数学总结—公式大全

合集下载

最完整初中数学知识点总结及公式大全

最完整初中数学知识点总结及公式大全

最完整初中数学知识点总结及公式大全1.整数和有理数-整数的加减乘除运算规则:同号相加取共同的符号,异号相加取绝对值大的符号;乘法规则:同号得正,异号得负;除法规则:除数不为零,同号得正,异号得负。

-有理数的加减乘除运算规则:同号相加取共同的符号,异号相加取绝对值大的符号;乘法规则:同号得正,异号得负;除法规则:除数不为零,同号得正,异号得负。

2.平面图形-平面图形的性质与计算:正方形的面积等于边长的平方;矩形的面积等于长乘以宽;三角形的面积等于底乘以高的一半;梯形的面积等于上底加下底乘以高的一半。

3.线的关系与方程-平行线和垂直线的特征:平行线具有相同的斜率,垂直线具有互为倒数的斜率。

-直线的方程:一般式方程、斜截式方程、截距式方程、点斜式方程。

4.相似与全等-相似的概念和判定条件:对应角相等,对应边成比例。

-全等三角形的判定条件:边-边-边、边-角-边、角-边-角、角-角-角。

5.几何作图-通过已知条件作出各种形状:平分线、垂直线、平行线、三等分线等。

6.算式计算-四则运算:加法、减法、乘法、除法。

-分数的加减乘除运算:通分、约分、分数的加减乘除运算规则。

7.比例与百分数-比例的概念和性质:比例的定义、比例的性质、比例的延长线、反比例。

-百分数的计算:百分数与小数的相互转换、百分数之间的比较、百分数与分数的相互转换。

8.数据与概率-数据整理与分析:表格、条形图、折线图、饼图等。

-概率的计算:事件的概率等于事件发生次数除以总次数。

9.代数基础知识-代数式的加减乘除:同类项的加减法、乘法运算法则、除法运算法则。

-代数式的值:给定变量值计算代数式的值。

10.一元一次方程与一元一次不等式-一元一次方程的解:解方程的基本步骤、等式的等价性质。

-一元一次不等式的解:解不等式的基本步骤、不等式的性质。

11.二次根式与二次方程-二次根式的化简:完全平方、配方法。

-二次方程的解:因式分解法、配方法、求根公式。

12.几何证明-各种定理的证明:三角形的中位线定理、三角形的角平分线定理、圆的性质等。

初中数学公式总结大全

初中数学公式总结大全

初中数学公式总结大全1因式分解常用公式1、平方差公式:a²-b²=(a+b)(a-b)。

2、完全平方公式:a²+2ab+b²=(a+b)²。

3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。

4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。

5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。

6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。

7、三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。

8、三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。

2三角函数的诱导公式诱导公式一:终边相同的角的同一三角函数的值相等设α为任意锐角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)诱导公式二:π+α的三角函数值与α的三角函数值之间的关系设α为任意角,弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα诱导公式三:任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα诱导公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα。

初中阶段数学公式总结大全

初中阶段数学公式总结大全

初中阶段数学公式总结大全以下是一些常见的初中阶段的数学公式总结:1. 代数公式:- 二元一次方程式:ax + by = c- 二元一次方程组:{ax + by = c, dx + ey = f}- 配方法:(a+b)² = a² + 2ab + b²- 差分平方法:(a-b)² = a² - 2ab + b²- 倒数公式:(a+b)(a-b) = a² - b²- 完全平方式:a² + b² = (a+b)² - 2ab2. 几何公式:- 三角形的面积:A = 1/2 * 底 * 高- 矩形的面积:A = 长 * 宽- 平行四边形的面积:A = 底 * 高- 梯形的面积:A = 1/2 * (上底 + 下底) * 高- 圆的面积:A = π * r²- 圆的周长:C = 2 * π * r3. 分数公式:- 分数加法:a/b + c/d = (ad + bc)/bd- 分数减法:a/b - c/d = (ad - bc)/bd- 分数乘法:a/b * c/d = ac/bd- 分数除法:a/b ÷ c/d = ad/bc4. 百分数公式:- 百分数到小数:百分数/100 = 小数- 小数到百分数:小数 * 100 = 百分数- 百分数与小数的互相转化5. 集合运算公式:- 并集:A ∪ B- 交集:A ∩ B- 差集:A - B6. 统计学公式:- 平均数(算术平均数):(数值的总和) / (数量)- 中位数:将数据按照从小到大的顺序排列,取中间数- 众数:出现频率最高的数- 范围:最大值 - 最小值这只是一部分初中阶段数学公式的总结,希望对您有所帮助。

如需更详细的总结,可以参考相关数学教材或参考资料。

小学数学知识点总结+公式

小学数学知识点总结+公式

小学数学知识点总结+公式长度单位换算1公里(km)=1千米(km)1千米(km)=1000米(m)1米(m)=10分米(dm)1分米(dm)=10厘米(cm)1厘米(cm)=10毫米(mm)1米(m)=100厘米(cm)1米(m)=1000毫米(mm)面积单位换算1平方千米(km²)=100公顷(hm²)1平方千米(km²)=1000000平方米(m²)1公顷(hm²)=10000平方米(m²)1平方米(m²)=100平方分米(dm²)1平方分米(dm²)=100平方厘米(cm²)1平方厘米(cm²)=100平方毫米(mm²)1公顷(hm²)=100公亩=15亩1亩≈666.667平方米(m²)体积、容积单位换算1立方米(m³)=1000立方分米(dm³)1立方分米(dm³)=1000立方厘米(cm³)1立方米(m³)=1000升(L)1升(L)=1立方分米(dm³)=1000毫升(ml)1毫升(ml)=1立方厘米(cm³)重量单位换算1吨(t)=1000千克(kg)1千克(kg)=1000克(g)1千克(kg)=1公斤1公斤=2斤1斤=500克(g)人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12个月大月(31天)有:1、3、5、7、8、10、12月小月(30天)有:4、6、9、11月平年2月有28天,全年365天闰年2月有29天,全年366天1日=24小时1时=60分=3600秒1分=60秒加法的运算定律加法交换律a+b=b+a两个数相加,交换加数的位置,和不变。

加法结合律(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

数学公式归纳总结大全

数学公式归纳总结大全

数学公式归纳总结大全1)抛物线y = ax^2 + bx + c (a≠0)就是y等于a乘以x 的平方加上 b乘以x再加上 c置于平面直角坐标系中a > 0时开口向上a < 0时开口向下(a=0时为一元一次函数)c>0时函数图像与y轴正方向相交c< 0时函数图像与y轴负方向相交c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴(当然a=0且b≠0时该函数为一次函数)还有顶点公式y = a(x+h)* 2+ k ,(h,k)=(-b/(2a),(4ac-b^2)/(4a))就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值和对称轴抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py(2)圆球体积=(4/3)π(r^3)面积=π(r^2)周长=2πr =πd圆的标准方程 (x-a)^2+(y-b)^2=r^2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D^2+E^2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

(二)椭圆面积计算公式椭圆面积公式: S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。

常数为体,公式为用。

椭球物体体积计算公式椭圆的长半径*短半径*π*高(3)三角函数和差角公式sin(A+B)=sinAcosB+cosAsinB ;sin(A-B)=sinAcosB - sinBcosA ;cos(A+B)=cosAcosB - sinAsinB ;cos(A-B)=cosAcosB + sinAsinB ;tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB) ;cot(A+B)=(cosAcotB-1)/(cosB+cotA) ;cot(A-B)=(cosAcotB+1)/(cosB-cotA) ;倍角公式tan2A=2tanA/(1-tan^2A) ;cot2A=(cot^2A-1)/2cota ;cos2a=cos^2a-sin^2a=2cos^2a-1=1-2sin^2a ;sin2A=2sinAcosA=2/(tanA+cotA);另:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 ;cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 ;tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0;四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4) 六倍角公式:sin6A=2*(cosA*sinA)*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tan A^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^ 2-35*tanA^4+7*tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1) )cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^ 2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^ 2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^ 2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1 -36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sin A-1)*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4 -48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA ^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B);2cosAsinB=sin(A+B)-sin(A-B) ;2cosAcosB=cos(A+B)+cos(A-B) ;-2sinAsinB=cos(A+B)-cos(A-B) ;sinA+sinB=2sin((A+B)/2)cos((A-B)/2 ;cosA+cosB=2cos((A+B)/2)sin((A-B)/2) ;tanA+tanB=sin(A+B)/cosAcosB;tanA-tanB=sin(A-B)/cosAcosB ;cotA+cotB=sin(A+B)/sinAsinB;-cotA+cotB=sin(A+B)/sinAsinB ;降幂公式sin&sup2;(A)=(1-cos(2A))/2=versin(2A)/2;cos&sup2;(α)=(1+cos(2A))/2=covers(2A)/2;tan&sup2;(α)=(1-cos(2A))/(1+cos(2A));正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角(4)反三角函数arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotx(5)数列等差数列通项公式:an﹦a1﹢(n-1)d等差数列前n项和:Sn=[n(A1+An)]/2 =nA1+[n(n-1)d]/2等比数列通项公式:an=a1*q^(n-1);等比数列前n项和:Sn=a1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =a1/(1-q)-a1/(1-q)*q^n (n≠1)某些数列前n项和:1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n^22+4+6+8+10+12+14+…+(2n)=n(n+1)1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^21*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 (6)乘法与因式分解因式分解a^2-b^2=(a+b)(a-b)a^2±2ab+b^2=(a±b)^2a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b)(a^2+ab+b^2)a^3±3a^2b+3ab^2±b^3=(a±b)^3乘法公式把上面的因式分解公式左边和右边颠倒过来就是乘法公式(7)三角不等式-|a|≤a≤|a||a|≤b<=>-b≤a≤b|a|≤b<=>-b≤a≤b|a|-|b|≤|a+b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a|-|b|≤|a-b|≤|a|+|b||z1|-|z2|-...-|zn|≤|z1+z2+...+zn|≤|z1|+|z2|+...+|zn||z1|-|z2|-...-|zn|≤|z1-z2-...-zn|≤|z1|+|z2|+...+|zn||z1|-|z2|-...-|zn|≤|z1±z2±...±zn|≤|z1|+|z2|+...+|zn|(8)一元二次方程一元二次方程的解wx1= -b+√(b^2-4ac)/2a x2= -b-√(b^2-4ac)/2a根与系数的关系(韦达定理) x1+x2=-b/a ; x1*x2=c/a判别式△= b^2-4ac=0 则方d程有相等的个实根△>0 则方程有两个不相等的两实根△<0 则方程有两共轭复数根d(没有实根)公式分类公式表达式圆的标准方程 (x-a)^2+(y-b)^2=r^2 注:(a,b)是圆心坐标圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:△=D^2+E^2-4F>0 抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c' *h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4π*r2圆柱侧面积 S=c*h=2π*h 圆锥侧面积 S=1/2*c*l=π*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=π*r2h图形周长面积体积公式长方形的周长=(长+宽)³2 c =2〔a+b〕正方形的周长=边长³4 c=4a长方形的面积=长³宽 s=ab正方形的面积=边长³边长 s=a2三角形的面积=底³高÷2已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)](海伦秦九韶公式)(p= (a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积”南宋秦九韶)注:秦九韶公式与海伦公式等价| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1|| c d 1| 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里| e f 1 |ABC选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3 其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底³高梯形的面积=(上底+下底)³高÷2直径=2 r圆的周长=πd= 2πr圆的面积= πr^2长方体的表面积=(长³宽+宽³高+高³长)³2 s=2〔ab+bc+ca〕长方体的体积 =长³宽³高 v=abc正方体的表面积=棱长³棱长³6 s=6a^2正方体的体积=棱长³棱长³棱长 v=a^3圆柱的侧面积=底面圆的周长³高 s=ch圆柱的表面积=上下底面面积+侧面积 s=2╥r^2圆柱的体积=底面积³高 v=sh圆锥的体积=底面积³高÷3 v=sh÷3柱体体积=底面积³高平面图形名称符号周长C和面积S正方形 a—边长 C=4a S=a^2长方形 a和b-边长 C=2(a+b) S=ab三角形 a,b,c-三边长其中s=(a+b+c)/2 S=ah/2 h-a边上的高=ab/2³sinCs-周长的一半=[s(s-a)(s-b)(s-c)]1/2A,B,C-内角=a^2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补三角形15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形四边形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)³180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a³b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l³h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值圆101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

小学数学公式定义定律大全

小学数学公式定义定律大全

小学数学公式大全第一部分小学数学图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a面积=边长×边长S=a×a2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形s面积a底h高面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形s面积a底h高面积=底×高s=ah7、梯形s面积a上底b下底h高面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形S面积C周长圆周率π直径d 半径r (1) 直径=半径×2 d=2r半径=直径÷2 r= d÷2(2)周长=直径×圆周率=2×圆周率×半径C=πd=2πr(3)面积=半径×半径×圆周率S=πr29、圆柱体体积v 高h 底面积s 底面半径r 底面周长c(1)侧面积=底面周长×高S=ch=πdh=2πrh(2)表面积=侧面积+底面积×2S= ch+2s =πdh +2πr2 =2π(d÷2)h+ 2π(d÷2)2(3)体积=底面积×高V=ShV=πr 2h=π(d÷2)2 h(4)体积=侧面积÷2×半径10、圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷311、三角形内角和=180度。

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全一、代数1.一次函数及相关知识一次函数的一般式方程为y=kx+b,其中k为斜率,b为截距。

与x轴交点:x=-b/k与y轴交点:y=b斜率的计算: k=(y2-y1)/(x2-x1)2.二次函数及相关知识二次函数的一般式方程为y=ax^2+bx+c,其中a≠0。

二次函数的顶点坐标为:(-b/2a, f(-b/2a)),其中f(x)=ax^2+bx+c。

二次函数的判别式为Δ=b^2-4ac,当Δ>0时,二次函数有两个实数解;当Δ=0时,二次函数有一个重复实数根;当Δ<0时,二次函数无实数解。

3.指数函数及对数函数指数函数的一般式方程为y=a^x,其中a>0且a≠1。

对数函数的一般式方程为y=logax,其中a>0且a≠1。

对数函数的性质:loga1=0,loga(a^x)=x,a^(logax)=x4.幂函数幂函数的一般式方程为y=x^a,其中a为常数。

5.绝对值函数绝对值函数的一般式方程为y=|x|。

6.组合函数组合函数即将一个函数的输出值作为另一个函数的输入值得到的新函数。

例如,若f(x)和g(x)均为函数,则(f∘g)(x)=f(g(x))。

7.多项式及相关知识n次多项式的一般式为:y=a_nx^n+a_(n-1)x^(n-1)+...+a1x+a0多项式的除法:对于多项式f(x)÷g(x),若g(x)≠0,则商多项式为q(x)、余式为r(x)且f(x)=g(x)q(x)+r(x)多项式的乘法:(a+b)·(c+d)=ac+ad+bc+bd8.解方程二元一次方程组求解:通过消元法、代入法、加减消去法等方法求解一元二次方程求解:可以通过配方法、公式法、因式分解等方法求解复杂方程求解:可以通过讨论函数单调性、先化为一次函数或二次函数等方法求解9.不等式一元一次不等式的解法:利用加减法、乘除法、绝对值法等方法求解一元二次不等式的解法:先将不等式化为标准形式,然后通过讨论函数的单调性、绘制函数图像、代数法等方法求解10.排列与组合排列:当n个人中取m个人,且彼此不考顺序,则排列数用P(m,n)表示,其计算公式为:P(m,n)=n!/(n-m)!组合:当n个人中取m个人,彼此不考顺序,则组合数用C(m,n)表示,其计算公式为:C(m,n)=n!/(m!(n-m)!)11.数列与数学归纳法数列的概念:数列是按一定顺序排列的一组数。

初中数学知识点总结与公式大全

初中数学知识点总结与公式大全

初中数学知识点总结与公式大全一、代数1.因式分解公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²a²-b²=(a+b)(a-b)a³ + b³ = (a + b)(a² - ab + b²)a³ - b³ = (a - b)(a² + ab + b²)a² + 2ab + b² = (a + b)²a² - 2ab + b² = (a - b)²2.方程求解公式:一次方程:ax + b = 0,x = -b/a二次方程:ax² + bx + c = 0,x = (-b ± √(b² - 4ac))/2a 一元二次方程组求解:联立两个方程,解得未知数的值3.指数与幂公式:aⁿ×aᵐ=aⁿ⁺ᵐ(aⁿ)ᵐ=aⁿᵐa⁰=1aⁿ⁻ᵐ=aⁿ/aᵐa⁽ⁿ⁺ᵐ⁾=aⁿ×aᵐ4.平方差公式:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²二、几何1.图形面积公式:长方形的面积:S=长×宽正方形的面积:S=边长²三角形的面积:S=底边×高/2梯形的面积:S=(上底+下底)×高/2圆的面积:S=πr²2.图形周长公式:长方形的周长:P=2(长+宽)正方形的周长:P=4×边长三角形的周长:P=边1+边2+边3梯形的周长:P=上底+下底+两腿圆的周长:P=2πr3.相似三角形公式:对应边的比例:AB/DE=BC/EF=AC/DF对应角的相等性:∠A=∠D,∠B=∠E,∠C=∠F4.圆的相关公式:弧长公式:L=2πr(θ/360°)弦长公式:l = 2r × sin(θ/2)弧度和角度的转换:θ(弧度)=θ(角度)×π/180°弧度的定义:圆的半径所对的圆心角的弧长等于半径的长度三、统计与概率1.统计相关公式:平均值:平均值=总和/个数中位数:将一组数据按大小排列后,取中间位置的数众数:出现次数最多的数极差:一组数中最大值与最小值之差2.概率相关公式:事件的概率:P(A)=发生事件A的次数/总次数互斥事件的概率:P(A或B)=P(A)+P(B)独立事件的概率:P(A和B)=P(A)×P(B)。

数学公式定律概念总结大全

数学公式定律概念总结大全

数学公式定律概念总结大全数学公式、定律和概念是数学领域的基础,也是数学知识体系的重要组成部分。

本文将给出数学公式、定律和概念的总结,供读者参考。

下面是数学公式、定律和概念的详细解释。

一、数学公式1.傅里叶级数公式:用正弦和余弦函数的级数来表示一个周期函数。

傅里叶级数公式的一般表达式如下:f(x) = a₀ + Σ(aₙcos(nx) + bₙsin(nx))其中a₀,aₙ,bₙ为待定系数。

2.二项式定理:用于计算二项式的展开式。

二项式定理的表达式如下:(a+b)ⁿ=ΣC(n,k)a^(n-k)b^k,其中C(n,k)为二项式系数。

3.欧拉公式:描述了复数与三角函数之间的关系。

欧拉公式的表达式如下:e^(ix) = cos(x) + isin(x),其中e为自然对数的底,i为单位虚数单位。

4.洛必达法则:一种求解不定型的极限问题的方法。

洛必达法则表达式如下:lim(x→a)(f(x)/g(x)) = lim(x→a)(f'(x)/g'(x)),其中f(x)和g(x)为函数,a为常数。

5.泰勒展开式:将函数表示为无穷级数的形式,用于近似计算复杂函数的值。

泰勒展开式的表达式如下:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+...,其中f(x)为函数,a为常数。

二、数学定律1.皮亚诺定理:描述了整数被除数除以整数除数的商和余数之间的关系。

皮亚诺定理的表述如下:对于任意的整数a和正整数b,存在唯一的整数q和r,使得a = bq + r,其中0 ≤ r < b。

2.贝祖定理:描述了两个整数的最大公约数与其线性表示之间的关系。

贝祖定理的表述如下:对于任意的整数a、b和它们的最大公约数d,存在整数x和y,使得ax + by = d。

3.矩阵行列式性质定理:描述了行列式的性质和计算方法。

矩阵行列式性质定理的表述如下:-行列式互换两行(列),行列式变号。

小学一年级至六年级数学公式总结大全

小学一年级至六年级数学公式总结大全

小学一年级至六年级数学公式总结大全公式定理是我们学好数学的一大关键,是我们学好数学的一个基础,因此,只有孩子将基础掌握好了,那么,在数学上的一个学习才能好。

下面是小编为大家整理的关于小学一年级至六年级数学公式总结,希望对您有所帮助!1~6年级数学公式1. 单价×数量=总价2. 单产量×数量=总产量3. 速度×时间=路程4. 工效×时间=工作总量5. 加数+加数=和6. 一个加数=和-另一个加数7. 被减数-减数=差8. 减数=被减数-差9. 被减数=减数+差10. 因数×因数=积11. 一个因数=积÷另一个因数12. 被除数÷除数=商13. 除数=被除数÷商14. 被除数=商×除数15. 有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米小学一至六年级数学公式大全一.图形计算公式1.周长公式类型公式字母表示?长方形周长=?(长+宽)×2 (a+b)×2?正方形周长?=边长×4 ?a×4=4a?圆的周长=?直径×π?= 2×π×半径?c=π×d =2×π×r 2,面积公式类型公式字母表示?长方形面积=?长×宽s=a×b?正方形面积=?边长×边长?s=a×a?平行四边形面积=?底×高?s=a×h?梯形面积=(上底+下底)×高÷2 s=(a+b)×h÷2?三角形面积=?底×高÷2 ?s=a×h÷2?长方体表面积?(长×宽+长×高+宽×高)×2S=(a×b+a×h+b×h)×2?正方体表面积?=棱长×棱长×6 s= a×a×6?圆面积=?π×半径的平方? s=πr2?圆柱体侧面积=底面周长×高s=π×直径×高=2×π×半径×高?=c×h=π×d×h=2×π×r×h?圆柱体表面积=侧面积+2×底面积=底面周长×高+2×π×半径的平方=π×直径×高+2×π×半径的平方=2×π×半径×高+2×π×半径的平方=c×h+2πr2=π×d×h+2πr2=2×π×r×h +2πr23.体积公式类型?公式?字母表示?长方形? 长×宽×高?a×b×h?正方体? 棱长×棱长×棱长?a×a×a?圆柱体 ?底面积×高∏r2h圆锥体? 底面积×高÷3π×半径的平方×高÷3? s×h÷3πr2h÷3补充说明:长方体棱长和=(长+宽+高)×4正方体棱长和=棱长×12二.熟记下列正反比例关系:正比例关系:y=kx正方形的周长与边长成正比例关系长方形的周长与(长+宽)成正比例关系圆的周长与直径成正比例关系圆的周长与半径成正比例关系圆的面积与半径的平方成正比例关系2.反比例关系:y=三.常用数量关系:1.路程:路程=速度×时间速度=路程÷时间?时间=路程÷速度2.工作量:工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率3.价量:总价=单价×数量 ?单价=总价÷数量数量=总价÷单价4.产量:总产量=单产量×面积? 单产量=总产量÷面积面积=总产量÷单产量5.份数:每份数×份数=总数总数÷份数=每份数总数÷每份数=份数6. ?1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数四.单位换算:1.长度单位:一公里=1千米=1000米?1米=10分米1分米=10厘米?1厘米=10毫米 1米=100厘米 1分米=100毫米2.面积单位:1平方千米=100公顷 1公顷=100公亩 1公亩=100平方米1平方千米=1000000平方米1公顷=10000平方米? 1平方米=100平方分米?1平方分米=100平方厘米? 1平方厘米=100平方毫米3.体积单位:1立方千米=1000000000立方米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方分米=1升1立方厘米=1毫升?1升=1000毫升 ?1亩=666.6664.重量单位:1吨=1000千克1千克=1000克 1千克=1公斤 500克=1斤5.时间单位:一世纪=100年一年=四季度? 一年=12月?一年=36天(平年)? ?一年=366天(闰年)平年二月28天闰年二月29天一季度=3个月? ?一个月= 3旬(上、中、下)一个月=30天(小月) ?一个月=31天(大月)一星期=7天一天=24小时? ?一小时=60分?一分=60秒 1小时=3600秒一年中的大月:一月、三月、五月、七月、八月、十月、十二月(七个月)一年中的小月:四月、六月、九月、十一月(四个月) 6.人民币单位换算1元=10角 1角=10分 1元=100分7.特殊分数值:0.5=50% ? 0.25 = 25%? ? 0.75 = 75%0.2 = 20% 0.4 = 40% 0.6 = 60% 0.8 = 80%0.125=12.5%? 0.375 = 37.5%0.625 = 62.5% 0.875 = 87.5%五.数据运算6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数六.数常用公式1.和差问题的公式(和+差)÷2=大数(和-差)÷2=小数2.和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)3.差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)4.植树问题1?非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2?封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数5.盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数6.相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间7.追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间8.流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷29.浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量10.利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)七.分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全圆的公式1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。

两角和公式1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga) 倍角公式1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))和差化积1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/ 2)4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb等差数列1、等差数列的通项公式为:an=a1+(n-1)d (1)2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项.,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2 k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)*项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1等比数列1、等比数列的通项公式是:An=A1*q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N*,则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq 等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.抛物线1、抛物线:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。

数学总结—公式大全

数学总结—公式大全

数学总结—公式大全1.代数方面的公式1.1 一次方程:ax + b = 0,其中a≠0。

1.2 二次方程:ax² + bx + c = 0,其中a≠0。

1.3 一元二次不等式:ax² + bx + c > 0或ax² + bx + c < 0。

1.4勾股定理:a²+b²=c²,其中a、b为直角三角形的两条直角边,c 为斜边。

1.5 二项式定理:(a + b)ⁿ = C(n,0)aⁿ + C(n,1)aⁿ⁻¹b + ... +C(n,n-1)abⁿ⁻¹ + C(n,n)bⁿ,其中C(n,k)表示组合数。

1.6四则运算规则:加法:a+b=b+a,乘法:a×b=b×a。

2.几何方面的公式2.1 三角形面积公式:S = 1/2bh,其中S表示三角形的面积,b表示底边的长度,h表示高。

2.2直角三角形三边关系:a²+b²=c²,其中a、b为直角三角形的两条直角边,c为斜边。

2.3 正弦定理:a/sinA = b/sinB = c/sinC = 2R,其中a、b、c为三角形的边长,A、B、C为对应的内角,R为三角形外接圆的半径。

2.4 余弦定理:c² = a² + b² - 2abcosC,其中a、b、c为三角形的边长,C为对应的内角。

2.5 面积公式:三角形面积S = 1/2absinC,其中a、b为三角形的两条边,C为对应的夹角。

2.6弧长公式:L=rθ,其中L表示弧长,r表示弧的半径,θ表示圆心角的度数。

3.微积分方面的公式3.1 导数定义:f'(x) = lim (f(x + h) - f(x))/h,其中f'(x)表示函数f(x)在x处的导数。

3.2导数的基本运算法则:常数法则、乘法法则、除法法则、链式法则等。

3.3反函数导数:(f⁻¹)'(y)=1/f'(x),其中f⁻¹表示f的反函数。

中考数学公式大全总结

中考数学公式大全总结

中考数学公式大全总结一.基本运算公式:1.加法和减法公式:a+b=b+aa+(b+c)=(a+b)+ca-b=a+(-b)2.乘法和除法公式:a×b=b×aa×(b×c)=(a×b)×ca÷b=a×(1/b)3.乘法分配律:a×(b+c)=a×b+a×c(a+b)×c=a×c+b×c二.整数运算公式:1.整数乘法公式:a×(b+c)=a×b+a×c(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c2.整数除法公式:a÷b=a×(1/b)3.整数的幂:a^m×a^n=a^(m+n)(a^m)^n=a^(m×n)a^m÷a^n=a^(m-n)a^0=1三.分数运算公式:1.分数乘法公式:a/b×c/d=(a×c)/(b×d)2.分数除法公式:(a/b)÷(c/d)=(a×d)/(b×c) 3.分数的加减法公式:a/b+c/d=(a×d+b×c)/(b×d)a/b-c/d=(a×d-b×c)/(b×d)四.代数式公式:1.公式展开:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^22.公式因式分解:a^2-b^2=(a+b)(a-b)a^3 - b^3 = (a - b)(a^2 + ab + b^2)a^3 + b^3 = (a + b)(a^2 - ab + b^2)五.平方根公式:1.平方根的乘除法:√(a×b)=√a×√b√(a÷b)=√a÷√b2.平方根的加减法:√(a+b)≠√a+√b√(a-b)≠√a-√b六.平方根的化简公式:1.合并根式:√a×√b=√(a×b)√a÷√b=√(a÷b)√(√a)=√a2.倍数根:n√(a^m)=a^(m/n)七.图形的周长和面积公式:1.长方形:周长:P=2×(长+宽)面积:S=长×宽2.正方形:周长:P=4×边长面积:S=边长×边长3.三角形:周长:P=边1+边2+边3面积:S=(底×高)/24.圆形:周长:C=2×π×半径面积:S=π×半径^2八.百分数和比例公式:1.百分数与小数和分数的关系:百分数×0.01=小数百分数×1/100=分数2.百分数的增减法:原数±原数×百分数3.比例的计算:已知比例a:b,可以得出:a:b=a/x:b/x=a/(a+b):b/(a+b)九.坐标系中的公式:1.坐标之间的距离:AB=√((x2-x1)^2+(y2-y1)^2) 2.点斜式方程:y-y1=k(x-x1),其中k为斜率。

高中数学公式大全总结必背公式

高中数学公式大全总结必背公式

高中数学公式大全总结必背公式1. 代数公式1.1 一次函数公式- 点斜式方程:$y-y_1=m(x-x_1)$- 斜截式方程:$y=mx+c$- 两点式方程:$\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$1.2 二次函数公式- 一般式方程:$y=ax^2+bx+c$- 顶点式方程:$y=a(x-h)^2+k$- 标准式方程:$y=a(x-p)(x-q)$1.3 等差数列公式- 第n项:$a_n=a_1+(n-1)d$- 前n项和:$S_n=\frac{n}{2}(a_1+a_n)$- 第n项与首项之差:$a_n-a_1=(n-1)d$1.4 等比数列公式- 第n项:$a_n=a_1q^{n-1}$- 前n项和:$S_n=\frac{a_1(q^n-1)}{q-1}$2. 几何公式2.1 圆的公式- 圆的面积公式:$S=\pi r^2$- 圆的周长公式:$C=2\pi r$2.2 三角形公式- 三角形面积公式:$S=\frac{1}{2}ab\sin C$- 三角形周长公式:$C=a+b+c$- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$- 余弦定理:$c^2=a^2+b^2-2ab\cos C$2.3 矩形公式- 矩形面积公式:$S=lw$- 矩形周长公式:$C=2(l+w)$- 矩形对角线长度公式:$d=\sqrt{l^2+w^2}$3. 微积分公式3.1 导数公式- 常数函数导数:$(k)'=0$- 幂函数导数:$(x^n)'=nx^{n-1}$- 指数函数导数:$(a^x)'=a^x\ln a$- 对数函数导数:$(\log_a{x})'=\frac{1}{x\ln a}$- 三角函数导数:$(\sin x)'=\cos x$, $(\cos x)'=-\sin x$, $(\tan x)'=\sec^2 x$3.2 积分公式- 幂函数积分:$\int x^n\ dx=\frac{1}{n+1}x^{n+1}+C$, ($n\neq -1$)- 指数函数积分:$\int e^x\ dx=e^x+C$- 三角函数积分:$\int \sin x\ dx=-\cos x+C$, $\int \cos x\ dx=\sin x+C$以上是部分高中数学公式的总结,希望能帮到你!记得多加练习和积累哦!。

常用数学公式大全

常用数学公式大全

常用数学公式大全每份数×份数=总数总数÷每份数=份数总数÷份数=每份数1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数速度×时间=路程路程÷速度=时间路程÷时间=速度单价×数量=总价总价÷单价=数量总价÷数量=单价工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率正方形:周长=边长×4(C=4a)面积=边长×边长(S=a×a) 正方体:表面积=棱长×棱长×6(S表=a×a×6)体积=棱长×棱长×棱长(V=a×a×a)长方形: 周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab长方体a:长b:宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高平行四边形s面积a底h高面积=底×高s=ah梯形s面积a上底b下底h高面积=(上底+下底)×高÷2 s=(a+b)×h÷2圆形S面积C周长∏d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒小学数学几何形体周长面积体积计算公式1、长方形的周长=(长+宽)×2C=(a+b)×22、正方形的周长=边长×4C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a=a5、三角形的面积=底×高÷2S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷28、直径=半径×2d=2r半径=直径÷2r=d÷29、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr10、圆的面积=圆周率×半径×半径定义定理公式三角形的面积=底×高÷2。

高考数学知识点总结及公式大全

高考数学知识点总结及公式大全

高考数学知识点总结及公式大全高三数学公式整理1.y=c(c为常数) y=02.y=x^n y=nx^(n-1)3.y=a^x y=a^xlnay=e^x y=e^x4.y=logax y=logae/xy=lnx y=1/x5.y=sinx y=cosx6.y=cosx y=-sinx7.y=tanx y=1/cos^2x8.y=cotx y=-1/sin^2x9.y=arcsinx y=1/√1-x^210.y=arccosx y=-1/√1-x^211.y=arctanx y=1/1+x^212.y=arccotx y=-1/1+x^2三角函数公式锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边 / ∠α的邻边cot α=∠α的邻边 / ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosasin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°) /2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)数学圆锥公式知识点正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的`标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F0抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py直棱柱侧面积S=c.h斜棱柱侧面积S=c.h正棱锥侧面积S=1/2c.h正棱台侧面积S=1/2(c+c)h圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi.r2圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l弧长公式l=a.ra是圆心角的弧度数r0扇形面积公式s=1/2.l.r锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h斜棱柱体积V=SL注:其中,S是直截面面积,L是侧棱长柱体体积公式V=s.h圆柱体V=p.r2h乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b=-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1.X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac0注:方程有两个不等的实根b2-4ac0注:方程没有实根,有共轭复数根三倍角公式三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]三倍角公式推导附推导:tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)上下同除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^3(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2cosαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三倍角公式联想记忆记忆方法:谐音、联想正弦三倍角:3元减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角减 3元(减完之后还有“余”)☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

初中数学公式大全总结归纳

初中数学公式大全总结归纳

初中数学公式大全总结归纳一、代数部分1. 有理数- 有理数加法法则:- 同号两数相加,取相同的符号,并把绝对值相加。

例如:3 + 5=8,( -3)+(-5)=-(3 + 5)=-8。

- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

例如:3+( - 5)=-(5 - 3)=-2,( - 3)+5 = 5-3 = 2。

- 一个数同0相加,仍得这个数。

- 有理数减法法则:减去一个数,等于加上这个数的相反数。

即a - b=a+( - b)。

- 有理数乘法法则:- 两数相乘,同号得正,异号得负,并把绝对值相乘。

例如:3×5 = 15,( - 3)×(-5)=15,3×(-5)=-15。

- 任何数同0相乘,都得0。

- 有理数除法法则:- 除以一个不等于0的数,等于乘这个数的倒数。

即adiv b=a×(1)/(b)(b≠0)。

- 两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

2. 整式的加减- 合并同类项:同类项的系数相加,所得结果作为系数,字母和指数不变。

例如:3x+2x=(3 + 2)x=5x。

- 去括号法则:- 如果括号前面是“+”号,去括号时括号里面各项不变号。

例如:a+(b - c)=a + b-c。

- 如果括号前面是“-”号,去括号时括号里面各项都变号。

例如:a-(b -c)=a - b + c。

3. 一元一次方程- 一元一次方程的标准形式:ax + b = 0(a≠0)。

- 求解一元一次方程的步骤:- 去分母(方程两边同时乘以各分母的最小公倍数)。

- 去括号。

- 移项(把含未知数的项移到等号一边,常数项移到等号另一边,移项要变号)。

- 合并同类项。

- 系数化为1(方程两边同时除以未知数的系数)。

4. 二元一次方程组- 二元一次方程组的解法:- 代入消元法:将一个方程中的某个未知数用含有另一个未知数的代数式表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

小学数学公式大全总结

小学数学公式大全总结

小学数学公式大全总结小学数学公式大全总结一、数的四则运算公式1. 加法公式:a + b = b + a2. 减法公式:a - b ≠ b - a3. 乘法公式:a × b = b × a4. 除法公式:a ÷ b ≠ b ÷ a二、数的比较公式1. 大于:a > b2. 小于:a < b3. 大于等于:a ≥ b4. 小于等于:a ≤ b三、数的倍数与约数公式1. 倍数公式:a 是 b 的倍数,记作 a | b2. 约数公式:a 是 b 的约数,记作 a ∣ b四、数的整除公式1. 整除公式:a 能被 b 整除,记作 a ÷ b五、数的因数分解公式1. 因数分解公式:将一个数分解为几个因数的乘积六、数的平方与平方根公式1. 平方公式:a² = a × a2. 平方根公式:√a² = a七、数的运算律1. 结合律:(a + b) + c = a + (b + c)2. 交换律:a + b = b + a3. 分配律:a × (b + c) = a × b + a × c4. 乘方的分配率:(a × b)² = a² × b²八、数的整数运算公式1. 加法:a + (b + c) = (a + b) + c2. 减法:a - (b + c) = a - b - c3. 乘法:a × (b × c) = (a × b) × c4. 除法:(a ÷ b) ÷ c = a ÷ (b × c)九、数的整数性质1. 偶数:能够被 2 整除的数2. 奇数:不能被 2 整除的数3. 能被 2 整除的数的个位数字为 0、2、4、6、84. 能被 3 整除的数,各个位上的数字之和能被 3 整除5. 能被 4 整除的数,其末尾两位数能被 4 整除6. 能被 5 整除的数,个位数字为 0 或 57. 能被 6 整除的数,同时满足能被 2 和 3 整除8. 能被 8 整除的数,其末尾三位数能被 8 整除9. 能被 9 整除的数,各个位上的数字之和能被 9 整除十、数的分数公式1. 真分数:分子小于分母的分数2. 假分数:分子大于或等于分母的分数3. 可约分数:分子和分母有公约数的分数4. 最简分数:分子和分母没有公约数的分数十一、图形与几何公式1. 长方形面积:面积 = 长 ×宽2. 正方形面积:面积 = 边长 ×边长3. 三角形面积:面积 = 底 ×高 / 24. 圆的周长:周长= 2 × π × 半径5. 圆的面积:面积= π × 半径²6. 平行四边形面积:面积 = 底 ×高7. 梯形面积:面积 = (上底 + 下底) ×高 / 2以上仅为部分小学数学公式大全,希望对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学公式大全
图形公式
正方形:周长=边长×4(C = 4a)
面积=边长×边长(S = a×a = a2)
正方体:表面积=棱长×棱长×6(S = a×a×6 = 6a2)
体积=棱长×棱长×棱长(V = a×a×a = a2)
棱长和=棱长×12(l = 12a)
长方形:周长=(长+宽)×2(C = 2×(a+b))
面积=边长×边长(S = ab)
长方体:表面积=(长×宽+长×高+宽×高)×2(S = 2(ab+ah+bh))体积=长×宽×高(V = abh)
棱长和=(长+宽+高)×4(l = 4(a+b+h))
三角形:面积=底×高÷2 (S = ah÷2)
平行四边形:面积=底×高(S = ah)
梯形:面积=(上底+下底)×高÷2(S = (a+b)×h÷2)
圆形:直径=半径×2(d = 2r)
周长=2×π×半径(C = 2πr)
面积=半径×半径×π(S = πr2)
圆柱体:侧面积=底面周长×高(S = Ch)
表面积=侧面积+底面积×2 (S = Ch + 2πr2)
体积=底面积×高(V = Sh)
圆锥体:体积=底面积×高÷3(V = Sh÷3)
三角函数公式
和差公式:(正余同余正,余余反正正)
和差化积:(正加正,正在前;余加余,余并肩;正减正,余在前;余减余,负正弦)
积化和差:
Sinαsinβ = -1/2[cos(α+β)-cos(α-β)]
Cosαcosβ = 1/2[cos(α+β)+cos(α-β)]
Sinαcosβ = 1/2[sin(α+β)+sin(α-β)]
Cosαsinβ = 1/2[sin(α+β)-sin(α-β)]
倍角公式:
乘法公式完全平方公式:
平方差公式:
立方和公式:
立方差公式:
完全立方公式:
三数和平方公式:
欧拉公式:
公式变式:





⑹。

相关文档
最新文档