yxy y xy x y x y xy xy -++⎛⎫⎛⎫→-→- ⎪⎪⎝⎭⎝⎭⎧⎫+=++=⎨⎬⎩⎭。
(2) 当()(,),x y →-∞+∞时,2230x y →+,因此222233sin ~x y x y++, ()()()()22222222(,),(,),33limsinlim 3x y x y x y x y x y x y →∞∞→∞∞+=+⋅=++。
(3) 当()(,)0,1x y →时,0xy →,因此sin ~xy xy ,()()(,)0,1(,)0,1sin limlim 1x y x y xy xyx x →→==。
(4) 当()(,)0,0x y →10,0xy →→,因此,(())())(,)0,0(,)0,0(,)0,01limlimlim12x y x y x y xy xy→→→===。
2.证明:当()(,)0,0x y →时,()44344(,)x y f x y xy=+的极限不存在。
证明: 取2(0)y kx k =≠,则()()()()()()()444484433334444444(,)0,0(,)0,0(,)0,0limlimlim11x y x y x y x y k x x k k xyxk xk k →→→===++++显然此极限值与k 的取值相关,因此当()(,)0,0x y →时,()44344(,)x y f x y xy=+的极限不存在。
多元函数微分学练习题
(2)
xy ; (3) lim x x 2 y 2 y 3.问下列函数在 (0, 0) 点是否连续?
1 (4) lim 1 x x y 4
。
x3 y , x 2 y 2 0, 6 2 (1) f ( x, y ) x y 0, x 2 y 2 0; x3 y3 , x 2 y 2 0, sin (2) f ( x, y ) x 2 y 2 0, x 2 y 2 0. 4. 设 D 是 Oxy 平面中的有界闭区域,M 0 为 D 外的一点。 证明在 D 中必存在点 P0
8.设 z arcsin
x x2 y2
,求
2z 2z z , 2, 。 x yx x
4 a 2t
9.证明:函数 u
1 2a t
e
( x b ) 2
( a, b 为常数)当 t 0 时满足方程
u 2u a2 2 。 t x
x y 10.设 u ( x, y ) yf y xg x ,其中函数 f , g 具有二阶连续导数。证明 2u 2u x 2 y 0。 xy x 2 f 2u 2u 11.设二元函数 f 具有二阶连续导数,且满足 2 y , x y , 2 x, xy x y 求f。 12.有一边长分别为 x 6m 与 y 8m 的矩形,如果 x 边增加 5cm ,而 y 边减少 10cm ,问这个矩形的对角线的长度的变化情况?
(1, 1, 1)
。
1 2 2 , x 2 y 2 0, ( x y ) sin 2 2 x y 2.设 f ( x, y ) 0, x 2 y 2 0.
微积分期末复习多元函数重积分
多元函数 重积分复习一、客观题: 1.判断1).已知),(2),(),(lim ),(0b a f xb x a f b x a f b a x f x x '=--+∂∂→存在,则 ( √ )2).若二元函数),().(),(),(0000y x P y x f z y x P y x f z 在点的两个偏导数存在,则在点==可微。
( × )3).若二元函数的两个偏导在点不可微,则在点),().(),(),(0000y x P y x f z y x P y x f z ==不存在。
数yzx z ∂∂∂∂, ( × ) 4).若二元函数.),(),(),().(0000不可微在点则的两个偏导数不连续,在点y x P y x f z y x P y x f z ==不存在。
数yzx z ∂∂∂∂, ( × ) 2.选择题1). 函数),(y x f 在),(00y x 处可微分,是),(y x f 在),(00y x 处连续的_________条件.A . 充分条件 B. 既充分又必要条件 C . 必要条件 D. 既非充分又非必要条件 答案:A2).''x 00y0000f(x ,y )=0,f(x ,y )=0是函数f(x,y)在点(x ,y ) 取得极值的________. A. 必要条件 B. 充分条件C. 充分必要条件D. 既非充分又非必要条件 答案:D3).设函数),(y x f z =在(0,0)处存在偏导数,且,0)0,0(,0)0,0(,0)0,0(===f f f y x 那么 。
A. ),(lim 0y x f y x '→→ 必定存在 B .),(y x f 在(0,0)处必连续C. 0=dz D .0,0),(lim 220==+→→dz yx y x f y x 则若答案:D4).设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于( )。
高等数学题库第08章(多元函数微分学).
- 1 -第八章多元函数微积分习题一一、填空题1. 设f(x,y)=x-3y. ,则f(2,-1)=_______,f(-1,2)=________x2+y2_______. 2. 已知f(x,y)=2x2+y2+1,则f(x,2x)=__________二、求下列函数的定义域并作出定义域的图形 1.z=3. z=y-x 2. z=-x+-y 4-x2-y24. z=log2xy习题二一、是非题1. 设z=x+lny,则2∂z1=2x+ ()∂xy2. 若函数z=f(x,y)在P(x0,y0)处的两个偏导数fx(x0,y0)与fy(x0,y0)均存在,则该函数在P点处一定连续()3. 函数z=f(x,y)在P(x0,y0)处一定有fxy(x0,y0)=fyx(x0,y0) ()xy⎧,x2+y2≠0⎪4. 函数f(x,y)=⎨x2+y2在点(0,0)处有fx(0,0)=0及⎪0,x2+y2=0⎩fy(0,0)=0 ()5. 函数z=x2+y2在点(0,0)处连续,但该函数在点(0,0)处的两个偏导数zx(0,0),zy(0,0)均不存在。
()二、填空题- 2 -1. 设z=lnx∂z∂z,则=___________;∂x∂yy2x=2y=1=___________;2. 设f(x,y)在点(a,b)处的偏导数fx(a,b)和fy(a,b)均存在,则limh→0f(a+h,b)-f(a,b-2h)=_________.h2xy+sin(xy);x2+ey三、求下列函数的偏导数:1. z=x3y-y3x+1;2. z=3. z=(1+xy)y;4. z=lntanx; y5. u=xy2+yz2+zx2∂2z∂2z∂2z四、求下列函数的2,和:∂x∂y2∂x∂y3241. z=x+3xy+y+2;2. z=xy五、计算下列各题1. 设f(x,y)=e-sinx(x+2y),求fx(0,1),fy(0,1);∂2z2. 设f(x,y)=xln(x+y),求2∂x六、设z=ln(x+y),证明:x1313∂2z,2x=1∂yy=2∂2z,x=1∂x∂yy=2.x=1y=2∂z∂z1+y=. ∂x∂y3习题三一、填空题2xy_____. 1.z=xy+e在点(x,y)处的dz=__________ 2.z=xx+y_____. 在点(0,1)处的dz=__________- 3 -3.设z=f(x,y)在点(x0,y0)处的全增量为∆z,全微分为dz,则f(x,y)在点(x0,y0) 处的全增量与全微分的关系式是__________________.二、选择题1.在点P处函数f(x,y)的全微分df存在的充分条件为()A、f的全部二阶偏导数均存在B、f连续C、f的全部一阶偏导数均连续D、f连续且fx,fy均存在2.使得df=∆f的函数f为()A、ax+by+c(a,b,c为常数)B、sin(xy)C、e+eD、x2+y22三、设z=xy,当∆x=0.1,∆y=0.2时,在(1,2)点处,求∆z和dz。
(完整版)多元函数微分学复习题及答案精选全文完整版
可编辑修改精选全文完整版第八章 多元函数微分法及其应用 复习题及解答一、选择题 1. 极限= (提示:令22y k x =) ( B )(A) 等于0 (B) 不存在 (C) 等于(D) 存在且不等于0或2、设函数,则极限= ( C )(提示:有界函数与无穷小的乘积仍为无穷小)(A) 不存在 (B) 等于1 (C) 等于0 (D) 等于2 3、设函数,则(,)f x y ( A )(提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =,200(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以,(,)f x y 在整个定义域内处处连续.)(A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续4、函数在点处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件 5、设,则= ( B )(A)(B)(C)(D)6、设,则 ( A )(A ) (B ) (C ) (D )7、设yxz arctan=,v u x +=,v u y -=,则=+v u z z ( C ) (A )22v u v u -- (B )22v u u v -- (C )22v u v u +- (D )22v u uv +-8、若,则= ( D ) (A) (B)(C)(D)9、设,则( A )(A) 2 (B) 1+ln2 (C) 0 (D) 1 10、设,则 ( D )(A) (B)(C) (D)11、曲线在点处的法平面方程是 (C ) (A) (B)(C)(D)12、曲线在点处的切线方程是 (A )(A) 842204x z y --=-=(B) (C) (D)13、曲面在点处的切平面方程为 (D )(A ) (B )(C )(D )14、曲面在点处的法线方程为 (A )(A ) (B ) (C ) (D )15、设函数,则点是函数 的 ( B )(A )极大值点但非最大值点 (B )极大值点且是最大值点(C )极小值点但非最小值点 (D )极小值点且是最小值点 16、设函数具有二阶连续偏导数,在处,有2)()(,0)()(,0)(,0)(000000======P f P f P f P f P f P f yx xy yy xx y x ,则( C )(A )点是函数的极大值点 (B )点是函数的极小值点(C )点非函数的极值点 (D )条件不够,无法判定17、函数在222421x y z ++=条件下的极大值是 ( C )(A) (B) (C) (D)二、填空题 1、极限= ⎽⎽⎽⎽⎽⎽⎽ .答:2、极限=⎽⎽⎽⎽⎽⎽⎽ .答:3、函数的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:4、函数的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:,5、设函数,则= ⎽⎽⎽⎽⎽⎽⎽ .答:6、设函数,则= ⎽⎽⎽⎽⎽⎽⎽ .答:222x y x-(22()()(,)()()2x y x y x y f x y x y x y x y x+--+-==++-)7、设,要使处处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:8、设,要使在(0,0)处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:19、函数221x y z x +=-的间断点是 .答:直线10x -=上的所有点10、函数的间断点为 ⎽⎽⎽⎽⎽⎽⎽ .答:直线及11、设,则_________ .答:3cos5 12、设,则= _________ .答:1 13、设,则=_________ .答:14、设,则在极坐标系下,= _________ .答:015、设,则= _________.答:16、设,则= ___________ .答:17、函数由所确定,则= ___________ .答:18、设函数由方程所确定,则= _______ .答:19、由方程所确定的函数在点(1,0,-1)处的全微分= _________ .答:20、曲线在点处的切线方程是_________.答:21、曲线在对应于点处的法平面方程是___________. 答:01132=+--e y x22、曲面在点处的法线方程为_________ .答:eze y x 22212=-+=- 23、曲面在点处的切平面方程是_________.答:24、设函数由方程确定,则函数的驻点是_________ .答:(-1,2) 27、函数的驻点是_________.答:(1,1)25、若函数在点处取得极值,则常数_________,_________.答:0,426、函数在条件下的极大值是_______答:三、计算题1、求下列二元函数的定义域,并绘出定义域的图形.(1) z = (2)ln()z x y =+ (3)1ln()z x y =+ (4)ln(1)z xy =-解:(1)要使函数z =有意义,必须有2210x y --≥,即有221x y +≤.故所求函数的定义域为22{(,)|1}D x y x y =+≤,图形为图3.1(2)要使函数ln()z x y =+有意义,必须有0x y +>.故所有函数的定义域为{}(,)|0D x y x y =+>,图形为图3.2(3)要使函数1ln()z x y =+有意义,必须有ln()0x y +≠,即0x y +>且1x y +≠.故该函数的定义域为{}(,)|01D x y x y x y =+>+≠,,图形为图3.3(4)要使函数ln(1)z xy =-有意义,必须有10xy ->.故该函数的定义域为{(,)|1}D x y xy =>,图形为图3.4图3.1 图3.2图3.3 图3.4 2、求极限 .解:= 43、求极限 .解:原式=4、求极限 .解:= -85、设,求.解:6、设,求.解:7、设函数由所确定,试求(其中).解一:原式两边对求导得,则同理可得:解二:xy xz F F y z xy yz F F x z x y y x ++-=-=++-=-=∂∂∂∂, 8、求函数的极值.解:由,得驻点074334>=--==yyyxxy xx z z z z D,函数在点处取极小值.9、设,而,求.解:=-++(sin )3432t t e x y10、设,求.解:11、设,求.解:,,12、求函数的全微分.解:四、应用题1、要造一容积为128立方米的长方体敞口水池,已知水池侧壁的单位造价是底部的2倍,问水池的尺寸应如何选择,方能使其造价最低? 解:设水池的长、宽、高分别为米.水池底部的单位造价为. 则水池造价 且令由 ⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=01280440404xyz L xy y x L xz z x L yz z y L z y x λλλλ得由于实际问题必定存在最小值,因此当水池的长、宽、高分别为8米、8米、2米时,其造价最低.2、某工厂生产两种商品的日产量分别为x 和y (件),总成本函数22128),(y xy x y x C +-=(元).商品的限额为42=+y x ,求最小成本. 解:约束条件为042),(=-+=y x y x ϕ,构造拉格朗日函数22(,,)812(42)F x y x xy y x y λλ=-+++-,解方程组160240420x y F x y F x y F x y λλλ'⎧=-+=⎪'=-++=⎨⎪'=+-=⎩,得唯一驻点)17,25(),(=y x ,由实际情况知,)17,25(),(=y x 就是使总成本最小的点,最小成本为8043)17,25(=C (元).3、某工厂生产两种产品甲和乙,出售单价分别为10元与9元,生产x 单位的产品甲与生产y 单位的产品乙的总费用是)33(01.03240022y xy x y x +++++元, 求取得最大利润时,两种产品的产量各为多少?解:),(y x L 表示获得的总利润,则总利润等于总收益与总费用之差,即有利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=)0,0(,400)33(01.06822>>-++-+=y x y xy x y x ,令⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx,解得唯一驻点(120,80).又因06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A ,得0105.332>⨯=--B AC .得极大值320)80,120(=L . 根据实际情况,此极大值就是最大值.故生产120单位产品甲与80单位产品乙时所得利润最大320元. 五、证明题 1、设)11(yx e z +-=, 求证z yz y x z x 222=∂∂+∂∂.证明: 因为2)11(1x e x z y x ⋅=∂∂+-, 2)11(1ye y z y x ⋅=∂∂+-, 所以z e e yz y x z x y x y x 2)11()11(22=+=∂∂+∂∂+-+- 2、证明函数nx ey tkn sin 2-=满足关系式22x y k t y ∂∂=∂∂ 证明:因为nx e kn kn nx e ty tkn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx nex y tkn cos 2-=∂∂, nx e n xy t kn sin 2222--=∂∂, nx ekn xy k tkn sin 2222--=∂∂, 所以22xy k t y ∂∂=∂∂.3、设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅.证明:y z y x z x ∂∂⋅+∂∂⋅])([])()([yu u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案: 一、填空:
1 2 3 (-1,-2) 4
5 二、单项选择:
DCDCA 三、计算题:
1
2
3
4
5 6
7
3.z =f (x,y) 在(x0, y0)点偏导数存在,则在该点
A 全微存在 B 偏导数连续 C 函数连续 D A,B,C均不对
4.z = f(x,y)在驻点(x0, y0)处存在二阶偏导数,且
fxy
(x。,
y。)
2- fxx (x。, (x。,
y。)-fyy y。)>O fxx
(x。,
y。) >O 则 (x。,
函数z = f(x,y)的
A 极大值点 B 极小值点 C 不是极值点 5.
y。) 点为 D 不能确定
则等式成立的是 A =
B =
C =
D = 三.计算题 1.
求
2.z= 求全微分dz
3.设cos(x+y)+y=0,求 4.设x+y2+z2=xy+2z, 求
5.求 z=2x-4y-x2-y2+5的极值 6.改变二次积分积分次序 7.
多元函数微积分期末练习题及答案 一.填空: 1.空间直角坐标系中,点P(2,3,4)Q(2,4,-1)距离
∣PQ∣=
2.过点P(1,2,3)且与xoy平面平行的平面方程为 3.函数z =x2-y2 + 2x - 4y的驻点为 4.已知z =f(x,y)的二阶偏导数连续且fxy
(x,y) = 4xy
+ x 则fyx
(x,y)=
5.已知在平面区域D内f (x,y)>O,则由D为底 z = f (x,y)为顶的曲顶
柱体体积可表示为
二.单项选择填空
1.点P(0,2,-1)在
A 第V卦限 B 第 VIII 卦限 C x轴上 D yoz平面
2.方程x2+y2=1在空间直角坐标系中表示
A 单位圆ຫໍສະໝຸດ B 单位圆包围的平面区域 C 圆柱面 D 平面