代几综合

合集下载

一次函数代数几何综合问题

一次函数代数几何综合问题

一次函数代几综合问题一.填空题(共6小题)1.如图,直线和x轴、y轴分别交于点A、B.若以线段AB为边作等边三角形ABC,则点C的坐标是.2.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点,使△ABC为等腰三角形,则这样的点C的坐标为.3.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为.4.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为.5.在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、…、A n B n C n C n﹣1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=kx+b的图象上,点C1、C2、C3、…、C n均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点A n的坐标为.6.如图,直线1:与x轴、y轴分别相交于点A、B,△AOB与△ACB关于直线l对称,则点C的坐标为.二.解答题(共24小题)7.已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y 轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值;(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.8.在平面直角坐标系xOy中,边长为6的正方形OABC的顶点A,C分别在x轴和y轴的正半轴上,直线y=mx+2与OC,BC两边分别相交于点D,G,以DG为边作菱形DEFG,顶点E在OA边上.(1)如图1,当CG=OD时,直接写出点D和点G的坐标,并求直线DG的函数表达式;(2)如图2,连接BF,设CG=a,△FBG的面积为S.①求S与a的函数关系式;②判断S的值能否等于等于1?若能,求此时m的值,若不能,请说明理由;(3)如图3,连接GE,当GD平分∠CGE时,m的值为.9.认真阅读材料,然后回答问题:我们知道,在数轴上,x=1表示一个点.而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方方程2x﹣y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图1可以得出:直线x=1与直线y=2x+1的交点P的坐标(1,3)就是方程组在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它左侧的部分,如图2;y≧2x+1也表示一个平面区域,即直线y=2x+1以及它上方的部分,如图3.回答下列问题:请你自己作一个直角坐标系,并在直角坐标系中(1)用作图象的方法求出方程组的解.(2)用阴影表示,所围成的区域.10.如图,直线l1的解析表达式为:y=3x﹣3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求△ADC的面积;(2)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,则点P的坐标为;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,已知直线l1和l2相交于点A,它们的解析式分别为l1:y=x,l2:y=﹣x+.直线l2与两坐标轴分别相交于点B和点C,点P在线段OB上从点O出发.以每秒1个单位的速度向点B运动,同时点Q从点B出发以每秒4个单位的速度沿B→O→C→B的方向向点B运动,过点P作直线PM⊥OB分别交l1,l2于点M,N.连接MQ.设点P,Q运动的时间是t秒(t>0)(1)求点A的坐标;(2)点Q在OC上运动时,试求t为何值时,四边形MNCQ为平行四边形;(3)试探究是否存在某一时刻t,使MQ∥OB?若存在,求出t的值;若不存在,请说明理由.12.已知,将边长为5的正方形ABCO放置在如图所示的直角坐标系中,使点A在x轴上,点C在y轴上.点M(t,0)在x轴上运动,过A作直线MC的垂线交y轴于点N.(1)当t=1时,求直线MC的解析式;(2)设△AMN的面积为S,求S关于t的函数解析式并写出相应t的取值范围;(3)在该平面直角坐标系中,第一象限内取点P(2,y),是否存在以M、N、C、P为顶点的四边形是直角梯形?若存在,直接写出点P的坐标;若不存在,请说明理由.13.如图①,以四边形AOCD的顶点O为原点建立直角坐标系,点A、C、D的坐标分别为(0,2)、(2,0)、(2,2),点P(m,0)是x轴上一动点,m是大于0的常数,以AP为一边作正方形APQR(QR落在第一象限),连接CQ.(1)请判断四边形AOCD的形状,并说明理由:(2)连接RD,请判断△ARD的形状,并说明理由:(3)如图②,随着点P(m,0)的运动,正方形APQR的大小会发生改变,若设CQ所在直线的表达式为y=kx+b(k≠0),求k的值.14.如图,将边长为4的正方形纸片,置于平面直角坐标系内,顶点A在坐标原点,AB在x轴正方向上,E、F分别是AD、BC的中点,M在DC上,将△ADM沿折痕AM折叠,使点D折叠后恰好落在EF上的P点处.(1)求点M、P的坐标;(2)求折痕AM所在直线的解析式;(3)设点H为直线AM上的点,是否存在这样的点H,使得以H、A、P为顶点的三角形为等腰三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.15.如图①,在平面直角坐标系中,A点坐标为(3,0),B点坐标为(0,4).动点M从点O出发,沿OA方向以每秒1个单位长度的速度向终点A运动;同时,动点N从点A出发沿AB方向以每秒个单位长度的速度向终点B运动.设运动了x秒.(1)点N的坐标为(,);(用含x的代数式表示)(2)当x为何值时,△AMN为等腰三角形;(3)如图②,连接ON得△OMN,△OMN可能为正三角形吗?若不能,点M的运动速度不变,试改变点N的运动速度,使△OMN为正三角形,并求出点N的运动速度.16.已知直线y=﹣x+4与x轴和y轴分别交与B、A两点,另一直线经过点B和点D(11,6).(1)求AB、BD的长度,并证明△ABD是直角三角形;(2)在x轴上找点C,使△ACD是以AD为底边的等腰三角形,求出C点坐标;(3)一动点P速度为1个单位/秒,沿A﹣﹣B﹣﹣D运动到D点停止,另有一动点Q从D点出发,以相同的速度沿D﹣﹣B﹣﹣A运动到A点停止,两点同时出发,PQ的长度为y(单位长),运动时间为t(秒),求y关于t的函数关系式.17.如图:直线y=kx+3与x轴、y轴分别交于A、B两点,,点C(x,y)是直线y=kx+3上与A、B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是6;(3)过点C的另一直线CD与y轴相交于D点,是否存在点C使△BCD与△AOB全等?若存在,请求出点C的坐标;若不存在,请说明理由.18.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.19.如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.20.已知,直线y=﹣x+1与x轴,y轴分别交于点A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90度.且点P(1,a)为坐标系中的一个动点.(1)求三角形ABC的面积S△ABC;(2)证明不论a取任何实数,三角形BOP的面积是一个常数;(3)要使得△ABC和△ABP的面积相等,求实数a的值.21.如图,在直角坐标系xoy中,一次函数的图象与x轴交于点A,与y轴交于点B.(1)已知OC⊥AB于C,求C点坐标;(2)在x轴上是否存在点P,使△PAB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.22.如图1,在正方形ABOC中,BD平分∠OBC,交OA于点D.(1)若正方形ABOC的边长为2,对角线BC与OA相交于点E.则:①BC的长为;②DE的长为;③根据已知及求得的线段OB、BC、DE的长,请找出它们的数量关系?(2)如图2,当直角∠BAC绕着其顶点A顺时针旋转时,角的两边分别与x轴正半轴、y轴正半轴交于点C1和B1,连接B1C1交OA于P.B1D平分∠OB1C1,交OA于点D,过点D作DE⊥B1C1,垂足为E,请猜想线段OB、B1C1、DE三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当B1E=6,C1E=4时,求直线B1D的解析式.23.如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°;(1)如果点P(m,)在第二象限内,试用含m的代数式表示四边形AOPB的面积,并求当△APB与△ABC面积相等时m的值;(2)如果△QAB是等腰三角形并且点Q在坐标轴上,请求出点Q所有可能的坐标;(3)是否存在实数a,b使一次函数和y=ax+b的图象关于直线y=x对称?若存在,求出的值;若不存在,请说明理由.24.一次函数的图象与x轴、y轴分别交于点A(8,0)和点B(0,6).(1)确定此一次函数的解析式.(2)求坐标原点O到直线AB的距离.(3)点P是线段AB上的一个动点,过点P作PM垂直于x轴于M,作PN垂直于y轴于N,记L=PM+PN,问L是否存在最大值和最小值?若存在,求出此时P点到原点O的距离,若不存在请说明理由.25.已知直线y=2x+4与x轴交于点A,与y轴交于点B,点P在坐标轴上,且PO=2AO.求△ABP的面积.26.已知A(1,5),B(3,﹣1)两点,在x轴上取一点M,使AM﹣BM取得最大值时,则M的坐标为.27.如图,在平面直角坐标系中,直线分别交于x轴,y轴于B、A两点,D、E分别是OA、OB的中点,点P从点D出沿DE方向运动,过点P作PQ⊥AB于Q,过点Q作QR∥OA交OB于R,当点Q与B点重合时,点P停止运动.(1)求A、B两点的坐标;(2)求PQ的长度;(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的点R的坐标;若不存在,请说明理由.28.如图,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD.(1)填空:点C的坐标是(,),点D的坐标是(,);(2)设直线CD与AB交于点M,求线段BM的长;(3)在y轴上是否存在点P,使得△BMP是等腰三角形?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.29.已知△ABC,∠BAC=90°,AB=AC=4,BD是AC边上的中线,分别以AC,AB所在直线为x轴,y 轴建立直角坐标系(如图).(1)在BD所在直线上找出一点P,使四边形ABCP为平行四边形,画出这个平行四边形,并简要叙述其过程;(2)求直线BD的函数关系式;(3)直线BD上是否存在点M,使△AMC为等腰三角形?若存在,求点M的坐标;若不存在,说明理由.30.如图,一次函数的图象与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等边△ABC,(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,);试用含有a的代数式表示四边形ABPO的面积,并求出当△ABP的面积与△ABC的面积相等时a的值;(3)在x轴上,是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.。

中考压轴题代几综合题

中考压轴题代几综合题
❖ 当函数与几何图形相结合时,关键是要做好点的 坐标与线段长的互相转化,同时还要考虑分类讨 论.
❖ 分类讨论是要依据一定的标准,对问题分类、求 解,要特别注意分类原则是不重不漏、最简.
分类常见的依据是:
❖ 一是依概念分类,如判断直角三角形时明确哪个角 可以是直角,两个三角形相似时分清谁与谁可以是 对应角;
在中考试卷中,代成.
► 热考一 坐标系中的几何问题
❖ 本类题通常先给定函数解析式和几何图形,由几何 图形的性质或解析法确定待定系数所需的条件,求 出函数解析式,然后根据所求的函数关系进行探索 研究.探索研究的一般类型有:①在什么条件下三 角形是等腰三角形、直角三角形;②四边形是菱形、 梯形等;③探索两个三角形满足什么条件相似;④ 探究线段之间的位置关系等.
❖ 二是依运动变化的图形中的分界点进行分类,如一 个图形在运动过程中,与另一个图形重合部分可以 是三角形,也可以是四边形、五边形等;
❖ 三是依据图形间的位置关系,如点在线段上(不与端 点重合)、点与端点重合、点在线段延长线上等.
► 热考二 动点问题
❖ 解决动态几何问题我们需要用运动与变化的 眼光去观察和研究图形,把握图形运动与变 化的全过程,抓住其中的等量关系和变量关 系,并特别关注一些不变量和不变关系或特 殊关系;在求有关图形的变量之间关系时, 通常建立函数模型或不等式模型来求解;求 图形之间的特殊数量关系和一些特殊值时, 通常建立方程模型求解
二、应用举例 [2012·北京]
在平面直角坐标系 xOy 中,抛物线 y=-m-4 1x2+54mx+m2-3m +2 与 x 轴的交点分别为原点 O 和点 A,点 B(2,n)在这条抛物线上.
(1) 求 B 点的坐标;(2) 点 P 在线段 OA 上,从 O 点出发向 A 点 运动,过 P 点作 x 轴的垂线,与直线 OB 交于点 E,延长 PE 到点 D,

学生提高初二下----代几综合

学生提高初二下----代几综合

yMO A xNPlB代几综合题 7月3日 以代数式、坐标系、函数知识为载体,考察:(1)函数性质(反比例垂线段围面积、单调性、对称性等) (2)特殊几何图形的特殊性质 (3)计算解决代数与几何综合题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题,逐个击破;第三,要善于联想和转化,将以上得到的显性条件进行恰当地组合,进一步得到新的结论,尤其要注意的是,恰当地使用分析综合法及方程与函数的思想、转化思想、数行结合思想、分类与整合思想等数学思想方法,能更有效地解决问题。

教学建议:(1)因为代数与几何综合比较难,所以注意层次,由易到难,逐步递进,别使学生畏惧,应该增强学生的信心;(2)帮助学生分析问题、挖掘条件、展开联想,尽量多角度来分析问题,开阔学生思路; (3)养成类比、归纳形成方法的习惯。

1.(燕山23)已知:如图,在直角坐标系xOy 中,直线y=2x 与函数y=x2的图象在第一象限的交于A 点,AM ⊥x 轴,垂足是M ,把线段OA 的垂直平分线记作l ,线段AN 与OM 关于l 对称.(1)画出线段AN (保留画图痕迹); (2)求点A 的坐标;点A (1,2) (3)求直线AN 的函数解析式. y=34 x+310.2.(大兴24)在平面直角坐标系xOy 中,O 为坐标原点,直线)0,2121(332≠≤≤-+=k k m kx y 其中经过点A (23,4),且与y 轴相交于点C. 点B 在y 轴上,且727OB OA =+-. △ABC 的面积为S. (1)求m 的取值范围; (2)求S 关于m 的函数关系式;(3)设点B 在y 轴的正半轴上,当S 取得最大值时,将△ABC 沿AC 折叠得到C B A '∆,求点B '的坐标.3.(31中27.13中23)如图,已知反比例函数12y x=的图像和一次函数y=kx-7的图像都经过点P(m,2). (1)求这个一次函数的解析式;(2)如果等腰梯形ABCD 的顶点A 、B 在这个一次函数的图像上,顶点C 、D 在这个反比例函数的图 像上,两底AD 、BC 与y 轴平行,且A 和B 的横坐标分别为a 、b (b>a>0),求代数式ab 的值.4.(41中27)如图,已知反比例函数xky =1和一次函数b ax y +=2的图象相交于点A 和点D ,且点 A 的横坐标为1,点D 的纵坐标为-1. 过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1. (1)求反比例函数和一次函数的解析式.(2)若一次函数b ax y +=2的图象与x 轴相交于点C ,求∠ACO 的度数. (3)结合图象直接写出:当1y >2y 时,x 的取值范围.5.(159中26)如图,直线b x k y +=1与反比例函数xk y 2=(x >0)的图象交于A )6,1(,B )3,(a 两点. (1)求1k 、2k 的值; (2)直接写出021>-+xk b x k 时x 的取值范围; (3)如图,等腰梯形OBCD 中,BC //OD ,OB =CD ,OD 边在x 轴上,过点C 作CE ⊥OD 于点E ,CE 和反比例函数的 图象交于点P ,当梯形OBCD 的面积为12时,请判断PC 和PE 的大小关系,并说明理由.Dbax y +=2OPE DCBAyx6.(161中24)如图,在直角坐标系中,O 为坐标原点. 已知反比例函数y=xk(k>0)的图象经过点 A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为21. (1)求k 和m 的值;(2)点C (x ,y )在反比例函数y=xk的图象上,求当1≤x ≤3时函数值y 的取值范围.7.(35中24)如图,在平面直角坐标系中,双曲线y =kx过点A (-4,1),点P 是双曲线上一动点(不与A 重合),过点A 和P 分别向两坐标轴作垂线,垂足分别为B 、C 和D 、E . (1)求k 、S △ADC 及S △PDC 的值;(2)判断AP 和DC 的位置关系,并说明理由;(3)若点P 在双曲线上运动时,探索以A 、P 、C 、D 四点为顶点的四边形能否成为菱形和等腰梯形? 若能,请直接写出所有满足条件的点P 的坐标;若不能,请说明理由.O C B D P E x Ay8.(156中24)如图,正比例函数x y 21=的图象与反比例函数xky =(0≠k )在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知△OAM 的面积为1. (1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴 上求一点P ,使PA PB +最小.9.(八中26) 如图,反比例函数(0)ky k x=≠在第一象限内的图象上有两点A 、B ,已知点A (3m , m ),点B (n , n +1)(其中m >0,n >0),OA =210 (1)求A 、B 点的坐标及反比例函数解析式;(2)如果M 为x 轴上一点,N 为坐标平面内一点,以A 、B 、M 、N 为顶点的四边形是矩形,请直接写 出符合条件的M 、N 点的坐标,并画出相应的矩形.OMxyA (第24题)11AyOxB7月7日 10.(八中怡海29)如图,点A 是反比例函数4(0)y x x=>上的一个动点,过点A 作AC y ⊥轴于点C , 点M 是AC 的中点,过点M 作BD AC ⊥交x 轴于点D ,交曲线于点B ,顺次连接A 、B 、C 、D 得到 四边形ABCD .(1)探究四边形ABCD 的形状并说明理由;(2)四边形ABCD 可能是正方形吗?若能,求出此时点A 、B 的坐标11.(四中23)已知反比例函数)0(1<=k xky 的图象过点A(m ,3-),过点A 作AB ⊥x 轴于点B , 且△ AOB 的面积为3 (1) 求k 和m 的值;(2) 若一次函数12+=ax y 的图象经过点A , 并且与x 轴相交于点C ,求AC AO :的值;My=4x yxODC BAxyOABC7月8日12.(实验27)在平面直角坐标系中,M是双曲线36yx=-(x<0)上一点,把双曲线36yx=-(x<0)关于y轴作对称,点M的对称点为N,N点坐标为(m,6),作NA⊥x轴于A,NB⊥y轴于B.(1)如图27-1,以OA为一边在四边形OANB内部作等边△OAC,求点C的坐标;(2)在(1)的前提下,在平面内找到点D,使以O、C、N、D为顶点的四边形为平行四边形,直接写出点D的坐标;(3)如图27-2,若在四边形BOAN内部有一点P,满足∠PBN=∠PNB=15︒,连接PO、PA.求证:△POA为等边三角形.图27-1 xyMCB NO A图27-2 xyMPB NO A7月9日 14.(三中26)已知:如图1,直线13y x =与双曲线ky x=交于A ,B 两点,且点A 的坐标为(6,m ). (1)求双曲线ky x=的解析式; (2)点C (,4n )在双曲线ky x=上,求△AOC 的面积;(3)过原点O 作另一条直线l 与双曲线ky x=交于P ,Q 两点,且点P 在第一象限.若由点A ,P ,B ,Q 为顶点组成的四边形的面积为20,请直接写出....所有符合条件的点P 的坐标.yxCBOA图17月10日 15.(十三分24)已知反比例函数y =xk的图像经过点A (-3,1)。

几道一次函数的代几综合题

几道一次函数的代几综合题

1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB(1) 求AC 的解析式;(2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系,并证明你的结论。

(3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM 的值不变;②(MQ -AC )/PM 的值不变,期中只有一个正确结论,请选择并加以证明。

xyxy2、如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。

(1)当OA =OB 时,试确定直线L 的解析式;(2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM =4,BN =3,求MN 的长。

(3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。

问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。

第2题图①第2题图②第2题图③3、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+, (1)求直线2l 的解析式;(3分)(2)过A 点在△ABC 的外部作一条直线3l ,过点B 作BE ⊥3l 于E ,过点C作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF =EF (3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。

七年级数学代几综合复习

七年级数学代几综合复习

【例题精讲】例1.1、已知在平面直角坐标系中,O为坐标原点,点A的坐标为(2,a),点B的坐标为(b,2),点C的坐标为(c,0),其中a、b满足(a+b-10)2+|a-b+2|=0。

(1) 求A、B两点的坐标;(2) 当△ABC的面积为10时,求点C的坐标;(3) 当2≤S△ABC≤12时,则点C的横坐标c的取值范围是___________。

2、如图,点A的坐标为(4,3),点B的坐标为(1,2),点M的坐标为(m,n),三角形ABM的面积为3 。

(1) 三角形ABM的面积为3,当m=4时,直接写出点M的坐标;(2) 若三角形ABM的面积不超过3,当m=3时,求n的取值范围;(3) 三角形ABM的面积为3,当1≤m≤4时,直接写出m与n的数量关系。

.3、如图:在平面直角坐标系中,A(0,a),B(0,b),C(m,b),且2a--2a-+2(1)b-+=0,S△ABC=3.(1)直接填空:a= ,b= ,m= ;(2)设AC交x轴于D,ED⊥AC交y轴于E,∠ADO、∠AED的角平分线交于F点,求∠DFE的度数;(3)点E为AC延长线上一点,EH⊥AO于H,EG平分∠AEH直线OK⊥EG于G交AE于K,KT平分∠EKO交x轴于T点,则在E点AC的延长线上运动时,求290KTOGEH∠-︒∠的值.【课堂练习】1、在直角坐标系中,已知点A(a ,0),B (b ,c ),C (d ,0)且a 是−8的立方根;方程2x 3b−5−3y 2b−2c+5=1是关于x,y 的二元一次方程,d 为不等式组{x >b x <6的最大整数解。

(1)求A 、B 、C 的坐标;(2)如图1,若D 为y 轴负半轴上的一个动点,连BD 交x 轴于点E ,问是否存在点D ,使得S △ADE =S △BCE ?若存在,请求出点D 的坐标,若不存在,请说明理由;(3)如图2,若将线段AB 向上平移2个单位长度,点G 为x 轴上一点,点F (5,n )为第一象限内一动点,连BF 、CF 、CA ,若△ABG 的面积等于由AB 、BF 、CF 、AC 四条线段围成图形的面积,求点G 的横坐标的取值范围(用含n 的式子表示)。

八年级数学代几综合难点题型

八年级数学代几综合难点题型

八年级数学代几综合难点题型一次函数综合1、已知直线 $y=kx-2k+6$ 经过定点 $Q$。

1)点 $Q$ 的坐标为 $(2k-6,-2k+6)$;2)设点 $M$ 的坐标为 $(t,t)$,则直线 $QM$ 的解析式为$y=(k+1)x-2k+6-t(k+1)$;3)设点 $E$ 的坐标为 $(m,n)$,则点 $A$ 的坐标为$(t,0)$,点 $B$ 的坐标为 $(0,-2k+6-t)$,线段 $CE$ 的长度为$\sqrt{(m-t)^2+(n+t-2k+6)^2}$。

由 $\angle AEO=45^\circ$,可知 $\angle AEC=135^\circ$,因此 $CE$ 的最大值为$\sqrt{2}(k-1)$。

2、正方形 $AOCD$ 的顶点 $A$、$C$ 分别在 $x$、$y$ 轴上,点 $P$ 为对角线 $AC$ 上一动点,过点 $P$ 作$PQ\perp OP$ 交 $CD$ 边于点 $Q$。

1)设 $P$ 的坐标为 $(t,4-t)$,则直线 $PQ$ 的解析式为$y=-\frac{1}{t}(x-t+4)$。

将直线 $EF$ 向上平移 $2$ 个单位,则其解析式为 $y=-x$;2)由勾股定理可知 $OQ^2=2PA^2=24$,$PC^2=2PA^2-AC^2=12$,因此 $OQ^2-PC^2=12$;3)当点 $P$ 沿 $AC$ 方向移动 $2$ 个单位时,点 $M$ 移动的路径长为 $\sqrt{2}$。

设 $P$ 的坐标为 $(t,4-t)$,则$Q$ 的坐标为 $(4-t,t)$,$OQ$ 的中点 $M$ 的坐标为 $(2-t,2+t)$。

当四边形 $OMNB$ 为菱形时,有 $OM=MB$,因此$t=3$。

此时,$OM$ 与 $BC$ 的交点 $H$ 的坐标为 $(3,1)$,$PQ$ 的长度为 $2\sqrt{2}-2$,四边形 $OPQH$ 的周长为$2\sqrt{2}+2\sqrt{10}$,点 $P$ 的坐标为 $(3-\sqrt{2},1+\sqrt{2})$。

中考复习之代几综合问题知识讲解

中考复习之代几综合问题知识讲解

代几综合问题—知识讲解(提高)【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化,从函数关系中点与线的位置、方程根的情况得出图形中的几何关系.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.(2015•大庆模拟)如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)【思路点拨】(1)先在Rt△ABC中,由勾股定理求出AB=10,再由BP=t,AQ=2t,得出AP=10﹣t,然后由PQ∥BC,根据平行线分线段成比例定理,列出比例式,求解即可;(2)正确把四边形PQCB表示出来,即可得出y关于t的函数关系式;(3)根据四边形PQCB面积是△ABC面积的,列出方程,解方程即可;(4)△AEQ为等腰三角形时,分三种情况讨论:①AE=AQ;②EA=EQ;③QA=QE,每一种情况都可以列出关于t的方程,解方程即可.【答案与解析】解:(1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,∴AB=10cm.∵BP=t,AQ=2t,∴AP=AB﹣BP=10﹣t.∵PQ∥BC,∴=,∴=,解得t=;(2)∵S四边形PQCB=S△ACB﹣S△APQ=AC•BC﹣AP•AQ•sinA∴y=×6×8﹣×(10﹣t)•2t•=24﹣t(10﹣t)=t2﹣8t+24,即y关于t的函数关系式为y=t2﹣8t+24;(3)四边形PQCB面积能是△ABC面积的,理由如下:由题意,得t2﹣8t+24=×24,整理,得t2﹣10t+12=0,解得t1=5﹣,t2=5+(不合题意舍去).故四边形PQCB面积能是△ABC面积的,此时t的值为5﹣;(4)△AEQ为等腰三角形时,分三种情况讨论:①如果AE=AQ,那么10﹣2t=2t,解得t=;②如果EA=EQ,那么(10﹣2t)×=t,解得t=;③如果QA=QE,那么2t×=5﹣t,解得t=.故当t为秒秒秒时,△AEQ为等腰三角形.【总结升华】本题考查了勾股定理,等腰三角形的判定等,综合性较强,难度适中.解答此题时要注意分类讨论,不要漏解;其次运用方程思想是解题的关键.举一反三:【变式】(2016•镇江)如图1,在菱形ABCD中,AB=6,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t= 秒时,DF的长度有最小值,最小值等于;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y 关于时间t的函数表达式.【答案】解:(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四边形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,∵,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如图1,当点E运动至点E′时,DF=BE′,此时DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴设AE′=x,则BE′=2x,∴AB=x=6,则AE′=6∴DE′=6+6,DF=BE′=12,故答案为:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①当∠EQP=90°时,如图2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②当∠EPQ=90°时,如图2②,∵菱形ABCD的对角线AC⊥BD,∴EC与AC重合,∴DE=6,∴t=6秒;(4)y=t﹣12﹣,如图3,连接GF分别交直线AD、BC于点M、N,过点F作FH⊥AD于点H,由(1)知∠1=∠2,又∵∠1+∠DCE=∠2+∠GCF,∴∠DCE=∠GCF,在△DCE和△GCF中,∵,∴△DCE≌△GCF(SAS),∴∠3=∠4,∵∠1=∠3,∠1=∠2,∴∠2=∠4,∴GF∥CD,又∵AH∥BN,∴四边形CDMN是平行四边形,∴MN=CD=6,∵∠BCD=∠DCG,∴∠CGN=∠DCN=∠CNG,∴CN=CG=CD=6,∵tan∠ABC=tan∠CGN=2,∴GN=12,∴GM=6+12,∵GF=DE=t,∴FM=t﹣6﹣12,∵tan∠FMH=tan∠ABC=2,∴FH=(t﹣6﹣12),即y=t﹣12﹣.类型二、函数与几何综合问题2.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(可以用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.【思路点拨】(1)由抛物线y=x2+bx+c经过点O和点P,将点O与P的坐标代入方程即可求得c,b;(2)当x=1时,y=1-t,求得M的坐标,则可求得∠AMP的度数;(3)根据图形,可直接求得答案.【答案与解析】解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,再把x=t,y=0代入y=x2+bx,得t2+bt=0,∵t>0,∴b=-t;(2)不变.∵抛物线的解析式为:y=x2-tx,且M的横坐标为1,∴当x=1时,y=1-t,∴M(1,1-t),∴AM=|1-t|=t-1,∵OP=t ,∴AP=t-1, ∴AM=AP ,∵∠PAM=90°,∴∠AMP=45°;(3)72<t<113.①左边4个好点在抛物线上方,右边4个好点在抛物线下方:无解; ②左边3个好点在抛物线上方,右边3个好点在抛物线下方: 则有-4<y 2<-3,-2<y 3<-1, 即-4<4-2t <-3,-2<9-3t <-1,∴72<t<4且103<t<113,解得72<t<113;③左边2个好点在抛物线上方,右边2个好点在抛物线下方:无解; ④左边1个好点在抛物线上方,右边1个好点在抛物线下方:无解; ⑤左边0个好点在抛物线上方,右边0个好点在抛物线下方:无解; 综上所述,t 的取值范围是:72<t<113.【总结升华】此题考查了二次函数与点的关系.此题综合性很强,难度适中,解题的关键是注意数形结合与方程思想的应用.类型三、动态几何中的函数问题3. 如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图象与y 轴交于(0,3)C ,与x 轴交于A 、B 两点,点B 的坐标为(-3,0)(1)求二次函数的解析式及顶点D 的坐标;(2)点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1:2的两部分,求出此时点M 的坐标;(3)点P 是第二象限内抛物线上的一动点,问:点P 在何处时△CPB 的面积最大?最大面积是多少?并求出此时点P 的坐标.【思路点拨】(1)抛物线的解析式中只有两个待定系数,因此只需将点B 、C 的坐标代入其中求解即可.(2)先画出相关图示,连接OD 后发现:S △OBD :S 四边形ACDB =2:3,因此直线OM 必须经过线段BD 才有可能符合题干的要求;设直线OM 与线段BD 的交点为E ,根据题干可知:△OBE 、多边形OEDCA 的面积比应该是1:2或2:1,即△OBE 的面积是四边形ACDB 面积的1233或,所以先求出四边形ABDC 的面积,进而得到△OBE 的面积后,可确定点E 的坐标,首先求出直线OE (即直线OM )的解析式,联立抛物线的解析式后即可确定点M 的坐标(注意点M 的位置).(3)此题必须先得到关于△CPB 面积的函数表达式,然后根据函数的性质来求出△CPB 的面积最大值以及对应的点P 坐标;通过图示可发现,△CPB 的面积可由四边形OCPB 的面积减去△OCB 的面积求得,首先设出点P 的坐标,四边形OCPB 的面积可由△OCP 、△OPB 的面积和得出. 【答案与解析】解:(1)由题意,得:3,9-60.c a a c =⎧⎨+=⎩ 解得:-1,3.a c =⎧⎨=⎩所以,二次函数的解析式为:2--23y x x =+ ,顶点D 的坐标为(-1,4). (2)画图由A、B、C、D四点的坐标,易求四边形ACDB 的面积为9.直线BD 的解析式为y=2x+6.设直线OM 与直线BD 交于点E ,则△OBE 的面积可以为3或6.①当1=9=33OBE S ∆⨯时,如图,易得E 点坐标(-2,-2),直线OE 的解析式为y=-x.E M xy O A BCD设M 点坐标(x ,-x ),21223113113,().22x x x x x -=--+---+==舍 ∴113113M ,22--+() ② 当时,同理可得M 点坐标.∴ M 点坐标为(-1,4).(3)如图,连接OP ,设P 点的坐标为(),m n , ∵点P 在抛物线上,∴232n m m =-+-, ∴PB PO OPB OB S S S S =+-△C △C △△C111||222OC m OB n OC OB =⋅-+⋅-⋅ ()339332222m n n m =-+-=--()22333273.2228m m m ⎛⎫=-+=-++ ⎪⎝⎭∵3<0m -<,∴当32m =-时,154n =. △CPB 的面积有最大值27.8∴当点P 的坐标为315(,)24-时,△CPB 的面积有最大值,且最大值为27.8【总结升华】此题主要考查了二次函数解析式的确定、图形面积的解法以及二次函数的应用等知识;(2)问中,一定先要探究一下点M 的位置,以免出现漏解的情况.举一反三:【变式】如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线y =-12x +b 交折线OAB 于点E .(1)记△ODE 的面积为S ,求S 与b 的函数关系式;(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形OA 1B 1C 1,试探究OA 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.yxDECOAB【答案】(1)由题意得B (3,1).若直线经过点A (3,0)时,则b =32 若直线经过点B (3,1)时,则b =52若直线经过点C (0,1)时,则b =1.①若直线与折线OAB的交点在OA上时,即1<b≤32,如图1,此时点E(2b,0).∴S=12OE·CO=12×2b×1=b.②若直线与折线OAB的交点在BA上时,即32<b<52,如图2,此时点E(3,32b-),D(2b-2,1).∴S=S矩-(S△OCD+S△OAE+S△DBE)= 3-[12(2b-1)×1+12×(5-2b)•(52b-)+12×3(32b-)](2)如图3,设O1A1与CB相交于点M,C1B1与OA相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM 为平行四边形,根据轴对称知,∠MED=∠NED, 又∠MDE=∠NED,∴∠MED=∠MDE,MD=ME,∴平行四边形DNEM为菱形.过点D作DH⊥OA,垂足为H,设菱形DNEM的边长为a,由题可知,D(2b-2,1),E(2b,0),∴DH=1,HE=2b-(2b-2)=2,∴HN=HE-NE=2-a,则在Rt△DHM中,由勾股定理知:222(2)1a a=-+,∴a=5 . 4.∴S四边形DNEM =NE·DH=54.∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为54.类型四、直角坐标系中的几何问题4. 如图所示,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.【思路点拨】(1)由轴对称的性质,可知∠FBD=∠ABD,FB=AB,可得四边形ABFD是正方形,则可求点E、F的坐标;(2)已知抛物线的顶点,则可用顶点式设抛物线的解析式. 因为以点E、F 、P 为顶点的等腰三角形没有给明顶角的顶点,而顶角和底边都是唯一的,所以要抓住谁是顶角的顶点进行分类,可分别以E 、F 、P 为顶角顶点;(3)求周长的最小值需转化为利用轴对称的性质求解. 【答案与解析】解:(1)E(3,1);F(1,2);(2)连结EF ,在Rt △EBF 中,∠B=90°,∴EF=5212222=+=+BF EB .设点P 的坐标为(0,n),n >0,∵顶点F(1,2), ∴设抛物线的解析式为y=a(x-1)2+2,(a ≠0).①如图1,当EF=PF 时,EF 2=PF 2,∴12+(n-2)2=5,解得n 1=0(舍去),n 2=4. ∴P(0,4),∴4=a(0-1)2+2,解得a=2, ∴抛物线的解析式为y=2(x-1)2+2.②如图2,当EP=FP 时,EP 2=FP 2,∴(2-n)2+1=(1-n)2+9,解得n=-25(舍去)③当EF=EP 时,EP=5<3,这种情况不存在. 综上所述,符合条件的抛物线为y=2(x-1)2+2.(3)存在点M 、N ,使得四边形MNFE 的周长最小.如图3,作点E 关于x 轴的对称点E′,作点F 关于y 轴的对称点F′,连结E′F′,分别与x 轴、y 轴交于点M 、N ,则点M 、N 就是所求. 连结NF 、ME. ∴E′(3,-1)、F′(-1,2),NF=NF′,ME=ME′. ∴BF′=4,BE′=3. ∴FN+NM+ME=F′N+NM+ME′=F′E′=2243 =5. 又∵EF=5,∴FN+MN+ME+EF=5+5, 此时四边形MNFE 的周长最小值为5+5.【总结升华】本题考查了平面直角坐标系、等腰直角三角形、抛物线解析式的求法、利用轴对称求最短距离以及数形结合、分类讨论等数学思想. 分类讨论的思想要依据一定的标准,对问题分类、求解,要特别注意分类原则是不重不漏,最简分类常见的依据是:一是依据概念分类,如判断直角三角形时明确哪个角可以是直角,两个三角形相似时分清哪两条边是对应边;二是依运动变化的图形中的分界点进行分类,如一个图形在运动过程中,与另一个图形重合部分可以是三角形,也可以是四边形、五边形等. 几何与函数的综合题是中考常见的压轴题型,解决这类问题主要分为两步:一是利用线段的长确定出几何图形中各点的坐标;二是用待定系数法求函数关系式.类型五、几何图形中的探究、归纳、猜想与证明问题5. 如图所示,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA=OB=1,则第n 个等腰直角三角形的面积S= ________(n 为正整数).B 2B 1A 1BOA【思路点拨】本题要先根据已知的条件求出S 1、S 2的值,然后通过这两个面积的求解过程得出一般性的规律,进而可得出S n 的表达式.【总结升华】本题要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值. 举一反三:【变式】阅读下面的文字,回答后面的问题.求3+32+33+…+3100的值. 解:令S=3+32+33+…+3100(1),将等式两边提示乘以3得到:3S=32+33+34+…+3101(2), (2)-(1)得到:2S=3101-3问题:(1)2+22+…+22011的值为__________________;(直接写出结果)(2)求4+12+36+…+4×350的值;(3)如图,在等腰Rt△OAB中,OA=AB=1,以斜边OB为腰作第二个等腰Rt△OBC,再以斜边OC为腰作第三个等腰Rt△OCD,如此下去…一直作图到第8个图形为止.求所有的等腰直角三角形的所有斜边之和.(直接写出结果).【答案】解:(1)22012-2.(2)令S=4+12+36+…+4×350 ①,将等式两边提示乘以3得到:3S=12+36+108+…+4×351②,②-①得到:2S=4×341-4∴S=2×351-2∴4+12+36+…+4×350=2×351-2.(3)92-2 2-1().。

代几综合复习(精品) 2

代几综合复习(精品) 2

建立代数模型求解
数形结合!! 百般好
代数中的数 量关系
点、线位置及方 程根的情况
以形助数
以数解形
寻找图形中 的几何关系
21
如何解代几综合题?
方法:
1、审题,挖掘隐含条件
2、分解复杂问题 3、恰当使用分析综合法,关注重要 的数学思想方法
22
与特殊三角形、四边形等结合的代几综合
等腰三角形:体会数形结合
如图,在直角坐标系中,已知点 A(2,4) ,B(5,0) , 动点 P 从 B 点出发沿 BO 向终点 O 运动,动点 Q 从 A 点 出发沿 AB 向终点 B 运动.两点同时出发,速度均为每秒 1 个单位,设从出发起运动了 x 秒.
y A
(1)Q 点的坐标为 (用含 x 的代数式表示)
Q G
O
P
成周长相等的两个四边形,确定此直线的解析式; (3)设 G 为 y 轴上一点,点 P 从直线 y kx b 与 y 轴的交点出发,先沿 y 轴到达 G 点,再沿 GA 到 达 A 点.若 P 点在 y 轴上运动的速度是它在直线 GA 上运动速度的 2 倍,试确定 G 点的位置,使 P 点按照上述要求到达 A 点所用的时间最短.
六年考题
07 年北京市 24(本题满分 7 分)
内容方法
函数解析式的确定 直线的平移 点的坐标 勾股定理
并以此为背景
等边三角形 角平分线
能力考察
数形结合、分类讨论
11
六年考题
08 年北京市 24(满分 7 分)
在平面直角坐标系 xOy 中,抛物线 y x2 bx c 与 x 轴交于 A、B 两点(点 A 在点 B 的左侧 ) .. ,与 y 轴交于点 C,点 B 的坐标 为(3,0) ,将直线 y kx 沿 y 轴向上平移 3 个单位长度后恰好经 过 B、C 两点.

中考数学专题:圆与一次函数(代几综合)

中考数学专题:圆与一次函数(代几综合)

(2011南京)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是2。

(2010•文山州)如图,已知直线l的解析式为y=-x+6,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线n从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动时间为t秒,运动过程中始终保持n∥l,直线n与x轴、y轴分别相交于C、D两点,线段CD的中点为P,以P为圆心,以CD为直径在CD上方作半圆,半圆面积为S,当直线n与直线l重合时,运动结束.(1)求A、B两点的坐标;(2)求S与t的函数关系式及自变量t的取值范围;(3)直线n在运动过程中,①当t为何值时,半圆与直线l相切?②是否存在这样的t值,使得半圆面积S= 12S梯形ABCD?若存在,求出t值.若不存在,说明理由.(2011四川达州,21,6分)如图,在△ABC 中,∠A=90°,∠B=60°,AB=3,点D 从点A 以每秒1个单位长度的速度向点B 运动(点D 不与B 重合),过点D 作DE ∥BC 交AC 于点E .以DE 为直径作⊙O ,并在⊙O 内作内接矩形ADFE ,设点D 的运动时间为t 秒. (1)用含t 的代数式表示△DEF 的面积S ; (2)当t 为何值时,⊙O 与直线BC 相切?C【答案】解:(1)∵DE ∥BC ,∴∠ADE=∠B=60° 在△ADE 中,∵∠A=90° ∴ADAEADE =∠tan ∵AD=t t =⨯1,∴AE=t 3 又∵四边形ADFE 是矩形, ∴S △DEF =S △ADE =22332121t t t AE AD =⨯⨯=⨯()30<≤t ∴S=223t ()30<≤t (2)过点O 作OG ⊥BC 于G ,过点D 作DH ⊥BC 于H ,H G∵DE ∥BC ,∴OG=DH ,∠DHB=90° 在△DBH 中,BDDHB =sin ∵∠B=60°,BD=AD AB -,AD=t ,AB=3,∴DH=)3(23t -,∴OG=)3(23t - 当OG=DE 21时,⊙O 与BC 相切, 在△ADE 中,∵∠A=90°,∠ADE=60°,∴21cos ==∠DE AD ADE , ∵AD=t ,∴DE=2AD=t 2, ∴2)3(232⨯-=t t , ∴936-=t∴当936-=t 时,⊙O 与直线BC 相切(2011湖南娄底,25,10分)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD为直径作⊙O1,交BC于点E,过点E作EF⊥AB于F,建立如图12所示的平面直角坐标系,已知A,B两点的坐标分别为A(0,,B(-2,0).(1)求C,D两点的坐标.(2)求证:EF为⊙O1的切线.(3)探究:如图13,线段CD上是否存在点P,使得线段PC的长度与P点到y轴的距离相等?如果存在,请找出P点的坐标;如果不存在,请说明理由.【答案】(1)连结DE,∵CD是⊙O1的直径,∴DE⊥BC,∴四边形ADEO为矩形.∴OE=AD=2,DE=AO.在等腰梯形ABCD中,DC=AB.∴CE=BO=2,CO=4.∴C(4,0),D(2,).(2)连结O1E,在⊙O1中,O1E=O1C,∠O1EC=∠O1C E,在等腰梯形ABCD中,∠ABC=∠DCB.∴O1E∥AB,又∵EF⊥AB,∴O1E⊥EF.∵E在AB上,∴EF为⊙O1的切线(3)解法一:存在满足条件的点P.如右图,过P作PM⊥y轴于M,作PN⊥x轴于N,依题意得PC=PM,在矩形OMPN中,ON=PM,设ON=x,则PM=PC=x,CN=4-x,tan∠ABO=AOBO==∴∠ABO=60︒,∴∠PCN =∠ABO =60︒.MP在Rt △PCN 中, cos ∠PCN =12CN PC =, 即412x x -=, ∴x =83.∴PN =CN ·tan ∠PCN =(4-83)∴满足条件的P 点的坐标为(83). 解法二:存在满足条件的点P ,如右图,在Rt △AOB 中,AB 4. 过P 作PM ⊥y 轴于M ,作PN ⊥x 轴于N ,依题意得PC =PM , 在矩形OMPN 中,ON =PM ,设ON =x ,则PM =PC =x ,CN =4-x , ∵∠PCN =∠ABO ,∠PCN =∠AOB =90︒. ∴△PNC ∽△AOB , ∴PC CN AB BO =,即442x x-=. 解得x =83.又由△PNC ∽△AOB ,得834PN PC AO AB ==,∴PN =∴满足条件的P 点的坐标为(83(2010•泰州)如图,⊙O是O为圆心,半径为5的圆,直线y=kx+b交坐标轴于A、B两点.(1)若OA=OB①求k;②若b=4,点P为直线AB上一点,过P点作⊙O的两条切线,切点分别为C、D,若∠CPD=90°,求点P的坐标;(2)若k=-12,且直线y=kx+b分⊙O的圆周为1:2两部分,求b.(2010•连云港)如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(-2,-2),半径为2.函数y=-x+2的图象与x轴交于点A,与y轴交于点B,点P为AB上一动点.(1)连接CO,求证:CO⊥AB;(2)若△POA是等腰三角形,求点P的坐标;(3)当直线PO与⊙C相切时,求∠POA的度数;当直线PO与⊙C相交时,设交点为E、F,点M为线段EF的中点,令PO=t,MO=s,求s与t之间的函数关系,并写出t的取值范围.(2009•永州)如图,在平面直角坐标系内,O为原点,点A的坐标为(-3,0),经过A、O两点作半径为5/2的⊙C,交y轴的负半轴于点B.(1)求B点的坐标;(2)过B点作⊙C的切线交x轴于点D,求直线BD的解析式.相切如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与x 轴交于A,B两点,过A作直线l与x轴负方向相交成60°的角,且交y轴于C点,以点O2(13,5)为圆心的圆与x轴相切于点D.(1)求直线l的解析式;(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,当⊙O2第一次与⊙O1外切时,求⊙O2平移的时间.1. (东营)在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ;(2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C . ∴ △AMN ∽ △ABC .∴ AM AN AB AC=,即43x AN=.∴ AN =43x .∴ S =2133248MNP AMN S S x x x∆∆==⋅⋅=.(0<x <4) (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN . 在Rt △ABC 中,BC. 由(1)知 △AMN ∽ △ABC .∴ AM MN AB BC=,即45x MN=.∴ 54MN x =,∴ 58OD x =. 过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角,∴ △BMQ ∽△BCA .∴ BM QM BC AC=.∴ 55258324xBM x ⨯==,25424AB BM MA x x =+=+=.∴ x =4996. ∴ 当x =4996时,⊙O 与直线BC 相切. (3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点.∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∠APC∴ △AMO ∽ △ABP .BD 图 2P 图 3B图 1∴ 12AM AO AB AP ==. AM =MB =2.故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==.∴ 当x =2时,2332.82y =⨯=最大 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形, ∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x .∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB . ∴2PEF ABC S PF AB S ∆∆⎛⎫= ⎪⎝⎭.∴()2322PEF S x ∆=-MNP PEFy S S ∆∆=-=()222339266828x x x x --=-+-. 当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭.∴ 当83x =时,满足2<x <4,2y =最大. 综上所述,当83x =时,y 值最大,最大值是2.图 4(无锡)如图,已知点A从(1,0)出发,以1个单位长度/秒的速度沿x轴向正方向运动,以O,A为顶点作菱形OABC,使点B,C在第一象限内,且∠AOC=600,;以P(0,3)为圆心,PC为半径作圆.设点A运动了t秒,求:(1)点C的坐标(用含t 的代数式表示);(2)当点A在运动过程中,所有使⊙P与菱形OABC的边所在直线相切的t的值.解:(1)过C作CD x⊥轴于D,1OA t=+,1OC t∴=+,1 cos602tOD OC +∴==,3(1sin60DC OC==,∴点C的坐标为1)22t t⎛⎫++⎪⎪⎝⎭,.················(2分)(2)①当P与OC相切时(如图1),切点为C ,此时PC OC⊥,cos30 OC OP∴=,3 13t∴+=,1t∴=②当P与OA,即与x轴相切时(如图2),则切点为O,PC=过P作PE OC⊥于E,则12OE OC=,133cos302tOP+∴==.③当P与AB所在直线相切时(如图3),设切点为F,PF交OC于G,则PF OC⊥,FG CD∴==,3(1sin30PC PF OP∴==+.过C作CH y⊥轴于H,则222PH CH PC+=,22213322t⎫⎛+⎛⎫∴+-=+⎪⎪⎪⎝⎭⎝⎭⎝⎭,化简,得2(1)1)270t t+-++=,解得1t+=9310t=-<,1t∴=.∴所求t的值是1,1和1.2010 山东淄博)如图,在直角坐标系中,以坐标原点为圆心、半径为1的⊙O 与x 轴交于A ,B 两点,与y 轴交于C ,D 两点.E 为⊙O 上在第一象限的某一点,直线BF 交⊙O 于点F ,且∠ABF =∠AEC ,则直线BF 对应的函数表达式为 .【答案】1-=x y ,1+-=x y23、如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),D(1,a)在直线BC上,⊙A是以A为圆心,AD为半径的圆.(1)求a的值;(2)求证:⊙A与BC相切;(3)在x负半轴上是否存在点M,使MC与⊙A相切,若存在,求点M的坐标;若不存在,说明理由;(4)线段AD与y轴交于点E,过点E的任意一直线交⊙A于P、Q两点,问是否存在一个常数K,始终满足PE•QE=K,如果存在,请求出K的值;若不存在,请说明理由.(2010安徽蚌埠)已知⊙O 过点D (3,4),点H 与点D 关于x 轴对称,过H 作⊙O 的切线交x 轴于点A 。

八年级数学全等三角形代几综合(二)

八年级数学全等三角形代几综合(二)

全等三角形代几综合《二》(硚口区八上期末第16题)1、如图,在平面直角坐标系中,OC 是等边△OAB 的角平分线,点D 与点C 关于y 轴对称,DA 交OB 于E .若已知A(8,0),则OE 的长度为___________。

2(广雅二中训五)2、如图,D 为等腰Rt △ABC 斜边AB 的中点,P 为BC 上的动点,以DP 为直角边在其左侧作等腰Rt △DPE ,∠DPE =90°.若AB =32,当P 从B 运动到C 点的过程中,E 点经过的路径长为____________。

32思考如下两个图形的辅助线方法以及相关结论1、如图,分别以△ABC 的两边AB 、AC 为斜边构造等腰R t △ABD 和等腰R t △ACE ,取BC 的中点F ,连接DE 、DF 、EF ,求证:△DEF 是等腰直角三角形。

连DC 交OB 于F2、如图等腰R t△ABC和等腰R t△ADE都以点A为顶角顶点,BE、CD是经典线段,若点G平分CD,则AG⊥BE且AG=12 BE。

知识点全等三角形代几综合【知识梳理】三角形与全等三角形性质判定三角形稳定性三边关系:中线:角度计算:①②③全等三角形边:角:大小:.(1)A(0,2),B(-2,0) (2)AH+FD=AD,在AD上取K使AH=AK,设∠HFO=α,∴∠OAF=45-α,∵HF∥CD,∴∠CDO=∠ADC=α∴∠FAD=45-α ∴△AHF≌△AKF,∴∠AFK=45°∴∠KFD=90-α,∠FKD=90-α,∴FD=DK ∴AH+FD=AD(3)∠DAO=60°,30°或150° 12分(写对一个给1分,不管另外对错)(1) ∵2a 2+b 2+c 2-2ab -8a -2c +17=0∴(a -b )2+(a -4)2+(c -1)2=0∴a =b =4,c =1∴OA =OB ∵∠AOB =90°∴△AOB 为等腰直角三角形∵∠ODA =∠OCB 可证:△ODA ≌△OCB (AAS ) ∴OD =OC =1∴D (0,1)(2)设AD 、BC 交于点G ∵△ODA ≌△OCB ∴∠OBC =∠OAD ∴∠CBA =∠DAB∴GA =GB 又OA =OB ∴OG 为线段AB 的垂直平分线∴∠OGC =∠OGD =45°∵OE ⊥BC ∴∠AOE +∠BOC =90°∵∠OBG +∠BOC =90°∴∠AOE =∠OBG 可证:△OBG ≌△AOE (ASA )∴AE =OG ,OE =BG ∵∠EOA =∠OBC =∠OAD ,EF ⊥AD ∴∠OCB =∠ANE ∴∠FCN =∠FNC ∴FN =FC 可证:△OCG ≌△ANE (AAS )∴CG =NE ∴EF =FG ∴BF =BG +FG =OE +EF(3)延长GE 至H ,且使EG =EH ,连接OH 、BH 、BE 则△OHG 为等腰直角三角形 由共顶点等腰三角形旋转模型,得OBH ≌OAG (SAS )∴∠OBH =∠OAG =135°∵∠OBA =45°∴∠HBG =90°接下来就是用倍长BE 而来证明“斜边中线”的结论,得BE =EG =EO ∵EF ⊥OB ∴OF =BF(黄陂区12月24题)3、如图,直线AB 交x 轴于点)0,(a A ,交y 轴于点),0(b B ,且b a 、满足a b ++2(5)a -=0, (1)点A 的坐标为 ;点B 的坐标为 ;(2)如图1,若点C 的坐标为(-3,-2),且AC BE ⊥于点E ,OC OD ⊥交BE 延长线于D ,试求点D 的坐标;(3)如图2,N M 、分别为OB OA 、边上的点,ON OM =,AN OP ⊥交AB 于点P ,过点P 作BM PG ⊥,交AN 的延长线于点G ,请写出线段OP AG 、与PG 之间的数量关系,并证明你的结论。

九年级数学二次函数之面积问题与代几综合

九年级数学二次函数之面积问题与代几综合

二次函数之面积问题与代几综合知识点一 二次函数的最值如果自变量的取值范围是全体实数,那么函数2y ax bx c =++(a ≠0)在顶点处取得最大值(或最小值),即当abx 2-=时,a b ac y 442-=最值。

如果自变量的取值范围是12x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围12x x x ≤≤内,若在此范围内,则当x=ab2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性:(1)如果在12x x x ≤≤范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;(2)如果在12x x x ≤≤范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小。

知识点二 方法提示1、面积和差关系(铅锤法求面积)、角平分线的性质、中垂线的性质、30°角所对直角边与斜边的关系、斜边中线、中位线;2、等腰三角形、直角三角形、平行四边形、菱形的存在性及其画法。

【例题精讲一】二次函数的面积问题1、某农户准备在墙外空地上(墙长20米,空地最窄处宽6米)利用36米长的篱笆围成三个面积相等且相连的矩形鸡、鸭、鹅场地各一个,设每个小矩形的长为x 米。

(三个场地之间也用篱笆隔开) (1)如果三个矩形场地总面积为72m 2,求x 的值;(2)怎样设计围法,才能保证围成的三个矩形场地的总面积最大?最大面积是多少? (3)如果三个矩形的总面积不小于77m 2,请求出小矩形的长x 的取值范围。

解:2、在一块矩形ABCD的空地上划一块四边形MNPQ进行绿化,如图,四边形的顶点在矩形的边上,且AN=AM =CP=CQ=xm。

已知矩形的边BC=200m,边AB=am,a为大于200的常数,设四边形MNPQ的面积为S m2。

【超级精练】中考数学:代几综合题—以代数为主的综合

【超级精练】中考数学:代几综合题—以代数为主的综合

代几综合题(以代数为主的综合)知识梳理教学重、难点作业完成情况典题探究例1 已知抛物线c bx ax y ++=2与y 轴交于点A (0,3),与x 轴分别交于B (1,0)、C (5,0)两点.(1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点, 求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上的某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A ,求使点P 运动的总路径最短的点E 、点F 的坐标,并求出这个最短总路径的长.例2 在平面直角坐标系xOy 中,抛物线223y mx mx n =++经过(35)(02)P A ,,,两点. (1)求此抛物线的解析式;(2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线,直线与抛物线的对称轴交于C 点,求直线的解析式;(3)在(2)的条件下,求到直线OB OC BC ,,距离相等的点的坐标.例3在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B的左侧..),与y 轴交于点C ,点B 的坐标为(3,0),将直线y kx =沿y 轴向上平移 3个单位长度后恰好经过B 、C 两点.(1) 求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P的坐标;(3)连结CD ,求∠OCA 与∠OCD 两角和的度数.例4在平面直角坐标系xOy 中,抛物线23454122+-++--=m m x m x m y 与x 轴的交点分别为原点O 和点A ,点B(2,n)在这条抛物线上.(1) 求点B 的坐标;(2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的垂线,与直线OB 交于点E 。

延长PE 到点D 。

使得ED=PE. 以PD 为斜边在PD 右侧作等腰直角三角形PCD(当P 点运动时,C 点、D 点也随之运动)当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动)。

代几综合题

代几综合题

• (2)求B、C两点的坐标及图2中OF的长;
• (3)若OM是∠AOB的角平分线,且点G与点H分别是 线段AO与射线OM上的两个动点,直接写出HG+AH的 最小值,请在图3中画出示意图并简述理由。
动点+面积问题
• (12门头沟二模)如图,在直角坐标系 中,y梯 形34 xA13B6 CD的底边AB在x轴上,底 边CD的端点D在y轴上.直线CB的表达式
抛物线+等分面积
• (东城区25)如图,在平面直角坐标系 中 ,已知二次函数 的图像与 轴交于点 ,与 轴 交于A、B两点,点B的坐标为 (1) 求二次函数的解析式及顶点D的坐标 ; (2) 点M是第二象限内抛物线上的一动点 ,若直线OM把四边形ACDB分成面积为1:2 的两部分,求出此时点 的坐标; (3) 点P是第二象限内抛物线上的一动点 ,问:点P在何处时△ 的面积最大?最大面
• 解题中用到的数学思想方法主要 有:
• 方程与函数思想、数形结合思想、 分类讨论思想、转化思想及待定系数 法、配方法等。
基本思路
1、借助几何直观解题; 2、运用方程思想、函数思想解题; 3、灵活运用数形结合的思想方法,由形 导数,以数促形,综合运用代数和几何 知识解题。
教学建议
• 1、因为代数与几何综合比较难,所以要 注意层次,由易到难,逐步递进,别使学 生畏惧,应该增强学生的自信心;
• (2013东城期末25)在平面直角坐标系xOy 中,抛物线 交x轴负半轴于点A,交y轴正半 轴于点B(0 , 3),顶点C位于第二象限, 连结AB,AC,BC.
• (1) 求抛物线的解析式;
• (2) 点D是y轴正半轴上一点,且在B点上方 ,若∠DCB=∠CAB,请你猜想并证明CD 与AC的位置关系;

2020中考数学 一轮复习 二次函数之代几综合(含答案)

2020中考数学  一轮复习 二次函数之代几综合(含答案)

2020中考数学 一轮复习 二次函数之代几综合(含答案)1.如图,已知抛物线经过A (1,0),B (6,0),与y 轴交于点C (0,-3),顶点为M. (1)求出抛物线的解析式及点M 的坐标;(2)在抛物线的对称轴上找一点R ,使得CR +AR 的值最小,并求出其最小值和点R 的坐标; (3)以 AB 为直径作⊙N 交抛物线于点 P (点P 在对称轴的左侧),求证:直线MP 是⊙N 的切线.第 1 题图(1)解:设抛物线的解析式为()()61--=x x a y , ∵点C 在抛物线上,∴()()60103--=-a ,解得21-=a ,∴()()6121---=x x y =327212-+-x x , ∵y=327212-+-x x =82527212+⎪⎭⎫ ⎝⎛--x ,∴顶点D 的坐标为(82527,);(2)解:如解图,连接BC ,与对称轴相交于点R ,连接AR , ∵B ,A 关于对称轴对称,BC 的值即为CR +AR 的最小值,A (1,0), B (6,0),C (0,-3),第1题解图①∴CR +AR 的最小值为53362222=+=+=OC OB BC , 设直线BC 的解析式为b kx y +=(k ≠0),将B (6,0)、C (0,-3)两点代入b kx y +=(k ≠0),得,⎩⎨⎧-==+306b b k 解得,321⎪⎩⎪⎨⎧-==b k∴直线BC 的解析式为321-=x y , ∵抛物线的对称轴为直线27212227=⎪⎭⎫ ⎝⎛-⨯-=-=ab x , 把x =27代入321-=x y 中得y =45-, ∴点R 的坐标为(4527-,), (3)证明:如解图②,连接NP 、AP 、BP , 设点P 的横坐标为a ,则纵坐标为()()6121---a a ,其中1<a <27, ∵A (1,0),B (6,0),N (27,0), ∴AB =6-1=5,∴PN =AN =25,过点P 作PD ⊥OB 交OB 于点D , ∵PD =()()6121---a a ,DN =27-a , 在Rt △PDN 中,222PN DN PD =+,即()()22225612127⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡---+⎪⎭⎫ ⎝⎛-a a a ,()()()256172222=--+-a a a ,即()()()()()()2561612612222=--+--+-+-a a a a a a ①,∵AB 为⊙O 的直径,∴∠APB =90°,在Rt △APB 中,由勾股定理得222AB PB PA =+, ∴()()()()256121612222=--+-+-a a a a ②, 由①-②,得()()()()0612161222=--+--a a a a , 解得()()461-=--a a 或()()061=--a a (舍去)③,把③代入①中,得()()176122=-+-a a ,解得a =2或a =5(舍去),∴P (2,2),∴6462525222522722222=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+PN MP ,6462582522=⎪⎭⎫ ⎝⎛=MN ,∴222MN PN MP =+,由勾股定理逆定理得△PMN 为直角三角形,∴∠MPN =90°, ∵PN 是⊙N 的半径,∴直线M P 是⊙N 的切线.第1题解图②2.如图,抛物线y =ax 2+bx +c 的图象与x 轴分别交于A ,B 两点,与y 轴交于点C ,其中点A (-1,0)、C (0,5)、D (1,8)在抛物线上,M 为抛物线的顶点. (1)求抛物线的解析式;(2)求△MCB 的面积;(3)在抛物线上是否存在点P ,使△P AB 的面积等于△MCB 的面积?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.第2题图解:(1)∵A (-1,0),C (0,5),D (1,8)三点在抛物线y =ax 2+bx +c 上,∴⎪⎩⎪⎨⎧++==+-=c b a c c b a 850,解得⎪⎩⎪⎨⎧==-=541c b a , ∴抛物线的解析式为y =-x 2+4x +5;(2)如解图,过点M 作MN ∥y 轴交BC 于点N , ∴S △MCB =S △MCN +S △MNB =12MN ·OB .∵y =-x 2+4x +5=-(x -5)(x +1)=-(x -2)2+9, ∴M (2,9),B (5,0),由B ,C 两点的坐标易求得直线BC 的解析式为:y =-x +5, 当x =2时,y =-2+5=3,则N (2,3), 则MN =9-3=6, 则S △MCB =12×6×5=15;第2题解图(3)在抛物线上存在点P,使△P AB的面积等于△MCB的面积.∵A(-1,0),B(5,0),∴AB=6,∵S△P AB=S△MCB,∴12×6×|y P|=15,∴|y P|=5,即y P=±5.当y P=5时,-x2+4x+5=5,解得x1=0,x2=4;当y P=-5时,-x2+4x+5=-5,解得x3=2+14,x4=2-14.故在抛物线上存在点P1(0,5),P2(4,5),P3(2+14,-5),P4(2-14,-5),使△P AB的面积等于△MCB的面积.3.如图,抛物线y=-12x2+bx+c与x轴交于A(-1,0)、B两点,与y轴交于点C(0,2),抛物线的对称轴交x轴于点D. (1)求抛物线的解析式;(2)求sin∠ABC的值;(3)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形,如果存在,直接写出点P 的坐标;如果不存在,请说明理由.第3题图解:(1)将点A (-1,0),C (0,2)代入抛物线y =-12x 2+bx +c 中得, ⎩⎨⎧-12-b +c =0c =2,解得⎩⎨⎧b =32c =2,∴抛物线的解析式为y =-12x 2+32x +2; (2)令y =-12x 2+32x +2=0, 解得x 1=-1,x 2=4, ∴点B 的坐标为(4,0), 在Rt △BOC 中,BC =OC 2+OB 2=22+42=25,∴sin ∠ABC =OC BC =225=55;(3)存在,点P 坐标为(32,52)或(32,-52)或(32,4).【解法提示】由抛物线y =-12x 2+32x +2得对称轴为直线x =32,∴点D 的坐标为(32,0). ∴CD =OC 2+OD 2=22+(32)2=52.∵点P 在对称轴x =32上,且△PCD 是以CD 为腰的等腰三角形, ∴当点D 为顶点时,有DP =CD =52, 此时点P 的坐标为(32,52)或(32,-52);当点C 为顶点时,如解图,连接CP ,则CP =CD ,过点C 作CG ⊥DP 于点G ,则DG =PG ,第3题解图∵DG =2, ∴PG =2,PD =4, ∴点P 的坐标为(32,4).综上,存在点P 使△PCD 是以CD 为腰的等腰三角形,点P 的坐标为 (32,52)或(32,-52)或(32,4).类型三 直角三角形的存在性问题4.如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 轴的另一个交点为B .(1)若直线y =mx +n 经过B ,C 两点,求抛物线和直线BC 的解析式;(2)在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求点M 的坐标;(3)设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.第4题图解:(1)由题意得⎩⎪⎨⎪⎧-b2a =-1a +b +c =0c =3,解得⎩⎪⎨⎪⎧a =-1b =-2c =3,∴抛物线的解析式为y =-x 2-2x +3.∵对称轴为直线x =-1,抛物线经过A (1,0), ∴B (-3,0).把B (-3,0),C (0,3)分别代入y =mx +n 得 ⎩⎪⎨⎪⎧-3m +n =0n =3,解得⎩⎪⎨⎪⎧m =1n =3, ∴直线BC 的解析式为y =x +3; (2)如解图,连接MA ,第4题解图∵MA =MB ,∴MA +MC =MB +MC .∴使MA +MC 最小的点M 应为直线BC 与对称轴x =-1的交点.设直线BC 与对称轴x =-1的交点为M ,把x =-1代入直线y =x +3,得 y =2.∴M (-1,2);(3)设P (-1,t ),∵B (-3,0),C (0,3),∴BC 2=18, PB 2=(-1+3)2+t 2=4+t 2, PC 2=(-1)2+(t -3)2=t 2-6t +10.①若B 为直角顶点,则BC 2+PB 2=PC 2,即18+4+t 2=t 2-6t +10, 解得t =-2;②若C 为直角顶点,则BC 2+PC 2=PB 2,即18+t 2-6t +10=4+t 2, 解得t =4;③若P 为直角顶点,则PB 2+PC 2=BC 2,即: 4+t 2+t 2-6t +10=18,解得t 1=3+172,t 2=3-172.综上所述,满足条件的点P 共有四个,分别为:P 1(-1,-2),P 2(-1,4),P 3(-1,3+172),P 4(-1,3-172).5. 如图,抛物线c bx ax y ++=2与x 轴交于点A (-3,0),B (1,0),与 y 轴交于点C (0,3),顶点为D . (1)求抛物线的解析式及点D 的坐标;(2)如图①,在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图②,F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.第5题图解:(1)∵A (-3,0),B (1,0),C (0,3)在抛物线上,∴,32130390⎪⎩⎪⎨⎧=-=-=⎪⎩⎪⎨⎧=++=+-=c b a c c b a c b a 解得 ∴抛物线的解析式为y =-x 2-2x +3, ∵y =-x 2-2x +3=()412++-x ,∴点D 的坐标为(-1,4);(2)如解图①,作点C 关于x 轴的对称点M ,则M (0,-3),连接DM ,DM 与x 轴的交点为E ,连接CE ,此时△CDE 的周长最小,设直线DM 的解析式为y =kx +b (k ≠0),将D (-1,4),M (0,-3)代入y =kx +b ,得,37,34⎩⎨⎧-=-=⎩⎨⎧-==+-b k b b k 解得∴直线DM 的解析式为y =-7x -3, 令y =0,则y =-7x -3=0, 解得x =-37,∴点E 的坐标为(-37,0);第5题解图①(3)存在.由(1)知,OA =OC =3,∠AOC =90°, ∴∠CAB =45°,如解图②,①当∠AFP =90°时,即∠AF 1P 1=90°,∴点P 1既在x 轴上,又在抛物线上,则点P 1与点B 重合,点P 1的坐标为(1,0);第5题解图②②当∠F AP =90°时,即∠F 2AP 2=90°,则∠P 2AO =45°,设AP 2与y 轴的交点为点N , ∴OA =ON =3,则N (0,-3), ∴直线AP 2的解析式为y =-x -3,联立抛物线与直线AP 2的解析式,得方程组⎩⎨⎧+--=--=3232x x y x y , 解得⎩⎨⎧=-=03y x 或⎩⎨⎧-==52y x ,∵A (-3,0), ∴P 2(2,-5);③当∠APF =90°时,即∠AP 3F 3=90°,点P 3既在x 轴上,又在抛物线上,则点P 3与点B 重合,点P 3的坐标为(1,0).综上所述,抛物线上存在点P ,使得△AFP 为等腰直角三角形,其坐标为P (1,0)或(2,-5). 6. 如图,抛物线y =ax 2+bx +c (a ≠0)与y 轴交于点C (0,4),与x 轴交于点A 和点B ,其中点A 的坐标为(-2,0),抛物线的对称轴为直线x =1与抛物线交于点D ,与直线BC 交于点E.第6题图(1)求抛物线的解析式;(2)若点F 是直线BC 上方的抛物线上的一个动点,是否存在点F ,使四边形ABFC 的面积为17?若存在,求出点F 的坐标;若不存在,请说明理由;(3)平行于DE 的一条直线l 与直线BC 相交于点P ,与抛物线相交于点Q ,若以D 、E 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标.解:(1)∵点A (-2,0)与点B 关于直线x =1对称,∴B (4,0), 将点A ,B ,C 的坐标代入函数解析式,得⎩⎪⎨⎪⎧4a -2b +c =016a +4b +c =0c =4,解得⎩⎪⎨⎪⎧a =-12b =1c =4,∴抛物线的解析式为y =-12x 2+x +4;(2)不存在点F ,使四边形ABFC 的面积为17,理由如下: ∵B (4,0),C (0,4), ∴BC 的解析式为y =-x +4,如解图,过点F 作x 轴垂线,交BC 于G ,设F 点的坐标为(m ,-12m 2+m +4),则G (m ,-m +4),∴FG=(-12m2+m+4)-(-m+4)=-12m2+2m,∴S四边形ABFC=S△ABC+S△BCF=12AB·y C+12FG·(x B-x C)=1 2×6×4+12×4(-12m2+2m)=17,整理得m2-4m+5=0,∵b2-4ac=16-4×1×5=-4<0.∴方程无解,∴F点不存在;第6题解图(3)当x=1时,-12x2+x+4=92,即D(1,92).当x=1时,-x+4=3,即E(1,3),∴DE=92-3=32.设Q点坐标为(m,-12m2+m+4),则P(m,-m+4).∴|PQ|=|(-12m2+m+4)-(-m+4)|=|-12m2+2m|.由PQ∥DE,PQ=DE得|-12m2+2m|=32,∴-12m2+2m=32或-12m2+2m=-32,解得m 1=1(PQ 与DE 重合,舍去),m 2=3,m 3=2+7,m 4=2-7. ∴P 点坐标为(3,1)或(2+7,2-7)或(2-7,2+7).7.如图,一次函数y =12x +1的图象与x 轴交于点A ,与y 轴交于点B ,二次函数y =12x 2+bx +c 的图象与一次函数y =12x +1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0).第7题图(1)求二次函数的解析式;(2)若抛物线上存在点P ,使S △BDC =S △PBC ,求出P 点坐标(不与已知点重合);(3)在x 轴上存在点N ,平面内存在点M ,使得B 、N 、C 、M 为顶点构成矩形,请直接写出M 点坐标.解:(1)将x =0代入y =12x +1中,得:y =1, ∴B (0,1),将B (0,1),D (1,0)代入y =12x 2+bx +c 得:,123,0211⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=c b c b c 解得 ∴二次函数的解析式为y =12x 2-32x +1;(2)如解图①,过点D 作DF ∥y 轴交AC 于点F ,过点P 作PG ∥y 轴交AC 于点G , 将x =1代入直线BC 的解析式得:y =32,即F (1,32),设点P (x ,12x 2-32x +1), 则G (x ,12x +1),∴GP =|12x +1-(12x 2-32x +1)|=|-12x 2+2x |. ∵△PBC 的面积=△DBC 的面积, ∴DF =GP ,即|12x 2-2x |=32,当12x 2-2x =32时,解得x =2+7或x =2-7, ∴点P 的坐标为(2+7,7+72)或(2-7,7-72), 当12x 2-2x =-32时,解得x =3或x =1(舍去), ∴点P 的坐标为(3,1),综上所述,点P 的坐标为(3,1)或(2+7,7+72)或(2-7,7-72);第7题解图①(3)点M 的坐标为(92,2),(32,-2),(3,4)或(1,4).【解法提示】如解图②所示:当∠CBN =90°时,则BN 的解析式为y =-2x +1, 将直线BC 的解析式与抛物线的解析式联立得:⎩⎪⎨⎪⎧y =12x +1y =12x 2-32x +1,解得⎩⎪⎨⎪⎧x =0y =1,或⎩⎪⎨⎪⎧x =4y =3,∴点C 的坐标为(4,3),将y =0代入直线BN 的解析式得:-2x +1=0, 解得x =12,∴点N 的坐标为(12,0), 设点M 的坐标为(x ,y ), ∵四边形BNMC 为矩形,∴12+42=0+x 2,0+32=1+y 2,解得x =92,y =2, ∴点M 的坐标为(92,2);第7题解图②如解图③所示:当∠CNM =90°时,设CN 的解析式为y =-2x +n ,将点C 的坐标代入得:-8+n =3, 解得n =11,∴CN 的解析式为y =-2x +11, 将y =0代入得-2x +11=0, 解得x =112,∴点N 的坐标为(112,0),设点M 的坐标为(x ,y ), ∵四边形BMNC 为矩形, ∴0+1122=4+x 2,1+02=3+y 2, 解得x =32,y =-2, ∴点M 的坐标为(32,-2);第7题解图③如解图④所示:当∠BNC =90°时,过点C 作CF ⊥x 轴,垂足为F ,第7题解图④设ON =a ,则NF =4-a ,∵∠BNO +∠OBN =90°,∠BNO +∠CNF =90°, ∴∠OBN =∠CNF , 又∵∠BON =∠CFN , ∴△BON ∽△NFC ,∴ON CF =OB NF ,即a 3=14-a,解得:a =1或a =3,当a =1时,点N 的坐标为(1,0),设点M 的坐标为(x ,y ), ∵四边形BNCM 为矩形,∴0+42=1+x 2,1+32=0+y 2, 解得x =3,y =4, ∴点M 的坐标为(3,4);当a =3时,点N 的坐标为(3,0 ),设点M 的坐标为(x ,y ), ∵四边形BNCM 为矩形, ∴0+42=3+x 2,1+32=0+y 2, 解得x =1,y =4, ∴点M 的坐标为(1,4),综上所述,点M 的坐标为(92,2),(32,-2),(3,4)或(1,4).8.如图,抛物线y =x 2+bx +c 经过A 、B 两点,A 、B 两点的坐分别为(-1,0)、(0,-3). (1)求抛物线的解析式;(2)点E 为抛物线的顶点,点C 为抛物线与x 轴的另一个交点,点D 为y 轴上一点,且DC =DE ,求点D 的坐标;(3)在(2)的条件下,直线DE 上是否存在点P ,使得以C 、D 、P 为顶点的三角形与△DOC相似?如果存在,请直接写出点P 的坐标;如果不存在,说明理由.第8题图解:(1)∵抛物线y =x 2+bx +c 经过点A (-1,0)、B (0,-3), ∴⎩⎪⎨⎪⎧1-b +c =0c =-3,解得⎩⎪⎨⎪⎧b =-2c =-3, ∴抛物线的解析式为y =x 2-2x -3; (2)令y =0,则x 2-2x +3=0,解得x 1=-1,x 2=3, ∴点C 的坐标为(3,0), ∵y =x 2-2x -3=(x -1)2-4, ∴点E 的坐标为(1,-4),设点D 的坐标为(0,m ),如解图①,过点E 作EF ⊥y 轴于点F , ∵DC 2=OD 2+OC 2=m 2+32, DE 2=DF 2+EF 2=(m +4)2+12, DC =DE ,∴DC 2=DE 2,即m 2+32=(m +4)2+12, 解得m =-1,∴点D 的坐标为(0,-1);第8题解图①(3)存在点P 使得以C 、D 、P 为顶点的三角形与△DOC 相似, 其坐标为(-13,0)、(13,-2)、(-3,8)、(3,-10). 【解法提示】∵点C (3,0),D (0,-1),E (1,-4), ∴CO =DF =3,DO =EF =1, 根据勾股定理得,CD =OC 2+OD 2=32+12=10,在△COD 和△DFE 中,⎩⎪⎨⎪⎧CO =DF ∠COD =∠DFE =90°DO =EF ,∴△COD ≌△DFE (SAS), ∴∠EDF =∠DCO , 又∵∠DCO +∠CDO =90°,∴∠CDE=180°-90°=90°,∴CD⊥DE,①OC与CD是对应边时,∵△DOC∽△PDC,∴OCDC=ODDP,即310=1DP,解得DP=103,如解图②,过点P作PG⊥y轴于点G,∵EF⊥y轴,∴△DGP∽△DFE,∴DGDF=GPFE=DPDE,即DG3=PG1=10310,解得DG=1,PG=13,当点P在点D的左边时,OG=DG-DO=1-1=0,∴点P1(-13,0),当点P在点D的右边时,OG=DO+DG=1+1=2,∴点P2(13,-2);第8题解图②②OC与DP是对应边时,∵△DOC∽△CDP,∴OCDP=DOCD,即3DP=110,解得DP=310,如解图③,过点P作PG⊥y轴于点G,∵EF⊥y,∴△DGP∽△DFE,∴DGDF=PGEF=DPDE,即DG3=PG1=31010,解得DG=9,PG=3,当点P在点D的左边时,OG=DG-OD=9-1=8,∴点P3的坐标是(-3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,∴点P4的坐标是(3,-10),第8题解图③综上所述,满足条件的点P共有4个,其坐标分别为(-13,0)、( 13,-2)、(-3,8)、(3,-10).9. 如图,抛物线y=-x2+bx+c经过A(-1,0),B(4,0)两点,与y轴相交于点C,连接BC.点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.第9题图(1)求抛物线的表达式;(2)当P在y轴右边的抛物线上运动时,过点C作CF⊥直线l,垂足为F.当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;(3)如图②,当点P在直线BC上方的抛物线上运动时,连接PC,PB.请问△PBC的面积S 能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标;若不能,请说明理由.解:(1)由于抛物线y=-x2+bx+c经过点A(-1,0)和B(4,0),∴抛物线的表达式为y=-(x+1)(x-4)=-x2+3x+4;(2)对于抛物线y=-x2+3x+4,令x=0,则y=4,∴C(0,4),∵B(4,0),∴OC=OB=4,设P点的坐标为(t,-t2+3t+4),则CF=t,PF=|-t2+3t+4-4|=|-t2+3t|,如果以P,C,F为顶点的三角形与△OBC相似,则CF=PF,即t=|-t2+3t|,当t=-t2+3t时,解得t1=0(舍去),t2=2,此时,-t2+3t+4=-22+3×2+4=6,∴P的坐标为(2,6);当-t=-t2+3t时,解得t3=0(舍去),t4=4,此时,-t2+3t+4=-42+3×4+4=0,∴P的坐标为(4,0).∴P 点的坐标为(2,6)或(4,0);(3)△PBC 的面积S 能取得最大值.设直线BC 的解析式为y =kx +m (k ≠0),代入点B (4,0)和点C (0,4)得:⎩⎪⎨⎪⎧4k +m =0m =4, 解得⎩⎪⎨⎪⎧k =-1m =4, ∴直线BC 的解析式为y =-x +4.设P 点坐标为(n ,-n 2+3n +4),∵点G 在直线BC 上,∴G (n ,-n +4),∵点P 在直线BC 上方抛物线上运动,∴PG =-n 2+3n +4-(-n +4)=-n 2+4n ,∵S △PBC =S △PGC +S △PGB=12PG ·OE +12PG ·BE=12PG ×OB=12×(-n 2+4n )×4=-2(n -2)2+8,∵-2<0,0<n <4,∴当n =2时,S △PBC 有最大值为8,此时P 点的坐标为(2,6).10.如图,经过点A (3,3)的抛物线bx ax y +=2与x 轴交于点B (4,0)和原点O ,P 为二次函数上一动点,过P 作x 轴垂线,垂足为D (x',0)(x'>0),并与直线OA 交于点C .(1)求抛物线的表达式;(2)当点P 在线段OA 上方时,过P 作x 轴的平行线与线段OA 相交于点E ,求△PCE 周长的最大值及此时P 点的坐标;(3)当PC =CO 时,求P 点坐标.第10题图解:(1)∵A (3,3),B (4,0)两点在抛物线bx ax y +=2上, ∴,4160393⎩⎨⎧+=+=b a b a 解得,41⎩⎨⎧=-=b a ∴抛物线的表达式为x x y 42+-=;(2)如解图①,设点P 的坐标为(x ,-x 2+4x ),第10题解图①∵点A 坐标为(3,3);∴∠AOB =45°,∴OD =CD =x ,∴PC=PD-CD=-x2+4x-x=-x2+3x,∵PE∥x轴,∴△PCE是等腰直角三角形,∴当PC取最大值时,△PCE周长最大.∵PE与线段OA相交,∴0≤x≤1,由PC=-x2+3x=-(x-32)2+94可知,抛物线的对称轴为直线x=32,且在对称轴左侧PC随x的增大而增大,∴当x=1时,PC最大,PC的最大值为-1+3=2,∴PE=2,CE=,∴△PCE的周长为CP+PE+CE=4+,∴△PCE周长的最大值为4+,把x=1代入y=-x2+4x,得y=-1+4=3,∴点P的坐标为(1,3);(3)设点P坐标为(x,-x2+4x),则点C坐标为(x,x),如解图②,D2第10题解图②①当点P在点C上方时,P1C1=-x2+4x-x=-x2+3x,OC12x,∵P1C1=OC1,∴-x2+3x2x,解得x1=32,x2=0(舍去).把x=32代入y=-x2+4x得,y=-(32)2+4(32)=1+2,∴P1(32,1+2),②当点P在点C下方时,P2C2=x-(-x2+4x)=x2-3x,OC22x,∵P2C2=OC2,∴x2-3x2x,解得x1=32x2=0(舍去),把x=32代入y=-x2+4x,得y=-(32+4(3)=1-,∴P2(3,1-).综上所述,P点坐标为(3,1+)或(3,1-).。

代几综合训练题

代几综合训练题

代几综合训练题1 如图在平面平面直角系中,抛物线y=ax2+bx+c(a≠0)的图象与轴交于点A(-2,0)、B(4,0),与轴交于点C(0,4),直线l是抛物线的对称轴,与x轴交于点D,点P 是直线l上一动点.(1)求此抛物线的表达式.(2)当AP+CP的值最小时,求点P的坐标;再以点A为圆心,AP的长为半径作⊙A.求证:BP与⊙A相切.(3)点P在直线l上运动时,是否存在等腰△ACP?若存在,请写出所有符合条件的点P坐标;若不存在,请说明理由.2如图,四边形OABC为正方形,点A在x轴上,点C在y轴上,点B(8,8),点P 在边OC上,点M在边AB上.把四边形OAMP沿PM对折,PM为折痕,使点O落在BC边上的点Q处.动点E从点O出发,沿OA边以每秒1个单位长度的速度向终点A运动,运动时间为t,同时动点F从点O出发,沿OC边以相同的速度向终点C运动,当点E到达点A时,E、F同时停止运动.(1)若点Q为线段BC边中点,直接写出点P、点M的坐标;(2)在(1)的条件下,设△OEF与四边形OAMP重叠面积为S,求S与t的函数关系式;(3)在(1)的条件下,在正方形OABC边上,是否存在点H,使△PMH为等腰三角形,若存在,求出点H的坐标,若不存在,请说明理由;(4)若点Q为线段BC上任一点(不与点B、C重合),△BNQ的周长是否发生变化,若不发生变化,求出其值,若发生变化,请说明理由.3如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点P,顶点为C(1,-2).(1)求此函数的关系式;(2)作点C关于x轴的对称点D,顺次连接A,C,B,D.若在抛物线上存在点E,使直线PE将四边形ABCD分成面积相等的两个四边形,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由.4如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于D点.(1)求抛物线的函数表达式;(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.5如图,抛物线y=ax2+2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A(-4,0)和B.(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CEQ的面积最大时,求点Q的坐标;(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(-2,0).问是否有直线l,使△ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.6已知二次函数图象的顶点坐标为M(2,0),直线y=x+2与该二次函数的图象交于A、B两点,其中点A在y轴上(如图示)(1)求该二次函数的解析式;(2)P为线段AB上一动点(A、B两端点除外),过P作x轴的垂线与二次函数的图象交于点Q,设线段PQ的长为l,点P的横坐标为x,求出l与x之间的函数关系式,并求出自变量x的取值范围;(3)在(2)的条件下,线段AB上是否存在一点P,使四边形PQMA为梯形?若存在,求出点P的坐标,并求出梯形的面积;若不存在,请说明理由7在平面直角坐标系中,已知抛物线y=ax2+bx+c经过点A(-3,0)、B(0,3)、C(1,0)三点.(1)求抛物线的解析式和顶点D的坐标;(2)如图1,将抛物线的对称轴绕抛物线的顶点D顺时针旋转60°,与直线y=-x交于点N.在直线DN上是否存在点M,使∠MON=75°.若存在,求出点M的坐标;若不存在,请说明理由;(3)点P、Q分别是抛物线y=ax2+bx+c和直线y=-x上的点,当四边形OBPQ是直角梯形时,求出点Q的坐标.8如图,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m;①用含有m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由.9已知,如图,点B(0,1),点F(-2,0),直线BF与抛物线交于A,B两点,若抛物线图象顶点为C(1,0),(1)求直线BF与抛物线函数关系式;(2)P为线段AB上一动点(P不与A,B重合),过P做x轴垂线与二次函数交于点E,设线段PE长为h,点P横坐标为x,求h与x之间的函数关系式,并写出自变量x取值范围;(3)D为线段AB与二次函数对称轴的交点,在线段AB上是否存在一点P,使四边形DCEP为平行四边形?若存在,请求出P点坐标;若不存在,请说明理由;(4)在(3)中,线段AB上是否存在一点P,使四边形DCEP为等腰梯形?若存在,请求出P点坐标;若不存在,请说明理由.10如图,已知直线y=-12x+2与抛物线y=a(x+2)2相交于A、B两点,与x轴相交于C点,点B 在y轴上,D为抛物线的顶点.P为线段AB上一个动点(点P不与A、B重合),过P点作x轴的垂线与抛物线交于Q点.(1)求抛物线的解析式;(2)设直线与抛物线的对称轴交于点E,如果以P、Q、E为顶点的三角形与△BOC相似,求点P 的坐标;(3)连接QD,探究四边形PQDE的形状:①能否成为菱形;②能否成为等腰梯形?如果能,求点11 已知二次函数y=ax2+bx-2的图象与x轴交于A、B两点,与y轴交于点C,点A 的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.(1)求实数a、b的值;(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB 边向终点B运动,点F以每秒5个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①当t为何值时,线段DF平分△ABC的面积?②是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.③设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式;(3)如图2,点P在二次函数图象上运动,点Q在二次函数图象的对称轴上运动,四边形PQBC能否成为以PQ为底的等腰梯形?如果能,直接写出P、Q两点的坐标;如果不能,请说明理由.。

代几综合问题--知识讲解(基础)

代几综合问题--知识讲解(基础)

代几综合问题—知识讲解(基础)【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径.解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.【思路点拨】过B 作DA 的垂线交DA 的延长线于M,M 为垂足,延长DM 到G,使MG=CE,连接BG.求证△BEC≌△BGM,△ABE≌△ABG,设CE=x,在直角△ADE 中,根据AE 2=AD 2+DE 2求x 的值,即CE 的长度.【答案与解析】解:过B 作DA 的垂线交DA 的延长线于M,M 为垂足,延长DM 到G,使MG=CE,连接BG,∴∠AMB=90°,∵AD∥CB,∠DCB=90°,∴∠D=90°,∴∠AMB=∠DCB=∠D=90°,∴四边形BCDM 为矩形.∵BC=CD,∴四边形BCDM 是正方形,∴BC=BM,且∠ECB=∠GMB,MG=CE,∴Rt△BEC≌Rt△BGM.∴BG=BE,∠CBE=∠GBM,∵∠CBE+∠EBA+∠ABM=90°,且∠ABE=45°∴∠CBE+∠ABM=45°∴∠ABM+∠GBM=45°∴∠ABE=∠ABG=45°,∴△ABE≌△ABG,AG=AE=10.设CE=x,则AM=10-x,AD=12-(10-x)=2+x,DE=12-x,在Rt△ADE 中,AE 2=AD 2+DE 2,∴100=(x+2)2+(12-x)2,即x 2-10x+24=0;解得:x 1=4,x 2=6.故CE 的长为4或6.【总结升华】本题考查了直角三角形中勾股定理的运用,考查了全等三角形的判定和性质,本题中求证△ABE≌△ABG,从而说明AG=AE=10是解题的关键.类型二、函数与几何问题2.如图,二次函数y =(x-2)2+m 的图象与y 轴交于点C,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b 的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m 的x 的取值范围.【思路点拨】(1)将点A(1,0)代入y=(x-2)2+m 求出m 的值,根据点的对称性,将y=3代入二次函数解析式求出B 的横坐标,再根据待定系数法求出一次函数解析式;(2)根据图象和A、B 的交点坐标可直接求出满足kx+b≥(x-2)2+m 的x 的取值范围.【答案与解析】解:(1)将点A(1,0)代入y=(x-2)2+m 得,(1-2)2+m=0,1+m=0,m=-1,则二次函数解析式为y=(x-2)2-1.当x=0时,y=4-1=3,故C 点坐标为(0,3),由于C 和B 关于对称轴对称,在设B 点坐标为(x,3),令y=3,有(x-2)2-1=3,解得x=4或x=0.则B 点坐标为(4,3).设一次函数解析式为y=kx+b,将A(1,0)、B(4,3)代入y=kx+b 中,得,解得,则一次函数解析式为y=x-1;(2)∵A、B 坐标为(1,0),(4,3),∴当kx+b≥(x-2)2+m 时,1≤x≤4.【总结升华】本题考察了待定系数法求二次函数,一次函数函数解析式以及数形结合法解不等式.求出B 点坐标是解题的关键.举一反三:【变式】如图,二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A、B 两点,其中A 点坐标为(-1,0),点C(0,5)、D(1,8)在抛物线上,M 为抛物线的顶点.(1)求抛物线的解析式.(2)求△MCB的面积.【答案】解:(1)设抛物线的解析式为2y ax bx c =++,根据题意,得058a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解之,得145a b c =-⎧⎪=⎨⎪=⎩.∴所求抛物线的解析式为245y x x =-++.(2)∵C 点的坐标为(0,5).∴OC=5.令0y =,则2450x x -++=,解得121,5x x =-=.∴B 点坐标为(5,0).∴OB=5.∵2245(2)9y x x x =-++=--+,∴顶点M 坐标为(2,9).过点M 作MN⊥AB 于点N,则ON=2,MN=9.∴11(59)9(52)551522MCB BNM OBC OCMN S S S S ∆∆∆=+-=+⨯⨯--⨯⨯=梯形.类型三、动态几何中的函数问题3.如图,在平面直角坐标系中,已知点A(-2,-4),OB=2,抛物线y=ax 2+bx+c 经过点A、O、B 三点.(1)求抛物线的函数表达式;(2)若点M 是抛物线对称轴上一点,试求AM+OM 的最小值;(3)在此抛物线上,是否存在点P,使得以点P 与点O、A、B 为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.【思路点拨】(1)把A、B、O 的坐标代入到y=ax 2+bx+c 得到方程组,求出方程组的解即可;(2)根据对称求出点O 关于对称轴的对称点B,连接AB,根据勾股定理求出AB 的长,就可得到AM+OM 的最小值.(3)①若OB∥AP,根据点A 与点P 关于直线x=1对称,由A(-2,-4),得出P 的坐标;②若OA∥BP,设直线OA 的表达式为y=kx,设直线BP 的表达式为y=2x+m,由B (2,0)求出直线BP 的表达式为y=2x-4,得到方程组,求出方程组的解即可;③若AB∥OP,设直线AB 的表达式为y=kx+m,求出直线AB,得到方程组求出方程组的解即可.【答案与解析】解:(1)由OB=2,可知B(2,0),将A(-2,-4),B(2,0),O(0,0)三点坐标代入抛物线y=ax 2+bx+c,得4420420a b c a b c c -=-+⎧⎪=++⎨⎪=⎩解得:1,21,0.a b c ⎧=-⎪⎪=⎨⎪=⎪⎩∴抛物线的函数表达式为y=212x x -+(2)由y=212x x -+=211(1)22x x --+可得,抛物线的对称轴为直线x=1,且对称轴x=1是线段OB 的垂直平分线,连接AB 交直线x=1于点M,M 点即为所求.∴MO=MB,则MO+MA=MA+MB=AB,作AC⊥x 轴,垂足为C,则|AC|=4,|BC|=4,∴AB=42,∴MO+MA 的最小值为42.答:MO+MA 的最小值为42.(3)①如图1,若OB∥AP,此时点A 与点P 关于直线x=1对称,由A(-2,-4),得P(4,-4),则得梯形OAPB.②如图2,若OA∥BP,设直线OA 的表达式为y=kx,由A(-2,-4)得,y=2x.设直线BP 的表达式为y=2x+m,由B(2,0)得,0=4+m,即m=-4,∴直线BP 的表达式为y=2x-4.由12⎧⎪⎨⎪⎩2y=2x-4,y=-x+x.解得x 1=-4,x 2=2(不合题意,舍去),当x=-4时,y=-12,∴点P(-4,-12),则得梯形OAPB.③如图3,若AB∥OP,设直线AB 的表达式为y=kx+m,则4202k m k m -=-+⎧⎨=+⎩,.解得12k m =⎧⎨=-⎩,.∴AB 的表达式为y=x-2.∵AB∥OP,∴直线OP 的表达式为y=x.由2,12y x y x x =⎧⎪⎨=-+⎪⎩得x 2=0,解得x=0,(不合题意,舍去),此时点P 不存在.综上所述,存在两点P(4,-4)或P(-4,-12),使得以点P 与点O、A、B 为顶点的四边形是梯形.【总结升华】本题主要考查对梯形,解二元二次方程组,解一元二次方程,二次函数的性质,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用性质进行计算是解此题的关键.举一反三:【变式】如图,直线434+-=x y 与x 轴、y 轴的交点分别为B、C,点A 的坐标是(-2,0).(1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S.①求S 与t 的函数关系式;②设点M 在线段OB 上运动时,是否存在S=4的情形?若存在,求出对应的t 值;若不存在,请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.【答案】(1)证明:y=443x -+∵当x=0时,y=4;当y=0时,x=3,∴B(3,0),C(0,4),∵A(-2,0),由勾股定理得:BC=22345+=∵AB=3-(-2)=5,∴AB=BC=5,∴△ABC 是等腰三角形;(2)解:①∵C(0,4),B(3,0),BC=5,∴sin∠B=40.85OC BC ==过N 作NH⊥x 轴于H.∵点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度,又∵AB=BC=5,∴当t=5秒时,同时到达终点,∴△MON 的面积是S=12OM NH ⨯⨯∴S=20.4t t -⨯②点M 在线段OB 上运动时,存在S=4的情形.理由如下:∵C(0,4),B(3,0),BC=5,∴sin∠B=40.85OC BC ==根据题意得:∵S=4,∴|t-2|×0.4t=4,∵点M 在线段OB 上运动,OA=2,∴t-2>0,即(t-2)×0.4t=4,化为t 2-2t-10=0,解得:111,111(t t =+=-舍去)∴点M 在线段OB 上运动时,存在S=4的情形,此时对应的t 是(111t =+)秒.③∵C(0,4)B(3,0)BC=5,∴cos∠B=30.65OB BC ==分为三种情况:I、当∠NOM=90°时,N 在y 轴上,即此时t=5;II、当∠NMO=90°时,M、N 的横坐标相等,即t-2=3-0.6t,解得:t=3.125,III、∠MNO 不可能是90°,即在运动过程中,当△MON 为直角三角形时,t 的值是5秒或3.125秒.类型四、直角坐标系中的几何问题4.(2015•阳山县一模)如图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边分别交于点M、N,直线m 运动的时间为t(秒).(1)点A 的坐标是,点C 的坐标是;(2)当t=秒或秒时,MN=AC;(3)设△OMN 的面积为S,求S 与t 的函数关系式.【思路点拨】(1)根据BC∥x 轴,AB∥y 轴即可求得A 和C 的坐标;(2)分成MN 是△OAC 的中位线和MN 是△ABC 的中位线时两种情况进行讨论;(3)根据时间t 值的范围不同,M,N 与矩形的两边相交构成不同的三角形,画出图形进行分类讨论,然后正确表示出△OMN 的面积即可.【答案与解析】解:(1)A 的坐标是(4,0),C 的坐标是(0,3);(2)当MN 是△OAC 的中位线时,M 是OA 的中点,则t=OA=×4=2;当MN 是△ABC 的中位线时,如图1.则△AME∽△OCA,则AE=OA=×4=2,则E 的坐标是(6,0),即平移了6个单位长度.故答案是:2或6.(3)当0<t≤4时,OA=t,则ON=t,则S △OMN =×t×t=238t (0<t≤4).即当4<t<8时,如图1.设直线AC 的解析式是y=kx+b,根据题意得,解得:,则直线AC 的解析式是y=﹣x+3.设MN 的解析式是y=﹣x+c,E 的坐标是(t,0),代入解析式得:c=t,则直线MN 的解析式是y=﹣x+t.令x=4,解得y=﹣3+t,即M 的坐标是(4,﹣3+t).令y=3,解得:x=t﹣4,则N 的坐标是(t﹣4,3).则S 矩形OABC=3×4=12,S △OCN =OC•CN=×3•(t﹣4)=3 6.2t -S △OAM =OA•AM=×4•(﹣3+t)=﹣6.S △BMN =BN•BM=[4﹣(t﹣4)][3﹣(﹣3+t)]=t 2﹣6t+24.则S=12﹣(﹣6)﹣(t﹣6)﹣(t 2﹣6t+24),即S=﹣t 2+3t(4<t<8).【总结升华】本题考查了矩形的性质以及待定系数法求一次函数的解析式,直线平行的条件,正确利用t 表示出M 和N 的坐标是关键.类型五、几何图形中的探究、归纳、猜想与证明问题5.一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(01),,然后接着按图中箭头所示方向运动,即(00)(01)(11)(10)→→→→,,,,…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是_______.【思路点拨】由题目中所给的质点运动的特点找出规律,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,即可得出第35秒时质点所在位置的坐标.【答案与解析】解:质点运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒0123x y 123…数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时质点所在位置的坐标是(5,0).【总结升华】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.举一反三:【变式】(2016•泰山区一模)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2014次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)【答案】B.【解析】解:如图,经过6次反弹后动点回到出发点(0,3),∵2014÷6=335…4,∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).故选;B.。

代几综合题解题指导

代几综合题解题指导

怎样解决代数几何综合题
• 第一,需要认真审题,分析、挖掘题目的隐含 条件,翻译并转化为显性条件; • 第二,要善于将复杂问题分解为基本问题,逐 个击破; • 第三,要善于联想和转化,将以上得到的显性 条件进行恰当地组合,进一步得到新的结论。 要注意的是,恰当地使用分析综合法及方程与 函数的思想、转化思想、数形结合思想、分类 讨论思想、运动观点等数学思想方法。能更有 效地解决问题。
2010年北京卷24题
(2)点P在线段OA上,从O点出发向点运动,过P点作x轴的 垂线,与直线OB交于点E.延长PE到点D.使得ED=PE.以PD 为斜边,在PD右侧作等腰直角三角形PCD(当P点运动时,C 点、D点也随之运动),
①当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的 长;
(2)点P在线段OA上,从O点出发向点运动,过P点作x轴的 垂线,与直线OB交于点E.延长PE到点D.使得ED=PE.以PD 为斜边,在PD右侧作等腰直角三角形PCD(当P点运动时,C 点、D点也随之运动),
①当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的 D y 长;
E B o P C
①当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的 长;
②若P点从O点出发向A点作匀速运动,速度为每秒1个单位长 度,同时线段OA上另一点Q从A点出发向O点作匀速运动,速 度为每秒2个单位长度(当Q点到达O点时停止运动,P点也同 时停止运动).过Q点作x轴的垂线,与直线AB交于点F.延 长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等 腰直角三角形QMN(当Q点运动时,M点,N点也随之运 动).若P点运动到t秒时,两个等腰直角三角形分别有一条 边恰好落在同一条直线上,求此刻t的值.

[第2讲]反比例函数代几综合

[第2讲]反比例函数代几综合

[第2讲]反比例函数代几综合反比例函数的代数综合问题指的是针对反比例函数的实际应用问题,通过代入具体数值进行求解的问题。

本文将继续介绍反比例函数的代数综合问题。

在上一讲中,我们了解了反比例函数的定义及其基本性质,同时也学习了如何通过代入具体数值进行求解。

接下来,我们将通过实际应用问题来更深入地理解反比例函数的代数综合。

假设人利用一台机器来完成生产任务,设机器每小时可以生产x件商品。

现在,有一个生产任务需要在y小时内完成,那么我们可以根据反比例函数建立关系式:y=k/x。

问题1:如果这个任务需要在12小时内完成,那么这台机器每小时能够生产多少件商品?解法:根据关系式y=k/x,将y值代入,可以得到12=k/x。

我们需要求解x的值,可以通过移项得到k=12x。

这里k表示机器的生产能力,即机器每小时能够生产k件商品。

因此,这台机器每小时可以生产12件商品。

问题2:如果这台机器每小时能够生产10件商品,那么这个生产任务需要多少小时完成?解法:同样根据关系式y=k/x,将k值代入,可以得到y=10/x。

我们需要求解y的值,可以通过移项得到xy=10。

将已知的x值10代入,可以得到10y=10。

进一步化简得到y=1、因此,这个生产任务需要在1小时内完成。

问题3:机器每小时能够生产8件商品,如果要在6小时内完成生产任务,那么需要多少台机器同时工作?解法:设需要的机器数量为n,那么根据关系式y=k/x,我们可以得到6=n/8、我们需要求解n的值,可以通过移项得到6*8=n。

计算得到n=48、因此,需要48台机器同时工作才能在6小时内完成生产任务。

通过这些实际应用问题,我们可以更加深入地理解反比例函数的代数综合。

在解决这些问题时,需要根据具体题目分析,建立合适的关系式,通过代入具体数值进行求解。

同时,还需要注意对方程进行变形和化简,从而得到最终的答案。

在实际应用中,反比例函数也有许多其他的代数综合问题,如:设工厂的水泥库存量为x,每天消耗的水泥量为y,如果水泥库存要维持在20吨,那么每天至少需要消耗多少吨水泥?等等。

二次函数代几综合专题

二次函数代几综合专题

二次函数代几综合(类型一)
———求面积最大值问题
1. 某拱桥横截面为抛物线形,将抛物线放置在平面直角坐标系中如图所示,抛物线与x轴交于A、B两点,与y轴交于C点,且抛物线的解析式为y=-x 2+2x+3.
(1)求△ABC的面积;
(2)若动点D在第一象限的抛物线上,求△BDC面积最大时D点的坐标,并求出△BDC的最大面积。

(3) 若动点D在第一象限的抛物线上且抛物线的对称轴交CB于点P,
当S△DCP最大时,请求D点的坐标和△DCP的最大面积。

2、如图,二次函数y=x 2+bx+c的图象与x轴交于A、B两点,且A点坐标为(-3,0),经过B点的直线交抛物线于点D(-2,-3).
(1)求抛物线的解析式
(2)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛物线于点F,是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.
(3)在二次函数上有一动点P,过点P作PM⊥x轴交线段BD于点M,判断PM有最大值还是有最小值,如有,求出线段PM长度的最大值或最小值并求出此时S △BDP的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代几综合(海一)25. 在平面直角坐标系x O y 中,抛物线222y x m x m m =-++的顶点为C . (1) 求点C 的坐标(用含m 的代数式表示);(2) 直线2y x =+与抛物线交于A 、B 两点,点A 在抛物线的对称轴左侧.①若P 为直线O C 上一动点,求△A P B 的面积;②抛物线的对称轴与直线A B 交于点M ,作点B 关于直线M C 的对称点'B . 以M 为圆心,M C 为半径的圆上存在一点Q ,使得'2Q B Q B +的值最小,则这个最小值为 .(西一)25.如图1,在平面直角坐标系xOy 中,直线l :34y x m =+与x 轴、y 轴分别交于点A 和点B (0,-1),抛物线212y x b x c =++经过点B ,且与直线l 的另一个交点为C (4,n ).(1) 求n 的值和抛物线的解析式;(2) 点D 在抛物线上,且点D 的横坐标为t (0< t <4).DE ∥y 轴交直线l 于点E ,点F 在直线l 上,且四边形DFEG 为矩形(如图2).若矩形DFEG 的周长为p ,求p 与t 的函数关系式以及p 的最大值;(3) M 是平面内一点,将△AOB 绕点M 沿逆时针方向旋转90°后,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,请直接写出点A 1的横坐标....图1图2(东一)25.在平面直角坐标系xOy 中,抛物线2229y x m x m =-+-与x 轴交于A ,B 两点(点A 在点B 的左侧,且OA <OB ),与y 轴的交点坐标为(0,-5).点M 是线段AB 上的任意一点,过点M (a ,0)作直线MC ⊥x 轴,交抛物线于点C ,记点C 关于抛物线对称轴的对称点为D (C ,D 不重合),点P 是线段MC 上一点,连结CD ,BD ,PD . (1)求此抛物线的解析式;(2)当1a =时,问点P 在什么位置时,能使得PD ⊥BD ; (3)若点P 满足14M P M C =,作PE ⊥PD 交x 轴于点E ,问是否存在这样的点E ,使得PE =PD ,若存在,求出点E 的坐标;若不存在,请说明理由.(石一)25.如图,把两个全等的Rt △AOB 和Rt △ECD 分别置于平面直角坐标系xOy 中,使点E 与点B 重合,直角边OB 、BC 在y 轴上.已知点D (4,2),过A 、D 两点的直线交y 轴于点F .若△ECD 沿DA 方向以每秒2个单位长度的速度匀速平移,设平移的时间为t (秒),记△ECD 在平移过程中某时刻为△'''E C D , ''E D 与AB 交于点M ,与y 轴交于点N , ''C D 与AB 交于点Q ,与y 轴交于点P (注:平移过程中,点'D 始终在线段DA 上,且不与点A 重合).(1)求直线AD 的函数解析式;(2)试探究在△ECD 平移过程中,四边形MNPQ 的面积是否存在最大值?若存在,求出这个最大值及t 的取值;若不存在,请说明理由;(3)以MN 为边,在''E D 的下方作正方形MNRH ,求正方形MNRH 与坐标轴有两个公共点时t 的取值范围.(朝一)25.如图,二次函数y=ax2+2ax+4的图象与x轴交于点A、B,与y轴交于点C,∠CBO的正切值是2.(1)求此二次函数的解析式.(2)动直线l从与直线AC重合的位置出发,绕点A顺时针旋转,与直线AB重合时终止运动,直线l与BC交于点D,P是线段AD的中点.①直接写出点P所经过的路线长.②点D与B、C不重合时,过点D作DE⊥AC于点E、作DF⊥AB于点F,连接PE、PF,在旋转过程中,∠EPF的大小是否发生变化?若不变,求∠EPF 的度数;若变化,请说明理由.③在②的条件下,连接EF,求EF的最小值.(丰一)25.如图,在平面直角坐标系xOy中,⊙C的圆心坐标为(-2,-2),半径为2.函数y=-x+2的图象与x轴交于点A,与y轴交于点B,点P为直线AB上一动点.(1)若△POA是等腰三角形,且点P不与点A、B重合,直接写出点P的坐标;(2)当直线PO与⊙C相切时,求∠POA的度数;(3)当直线PO与⊙C相交时,设交点为E、F,点M为线段EF的中点,令PO=t,MO=s,求s与t之间的函数关系式,并写出t的取值范围.(密一)25.如图,经过原点的抛物线22(0)y x m x m =-+>与x 轴的另一个交点为A.过点(1,)P m 作直线P M x ⊥轴于点M ,交抛物线于点B.记点B 关于抛物线对称轴的对称点为C (B 、C 不重合).连结CB,CP 。

(1)当3m =时,求点A 的坐标及BC 的长;(2)当1m >时,连结CA ,问m 为何值时C A C P ⊥?(3)过点P 作P E P C ⊥且P E P C =,问是否存在m ,使得点E 落在坐标轴上?若存在,求出所有满足要求的m 的值,并定出相对应的点E 坐标;若不存在,请说明理由.(门一)25.在平面直角坐标系xOy 中,抛物线2yxbx c=-++与x 轴交于A 、B 两点,与y 轴交于点C ,顶点为D ,过点A 的直线与抛物线交于点E ,与y 轴交于点F ,且点B 的坐标为(3,0),点E 的坐标为(2,3). (1)求抛物线的解析式;(2)若点G 为抛物线对称轴上的一个动点,H 为x 轴上一点,当以点C 、G 、H 、F 四点所围成的四边形的周长最小时,求出这个最小值及点G 、H 的坐标; (3)设直线AE 与抛物线对称轴的交点为P ,M 为直线AE 上的任意一点,过点M 作MN ∥PD 交抛物线于点N ,以P 、D 、M 、N 为顶点的四边形能否为平行四边形?若能,请求点M第24题图(平一)25.如图1,在直角坐标系中,已知直线112yx =+与y 轴交于点A ,与x 轴交于点B ,以线段BC 为边向上作正方形ABCD . (1)点C 的坐标为( ),点D 的坐标为( ); (2)若抛物线22(0)yax bx a =++≠经过C 、D 两点,求该抛物线的解析式;(3)若正方形以每秒5个单位长度的速度沿射线 BA 向上平移,直至正方形的顶点C 落在y 轴上时, 正方形停止运动. 在运动过程中,设正方形落在y 轴右侧部分的面积为s ,求s 关于平移时间t (秒)的函数关系式, 并写出相应自变量t 的取值范围.(房一)25. 已知:半径为1的⊙O 1与x 轴交A 、B 两点,圆心O 1的坐标为(2, 0),二次函数2yx b x c=-++的图象经过A 、B 两点,与y 轴交于点C(1)求这个二次函数的解析式;(2)经过坐标原点O 的直线l 与⊙O 1相切,求直线l 的解析式; (3)若M 为二次函数2yx b x c=-++的图象上一点,且横坐标为2,点P 是x 轴上的任意一点,分别联结B C 、B M .试判断P CP M-与B C B M-的大小关系,并说明理由.(顺一)25.如图,已知抛物线23y ax bx =++与y 轴交于点A ,且经过(1,0)(5,8)B C 、两点,点D 是抛物线顶点,E 是对称轴与直线A C 的交点,F 与E 关于点D 对称. (1)求抛物线的解析式;(2)求证:A F E C F E ∠=∠;(3)在抛物线的对称轴上是否存在点P ,使A F P ∆与F D C ∆相似.若有,请求出所有符合条件的点P 的坐标;若没有,请说明理由.(通一)25.我们把一个半圆与二次函数图象的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点(半圆与二次函数图象的连接点除外),那么这条直线叫做“蛋圆”的切线.如图,二次函数223y x x =--的图象与x 轴交于点A 、B ,与y 轴交于点D ,AB 为半圆直径,半圆圆心为点M ,半圆与y 轴的正半轴交于点C . (1)求经过点C 的“蛋圆”的切线的表达式; (2)求经过点D 的“蛋圆”的切线的表达式;(3)已知点E 是“蛋圆”上一点(不与点A 、点B 重合),点E 关于x 轴的对称点是F ,若点F 也在“蛋圆”上,求点E 的坐标.(怀一)25.已知二次函数2y ax bx c=++(0a ≠)的图象经过点(10)A ,,(20)B ,,(02)C -,,直线xm=(2m>)与x 轴交于点D .(1)求二次函数的解析式;(2)在直线x m =(2m >)上有一点E (点E 在第四象限),使得E D B 、、为顶点的三角形与以A O C 、、为顶点的三角形相似,求E 点坐标(用含m 的代数式表示); (3)在(2)成立的条件下,抛物线上是否存在一点F ,使得四边形A B E F 为平行四边形?若存在,请求出m 的值及四边形A B E F 的面积;若不存在,请说明理由.第25题图(昌一)25. 如图,在平面直角坐标系xOy 中,点B ,C 在x 轴上,点A ,E 在y 轴上,OB ︰OC =1︰3,AE =7,且tan ∠OCE =3,tan ∠ABO =2. (1)求经过A ,B ,C 三点的抛物线的解析式;(2)点D 在(1)中的抛物线上,四边形ABCD 是以BC 为一底边的梯形,求经过B 、D 两点的一次函数解析式;(3)在(2)的条件下,过点D 作直线DQ ∥y 轴交线段CE 于点Q ,在抛物线上是否存在点P ,使直线PQ 与坐标轴相交所成的锐角等于梯形ABCD 的底角,若存在,求出点P 的坐标;若不存在,请说明理由.(大兴一)25.小明同学在研究某条抛物线2(0)y a x a =<的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于A 、B 两点,请你帮小明解答以下问题:(1)若测得O A O B ==(如图1),求a 的值;(2)对同一条抛物线,小明将三角板绕点O 旋转到如图2所示位置时,过B 作B F x ⊥ 轴于点F ,测得1O F =,写出此时点B 的坐标,并求点A 的横坐标...; (3)对该抛物线,小明将三角板绕点O 旋转任意角度时惊奇地发现,交点A 、B 所连的线段总经过一个固定的点,试说明理由并求出该点的坐标.。

相关文档
最新文档